Merge pull request #1339 from TheBlueMatt/2022-02-0.0.105-sec
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch};
15 use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
16 use chain::transaction::OutPoint;
17 use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure};
18 use ln::features::{InitFeatures, InvoiceFeatures};
19 use ln::msgs;
20 use ln::msgs::ChannelMessageHandler;
21 use routing::router::{PaymentParameters, get_route};
22 use util::events::{ClosureReason, Event, MessageSendEvent, MessageSendEventsProvider};
23 use util::test_utils;
24 use util::errors::APIError;
25 use util::enforcing_trait_impls::EnforcingSigner;
26 use util::ser::{ReadableArgs, Writeable};
27 use io;
28
29 use bitcoin::{Block, BlockHeader, BlockHash};
30
31 use prelude::*;
32
33 use ln::functional_test_utils::*;
34
35 #[test]
36 fn retry_single_path_payment() {
37         let chanmon_cfgs = create_chanmon_cfgs(3);
38         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
39         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
40         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
41
42         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
43         let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
44         // Rebalance to find a route
45         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
46
47         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
48
49         // Rebalance so that the first hop fails.
50         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
51
52         // Make sure the payment fails on the first hop.
53         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
54         check_added_monitors!(nodes[0], 1);
55         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
56         assert_eq!(events.len(), 1);
57         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
58         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
59         check_added_monitors!(nodes[1], 0);
60         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
61         expect_pending_htlcs_forwardable!(nodes[1]);
62         expect_pending_htlcs_forwardable!(&nodes[1]);
63         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
64         assert!(htlc_updates.update_add_htlcs.is_empty());
65         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
66         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
67         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
68         check_added_monitors!(nodes[1], 1);
69         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
70         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
71         expect_payment_failed_conditions!(nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
72
73         // Rebalance the channel so the retry succeeds.
74         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
75
76         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
77         connect_blocks(&nodes[0], 2);
78
79         // Retry the payment and make sure it succeeds.
80         nodes[0].node.retry_payment(&route, payment_id).unwrap();
81         check_added_monitors!(nodes[0], 1);
82         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
83         assert_eq!(events.len(), 1);
84         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
85         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
86 }
87
88 #[test]
89 fn mpp_failure() {
90         let chanmon_cfgs = create_chanmon_cfgs(4);
91         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
92         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
93         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
94
95         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
96         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
97         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
98         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
99
100         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
101         let path = route.paths[0].clone();
102         route.paths.push(path);
103         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
104         route.paths[0][0].short_channel_id = chan_1_id;
105         route.paths[0][1].short_channel_id = chan_3_id;
106         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
107         route.paths[1][0].short_channel_id = chan_2_id;
108         route.paths[1][1].short_channel_id = chan_4_id;
109         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
110         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
111 }
112
113 #[test]
114 fn mpp_retry() {
115         let chanmon_cfgs = create_chanmon_cfgs(4);
116         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
117         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
118         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
119
120         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
121         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
122         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
123         let chan_4_id = create_announced_chan_between_nodes(&nodes, 3, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
124         // Rebalance
125         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
126
127         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
128         let path = route.paths[0].clone();
129         route.paths.push(path);
130         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
131         route.paths[0][0].short_channel_id = chan_1_id;
132         route.paths[0][1].short_channel_id = chan_3_id;
133         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
134         route.paths[1][0].short_channel_id = chan_2_id;
135         route.paths[1][1].short_channel_id = chan_4_id;
136
137         // Initiate the MPP payment.
138         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
139         check_added_monitors!(nodes[0], 2); // one monitor per path
140         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
141         assert_eq!(events.len(), 2);
142
143         // Pass half of the payment along the success path.
144         let success_path_msgs = events.remove(0);
145         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
146
147         // Add the HTLC along the first hop.
148         let fail_path_msgs_1 = events.remove(0);
149         let (update_add, commitment_signed) = match fail_path_msgs_1 {
150                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
151                         assert_eq!(update_add_htlcs.len(), 1);
152                         assert!(update_fail_htlcs.is_empty());
153                         assert!(update_fulfill_htlcs.is_empty());
154                         assert!(update_fail_malformed_htlcs.is_empty());
155                         assert!(update_fee.is_none());
156                         (update_add_htlcs[0].clone(), commitment_signed.clone())
157                 },
158                 _ => panic!("Unexpected event"),
159         };
160         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
161         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
162
163         // Attempt to forward the payment and complete the 2nd path's failure.
164         expect_pending_htlcs_forwardable!(&nodes[2]);
165         expect_pending_htlcs_forwardable!(&nodes[2]);
166         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
167         assert!(htlc_updates.update_add_htlcs.is_empty());
168         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
169         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
170         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
171         check_added_monitors!(nodes[2], 1);
172         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
173         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
174         expect_payment_failed_conditions!(nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
175
176         // Rebalance the channel so the second half of the payment can succeed.
