1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, HTLC_FAIL_BACK_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::keysinterface::EntropySource;
17 use crate::chain::transaction::OutPoint;
18 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, PathFailure, PaymentFailureReason};
19 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
20 use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS, RecentPaymentDetails, RecipientOnionFields};
21 use crate::ln::features::InvoiceFeatures;
23 use crate::ln::msgs::ChannelMessageHandler;
24 use crate::ln::outbound_payment::Retry;
25 use crate::routing::gossip::{EffectiveCapacity, RoutingFees};
26 use crate::routing::router::{get_route, PaymentParameters, Route, Router, RouteHint, RouteHintHop, RouteHop, RouteParameters};
27 use crate::routing::scoring::ChannelUsage;
28 use crate::util::test_utils;
29 use crate::util::errors::APIError;
30 use crate::util::ser::Writeable;
31 use crate::util::string::UntrustedString;
33 use bitcoin::{Block, BlockHeader, TxMerkleNode};
34 use bitcoin::hashes::Hash;
35 use bitcoin::network::constants::Network;
37 use crate::prelude::*;
39 use crate::ln::functional_test_utils::*;
40 use crate::routing::gossip::NodeId;
41 #[cfg(feature = "std")]
43 crate::util::time::tests::SinceEpoch,
44 std::time::{SystemTime, Instant, Duration}
49 let chanmon_cfgs = create_chanmon_cfgs(4);
50 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
51 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
52 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
54 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
55 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
56 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
57 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
59 let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
60 let path = route.paths[0].clone();
61 route.paths.push(path);
62 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
63 route.paths[0][0].short_channel_id = chan_1_id;
64 route.paths[0][1].short_channel_id = chan_3_id;
65 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
66 route.paths[1][0].short_channel_id = chan_2_id;
67 route.paths[1][1].short_channel_id = chan_4_id;
68 send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
69 fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
74 let chanmon_cfgs = create_chanmon_cfgs(4);
75 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
76 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
77 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
79 let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
80 let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
81 let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
82 let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2);
84 send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
86 let amt_msat = 1_000_000;
87 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], amt_msat);
88 let path = route.paths[0].clone();
89 route.paths.push(path);
90 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
91 route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
92 route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
93 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
94 route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
95 route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
97 // Initiate the MPP payment.
98 let payment_id = PaymentId(payment_hash.0);
99 let mut route_params = RouteParameters {
100 payment_params: route.payment_params.clone().unwrap(),
101 final_value_msat: amt_msat,
104 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
105 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
106 payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
107 check_added_monitors!(nodes[0], 2); // one monitor per path
108 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
109 assert_eq!(events.len(), 2);
111 // Pass half of the payment along the success path.
112 let success_path_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
113 pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
115 // Add the HTLC along the first hop.
116 let fail_path_msgs_1 = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
117 let (update_add, commitment_signed) = match fail_path_msgs_1 {
118 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
119 assert_eq!(update_add_htlcs.len(), 1);
120 assert!(update_fail_htlcs.is_empty());
121 assert!(update_fulfill_htlcs.is_empty());
122 assert!(update_fail_malformed_htlcs.is_empty());
123 assert!(update_fee.is_none());
124 (update_add_htlcs[0].clone(), commitment_signed.clone())
126 _ => panic!("Unexpected event"),
128 nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
129 commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
131 // Attempt to forward the payment and complete the 2nd path's failure.
132 expect_pending_htlcs_forwardable!(&nodes[2]);
133 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
134 let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
135 assert!(htlc_updates.update_add_htlcs.is_empty());
136 assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
137 assert!(htlc_updates.update_fulfill_htlcs.is_empty());
138 assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
139 check_added_monitors!(nodes[2], 1);
140 nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
141 commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
142 let mut events = nodes[0].node.get_and_clear_pending_events();
144 Event::PendingHTLCsForwardable { .. } => {},
145 _ => panic!("Unexpected event")
148 expect_payment_failed_conditions_event(events, payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
150 // Rebalance the channel so the second half of the payment can succeed.
151 send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
153 // Retry the second half of the payment and make sure it succeeds.
154 route.paths.remove(0);
155 route_params.final_value_msat = 1_000_000;
156 route_params.payment_params.previously_failed_channels.push(chan_4_update.contents.short_channel_id);
157 nodes[0].router.expect_find_route(route_params, Ok(route));
158 nodes[0].node.process_pending_htlc_forwards();
159 check_added_monitors!(nodes[0], 1);
160 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
161 assert_eq!(events.len(), 1);
162 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
163 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
166 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
167 let chanmon_cfgs = create_chanmon_cfgs(4);
168 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
169 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
170 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
172 let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
173 let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
174 let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
175 let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3);
177 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
178 let path = route.paths[0].clone();
179 route.paths.push(path);
180 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
181 route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
182 route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
183 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
184 route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
185 route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
187 // Initiate the MPP payment.
188 nodes[0].node.send_payment_with_route(&route, payment_hash,
189 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
190 check_added_monitors!(nodes[0], 2); // one monitor per path
191 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
192 assert_eq!(events.len(), 2);
194 // Pass half of the payment along the first path.
195 let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
196 pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None);
198 if send_partial_mpp {
199 // Time out the partial MPP
200 for _ in 0..MPP_TIMEOUT_TICKS {
201 nodes[3].node.timer_tick_occurred();
204 // Failed HTLC from node 3 -> 1
205 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
206 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
207 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
208 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
209 check_added_monitors!(nodes[3], 1);
210 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
212 // Failed HTLC from node 1 -> 0
213 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
214 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
215 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
216 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
217 check_added_monitors!(nodes[1], 1);
218 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
220 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
222 // Pass half of the payment along the second path.
223 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
224 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None);
226 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
227 for _ in 0..MPP_TIMEOUT_TICKS {
228 nodes[3].node.timer_tick_occurred();
231 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
236 fn mpp_receive_timeout() {
237 do_mpp_receive_timeout(true);
238 do_mpp_receive_timeout(false);
242 fn no_pending_leak_on_initial_send_failure() {
243 // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
244 // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
245 // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
246 // pending payment forever and never time it out.
247 // Here we test exactly that - retrying a payment when a peer was disconnected on the first
248 // try, and then check that no pending payment is being tracked.
249 let chanmon_cfgs = create_chanmon_cfgs(2);
250 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
251 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
252 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
254 create_announced_chan_between_nodes(&nodes, 0, 1);
256 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
258 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
259 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
261 unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, payment_hash,
262 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)
263 ), true, APIError::ChannelUnavailable { ref err },
264 assert_eq!(err, "Peer for first hop currently disconnected"));
266 assert!(!nodes[0].node.has_pending_payments());
269 fn do_retry_with_no_persist(confirm_before_reload: bool) {
270 // If we send a pending payment and `send_payment` returns success, we should always either
271 // return a payment failure event or a payment success event, and on failure the payment should
274 // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
275 // always persisted asynchronously), the ChannelManager has to reload some payment data from
276 // ChannelMonitor(s) in some cases. This tests that reloading.
278 // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
279 // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
280 // which has separate codepaths for "commitment transaction already confirmed" and not.
281 let chanmon_cfgs = create_chanmon_cfgs(3);
282 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
283 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
284 let persister: test_utils::TestPersister;
285 let new_chain_monitor: test_utils::TestChainMonitor;
286 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
287 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
289 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
290 let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
292 // Serialize the ChannelManager prior to sending payments
293 let nodes_0_serialized = nodes[0].node.encode();
295 // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
297 let amt_msat = 1_000_000;
298 let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
299 let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
300 let route_params = RouteParameters {
301 payment_params: route.payment_params.clone().unwrap(),
302 final_value_msat: amt_msat,
304 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
305 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
306 check_added_monitors!(nodes[0], 1);
308 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
309 assert_eq!(events.len(), 1);
310 let payment_event = SendEvent::from_event(events.pop().unwrap());
311 assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
313 // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
314 // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
315 // which would prevent retry.
316 nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id());
317 nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
319 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
320 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
321 // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
322 let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
324 reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
326 let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
327 if confirm_before_reload {
328 mine_transaction(&nodes[0], &as_commitment_tx);
329 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
332 // The ChannelMonitor should always be the latest version, as we're required to persist it
333 // during the `commitment_signed_dance!()`.
334 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
335 reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
337 // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
338 // force-close the channel.
339 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
340 assert!(nodes[0].node.list_channels().is_empty());
341 assert!(nodes[0].node.has_pending_payments());
342 nodes[0].node.timer_tick_occurred();
343 if !confirm_before_reload {
344 let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
345 assert_eq!(as_broadcasted_txn.len(), 1);
346 assert_eq!(as_broadcasted_txn[0].txid(), as_commitment_tx.txid());
348 assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
350 check_added_monitors!(nodes[0], 1);
352 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
353 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
354 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
356 // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
357 // error, as the channel has hit the chain.
358 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
359 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
360 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
361 let as_err = nodes[0].node.get_and_clear_pending_msg_events();
362 assert_eq!(as_err.len(), 1);
364 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
365 assert_eq!(node_id, nodes[1].node.get_our_node_id());
366 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
367 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
368 check_added_monitors!(nodes[1], 1);
369 assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
371 _ => panic!("Unexpected event"),
373 check_closed_broadcast!(nodes[1], false);
375 // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
376 // we close in a moment.
377 nodes[2].node.claim_funds(payment_preimage_1);
378 check_added_monitors!(nodes[2], 1);
379 expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
381 let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
382 nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
383 check_added_monitors!(nodes[1], 1);
384 commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
385 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
387 if confirm_before_reload {
388 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
389 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
392 // Create a new channel on which to retry the payment before we fail the payment via the
393 // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
394 // connecting several blocks while creating the channel (implying time has passed).
395 create_announced_chan_between_nodes(&nodes, 0, 1);
396 assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
398 mine_transaction(&nodes[1], &as_commitment_tx);
399 let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
400 assert_eq!(bs_htlc_claim_txn.len(), 1);
401 check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
403 if !confirm_before_reload {
404 mine_transaction(&nodes[0], &as_commitment_tx);
406 mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
407 expect_payment_sent!(nodes[0], payment_preimage_1);
408 connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
409 let (first_htlc_timeout_tx, second_htlc_timeout_tx) = {
410 let mut txn = nodes[0].tx_broadcaster.unique_txn_broadcast();
411 assert_eq!(txn.len(), 2);
412 (txn.remove(0), txn.remove(0))
414 check_spends!(first_htlc_timeout_tx, as_commitment_tx);
415 check_spends!(second_htlc_timeout_tx, as_commitment_tx);
416 if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
417 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
419 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
421 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
422 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
424 // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
425 // reloaded) via a route over the new channel, which work without issue and eventually be
426 // received and claimed at the recipient just like any other payment.
427 let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
429 // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
430 // and not the original fee. We also update node[1]'s relevant config as
431 // do_claim_payment_along_route expects us to never overpay.
433 let per_peer_state = nodes[1].node.per_peer_state.read().unwrap();
434 let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id())
435 .unwrap().lock().unwrap();
436 let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap();
437 let mut new_config = channel.config();
438 new_config.forwarding_fee_base_msat += 100_000;
439 channel.update_config(&new_config);
440 new_route.paths[0][0].fee_msat += 100_000;
443 // Force expiration of the channel's previous config.
444 for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
445 nodes[1].node.timer_tick_occurred();
448 assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash, // Shouldn't be allowed to retry a fulfilled payment
449 RecipientOnionFields::secret_only(payment_secret), payment_id_1).is_err());
450 nodes[0].node.send_payment_with_route(&new_route, payment_hash,
451 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
452 check_added_monitors!(nodes[0], 1);
453 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
454 assert_eq!(events.len(), 1);
455 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
456 do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
457 expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
461 fn retry_with_no_persist() {
462 do_retry_with_no_persist(true);
463 do_retry_with_no_persist(false);
466 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
467 // Test that an off-chain completed payment is not retryable on restart. This was previously
468 // broken for dust payments, but we test for both dust and non-dust payments.
470 // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
472 let chanmon_cfgs = create_chanmon_cfgs(3);
473 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
475 let mut manually_accept_config = test_default_channel_config();
476 manually_accept_config.manually_accept_inbound_channels = true;
478 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
480 let first_persister: test_utils::TestPersister;
481 let first_new_chain_monitor: test_utils::TestChainMonitor;
482 let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
483 let second_persister: test_utils::TestPersister;
484 let second_new_chain_monitor: test_utils::TestChainMonitor;
485 let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
486 let third_persister: test_utils::TestPersister;
487 let third_new_chain_monitor: test_utils::TestChainMonitor;
488 let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
490 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
492 // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
493 let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
494 confirm_transaction(&nodes[0], &funding_tx);
495 confirm_transaction(&nodes[1], &funding_tx);
496 // Ignore the announcement_signatures messages
497 nodes[0].node.get_and_clear_pending_msg_events();
498 nodes[1].node.get_and_clear_pending_msg_events();
499 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
501 // Serialize the ChannelManager prior to sending payments
502 let mut nodes_0_serialized = nodes[0].node.encode();
504 let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
505 let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
507 // The ChannelMonitor should always be the latest version, as we're required to persist it
508 // during the `commitment_signed_dance!()`.
509 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
511 reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
512 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
514 // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
515 // force-close the channel.
516 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
517 nodes[0].node.timer_tick_occurred();
518 assert!(nodes[0].node.list_channels().is_empty());
519 assert!(nodes[0].node.has_pending_payments());
520 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
521 check_added_monitors!(nodes[0], 1);
523 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
524 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
526 // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
527 // error, as the channel has hit the chain.
528 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
529 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
530 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
531 let as_err = nodes[0].node.get_and_clear_pending_msg_events();
532 assert_eq!(as_err.len(), 1);
533 let bs_commitment_tx;
535 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
536 assert_eq!(node_id, nodes[1].node.get_our_node_id());
537 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
538 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
539 check_added_monitors!(nodes[1], 1);
540 bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
542 _ => panic!("Unexpected event"),
544 check_closed_broadcast!(nodes[1], false);
546 // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
547 // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
548 // incoming HTLCs with the same payment hash later.
549 nodes[2].node.fail_htlc_backwards(&payment_hash);
550 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
551 check_added_monitors!(nodes[2], 1);
553 let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
554 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
555 commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
556 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
557 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
559 // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
560 // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
561 // after the commitment transaction, so always connect the commitment transaction.
562 mine_transaction(&nodes[0], &bs_commitment_tx[0]);
563 mine_transaction(&nodes[1], &bs_commitment_tx[0]);
565 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
566 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
567 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
568 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
569 assert_eq!(as_htlc_timeout.len(), 1);
571 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
572 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
573 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
574 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
577 // Create a new channel on which to retry the payment before we fail the payment via the
578 // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
579 // connecting several blocks while creating the channel (implying time has passed).
580 // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
581 let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
582 assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
584 // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
585 // confirming, we will fail as it's considered still-pending...
586 let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
587 match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
588 Err(PaymentSendFailure::DuplicatePayment) => {},
589 _ => panic!("Unexpected error")
591 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
593 // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
594 // again. We serialize the node first as we'll then test retrying the HTLC after a restart
595 // (which should also still work).
596 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
597 connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
598 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
600 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
601 let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
602 nodes_0_serialized = nodes[0].node.encode();
604 // After the payment failed, we're free to send it again.
605 assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash,
606 RecipientOnionFields::secret_only(payment_secret), payment_id).is_ok());
607 assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
609 reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
610 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
612 reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
614 // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
615 // the payment is not (spuriously) listed as still pending.
616 assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash,
617 RecipientOnionFields::secret_only(payment_secret), payment_id).is_ok());
618 check_added_monitors!(nodes[0], 1);
619 pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
620 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
622 match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
623 Err(PaymentSendFailure::DuplicatePayment) => {},
624 _ => panic!("Unexpected error")
626 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
628 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
629 let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
630 nodes_0_serialized = nodes[0].node.encode();
632 // Check that after reload we can send the payment again (though we shouldn't, since it was
633 // claimed previously).
634 reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
635 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
637 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
639 match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
640 Err(PaymentSendFailure::DuplicatePayment) => {},
641 _ => panic!("Unexpected error")
643 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
647 fn test_completed_payment_not_retryable_on_reload() {
648 do_test_completed_payment_not_retryable_on_reload(true);
649 do_test_completed_payment_not_retryable_on_reload(false);
653 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
654 // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
655 // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
656 // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
657 // the ChannelMonitor tells it to.
659 // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
660 // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
661 // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
662 let chanmon_cfgs = create_chanmon_cfgs(2);
663 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
664 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
665 let persister: test_utils::TestPersister;
666 let new_chain_monitor: test_utils::TestChainMonitor;
667 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
668 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
670 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
672 // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
674 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
675 nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
676 check_closed_broadcast!(nodes[0], true);
677 check_added_monitors!(nodes[0], 1);
678 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
680 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
681 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
683 // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
684 connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
685 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
686 assert_eq!(node_txn.len(), 3);
687 assert_eq!(node_txn[0].txid(), node_txn[1].txid());
688 check_spends!(node_txn[1], funding_tx);
689 check_spends!(node_txn[2], node_txn[1]);
690 let timeout_txn = vec![node_txn[2].clone()];
692 nodes[1].node.claim_funds(payment_preimage);
693 check_added_monitors!(nodes[1], 1);
694 expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
696 let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
697 connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
698 check_closed_broadcast!(nodes[1], true);
699 check_added_monitors!(nodes[1], 1);
700 check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
701 let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
702 assert_eq!(claim_txn.len(), 1);
703 check_spends!(claim_txn[0], node_txn[1]);
705 header.prev_blockhash = nodes[0].best_block_hash();
706 connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
708 if confirm_commitment_tx {
709 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
712 header.prev_blockhash = nodes[0].best_block_hash();
713 let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
716 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
717 connect_block(&nodes[0], &claim_block);
718 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
721 // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
722 // returning InProgress. This should cause the claim event to never make its way to the
724 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
725 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
728 connect_blocks(&nodes[0], 1);
730 connect_block(&nodes[0], &claim_block);
733 let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
734 let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
735 .get_mut(&funding_txo).unwrap().drain().collect();
736 // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
737 // If we're testing connection idempotency we may get substantially more.
738 assert!(mon_updates.len() >= 1);
739 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
740 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
742 // If we persist the ChannelManager here, we should get the PaymentSent event after
744 let mut chan_manager_serialized = Vec::new();
745 if !persist_manager_post_event {
746 chan_manager_serialized = nodes[0].node.encode();
749 // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
750 // payment sent event.
751 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
752 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
753 for update in mon_updates {
754 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
757 expect_payment_failed!(nodes[0], payment_hash, false);
759 expect_payment_sent!(nodes[0], payment_preimage);
762 // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
764 if persist_manager_post_event {
765 chan_manager_serialized = nodes[0].node.encode();
768 // Now reload nodes[0]...
769 reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
771 if persist_manager_post_event {
772 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
773 } else if payment_timeout {
774 expect_payment_failed!(nodes[0], payment_hash, false);
776 expect_payment_sent!(nodes[0], payment_preimage);
779 // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
780 // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
781 // payment events should kick in, leaving us with no pending events here.
782 let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
783 nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
784 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
788 fn test_dup_htlc_onchain_fails_on_reload() {
789 do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
790 do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
791 do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
792 do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
793 do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
794 do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
798 fn test_fulfill_restart_failure() {
799 // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
800 // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
801 // again, or fail it, giving us free money.
803 // Of course probably they won't fail it and give us free money, but because we have code to
804 // handle it, we should test the logic for it anyway. We do that here.
805 let chanmon_cfgs = create_chanmon_cfgs(2);
806 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
807 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
808 let persister: test_utils::TestPersister;
809 let new_chain_monitor: test_utils::TestChainMonitor;
810 let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
811 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
813 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
814 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
816 // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
817 // pre-fulfill, which we do by serializing it here.
818 let chan_manager_serialized = nodes[1].node.encode();
819 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
821 nodes[1].node.claim_funds(payment_preimage);
822 check_added_monitors!(nodes[1], 1);
823 expect_payment_claimed!(nodes[1], payment_hash, 100_000);
825 let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
826 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
827 expect_payment_sent_without_paths!(nodes[0], payment_preimage);
829 // Now reload nodes[1]...
830 reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
832 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
833 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
835 nodes[1].node.fail_htlc_backwards(&payment_hash);
836 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
837 check_added_monitors!(nodes[1], 1);
838 let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
839 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
840 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
841 // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
842 // it had already considered the payment fulfilled, and now they just got free money.
843 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
847 fn get_ldk_payment_preimage() {
848 // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
849 let chanmon_cfgs = create_chanmon_cfgs(2);
850 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
851 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
852 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
853 create_announced_chan_between_nodes(&nodes, 0, 1);
855 let amt_msat = 60_000;
856 let expiry_secs = 60 * 60;
857 let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs, None).unwrap();
859 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
860 .with_features(nodes[1].node.invoice_features());
861 let scorer = test_utils::TestScorer::new();
862 let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
863 let random_seed_bytes = keys_manager.get_secure_random_bytes();
864 let route = get_route(
865 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
866 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
867 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
868 nodes[0].node.send_payment_with_route(&route, payment_hash,
869 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
870 check_added_monitors!(nodes[0], 1);
872 // Make sure to use `get_payment_preimage`
873 let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
874 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
875 assert_eq!(events.len(), 1);
876 pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
877 claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
881 fn sent_probe_is_probe_of_sending_node() {
882 let chanmon_cfgs = create_chanmon_cfgs(3);
883 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
884 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
885 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
887 create_announced_chan_between_nodes(&nodes, 0, 1);
888 create_announced_chan_between_nodes(&nodes, 1, 2);
890 // First check we refuse to build a single-hop probe
891 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
892 assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
894 // Then build an actual two-hop probing path
895 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
897 match nodes[0].node.send_probe(route.paths[0].clone()) {
898 Ok((payment_hash, payment_id)) => {
899 assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
900 assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
901 assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
906 get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
907 check_added_monitors!(nodes[0], 1);
911 fn successful_probe_yields_event() {
912 let chanmon_cfgs = create_chanmon_cfgs(3);
913 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
914 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
915 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
917 create_announced_chan_between_nodes(&nodes, 0, 1);
918 create_announced_chan_between_nodes(&nodes, 1, 2);
920 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
922 let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
924 // node[0] -- update_add_htlcs -> node[1]
925 check_added_monitors!(nodes[0], 1);
926 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
927 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
928 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
929 check_added_monitors!(nodes[1], 0);
930 commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
931 expect_pending_htlcs_forwardable!(nodes[1]);
933 // node[1] -- update_add_htlcs -> node[2]
934 check_added_monitors!(nodes[1], 1);
935 let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
936 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
937 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
938 check_added_monitors!(nodes[2], 0);
939 commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
941 // node[1] <- update_fail_htlcs -- node[2]
942 let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
943 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
944 check_added_monitors!(nodes[1], 0);
945 commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
947 // node[0] <- update_fail_htlcs -- node[1]
948 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
949 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
950 check_added_monitors!(nodes[0], 0);
951 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
953 let mut events = nodes[0].node.get_and_clear_pending_events();
954 assert_eq!(events.len(), 1);
955 match events.drain(..).next().unwrap() {
956 crate::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
957 assert_eq!(payment_id, ev_pid);
958 assert_eq!(payment_hash, ev_ph);
962 assert!(!nodes[0].node.has_pending_payments());
966 fn failed_probe_yields_event() {
967 let chanmon_cfgs = create_chanmon_cfgs(3);
968 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
969 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
970 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
972 create_announced_chan_between_nodes(&nodes, 0, 1);
973 create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000);
975 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
977 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
979 let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
981 // node[0] -- update_add_htlcs -> node[1]
982 check_added_monitors!(nodes[0], 1);
983 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
984 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
985 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
986 check_added_monitors!(nodes[1], 0);
987 commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
988 expect_pending_htlcs_forwardable!(nodes[1]);
990 // node[0] <- update_fail_htlcs -- node[1]
991 check_added_monitors!(nodes[1], 1);
992 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
993 // Skip the PendingHTLCsForwardable event
994 let _events = nodes[1].node.get_and_clear_pending_events();
995 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
996 check_added_monitors!(nodes[0], 0);
997 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
999 let mut events = nodes[0].node.get_and_clear_pending_events();
1000 assert_eq!(events.len(), 1);
1001 match events.drain(..).next().unwrap() {
1002 crate::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1003 assert_eq!(payment_id, ev_pid);
1004 assert_eq!(payment_hash, ev_ph);
1008 assert!(!nodes[0].node.has_pending_payments());
1012 fn onchain_failed_probe_yields_event() {
1013 // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
1015 let chanmon_cfgs = create_chanmon_cfgs(3);
1016 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1017 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1018 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1020 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1021 create_announced_chan_between_nodes(&nodes, 1, 2);
1023 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
1025 // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1026 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1027 let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1029 // node[0] -- update_add_htlcs -> node[1]
1030 check_added_monitors!(nodes[0], 1);
1031 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1032 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1033 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1034 check_added_monitors!(nodes[1], 0);
1035 commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1036 expect_pending_htlcs_forwardable!(nodes[1]);
1038 check_added_monitors!(nodes[1], 1);
1039 let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1041 // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1042 // Node A, which after 6 confirmations should result in a probe failure event.