177         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
178
179         // Make sure it errors as expected given a too-large amount.
180         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
181                 assert!(err.contains("over total_payment_amt_msat"));
182         } else { panic!("Unexpected error"); }
183
184         // Make sure it errors as expected given the wrong payment_id.
185         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
186                 assert!(err.contains("not found"));
187         } else { panic!("Unexpected error"); }
188
189         // Retry the second half of the payment and make sure it succeeds.
190         let mut path = route.clone();
191         path.paths.remove(0);
192         nodes[0].node.retry_payment(&path, payment_id).unwrap();
193         check_added_monitors!(nodes[0], 1);
194         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
195         assert_eq!(events.len(), 1);
196         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
197         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
198 }
199
200 #[test]
201 fn retry_expired_payment() {
202         let chanmon_cfgs = create_chanmon_cfgs(3);
203         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
204         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
205         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
206
207         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
208         let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
209         // Rebalance to find a route
210         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
211
212         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
213
214         // Rebalance so that the first hop fails.
215         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
216
217         // Make sure the payment fails on the first hop.
218         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
219         check_added_monitors!(nodes[0], 1);
220         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
221         assert_eq!(events.len(), 1);
222         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
223         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
224         check_added_monitors!(nodes[1], 0);
225         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
226         expect_pending_htlcs_forwardable!(nodes[1]);
227         expect_pending_htlcs_forwardable!(&nodes[1]);
228         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
229         assert!(htlc_updates.update_add_htlcs.is_empty());
230         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
231         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
232         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
233         check_added_monitors!(nodes[1], 1);
234         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
235         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
236         expect_payment_failed!(nodes[0], payment_hash, false);
237
238         // Mine blocks so the payment will have expired.
239         connect_blocks(&nodes[0], 3);
240
241         // Retry the payment and make sure it errors as expected.
242         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
243                 assert!(err.contains("not found"));
244         } else {
245                 panic!("Unexpected error");
246         }
247 }
248
249 #[test]
250 fn no_pending_leak_on_initial_send_failure() {
251         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
252         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
253         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
254         // pending payment forever and never time it out.
255         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
256         // try, and then check that no pending payment is being tracked.
257         let chanmon_cfgs = create_chanmon_cfgs(2);
258         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
259         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
260         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
261
262         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
263
264         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
265
266         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
267         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
268
269         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)),
270                 true, APIError::ChannelUnavailable { ref err },
271                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
272
273         assert!(!nodes[0].node.has_pending_payments());
274 }
275
276 fn do_retry_with_no_persist(confirm_before_reload: bool) {
277         // If we send a pending payment and `send_payment` returns success, we should always either
278         // return a payment failure event or a payment success event, and on failure the payment should
279         // be retryable.
280         //
281         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
282         // always persisted asynchronously), the ChannelManager has to reload some payment data from
283         // ChannelMonitor(s) in some cases. This tests that reloading.
284         //
285         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
286         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
287         // which has separate codepaths for "commitment transaction already confirmed" and not.
288         let chanmon_cfgs = create_chanmon_cfgs(3);
289         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
290         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
291         let persister: test_utils::TestPersister;
292         let new_chain_monitor: test_utils::TestChainMonitor;
293         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
294         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
295
296         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
297         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
298
299         // Serialize the ChannelManager prior to sending payments
300         let nodes_0_serialized = nodes[0].node.encode();
301
302         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
303         // out and retry.
304         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
305         let (payment_preimage_1, _, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
306         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
307         check_added_monitors!(nodes[0], 1);
308
309         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
310         assert_eq!(events.len(), 1);
311         let payment_event = SendEvent::from_event(events.pop().unwrap());
312         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
313
314         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
315         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
316         // which would prevent retry.
317         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
318         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
319
320         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
321         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
322         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
323         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
324
325         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
326
327         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
328         if confirm_before_reload {
329                 mine_transaction(&nodes[0], &as_commitment_tx);
330                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
331         }
332
333         // The ChannelMonitor should always be the latest version, as we're required to persist it
334         // during the `commitment_signed_dance!()`.
335         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
336         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
337
338         persister = test_utils::TestPersister::new();
339         let keys_manager = &chanmon_cfgs[0].keys_manager;
340         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
341         nodes[0].chain_monitor = &new_chain_monitor;
342         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
343         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
344                 &mut chan_0_monitor_read, keys_manager).unwrap();
345         assert!(chan_0_monitor_read.is_empty());
346
347         let mut nodes_0_read = &nodes_0_serialized[..];
348         let (_, nodes_0_deserialized_tmp) = {
349                 let mut channel_monitors = HashMap::new();
350                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
351                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
352                         default_config: test_default_channel_config(),
353                         keys_manager,
354                         fee_estimator: node_cfgs[0].fee_estimator,
355                         chain_monitor: nodes[0].chain_monitor,
356                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
357                         logger: nodes[0].logger,
358                         channel_monitors,
359                 }).unwrap()
360         };
361         nodes_0_deserialized = nodes_0_deserialized_tmp;
362         assert!(nodes_0_read.is_empty());
363
364         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
365         nodes[0].node = &nodes_0_deserialized;
366         check_added_monitors!(nodes[0], 1);
367
368         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
369         // force-close the channel.