1043 let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1044 confirm_transaction(&nodes[0], &bs_txn[0]);
1045 check_closed_broadcast!(&nodes[0], true);
1046 check_added_monitors!(nodes[0], 1);
1048 let mut events = nodes[0].node.get_and_clear_pending_events();
1049 assert_eq!(events.len(), 2);
1050 let mut found_probe_failed = false;
1051 for event in events.drain(..) {
1053 Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1054 assert_eq!(payment_id, ev_pid);
1055 assert_eq!(payment_hash, ev_ph);
1056 found_probe_failed = true;
1058 Event::ChannelClosed { .. } => {},
1062 assert!(found_probe_failed);
1063 assert!(!nodes[0].node.has_pending_payments());
1067 fn claimed_send_payment_idempotent() {
1068 // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1069 let chanmon_cfgs = create_chanmon_cfgs(2);
1070 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1071 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1072 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1074 create_announced_chan_between_nodes(&nodes, 0, 1).2;
1076 let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1077 let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1079 macro_rules! check_send_rejected {
1081 // If we try to resend a new payment with a different payment_hash but with the same
1082 // payment_id, it should be rejected.
1083 let send_result = nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1084 RecipientOnionFields::secret_only(second_payment_secret), payment_id);
1086 Err(PaymentSendFailure::DuplicatePayment) => {},
1087 _ => panic!("Unexpected send result: {:?}", send_result),
1090 // Further, if we try to send a spontaneous payment with the same payment_id it should
1091 // also be rejected.
1092 let send_result = nodes[0].node.send_spontaneous_payment(
1093 &route, None, RecipientOnionFields::spontaneous_empty(), payment_id);
1095 Err(PaymentSendFailure::DuplicatePayment) => {},
1096 _ => panic!("Unexpected send result: {:?}", send_result),
1101 check_send_rejected!();
1103 // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1104 // not been seen by the user. At this point, from the user perspective nothing has changed, so
1105 // we must remain just as idempotent as we were before.
1106 do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1108 for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1109 nodes[0].node.timer_tick_occurred();
1112 check_send_rejected!();
1114 // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1115 // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1116 // the payment complete. However, they could have called `send_payment` while the event was
1117 // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1118 // after the event is handled a duplicate payment should sitll be rejected.
1119 expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1120 check_send_rejected!();
1122 // If relatively little time has passed, a duplicate payment should still fail.
1123 nodes[0].node.timer_tick_occurred();
1124 check_send_rejected!();
1126 // However, after some time has passed (at least more than the one timer tick above), a
1127 // duplicate payment should go through, as ChannelManager should no longer have any remaining
1128 // references to the old payment data.
1129 for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1130 nodes[0].node.timer_tick_occurred();
1133 nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1134 RecipientOnionFields::secret_only(second_payment_secret), payment_id).unwrap();
1135 check_added_monitors!(nodes[0], 1);
1136 pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1137 claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1141 fn abandoned_send_payment_idempotent() {
1142 // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1144 let chanmon_cfgs = create_chanmon_cfgs(2);
1145 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1146 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1147 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1149 create_announced_chan_between_nodes(&nodes, 0, 1).2;
1151 let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1152 let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1154 macro_rules! check_send_rejected {
1156 // If we try to resend a new payment with a different payment_hash but with the same
1157 // payment_id, it should be rejected.
1158 let send_result = nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1159 RecipientOnionFields::secret_only(second_payment_secret), payment_id);
1161 Err(PaymentSendFailure::DuplicatePayment) => {},
1162 _ => panic!("Unexpected send result: {:?}", send_result),
1165 // Further, if we try to send a spontaneous payment with the same payment_id it should
1166 // also be rejected.
1167 let send_result = nodes[0].node.send_spontaneous_payment(
1168 &route, None, RecipientOnionFields::spontaneous_empty(), payment_id);
1170 Err(PaymentSendFailure::DuplicatePayment) => {},
1171 _ => panic!("Unexpected send result: {:?}", send_result),
1176 check_send_rejected!();
1178 nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1179 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1181 // Until we abandon the payment upon path failure, no matter how many timer ticks pass, we still cannot reuse the
1183 for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1184 nodes[0].node.timer_tick_occurred();
1186 check_send_rejected!();
1188 pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash, PaymentFailureReason::RecipientRejected);
1190 // However, we can reuse the PaymentId immediately after we `abandon_payment` upon passing the
1191 // failed payment back.
1192 nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1193 RecipientOnionFields::secret_only(second_payment_secret), payment_id).unwrap();
1194 check_added_monitors!(nodes[0], 1);
1195 pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1196 claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1199 #[derive(PartialEq)]
1200 enum InterceptTest {
1207 fn test_trivial_inflight_htlc_tracking(){
1208 // In this test, we test three scenarios:
1209 // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1210 // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1211 // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1212 let chanmon_cfgs = create_chanmon_cfgs(3);
1213 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1214 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1215 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1217 let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
1218 let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
1220 // Send and claim the payment. Inflight HTLCs should be empty.
1221 let payment_hash = send_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000).1;
1222 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1224 let mut node_0_per_peer_lock;
1225 let mut node_0_peer_state_lock;
1226 let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1228 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1229 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1230 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1231 channel_1.get_short_channel_id().unwrap()
1233 assert_eq!(chan_1_used_liquidity, None);
1236 let mut node_1_per_peer_lock;
1237 let mut node_1_peer_state_lock;
1238 let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1240 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1241 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1242 &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1243 channel_2.get_short_channel_id().unwrap()
1246 assert_eq!(chan_2_used_liquidity, None);
1248 let pending_payments = nodes[0].node.list_recent_payments();
1249 assert_eq!(pending_payments.len(), 1);
1250 assert_eq!(pending_payments[0], RecentPaymentDetails::Fulfilled { payment_hash: Some(payment_hash) });
1252 // Remove fulfilled payment
1253 for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1254 nodes[0].node.timer_tick_occurred();
1257 // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1258 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000);
1259 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1261 let mut node_0_per_peer_lock;
1262 let mut node_0_peer_state_lock;
1263 let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1265 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1266 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1267 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1268 channel_1.get_short_channel_id().unwrap()
1270 // First hop accounts for expected 1000 msat fee
1271 assert_eq!(chan_1_used_liquidity, Some(501000));
1274 let mut node_1_per_peer_lock;
1275 let mut node_1_peer_state_lock;
1276 let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1278 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1279 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1280 &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1281 channel_2.get_short_channel_id().unwrap()
1284 assert_eq!(chan_2_used_liquidity, Some(500000));
1286 let pending_payments = nodes[0].node.list_recent_payments();
1287 assert_eq!(pending_payments.len(), 1);
1288 assert_eq!(pending_payments[0], RecentPaymentDetails::Pending { payment_hash, total_msat: 500000 });
1290 // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1291 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1293 // Remove fulfilled payment
1294 for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1295 nodes[0].node.timer_tick_occurred();
1298 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1300 let mut node_0_per_peer_lock;
1301 let mut node_0_peer_state_lock;
1302 let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1304 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1305 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1306 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1307 channel_1.get_short_channel_id().unwrap()
1309 assert_eq!(chan_1_used_liquidity, None);
1312 let mut node_1_per_peer_lock;
1313 let mut node_1_peer_state_lock;
1314 let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1316 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1317 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1318 &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1319 channel_2.get_short_channel_id().unwrap()
1321 assert_eq!(chan_2_used_liquidity, None);
1324 let pending_payments = nodes[0].node.list_recent_payments();
1325 assert_eq!(pending_payments.len(), 0);
1329 fn test_holding_cell_inflight_htlcs() {
1330 let chanmon_cfgs = create_chanmon_cfgs(2);
1331 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1332 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1333 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1334 let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1336 let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1337 let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1339 // Queue up two payments - one will be delivered right away, one immediately goes into the
1340 // holding cell as nodes[0] is AwaitingRAA.
1342 nodes[0].node.send_payment_with_route(&route, payment_hash_1,
1343 RecipientOnionFields::secret_only(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1344 check_added_monitors!(nodes[0], 1);
1345 nodes[0].node.send_payment_with_route(&route, payment_hash_2,
1346 RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1347 check_added_monitors!(nodes[0], 0);
1350 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1353 let mut node_0_per_peer_lock;
1354 let mut node_0_peer_state_lock;
1355 let channel = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id);
1357 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1358 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1359 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1360 channel.get_short_channel_id().unwrap()
1363 assert_eq!(used_liquidity, Some(2000000));
1366 // Clear pending events so test doesn't throw a "Had excess message on node..." error
1367 nodes[0].node.get_and_clear_pending_msg_events();
1371 fn intercepted_payment() {
1372 // Test that detecting an intercept scid on payment forward will signal LDK to generate an
1373 // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
1374 // payment or (b) fail the payment.
1375 do_test_intercepted_payment(InterceptTest::Forward);
1376 do_test_intercepted_payment(InterceptTest::Fail);
1377 // Make sure that intercepted payments will be automatically failed back if too many blocks pass.
1378 do_test_intercepted_payment(InterceptTest::Timeout);
1381 fn do_test_intercepted_payment(test: InterceptTest) {
1382 let chanmon_cfgs = create_chanmon_cfgs(3);
1383 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1385 let mut zero_conf_chan_config = test_default_channel_config();
1386 zero_conf_chan_config.manually_accept_inbound_channels = true;
1387 let mut intercept_forwards_config = test_default_channel_config();
1388 intercept_forwards_config.accept_intercept_htlcs = true;
1389 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
1391 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1392 let scorer = test_utils::TestScorer::new();
1393 let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
1395 let _ = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1397 let amt_msat = 100_000;
1398 let intercept_scid = nodes[1].node.get_intercept_scid();
1399 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1400 .with_route_hints(vec![
1401 RouteHint(vec![RouteHintHop {
1402 src_node_id: nodes[1].node.get_our_node_id(),
1403 short_channel_id: intercept_scid,
1406 proportional_millionths: 0,
1408 cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
1409 htlc_minimum_msat: None,
1410 htlc_maximum_msat: None,
1413 .with_features(nodes[2].node.invoice_features());
1414 let route_params = RouteParameters {
1416 final_value_msat: amt_msat,
1418 let route = get_route(
1419 &nodes[0].node.get_our_node_id(), &route_params.payment_params,
1420 &nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
1421 route_params.payment_params.final_cltv_expiry_delta, nodes[0].logger, &scorer,
1425 let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60, None).unwrap();
1426 nodes[0].node.send_payment_with_route(&route, payment_hash,
1427 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
1428 let payment_event = {
1430 let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
1431 assert_eq!(added_monitors.len(), 1);
1432 added_monitors.clear();
1434 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1435 assert_eq!(events.len(), 1);
1436 SendEvent::from_event(events.remove(0))
1438 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1439 commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
1441 // Check that we generate the PaymentIntercepted event when an intercept forward is detected.
1442 let events = nodes[1].node.get_and_clear_pending_events();
1443 assert_eq!(events.len(), 1);
1444 let (intercept_id, expected_outbound_amount_msat) = match events[0] {
1445 crate::events::Event::HTLCIntercepted {
1446 intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
1448 assert_eq!(pmt_hash, payment_hash);
1449 assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
1450 assert_eq!(short_channel_id, intercept_scid);
1451 (intercept_id, expected_outbound_amount_msat)
1456 // Check for unknown channel id error.
1457 let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1458 assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) });
1460 if test == InterceptTest::Fail {
1461 // Ensure we can fail the intercepted payment back.
1462 nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
1463 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
1464 nodes[1].node.process_pending_htlc_forwards();
1465 let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1466 check_added_monitors!(&nodes[1], 1);
1467 assert!(update_fail.update_fail_htlcs.len() == 1);
1468 let fail_msg = update_fail.update_fail_htlcs[0].clone();
1469 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1470 commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
1472 // Ensure the payment fails with the expected error.
1473 let fail_conditions = PaymentFailedConditions::new()
1474 .blamed_scid(intercept_scid)
1475 .blamed_chan_closed(true)
1476 .expected_htlc_error_data(0x4000 | 10, &[]);
1477 expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
1478 } else if test == InterceptTest::Forward {
1479 // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
1480 let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
1481 let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1482 assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
1483 assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
1485 // Open the just-in-time channel so the payment can then be forwarded.
1486 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1488 // Finally, forward the intercepted payment through and claim it.
1489 nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
1490 expect_pending_htlcs_forwardable!(nodes[1]);
1492 let payment_event = {
1494 let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
1495 assert_eq!(added_monitors.len(), 1);
1496 added_monitors.clear();
1498 let mut events = nodes[1].node.get_and_clear_pending_msg_events();
1499 assert_eq!(events.len(), 1);
1500 SendEvent::from_event(events.remove(0))
1502 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
1503 commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
1504 expect_pending_htlcs_forwardable!(nodes[2]);
1506 let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1507 expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
1508 do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
1509 let events = nodes[0].node.get_and_clear_pending_events();
1510 assert_eq!(events.len(), 2);
1512 Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
1513 assert_eq!(payment_preimage, *ev_preimage);
1514 assert_eq!(payment_hash, *ev_hash);
1515 assert_eq!(fee_paid_msat, &Some(1000));
1517 _ => panic!("Unexpected event")
1520 Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
1521 assert_eq!(hash, Some(payment_hash));
1523 _ => panic!("Unexpected event")
1525 } else if test == InterceptTest::Timeout {
1526 let mut block = Block {
1527 header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
1530 connect_block(&nodes[0], &block);
1531 connect_block(&nodes[1], &block);
1532 for _ in 0..TEST_FINAL_CLTV {
1533 block.header.prev_blockhash = block.block_hash();
1534 connect_block(&nodes[0], &block);
1535 connect_block(&nodes[1], &block);
1537 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
1538 check_added_monitors!(nodes[1], 1);
1539 let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1540 assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
1541 assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
1542 assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
1543 assert!(htlc_timeout_updates.update_fee.is_none());
1545 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
1546 commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
1547 expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
1549 // Check for unknown intercept id error.
1550 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1551 let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1552 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1553 let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
1554 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1558 #[derive(PartialEq)]
1569 fn automatic_retries() {
1570 do_automatic_retries(AutoRetry::Success);
1571 do_automatic_retries(AutoRetry::Spontaneous);
1572 do_automatic_retries(AutoRetry::FailAttempts);
1573 do_automatic_retries(AutoRetry::FailTimeout);
1574 do_automatic_retries(AutoRetry::FailOnRestart);
1575 do_automatic_retries(AutoRetry::FailOnRetry);
1577 fn do_automatic_retries(test: AutoRetry) {
1578 // Test basic automatic payment retries in ChannelManager. See individual `test` variant comments
1580 let chanmon_cfgs = create_chanmon_cfgs(3);
1581 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1582 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1585 let new_chain_monitor;
1586 let node_0_deserialized;
1588 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1589 let channel_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1590 let channel_id_2 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1592 // Marshall data to send the payment
1593 #[cfg(feature = "std")]
1594 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1595 #[cfg(not(feature = "std"))]
1596 let payment_expiry_secs = 60 * 60;
1597 let amt_msat = 1000;
1598 let mut invoice_features = InvoiceFeatures::empty();
1599 invoice_features.set_variable_length_onion_required();
1600 invoice_features.set_payment_secret_required();
1601 invoice_features.set_basic_mpp_optional();
1602 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1603 .with_expiry_time(payment_expiry_secs as u64)
1604 .with_features(invoice_features);
1605 let route_params = RouteParameters {
1607 final_value_msat: amt_msat,
1609 let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
1611 macro_rules! pass_failed_attempt_with_retry_along_path {
1612 ($failing_channel_id: expr, $expect_pending_htlcs_forwardable: expr) => {
1613 // Send a payment attempt that fails due to lack of liquidity on the second hop
1614 check_added_monitors!(nodes[0], 1);
1615 let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1616 let mut update_add = update_0.update_add_htlcs[0].clone();
1617 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
1618 commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
1619 expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1620 nodes[1].node.process_pending_htlc_forwards();
1621 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1],
1622 vec![HTLCDestination::NextHopChannel {
1623 node_id: Some(nodes[2].node.get_our_node_id()),
1624 channel_id: $failing_channel_id,
1626 nodes[1].node.process_pending_htlc_forwards();
1627 let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1628 check_added_monitors!(&nodes[1], 1);
1629 assert!(update_1.update_fail_htlcs.len() == 1);
1630 let fail_msg = update_1.update_fail_htlcs[0].clone();
1631 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1632 commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
1634 // Ensure the attempt fails and a new PendingHTLCsForwardable event is generated for the retry
1635 let mut events = nodes[0].node.get_and_clear_pending_events();
1636 assert_eq!(events.len(), 2);
1638 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
1639 assert_eq!(payment_hash, ev_payment_hash);
1640 assert_eq!(payment_failed_permanently, false);
1642 _ => panic!("Unexpected event"),
1644 if $expect_pending_htlcs_forwardable {
1646 Event::PendingHTLCsForwardable { .. } => {},
1647 _ => panic!("Unexpected event"),
1651 Event::PaymentFailed { payment_hash: ev_payment_hash, .. } => {
1652 assert_eq!(payment_hash, ev_payment_hash);
1654 _ => panic!("Unexpected event"),
1660 if test == AutoRetry::Success {
1661 // Test that we can succeed on the first retry.
1662 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1663 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1664 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1666 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1667 // attempt, since the initial second hop channel will be excluded from pathfinding
1668 create_announced_chan_between_nodes(&nodes, 1, 2);
1670 // We retry payments in `process_pending_htlc_forwards`
1671 nodes[0].node.process_pending_htlc_forwards();
1672 check_added_monitors!(nodes[0], 1);
1673 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1674 assert_eq!(msg_events.len(), 1);
1675 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, Some(payment_secret), msg_events.pop().unwrap(), true, None);
1676 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1677 } else if test == AutoRetry::Spontaneous {
1678 nodes[0].node.send_spontaneous_payment_with_retry(Some(payment_preimage),
1679 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0), route_params,
1680 Retry::Attempts(1)).unwrap();
1681 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1683 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1684 // attempt, since the initial second hop channel will be excluded from pathfinding
1685 create_announced_chan_between_nodes(&nodes, 1, 2);
1687 // We retry payments in `process_pending_htlc_forwards`
1688 nodes[0].node.process_pending_htlc_forwards();
1689 check_added_monitors!(nodes[0], 1);
1690 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1691 assert_eq!(msg_events.len(), 1);
1692 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, None, msg_events.pop().unwrap(), true, Some(payment_preimage));
1693 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1694 } else if test == AutoRetry::FailAttempts {
1695 // Ensure ChannelManager will not retry a payment if it has run out of payment attempts.
1696 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1697 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1698 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1700 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1701 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1702 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1704 // We retry payments in `process_pending_htlc_forwards`
1705 nodes[0].node.process_pending_htlc_forwards();
1706 pass_failed_attempt_with_retry_along_path!(channel_id_3, false);
1708 // Ensure we won't retry a second time.
1709 nodes[0].node.process_pending_htlc_forwards();
1710 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1711 assert_eq!(msg_events.len(), 0);
1712 } else if test == AutoRetry::FailTimeout {
1713 #[cfg(not(feature = "no-std"))] {
1714 // Ensure ChannelManager will not retry a payment if it times out due to Retry::Timeout.
1715 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1716 PaymentId(payment_hash.0), route_params, Retry::Timeout(Duration::from_secs(60))).unwrap();
1717 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1719 // Advance the time so the second attempt fails due to timeout.
1720 SinceEpoch::advance(Duration::from_secs(61));
1722 // Make sure we don't retry again.
1723 nodes[0].node.process_pending_htlc_forwards();
1724 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1725 assert_eq!(msg_events.len(), 0);
1727 let mut events = nodes[0].node.get_and_clear_pending_events();
1728 assert_eq!(events.len(), 1);
1730 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
1731 assert_eq!(payment_hash, *ev_payment_hash);
1732 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1733 assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
1735 _ => panic!("Unexpected event"),
1738 } else if test == AutoRetry::FailOnRestart {
1739 // Ensure ChannelManager will not retry a payment after restart, even if there were retry
1740 // attempts remaining prior to restart.
1741 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1742 PaymentId(payment_hash.0), route_params, Retry::Attempts(2)).unwrap();
1743 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1745 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1746 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1747 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1749 // Ensure the first retry attempt fails, with 1 retry attempt remaining
1750 nodes[0].node.process_pending_htlc_forwards();
1751 pass_failed_attempt_with_retry_along_path!(channel_id_3, true);
1753 // Restart the node and ensure that ChannelManager does not use its remaining retry attempt
1754 let node_encoded = nodes[0].node.encode();
1755 let chan_1_monitor_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1756 reload_node!(nodes[0], node_encoded, &[&chan_1_monitor_serialized], persister, new_chain_monitor, node_0_deserialized);
1758 let mut events = nodes[0].node.get_and_clear_pending_events();
1759 expect_pending_htlcs_forwardable_from_events!(nodes[0], events, true);
1760 // Make sure we don't retry again.
1761 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1762 assert_eq!(msg_events.len(), 0);
1764 let mut events = nodes[0].node.get_and_clear_pending_events();
1765 assert_eq!(events.len(), 1);
1767 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
1768 assert_eq!(payment_hash, *ev_payment_hash);
1769 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1770 assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
1772 _ => panic!("Unexpected event"),
1774 } else if test == AutoRetry::FailOnRetry {
1775 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1776 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1777 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1779 // We retry payments in `process_pending_htlc_forwards`. Since our channel closed, we should
1780 // fail to find a route.
1781 nodes[0].node.process_pending_htlc_forwards();
1782 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1783 assert_eq!(msg_events.len(), 0);
1785 let mut events = nodes[0].node.get_and_clear_pending_events();
1786 assert_eq!(events.len(), 1);
1788 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
1789 assert_eq!(payment_hash, *ev_payment_hash);
1790 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1791 assert_eq!(PaymentFailureReason::RouteNotFound, ev_reason.unwrap());
1793 _ => panic!("Unexpected event"),
1799 fn auto_retry_partial_failure() {
1800 // Test that we'll retry appropriately on send partial failure and retry partial failure.
1801 let chanmon_cfgs = create_chanmon_cfgs(2);
1802 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1803 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1804 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1806 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1807 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1808 let chan_3_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1810 // Marshall data to send the payment
1811 let amt_msat = 20_000;
1812 let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1813 #[cfg(feature = "std")]
1814 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1815 #[cfg(not(feature = "std"))]
1816 let payment_expiry_secs = 60 * 60;
1817 let mut invoice_features = InvoiceFeatures::empty();
1818 invoice_features.set_variable_length_onion_required();
1819 invoice_features.set_payment_secret_required();
1820 invoice_features.set_basic_mpp_optional();
1821 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1822 .with_expiry_time(payment_expiry_secs as u64)
1823 .with_features(invoice_features);
1824 let route_params = RouteParameters {
1826 final_value_msat: amt_msat,
1829 // Ensure the first monitor update (for the initial send path1 over chan_1) succeeds, but the
1830 // second (for the initial send path2 over chan_2) fails.
1831 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1832 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1833 // Ensure third monitor update (for the retry1's path1 over chan_1) succeeds, but the fourth (for
1834 // the retry1's path2 over chan_3) fails, and monitor updates succeed after that.
1835 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1836 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1837 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1839 // Configure the initial send, retry1 and retry2's paths.
1840 let send_route = Route {
1843 pubkey: nodes[1].node.get_our_node_id(),
1844 node_features: nodes[1].node.node_features(),
1845 short_channel_id: chan_1_id,
1846 channel_features: nodes[1].node.channel_features(),
1847 fee_msat: amt_msat / 2,
1848 cltv_expiry_delta: 100,
1851 pubkey: nodes[1].node.get_our_node_id(),
1852 node_features: nodes[1].node.node_features(),
1853 short_channel_id: chan_2_id,
1854 channel_features: nodes[1].node.channel_features(),
1855 fee_msat: amt_msat / 2,
1856 cltv_expiry_delta: 100,
1859 payment_params: Some(route_params.payment_params.clone()),
1861 let retry_1_route = Route {
1864 pubkey: nodes[1].node.get_our_node_id(),
1865 node_features: nodes[1].node.node_features(),
1866 short_channel_id: chan_1_id,
1867 channel_features: nodes[1].node.channel_features(),
1868 fee_msat: amt_msat / 4,
1869 cltv_expiry_delta: 100,
1872 pubkey: nodes[1].node.get_our_node_id(),
1873 node_features: nodes[1].node.node_features(),
1874 short_channel_id: chan_3_id,
1875 channel_features: nodes[1].node.channel_features(),
1876 fee_msat: amt_msat / 4,
1877 cltv_expiry_delta: 100,
1880 payment_params: Some(route_params.payment_params.clone()),
1882 let retry_2_route = Route {
1885 pubkey: nodes[1].node.get_our_node_id(),
1886 node_features: nodes[1].node.node_features(),
1887 short_channel_id: chan_1_id,
1888 channel_features: nodes[1].node.channel_features(),
1889 fee_msat: amt_msat / 4,
1890 cltv_expiry_delta: 100,
1893 payment_params: Some(route_params.payment_params.clone()),
1895 nodes[0].router.expect_find_route(route_params.clone(), Ok(send_route));
1896 let mut payment_params = route_params.payment_params.clone();
1897 payment_params.previously_failed_channels.push(chan_2_id);
1898 nodes[0].router.expect_find_route(RouteParameters {
1899 payment_params, final_value_msat: amt_msat / 2,
1900 }, Ok(retry_1_route));
1901 let mut payment_params = route_params.payment_params.clone();
1902 payment_params.previously_failed_channels.push(chan_3_id);
1903 nodes[0].router.expect_find_route(RouteParameters {
1904 payment_params, final_value_msat: amt_msat / 4,
1905 }, Ok(retry_2_route));
1907 // Send a payment that will partially fail on send, then partially fail on retry, then succeed.
1908 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1909 PaymentId(payment_hash.0), route_params, Retry::Attempts(3)).unwrap();
1910 let closed_chan_events = nodes[0].node.get_and_clear_pending_events();
1911 assert_eq!(closed_chan_events.len(), 4);
1912 match closed_chan_events[0] {
1913 Event::ChannelClosed { .. } => {},
1914 _ => panic!("Unexpected event"),
1916 match closed_chan_events[1] {
1917 Event::PaymentPathFailed { .. } => {},
1918 _ => panic!("Unexpected event"),
1920 match closed_chan_events[2] {
1921 Event::ChannelClosed { .. } => {},
1922 _ => panic!("Unexpected event"),
1924 match closed_chan_events[3] {
1925 Event::PaymentPathFailed { .. } => {},
1926 _ => panic!("Unexpected event"),
1929 // Pass the first part of the payment along the path.
1930 check_added_monitors!(nodes[0], 5); // three outbound channel updates succeeded, two permanently failed
1931 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1933 // First message is the first update_add, remaining messages are broadcasting channel updates and
1934 // errors for the permfailed channels
1935 assert_eq!(msg_events.len(), 5);
1936 let mut payment_event = SendEvent::from_event(msg_events.remove(0));
1938 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1939 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg);
1940 check_added_monitors!(nodes[1], 1);
1941 let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1943 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
1944 check_added_monitors!(nodes[0], 1);
1945 let as_second_htlc_updates = SendEvent::from_node(&nodes[0]);
1947 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
1948 check_added_monitors!(nodes[0], 1);
1949 let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1951 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
1952 check_added_monitors!(nodes[1], 1);
1954 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[0]);
1955 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[1]);
1956 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.commitment_msg);
1957 check_added_monitors!(nodes[1], 1);
1958 let (bs_second_raa, bs_second_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1960 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1961 check_added_monitors!(nodes[0], 1);
1963 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_cs);
1964 check_added_monitors!(nodes[0], 1);
1965 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1967 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
1968 check_added_monitors!(nodes[1], 1);
1970 expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1971 nodes[1].node.process_pending_htlc_forwards();
1972 expect_payment_claimable!(nodes[1], payment_hash, payment_secret, amt_msat);
1973 nodes[1].node.claim_funds(payment_preimage);
1974 expect_payment_claimed!(nodes[1], payment_hash, amt_msat);
1975 let bs_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1976 assert_eq!(bs_claim_update.update_fulfill_htlcs.len(), 1);
1978 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_claim_update.update_fulfill_htlcs[0]);
1979 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_claim_update.commitment_signed);
1980 check_added_monitors!(nodes[0], 1);
1981 let (as_third_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1983 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
1984 check_added_monitors!(nodes[1], 4);
1985 let bs_second_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1987 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
1988 check_added_monitors!(nodes[1], 1);
1989 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1991 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
1992 check_added_monitors!(nodes[0], 1);
1994 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[0]);
1995 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[1]);
1996 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.commitment_signed);
1997 check_added_monitors!(nodes[0], 1);
1998 let (as_fourth_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2000 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_fourth_raa);
2001 check_added_monitors!(nodes[1], 1);
2003 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
2004 check_added_monitors!(nodes[1], 1);
2005 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2007 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2008 check_added_monitors!(nodes[0], 1);
2009 expect_payment_sent!(nodes[0], payment_preimage);
2013 fn auto_retry_zero_attempts_send_error() {
2014 let chanmon_cfgs = create_chanmon_cfgs(2);
2015 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2016 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2017 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2019 create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2020 create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2022 // Marshall data to send the payment
2023 let amt_msat = 20_000;
2024 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2025 #[cfg(feature = "std")]
2026 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2027 #[cfg(not(feature = "std"))]
2028 let payment_expiry_secs = 60 * 60;
2029 let mut invoice_features = InvoiceFeatures::empty();
2030 invoice_features.set_variable_length_onion_required();
2031 invoice_features.set_payment_secret_required();
2032 invoice_features.set_basic_mpp_optional();
2033 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2034 .with_expiry_time(payment_expiry_secs as u64)
2035 .with_features(invoice_features);
2036 let route_params = RouteParameters {
2038 final_value_msat: amt_msat,
2041 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
2042 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2043 PaymentId(payment_hash.0), route_params, Retry::Attempts(0)).unwrap();
2044 assert_eq!(nodes[0].node.get_and_clear_pending_msg_events().len(), 2); // channel close messages
2045 let events = nodes[0].node.get_and_clear_pending_events();
2046 assert_eq!(events.len(), 3);
2047 if let Event::ChannelClosed { .. } = events[0] { } else { panic!(); }
2048 if let Event::PaymentPathFailed { .. } = events[1] { } else { panic!(); }
2049 if let Event::PaymentFailed { .. } = events[2] { } else { panic!(); }
2050 check_added_monitors!(nodes[0], 2);
2054 fn fails_paying_after_rejected_by_payee() {
2055 let chanmon_cfgs = create_chanmon_cfgs(2);
2056 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2057 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2058 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2060 create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2062 // Marshall data to send the payment
2063 let amt_msat = 20_000;
2064 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2065 #[cfg(feature = "std")]
2066 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2067 #[cfg(not(feature = "std"))]
2068 let payment_expiry_secs = 60 * 60;
2069 let mut invoice_features = InvoiceFeatures::empty();
2070 invoice_features.set_variable_length_onion_required();
2071 invoice_features.set_payment_secret_required();
2072 invoice_features.set_basic_mpp_optional();
2073 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2074 .with_expiry_time(payment_expiry_secs as u64)
2075 .with_features(invoice_features);
2076 let route_params = RouteParameters {
2078 final_value_msat: amt_msat,
2081 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2082 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2083 check_added_monitors!(nodes[0], 1);
2084 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
2085 assert_eq!(events.len(), 1);
2086 let mut payment_event = SendEvent::from_event(events.pop().unwrap());
2087 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
2088 check_added_monitors!(nodes[1], 0);
2089 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
2090 expect_pending_htlcs_forwardable!(nodes[1]);
2091 expect_payment_claimable!(&nodes[1], payment_hash, payment_secret, amt_msat);
2093 nodes[1].node.fail_htlc_backwards(&payment_hash);
2094 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash }]);
2095 pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, payment_hash, PaymentFailureReason::RecipientRejected);
2099 fn retry_multi_path_single_failed_payment() {
2100 // Tests that we can/will retry after a single path of an MPP payment failed immediately
2101 let chanmon_cfgs = create_chanmon_cfgs(2);
2102 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2103 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2104 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2106 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2107 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2109 let amt_msat = 100_010_000;
2111 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2112 #[cfg(feature = "std")]
2113 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2114 #[cfg(not(feature = "std"))]
2115 let payment_expiry_secs = 60 * 60;
2116 let mut invoice_features = InvoiceFeatures::empty();
2117 invoice_features.set_variable_length_onion_required();
2118 invoice_features.set_payment_secret_required();
2119 invoice_features.set_basic_mpp_optional();
2120 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2121 .with_expiry_time(payment_expiry_secs as u64)
2122 .with_features(invoice_features);
2123 let route_params = RouteParameters {
2124 payment_params: payment_params.clone(),
2125 final_value_msat: amt_msat,
2128 let chans = nodes[0].node.list_usable_channels();
2129 let mut route = Route {
2132 pubkey: nodes[1].node.get_our_node_id(),
2133 node_features: nodes[1].node.node_features(),
2134 short_channel_id: chans[0].short_channel_id.unwrap(),
2135 channel_features: nodes[1].node.channel_features(),
2137 cltv_expiry_delta: 100,
2140 pubkey: nodes[1].node.get_our_node_id(),
2141 node_features: nodes[1].node.node_features(),
2142 short_channel_id: chans[1].short_channel_id.unwrap(),
2143 channel_features: nodes[1].node.channel_features(),
2144 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2145 cltv_expiry_delta: 100,
2148 payment_params: Some(payment_params),
2150 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2151 // On retry, split the payment across both channels.
2152 route.paths[0][0].fee_msat = 50_000_001;
2153 route.paths[1][0].fee_msat = 50_000_000;
2154 let mut pay_params = route.payment_params.clone().unwrap();
2155 pay_params.previously_failed_channels.push(chans[1].short_channel_id.unwrap());
2156 nodes[0].router.expect_find_route(RouteParameters {
2157 payment_params: pay_params,
2158 // Note that the second request here requests the amount we originally failed to send,
2159 // not the amount remaining on the full payment, which should be changed.
2160 final_value_msat: 100_000_001,
2161 }, Ok(route.clone()));
2164 let scorer = chanmon_cfgs[0].scorer.lock().unwrap();
2165 // The initial send attempt, 2 paths
2166 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 10_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2167 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 100_000_001, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2168 // The retry, 2 paths. Ensure that the in-flight HTLC amount is factored in.
2169 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_001, inflight_htlc_msat: 10_000, effective_capacity: EffectiveCapacity::Unknown });
2170 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2173 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2174 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2175 let events = nodes[0].node.get_and_clear_pending_events();
2176 assert_eq!(events.len(), 1);
2178 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2179 failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2180 short_channel_id: Some(expected_scid), .. } =>
2182 assert_eq!(payment_hash, ev_payment_hash);
2183 assert_eq!(expected_scid, route.paths[1][0].short_channel_id);
2184 assert!(err_msg.contains("max HTLC"));
2186 _ => panic!("Unexpected event"),
2188 let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2189 assert_eq!(htlc_msgs.len(), 2);
2190 check_added_monitors!(nodes[0], 2);
2194 fn immediate_retry_on_failure() {
2195 // Tests that we can/will retry immediately after a failure
2196 let chanmon_cfgs = create_chanmon_cfgs(2);
2197 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2198 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2199 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2201 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2202 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2204 let amt_msat = 100_000_001;
2205 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2206 #[cfg(feature = "std")]
2207 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2208 #[cfg(not(feature = "std"))]
2209 let payment_expiry_secs = 60 * 60;
2210 let mut invoice_features = InvoiceFeatures::empty();
2211 invoice_features.set_variable_length_onion_required();
2212 invoice_features.set_payment_secret_required();
2213 invoice_features.set_basic_mpp_optional();
2214 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2215 .with_expiry_time(payment_expiry_secs as u64)
2216 .with_features(invoice_features);
2217 let route_params = RouteParameters {
2219 final_value_msat: amt_msat,
2222 let chans = nodes[0].node.list_usable_channels();
2223 let mut route = Route {
2226 pubkey: nodes[1].node.get_our_node_id(),
2227 node_features: nodes[1].node.node_features(),
2228 short_channel_id: chans[0].short_channel_id.unwrap(),
2229 channel_features: nodes[1].node.channel_features(),
2230 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2231 cltv_expiry_delta: 100,
2234 payment_params: Some(PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)),
2236 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2237 // On retry, split the payment across both channels.
2238 route.paths.push(route.paths[0].clone());
2239 route.paths[0][0].short_channel_id = chans[1].short_channel_id.unwrap();
2240 route.paths[0][0].fee_msat = 50_000_000;
2241 route.paths[1][0].fee_msat = 50_000_001;
2242 let mut pay_params = route_params.payment_params.clone();
2243 pay_params.previously_failed_channels.push(chans[0].short_channel_id.unwrap());
2244 nodes[0].router.expect_find_route(RouteParameters {
2245 payment_params: pay_params, final_value_msat: amt_msat,
2246 }, Ok(route.clone()));
2248 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2249 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2250 let events = nodes[0].node.get_and_clear_pending_events();
2251 assert_eq!(events.len(), 1);
2253 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2254 failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2255 short_channel_id: Some(expected_scid), .. } =>
2257 assert_eq!(payment_hash, ev_payment_hash);
2258 assert_eq!(expected_scid, route.paths[1][0].short_channel_id);
2259 assert!(err_msg.contains("max HTLC"));
2261 _ => panic!("Unexpected event"),
2263 let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2264 assert_eq!(htlc_msgs.len(), 2);
2265 check_added_monitors!(nodes[0], 2);
2269 fn no_extra_retries_on_back_to_back_fail() {
2270 // In a previous release, we had a race where we may exceed the payment retry count if we
2271 // get two failures in a row with the second indicating that all paths had failed (this field,
2272 // `all_paths_failed`, has since been removed).
2273 // Generally, when we give up trying to retry a payment, we don't know for sure what the
2274 // current state of the ChannelManager event queue is. Specifically, we cannot be sure that
2275 // there are not multiple additional `PaymentPathFailed` or even `PaymentSent` events
2276 // pending which we will see later. Thus, when we previously removed the retry tracking map
2277 // entry after a `all_paths_failed` `PaymentPathFailed` event, we may have dropped the
2278 // retry entry even though more events for the same payment were still pending. This led to
2279 // us retrying a payment again even though we'd already given up on it.
2281 // We now have a separate event - `PaymentFailed` which indicates no HTLCs remain and which
2282 // is used to remove the payment retry counter entries instead. This tests for the specific
2283 // excess-retry case while also testing `PaymentFailed` generation.
2285 let chanmon_cfgs = create_chanmon_cfgs(3);
2286 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2287 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2288 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2290 let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2291 let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2293 let amt_msat = 200_000_000;
2294 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2295 #[cfg(feature = "std")]
2296 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2297 #[cfg(not(feature = "std"))]
2298 let payment_expiry_secs = 60 * 60;
2299 let mut invoice_features = InvoiceFeatures::empty();
2300 invoice_features.set_variable_length_onion_required();
2301 invoice_features.set_payment_secret_required();
2302 invoice_features.set_basic_mpp_optional();
2303 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2304 .with_expiry_time(payment_expiry_secs as u64)
2305 .with_features(invoice_features);
2306 let route_params = RouteParameters {
2308 final_value_msat: amt_msat,
2311 let mut route = Route {
2314 pubkey: nodes[1].node.get_our_node_id(),
2315 node_features: nodes[1].node.node_features(),
2316 short_channel_id: chan_1_scid,
2317 channel_features: nodes[1].node.channel_features(),
2318 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2319 cltv_expiry_delta: 100,
2321 pubkey: nodes[2].node.get_our_node_id(),
2322 node_features: nodes[2].node.node_features(),
2323 short_channel_id: chan_2_scid,
2324 channel_features: nodes[2].node.channel_features(),
2325 fee_msat: 100_000_000,
2326 cltv_expiry_delta: 100,
2329 pubkey: nodes[1].node.get_our_node_id(),
2330 node_features: nodes[1].node.node_features(),
2331 short_channel_id: chan_1_scid,
2332 channel_features: nodes[1].node.channel_features(),
2333 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2334 cltv_expiry_delta: 100,
2336 pubkey: nodes[2].node.get_our_node_id(),
2337 node_features: nodes[2].node.node_features(),
2338 short_channel_id: chan_2_scid,
2339 channel_features: nodes[2].node.channel_features(),
2340 fee_msat: 100_000_000,
2341 cltv_expiry_delta: 100,
2344 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2346 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2347 let mut second_payment_params = route_params.payment_params.clone();
2348 second_payment_params.previously_failed_channels = vec![chan_2_scid, chan_2_scid];
2349 // On retry, we'll only return one path
2350 route.paths.remove(1);
2351 route.paths[0][1].fee_msat = amt_msat;
2352 nodes[0].router.expect_find_route(RouteParameters {
2353 payment_params: second_payment_params,
2354 final_value_msat: amt_msat,
2355 }, Ok(route.clone()));
2357 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2358 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2359 let htlc_updates = SendEvent::from_node(&nodes[0]);
2360 check_added_monitors!(nodes[0], 1);
2361 assert_eq!(htlc_updates.msgs.len(), 1);
2363 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2364 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2365 check_added_monitors!(nodes[1], 1);
2366 let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2368 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2369 check_added_monitors!(nodes[0], 1);
2370 let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2372 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2373 check_added_monitors!(nodes[0], 1);
2374 let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2376 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2377 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2378 check_added_monitors!(nodes[1], 1);
2379 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2381 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2382 check_added_monitors!(nodes[1], 1);
2383 let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2385 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2386 check_added_monitors!(nodes[0], 1);
2388 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2389 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2390 check_added_monitors!(nodes[0], 1);
2391 let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2393 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2394 check_added_monitors!(nodes[1], 1);
2395 let bs_second_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2397 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2398 check_added_monitors!(nodes[1], 1);
2399 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2401 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.update_fail_htlcs[0]);
2402 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.commitment_signed);
2403 check_added_monitors!(nodes[0], 1);
2405 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2406 check_added_monitors!(nodes[0], 1);
2407 let (as_third_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2409 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
2410 check_added_monitors!(nodes[1], 1);
2411 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
2412 check_added_monitors!(nodes[1], 1);
2413 let bs_fourth_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2415 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_fourth_raa);
2416 check_added_monitors!(nodes[0], 1);
2418 // At this point A has sent two HTLCs which both failed due to lack of fee. It now has two
2419 // pending `PaymentPathFailed` events, one with `all_paths_failed` unset, and the second
2422 // Previously, we retried payments in an event consumer, which would retry each
2423 // `PaymentPathFailed` individually. In that setup, we had retried the payment in response to
2424 // the first `PaymentPathFailed`, then seen the second `PaymentPathFailed` with
2425 // `all_paths_failed` set and assumed the payment was completely failed. We ultimately fixed it
2426 // by adding the `PaymentFailed` event.
2428 // Because we now retry payments as a batch, we simply return a single-path route in the
2429 // second, batched, request, have that fail, ensure the payment was abandoned.
2430 let mut events = nodes[0].node.get_and_clear_pending_events();
2431 assert_eq!(events.len(), 3);
2433 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
2434 assert_eq!(payment_hash, ev_payment_hash);
2435 assert_eq!(payment_failed_permanently, false);
2437 _ => panic!("Unexpected event"),
2440 Event::PendingHTLCsForwardable { .. } => {},
2441 _ => panic!("Unexpected event"),
2444 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
2445 assert_eq!(payment_hash, ev_payment_hash);
2446 assert_eq!(payment_failed_permanently, false);
2448 _ => panic!("Unexpected event"),
2451 nodes[0].node.process_pending_htlc_forwards();
2452 let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2453 check_added_monitors!(nodes[0], 1);
2455 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2456 commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2457 let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2458 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2459 commitment_signed_dance!(nodes[0], nodes[1], &bs_fail_update.commitment_signed, false, true);
2461 let mut events = nodes[0].node.get_and_clear_pending_events();
2462 assert_eq!(events.len(), 2);
2464 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
2465 assert_eq!(payment_hash, ev_payment_hash);
2466 assert_eq!(payment_failed_permanently, false);
2468 _ => panic!("Unexpected event"),
2471 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
2472 assert_eq!(payment_hash, *ev_payment_hash);
2473 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
2474 assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
2476 _ => panic!("Unexpected event"),
2481 fn test_simple_partial_retry() {
2482 // In the first version of the in-`ChannelManager` payment retries, retries were sent for the
2483 // full amount of the payment, rather than only the missing amount. Here we simply test for
2484 // this by sending a payment with two parts, failing one, and retrying the second. Note that
2485 // `TestRouter` will check that the `RouteParameters` (which contain the amount) matches the
2487 let chanmon_cfgs = create_chanmon_cfgs(3);
2488 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2489 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2490 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2492 let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2493 let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2495 let amt_msat = 200_000_000;
2496 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2497 #[cfg(feature = "std")]
2498 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2499 #[cfg(not(feature = "std"))]
2500 let payment_expiry_secs = 60 * 60;
2501 let mut invoice_features = InvoiceFeatures::empty();
2502 invoice_features.set_variable_length_onion_required();
2503 invoice_features.set_payment_secret_required();
2504 invoice_features.set_basic_mpp_optional();
2505 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2506 .with_expiry_time(payment_expiry_secs as u64)
2507 .with_features(invoice_features);
2508 let route_params = RouteParameters {
2510 final_value_msat: amt_msat,
2513 let mut route = Route {
2516 pubkey: nodes[1].node.get_our_node_id(),
2517 node_features: nodes[1].node.node_features(),
2518 short_channel_id: chan_1_scid,
2519 channel_features: nodes[1].node.channel_features(),
2520 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2521 cltv_expiry_delta: 100,
2523 pubkey: nodes[2].node.get_our_node_id(),
2524 node_features: nodes[2].node.node_features(),
2525 short_channel_id: chan_2_scid,
2526 channel_features: nodes[2].node.channel_features(),
2527 fee_msat: 100_000_000,
2528 cltv_expiry_delta: 100,
2531 pubkey: nodes[1].node.get_our_node_id(),
2532 node_features: nodes[1].node.node_features(),
2533 short_channel_id: chan_1_scid,
2534 channel_features: nodes[1].node.channel_features(),
2536 cltv_expiry_delta: 100,
2538 pubkey: nodes[2].node.get_our_node_id(),
2539 node_features: nodes[2].node.node_features(),
2540 short_channel_id: chan_2_scid,
2541 channel_features: nodes[2].node.channel_features(),
2542 fee_msat: 100_000_000,
2543 cltv_expiry_delta: 100,
2546 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2548 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2549 let mut second_payment_params = route_params.payment_params.clone();
2550 second_payment_params.previously_failed_channels = vec![chan_2_scid];
2551 // On retry, we'll only be asked for one path (or 100k sats)
2552 route.paths.remove(0);
2553 nodes[0].router.expect_find_route(RouteParameters {
2554 payment_params: second_payment_params,
2555 final_value_msat: amt_msat / 2,
2556 }, Ok(route.clone()));
2558 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2559 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2560 let htlc_updates = SendEvent::from_node(&nodes[0]);
2561 check_added_monitors!(nodes[0], 1);
2562 assert_eq!(htlc_updates.msgs.len(), 1);
2564 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2565 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2566 check_added_monitors!(nodes[1], 1);
2567 let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2569 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2570 check_added_monitors!(nodes[0], 1);
2571 let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2573 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2574 check_added_monitors!(nodes[0], 1);
2575 let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2577 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2578 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2579 check_added_monitors!(nodes[1], 1);
2580 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2582 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2583 check_added_monitors!(nodes[1], 1);
2584 let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2586 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2587 check_added_monitors!(nodes[0], 1);
2589 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2590 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2591 check_added_monitors!(nodes[0], 1);
2592 let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2594 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2595 check_added_monitors!(nodes[1], 1);
2597 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2598 check_added_monitors!(nodes[1], 1);
2600 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2602 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2603 check_added_monitors!(nodes[0], 1);
2605 let mut events = nodes[0].node.get_and_clear_pending_events();
2606 assert_eq!(events.len(), 2);
2608 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
2609 assert_eq!(payment_hash, ev_payment_hash);
2610 assert_eq!(payment_failed_permanently, false);
2612 _ => panic!("Unexpected event"),
2615 Event::PendingHTLCsForwardable { .. } => {},
2616 _ => panic!("Unexpected event"),
2619 nodes[0].node.process_pending_htlc_forwards();
2620 let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2621 check_added_monitors!(nodes[0], 1);
2623 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2624 commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2626 expect_pending_htlcs_forwardable!(nodes[1]);
2627 check_added_monitors!(nodes[1], 1);
2629 let bs_forward_update = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
2630 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[0]);
2631 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[1]);
2632 commitment_signed_dance!(nodes[2], nodes[1], &bs_forward_update.commitment_signed, false);
2634 expect_pending_htlcs_forwardable!(nodes[2]);
2635 expect_payment_claimable!(nodes[2], payment_hash, payment_secret, amt_msat);
2639 #[cfg(feature = "std")]
2640 fn test_threaded_payment_retries() {
2641 // In the first version of the in-`ChannelManager` payment retries, retries weren't limited to
2642 // a single thread and would happily let multiple threads run retries at the same time. Because
2643 // retries are done by first calculating the amount we need to retry, then dropping the
2644 // relevant lock, then actually sending, we would happily let multiple threads retry the same
2645 // amount at the same time, overpaying our original HTLC!
2646 let chanmon_cfgs = create_chanmon_cfgs(4);
2647 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
2648 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
2649 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
2651 // There is one mitigating guardrail when retrying payments - we can never over-pay by more
2652 // than 10% of the original value. Thus, we want all our retries to be below that. In order to
2653 // keep things simple, we route one HTLC for 0.1% of the payment over channel 1 and the rest
2654 // out over channel 3+4. This will let us ignore 99% of the payment value and deal with only
2656 let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2657 create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 10_000_000, 0);
2658 let chan_3_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 10_000_000, 0).0.contents.short_channel_id;
2659 let chan_4_scid = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 10_000_000, 0).0.contents.short_channel_id;
2661 let amt_msat = 100_000_000;
2662 let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2663 #[cfg(feature = "std")]
2664 let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2665 #[cfg(not(feature = "std"))]
2666 let payment_expiry_secs = 60 * 60;
2667 let mut invoice_features = InvoiceFeatures::empty();
2668 invoice_features.set_variable_length_onion_required();
2669 invoice_features.set_payment_secret_required();
2670 invoice_features.set_basic_mpp_optional();
2671 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2672 .with_expiry_time(payment_expiry_secs as u64)
2673 .with_features(invoice_features);
2674 let mut route_params = RouteParameters {
2676 final_value_msat: amt_msat,
2679 let mut route = Route {
2682 pubkey: nodes[1].node.get_our_node_id(),
2683 node_features: nodes[1].node.node_features(),
2684 short_channel_id: chan_1_scid,
2685 channel_features: nodes[1].node.channel_features(),
2687 cltv_expiry_delta: 100,
2689 pubkey: nodes[3].node.get_our_node_id(),
2690 node_features: nodes[2].node.node_features(),
2691 short_channel_id: 42, // Set a random SCID which nodes[1] will fail as unknown
2692 channel_features: nodes[2].node.channel_features(),
2693 fee_msat: amt_msat / 1000,
2694 cltv_expiry_delta: 100,
2697 pubkey: nodes[2].node.get_our_node_id(),
2698 node_features: nodes[2].node.node_features(),
2699 short_channel_id: chan_3_scid,
2700 channel_features: nodes[2].node.channel_features(),
2702 cltv_expiry_delta: 100,
2704 pubkey: nodes[3].node.get_our_node_id(),
2705 node_features: nodes[3].node.node_features(),
2706 short_channel_id: chan_4_scid,
2707 channel_features: nodes[3].node.channel_features(),
2708 fee_msat: amt_msat - amt_msat / 1000,
2709 cltv_expiry_delta: 100,
2712 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2714 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2716 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2717 PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(0xdeadbeef)).unwrap();
2718 check_added_monitors!(nodes[0], 2);
2719 let mut send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2720 assert_eq!(send_msg_events.len(), 2);
2721 send_msg_events.retain(|msg|
2722 if let MessageSendEvent::UpdateHTLCs { node_id, .. } = msg {
2723 // Drop the commitment update for nodes[2], we can just let that one sit pending
2725 *node_id == nodes[1].node.get_our_node_id()
2726 } else { panic!(); }
2729 // from here on out, the retry `RouteParameters` amount will be amt/1000
2730 route_params.final_value_msat /= 1000;
2733 let end_time = Instant::now() + Duration::from_secs(1);
2734 macro_rules! thread_body { () => { {
2735 // We really want std::thread::scope, but its not stable until 1.63. Until then, we get unsafe.
2736 let node_ref = NodePtr::from_node(&nodes[0]);
2738 let node_a = unsafe { &*node_ref.0 };
2739 while Instant::now() < end_time {
2740 node_a.node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2741 // Ignore if we have any pending events, just always pretend we just got a
2742 // PendingHTLCsForwardable
2743 node_a.node.process_pending_htlc_forwards();
2747 let mut threads = Vec::new();
2748 for _ in 0..16 { threads.push(std::thread::spawn(thread_body!())); }
2750 // Back in the main thread, poll pending messages and make sure that we never have more than
2751 // one HTLC pending at a time. Note that the commitment_signed_dance will fail horribly if
2752 // there are HTLC messages shoved in while its running. This allows us to test that we never
2753 // generate an additional update_add_htlc until we've fully failed the first.
2754 let mut previously_failed_channels = Vec::new();
2756 assert_eq!(send_msg_events.len(), 1);
2757 let send_event = SendEvent::from_event(send_msg_events.pop().unwrap());
2758 assert_eq!(send_event.msgs.len(), 1);
2760 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_event.msgs[0]);
2761 commitment_signed_dance!(nodes[1], nodes[0], send_event.commitment_msg, false, true);
2763 // Note that we only push one route into `expect_find_route` at a time, because that's all
2764 // the retries (should) need. If the bug is reintroduced "real" routes may be selected, but
2765 // we should still ultimately fail for the same reason - because we're trying to send too
2766 // many HTLCs at once.
2767 let mut new_route_params = route_params.clone();
2768 previously_failed_channels.push(route.paths[0][1].short_channel_id);
2769 new_route_params.payment_params.previously_failed_channels = previously_failed_channels.clone();
2770 route.paths[0][1].short_channel_id += 1;
2771 nodes[0].router.expect_find_route(new_route_params, Ok(route.clone()));
2773 let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2774 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]);
2775 // The "normal" commitment_signed_dance delivers the final RAA and then calls
2776 // `check_added_monitors` to ensure only the one RAA-generated monitor update was created.
2777 // This races with our other threads which may generate an add-HTLCs commitment update via
2778 // `process_pending_htlc_forwards`. Instead, we defer the monitor update check until after
2779 // *we've* called `process_pending_htlc_forwards` when its guaranteed to have two updates.
2780 let last_raa = commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true, false, true);
2781 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &last_raa);
2783 let cur_time = Instant::now();
2784 if cur_time > end_time {
2785 for thread in threads.drain(..) { thread.join().unwrap(); }
2788 // Make sure we have some events to handle when we go around...
2789 nodes[0].node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2790 nodes[0].node.process_pending_htlc_forwards();
2791 send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2792 check_added_monitors!(nodes[0], 2);
2794 if cur_time > end_time {
2800 fn do_no_missing_sent_on_midpoint_reload(persist_manager_with_payment: bool) {
2801 // Test that if we reload in the middle of an HTLC claim commitment signed dance we'll still
2802 // receive the PaymentSent event even if the ChannelManager had no idea about the payment when
2803 // it was last persisted.
2804 let chanmon_cfgs = create_chanmon_cfgs(2);
2805 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2806 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2807 let (persister_a, persister_b, persister_c);
2808 let (chain_monitor_a, chain_monitor_b, chain_monitor_c);
2809 let (nodes_0_deserialized, nodes_0_deserialized_b, nodes_0_deserialized_c);
2810 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2812 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
2814 let mut nodes_0_serialized = Vec::new();
2815 if !persist_manager_with_payment {
2816 nodes_0_serialized = nodes[0].node.encode();
2819 let (our_payment_preimage, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
2821 if persist_manager_with_payment {
2822 nodes_0_serialized = nodes[0].node.encode();
2825 nodes[1].node.claim_funds(our_payment_preimage);
2826 check_added_monitors!(nodes[1], 1);
2827 expect_payment_claimed!(nodes[1], our_payment_hash, 1_000_000);
2829 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2830 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
2831 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
2832 check_added_monitors!(nodes[0], 1);
2834 // The ChannelMonitor should always be the latest version, as we're required to persist it
2835 // during the commitment signed handling.
2836 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2837 reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister_a, chain_monitor_a, nodes_0_deserialized);
2839 let events = nodes[0].node.get_and_clear_pending_events();
2840 assert_eq!(events.len(), 2);
2841 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[0] {} else { panic!(); }
2842 if let Event::PaymentSent { payment_preimage, .. } = events[1] { assert_eq!(payment_preimage, our_payment_preimage); } else { panic!(); }
2843 // Note that we don't get a PaymentPathSuccessful here as we leave the HTLC pending to avoid
2844 // the double-claim that would otherwise appear at the end of this test.
2845 nodes[0].node.timer_tick_occurred();
2846 let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2847 assert_eq!(as_broadcasted_txn.len(), 1);
2849 // Ensure that, even after some time, if we restart we still include *something* in the current
2850 // `ChannelManager` which prevents a `PaymentFailed` when we restart even if pending resolved
2851 // payments have since been timed out thanks to `IDEMPOTENCY_TIMEOUT_TICKS`.
2852 // A naive implementation of the fix here would wipe the pending payments set, causing a
2853 // failure event when we restart.
2854 for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
2856 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2857 reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_b, chain_monitor_b, nodes_0_deserialized_b);
2858 let events = nodes[0].node.get_and_clear_pending_events();
2859 assert!(events.is_empty());
2861 // Ensure that we don't generate any further events even after the channel-closing commitment
2862 // transaction is confirmed on-chain.
2863 confirm_transaction(&nodes[0], &as_broadcasted_txn[0]);
2864 for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
2866 let events = nodes[0].node.get_and_clear_pending_events();
2867 assert!(events.is_empty());
2869 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2870 reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_c, chain_monitor_c, nodes_0_deserialized_c);
2871 let events = nodes[0].node.get_and_clear_pending_events();
2872 assert!(events.is_empty());
2876 fn no_missing_sent_on_midpoint_reload() {
2877 do_no_missing_sent_on_midpoint_reload(false);
2878 do_no_missing_sent_on_midpoint_reload(true);
2881 fn do_claim_from_closed_chan(fail_payment: bool) {
2882 // Previously, LDK would refuse to claim a payment if a channel on which the payment was
2883 // received had been closed between when the HTLC was received and when we went to claim it.
2884 // This makes sense in the payment case - why pay an on-chain fee to claim the HTLC when
2885 // presumably the sender may retry later. Long ago it also reduced total code in the claim
2888 // However, this doesn't make sense if you're trying to do an atomic swap or some other
2889 // protocol that requires atomicity with some other action - if your money got claimed
2890 // elsewhere you need to be able to claim the HTLC in lightning no matter what. Further, this
2891 // is an over-optimization - there should be a very, very low likelihood that a channel closes
2892 // between when we receive the last HTLC for a payment and the user goes to claim the payment.
2893 // Since we now have code to handle this anyway we should allow it.
2895 // Build 4 nodes and send an MPP payment across two paths. By building a route manually set the
2896 // CLTVs on the paths to different value resulting in a different claim deadline.
2897 let chanmon_cfgs = create_chanmon_cfgs(4);
2898 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
2899 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
2900 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
2902 create_announced_chan_between_nodes(&nodes, 0, 1);
2903 create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 1_000_000, 0);
2904 let chan_bd = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 1_000_000, 0).2;
2905 create_announced_chan_between_nodes(&nodes, 2, 3);
2907 let (payment_preimage, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[3]);
2908 let mut route_params = RouteParameters {
2909 payment_params: PaymentParameters::from_node_id(nodes[3].node.get_our_node_id(), TEST_FINAL_CLTV)
2910 .with_features(nodes[1].node.invoice_features()),
2911 final_value_msat: 10_000_000,
2913 let mut route = nodes[0].router.find_route(&nodes[0].node.get_our_node_id(), &route_params,
2914 None, &nodes[0].node.compute_inflight_htlcs()).unwrap();
2915 // Make sure the route is ordered as the B->D path before C->D
2916 route.paths.sort_by(|a, _| if a[0].pubkey == nodes[1].node.get_our_node_id() {
2917 std::cmp::Ordering::Less } else { std::cmp::Ordering::Greater });
2919 // Note that we add an extra 1 in the send pipeline to compensate for any blocks found while
2920 // the HTLC is being relayed.
2921 route.paths[0][1].cltv_expiry_delta = TEST_FINAL_CLTV + 8;
2922 route.paths[1][1].cltv_expiry_delta = TEST_FINAL_CLTV + 12;
2923 let final_cltv = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 8 + 1;
2925 nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2926 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2927 PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(1)).unwrap();
2928 check_added_monitors(&nodes[0], 2);
2929 let mut send_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2930 send_msgs.sort_by(|a, _| {
2932 if let MessageSendEvent::UpdateHTLCs { node_id, .. } = a { node_id } else { panic!() };
2933 let node_b_id = nodes[1].node.get_our_node_id();
2934 if *a_node_id == node_b_id { std::cmp::Ordering::Less } else { std::cmp::Ordering::Greater }
2937 assert_eq!(send_msgs.len(), 2);
2938 pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 10_000_000,
2939 payment_hash, Some(payment_secret), send_msgs.remove(0), false, None);
2940 let receive_event = pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 10_000_000,
2941 payment_hash, Some(payment_secret), send_msgs.remove(0), true, None);
2943 match receive_event.unwrap() {
2944 Event::PaymentClaimable { claim_deadline, .. } => {
2945 assert_eq!(claim_deadline.unwrap(), final_cltv - HTLC_FAIL_BACK_BUFFER);
2950 // Ensure that the claim_deadline is correct, with the payment failing at exactly the given
2952 connect_blocks(&nodes[3], final_cltv - HTLC_FAIL_BACK_BUFFER - nodes[3].best_block_info().1
2953 - if fail_payment { 0 } else { 2 });
2955 // We fail the HTLC on the A->B->D path first as it expires 4 blocks earlier. We go ahead
2956 // and expire both immediately, though, by connecting another 4 blocks.
2957 let reason = HTLCDestination::FailedPayment { payment_hash };
2958 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[3], [reason.clone()]);
2959 connect_blocks(&nodes[3], 4);
2960 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[3], [reason]);
2961 pass_failed_payment_back(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash, PaymentFailureReason::RecipientRejected);
2963 nodes[1].node.force_close_broadcasting_latest_txn(&chan_bd, &nodes[3].node.get_our_node_id()).unwrap();
2964 check_closed_event(&nodes[1], 1, ClosureReason::HolderForceClosed, false);
2965 check_closed_broadcast(&nodes[1], 1, true);
2966 let bs_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2967 assert_eq!(bs_tx.len(), 1);
2969 mine_transaction(&nodes[3], &bs_tx[0]);
2970 check_added_monitors(&nodes[3], 1);
2971 check_closed_broadcast(&nodes[3], 1, true);
2972 check_closed_event(&nodes[3], 1, ClosureReason::CommitmentTxConfirmed, false);
2974 nodes[3].node.claim_funds(payment_preimage);
2975 check_added_monitors(&nodes[3], 2);
2976 expect_payment_claimed!(nodes[3], payment_hash, 10_000_000);
2978 let ds_tx = nodes[3].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2979 assert_eq!(ds_tx.len(), 1);
2980 check_spends!(&ds_tx[0], &bs_tx[0]);
2982 mine_transactions(&nodes[1], &[&bs_tx[0], &ds_tx[0]]);
2983 check_added_monitors(&nodes[1], 1);
2984 expect_payment_forwarded!(nodes[1], nodes[0], nodes[3], Some(1000), false, true);
2986 let bs_claims = nodes[1].node.get_and_clear_pending_msg_events();
2987 check_added_monitors(&nodes[1], 1);
2988 assert_eq!(bs_claims.len(), 1);
2989 if let MessageSendEvent::UpdateHTLCs { updates, .. } = &bs_claims[0] {
2990 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
2991 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false, true);
2992 } else { panic!(); }
2994 expect_payment_sent!(nodes[0], payment_preimage);
2996 let ds_claim_msgs = nodes[3].node.get_and_clear_pending_msg_events();
2997 assert_eq!(ds_claim_msgs.len(), 1);
2998 let cs_claim_msgs = if let MessageSendEvent::UpdateHTLCs { updates, .. } = &ds_claim_msgs[0] {
2999 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
3000 let cs_claim_msgs = nodes[2].node.get_and_clear_pending_msg_events();
3001 check_added_monitors(&nodes[2], 1);
3002 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
3003 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
3005 } else { panic!(); };
3007 assert_eq!(cs_claim_msgs.len(), 1);
3008 if let MessageSendEvent::UpdateHTLCs { updates, .. } = &cs_claim_msgs[0] {
3009 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
3010 commitment_signed_dance!(nodes[0], nodes[2], updates.commitment_signed, false, true);
3011 } else { panic!(); }
3013 expect_payment_path_successful!(nodes[0]);
3018 fn claim_from_closed_chan() {
3019 do_claim_from_closed_chan(true);
3020 do_claim_from_closed_chan(false);
3023 fn do_test_payment_metadata_consistency(do_reload: bool, do_modify: bool) {
3024 // Check that a payment metadata received on one HTLC that doesn't match the one received on
3025 // another results in the HTLC being rejected.
3027 // We first set up a diamond shaped network, allowing us to split a payment into two HTLCs, the
3028 // first of which we'll deliver and the second of which we'll fail and then re-send with
3029 // modified payment metadata, which will in turn result in it being failed by the recipient.
3030 let chanmon_cfgs = create_chanmon_cfgs(4);
3031 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
3032 let mut config = test_default_channel_config();
3033 config.channel_handshake_config.max_inbound_htlc_value_in_flight_percent_of_channel = 50;
3034 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, Some(config), Some(config), Some(config)]);
3037 let new_chain_monitor;
3038 let nodes_0_deserialized;
3040 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
3042 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
3043 let chan_id_bd = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 1_000_000, 0).2;
3044 create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 1_000_000, 0);
3045 let chan_id_cd = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 1_000_000, 0).2;
3047 // Pay more than half of each channel's max, requiring MPP
3048 let amt_msat = 750_000_000;
3049 let (payment_preimage, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[3], Some(amt_msat));
3050 let payment_id = PaymentId(payment_hash.0);
3051 let payment_metadata = vec![44, 49, 52, 142];
3053 let payment_params = PaymentParameters::from_node_id(nodes[3].node.get_our_node_id(), TEST_FINAL_CLTV)
3054 .with_features(nodes[1].node.invoice_features());
3055 let mut route_params = RouteParameters {
3057 final_value_msat: amt_msat,
3060 // Send the MPP payment, delivering the updated commitment state to nodes[1].
3061 nodes[0].node.send_payment(payment_hash, RecipientOnionFields {
3062 payment_secret: Some(payment_secret), payment_metadata: Some(payment_metadata),
3063 }, payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
3064 check_added_monitors!(nodes[0], 2);
3066 let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
3067 assert_eq!(send_events.len(), 2);
3068 let first_send = SendEvent::from_event(send_events.pop().unwrap());
3069 let second_send = SendEvent::from_event(send_events.pop().unwrap());
3071 let (b_recv_ev, c_recv_ev) = if first_send.node_id == nodes[1].node.get_our_node_id() {
3072 (&first_send, &second_send)
3074 (&second_send, &first_send)
3076 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &b_recv_ev.msgs[0]);
3077 commitment_signed_dance!(nodes[1], nodes[0], b_recv_ev.commitment_msg, false, true);
3079 expect_pending_htlcs_forwardable!(nodes[1]);
3080 check_added_monitors(&nodes[1], 1);
3081 let b_forward_ev = SendEvent::from_node(&nodes[1]);
3082 nodes[3].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &b_forward_ev.msgs[0]);
3083 commitment_signed_dance!(nodes[3], nodes[1], b_forward_ev.commitment_msg, false, true);
3085 expect_pending_htlcs_forwardable!(nodes[3]);
3087 // Before delivering the second MPP HTLC to nodes[2], disconnect nodes[2] and nodes[3], which
3088 // will result in nodes[2] failing the HTLC back.
3089 nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
3090 nodes[3].node.peer_disconnected(&nodes[2].node.get_our_node_id());
3092 nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &c_recv_ev.msgs[0]);
3093 commitment_signed_dance!(nodes[2], nodes[0], c_recv_ev.commitment_msg, false, true);
3095 let cs_fail = get_htlc_update_msgs(&nodes[2], &nodes[0].node.get_our_node_id());
3096 nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &cs_fail.update_fail_htlcs[0]);
3097 commitment_signed_dance!(nodes[0], nodes[2], cs_fail.commitment_signed, false, true);
3099 let payment_fail_retryable_evs = nodes[0].node.get_and_clear_pending_events();
3100 assert_eq!(payment_fail_retryable_evs.len(), 2);
3101 if let Event::PaymentPathFailed { .. } = payment_fail_retryable_evs[0] {} else { panic!(); }
3102 if let Event::PendingHTLCsForwardable { .. } = payment_fail_retryable_evs[1] {} else { panic!(); }
3104 // Before we allow the HTLC to be retried, optionally change the payment_metadata we have
3105 // stored for our payment.
3107 nodes[0].node.test_set_payment_metadata(payment_id, Some(Vec::new()));
3110 // Optionally reload nodes[3] to check that the payment_metadata is properly serialized with
3111 // the payment state.
3113 let mon_bd = get_monitor!(nodes[3], chan_id_bd).encode();
3114 let mon_cd = get_monitor!(nodes[3], chan_id_cd).encode();
3115 reload_node!(nodes[3], config, &nodes[3].node.encode(), &[&mon_bd, &mon_cd],
3116 persister, new_chain_monitor, nodes_0_deserialized);
3117 nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
3118 reconnect_nodes(&nodes[1], &nodes[3], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
3120 reconnect_nodes(&nodes[2], &nodes[3], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
3122 // Create a new channel between C and D as A will refuse to retry on the existing one because
3124 let chan_id_cd_2 = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 1_000_000, 0).2;
3126 // Now retry the failed HTLC.
3127 nodes[0].node.process_pending_htlc_forwards();
3128 check_added_monitors(&nodes[0], 1);
3129 let as_resend = SendEvent::from_node(&nodes[0]);
3130 nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_resend.msgs[0]);
3131 commitment_signed_dance!(nodes[2], nodes[0], as_resend.commitment_msg, false, true);
3133 expect_pending_htlcs_forwardable!(nodes[2]);
3134 check_added_monitors(&nodes[2], 1);
3135 let cs_forward = SendEvent::from_node(&nodes[2]);
3136 nodes[3].node.handle_update_add_htlc(&nodes[2].node.get_our_node_id(), &cs_forward.msgs[0]);
3137 commitment_signed_dance!(nodes[3], nodes[2], cs_forward.commitment_msg, false, true);
3139 // Finally, check that nodes[3] does the correct thing - either accepting the payment or, if
3140 // the payment metadata was modified, failing only the one modified HTLC and retaining the
3143 expect_pending_htlcs_forwardable_ignore!(nodes[3]);
3144 nodes[3].node.process_pending_htlc_forwards();
3145 expect_pending_htlcs_forwardable_conditions(nodes[3].node.get_and_clear_pending_events(),
3146 &[HTLCDestination::FailedPayment {payment_hash}]);
3147 nodes[3].node.process_pending_htlc_forwards();
3149 check_added_monitors(&nodes[3], 1);
3150 let ds_fail = get_htlc_update_msgs(&nodes[3], &nodes[2].node.get_our_node_id());
3152 nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &ds_fail.update_fail_htlcs[0]);
3153 commitment_signed_dance!(nodes[2], nodes[3], ds_fail.commitment_signed, false, true);
3154 expect_pending_htlcs_forwardable_conditions(nodes[2].node.get_and_clear_pending_events(),
3155 &[HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_id_cd_2 }]);
3157 expect_pending_htlcs_forwardable!(nodes[3]);
3158 expect_payment_claimable!(nodes[3], payment_hash, payment_secret, amt_msat);
3159 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
3164 fn test_payment_metadata_consistency() {
3165 do_test_payment_metadata_consistency(true, true);
3166 do_test_payment_metadata_consistency(true, false);
3167 do_test_payment_metadata_consistency(false, true);
3168 do_test_payment_metadata_consistency(false, false);