370         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
371         assert!(nodes[0].node.list_channels().is_empty());
372         assert!(nodes[0].node.has_pending_payments());
373         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
374         assert_eq!(as_broadcasted_txn.len(), 1);
375         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
376
377         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
378         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
379         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
380
381         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
382         // error, as the channel has hit the chain.
383         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
384         let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
385         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
386         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
387         assert_eq!(as_err.len(), 1);
388         match as_err[0] {
389                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
390                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
391                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
392                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
393                         check_added_monitors!(nodes[1], 1);
394                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
395                 },
396                 _ => panic!("Unexpected event"),
397         }
398         check_closed_broadcast!(nodes[1], false);
399
400         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
401         // we close in a moment.
402         nodes[2].node.claim_funds(payment_preimage_1);
403         check_added_monitors!(nodes[2], 1);
404         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
405         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
406         check_added_monitors!(nodes[1], 1);
407         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
408
409         if confirm_before_reload {
410                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
411                 nodes[0].node.best_block_updated(&best_block.0, best_block.1);
412         }
413
414         // Create a new channel on which to retry the payment before we fail the payment via the
415         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
416         // connecting several blocks while creating the channel (implying time has passed).
417         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
418         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
419
420         mine_transaction(&nodes[1], &as_commitment_tx);
421         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
422         assert_eq!(bs_htlc_claim_txn.len(), 1);
423         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
424         expect_payment_forwarded!(nodes[1], None, false);
425
426         if !confirm_before_reload {
427                 mine_transaction(&nodes[0], &as_commitment_tx);
428         }
429         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
430         expect_payment_sent!(nodes[0], payment_preimage_1);
431         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
432         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
433         check_spends!(as_htlc_timeout_txn[2], funding_tx);
434         check_spends!(as_htlc_timeout_txn[0], as_commitment_tx);
435         check_spends!(as_htlc_timeout_txn[1], as_commitment_tx);
436         assert_eq!(as_htlc_timeout_txn.len(), 3);
437         if as_htlc_timeout_txn[0].input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
438                 confirm_transaction(&nodes[0], &as_htlc_timeout_txn[1]);
439         } else {
440                 confirm_transaction(&nodes[0], &as_htlc_timeout_txn[0]);
441         }
442         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
443         expect_payment_failed_conditions!(nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
444
445         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
446         // reloaded) via a route over the new channel, which work without issue and eventually be
447         // received and claimed at the recipient just like any other payment.
448         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
449
450         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
451         // and not the original fee. We also update node[1]'s relevant config as
452         // do_claim_payment_along_route expects us to never overpay.
453         nodes[1].node.channel_state.lock().unwrap().by_id.get_mut(&chan_id_2).unwrap().config.forwarding_fee_base_msat += 100_000;
454         new_route.paths[0][0].fee_msat += 100_000;
455
456         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
457         nodes[0].node.retry_payment(&new_route, payment_id).unwrap();
458         check_added_monitors!(nodes[0], 1);
459         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
460         assert_eq!(events.len(), 1);
461         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
462         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
463         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
464 }
465
466 #[test]
467 fn retry_with_no_persist() {
468         do_retry_with_no_persist(true);
469         do_retry_with_no_persist(false);
470 }
471
472 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
473         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
474         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
475         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
476         // the ChannelMonitor tells it to.
477         //
478         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
479         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
480         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
481         let chanmon_cfgs = create_chanmon_cfgs(2);
482         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
483         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
484         let persister: test_utils::TestPersister;
485         let new_chain_monitor: test_utils::TestChainMonitor;
486         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
487         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
488
489         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
490
491         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
492         // nodes[0].
493         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
494         nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
495         check_closed_broadcast!(nodes[0], true);
496         check_added_monitors!(nodes[0], 1);
497         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
498
499         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
500         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
501
502         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
503         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
504         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
505         assert_eq!(node_txn.len(), 3);
506         assert_eq!(node_txn[0], node_txn[1]);
507         check_spends!(node_txn[1], funding_tx);
508         check_spends!(node_txn[2], node_txn[1]);
509         let timeout_txn = vec![node_txn[2].clone()];
510
511         assert!(nodes[1].node.claim_funds(payment_preimage));
512         check_added_monitors!(nodes[1], 1);
513
514         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
515         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
516         check_closed_broadcast!(nodes[1], true);
517         check_added_monitors!(nodes[1], 1);
518         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
519         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
520         assert_eq!(claim_txn.len(), 3);
521         check_spends!(claim_txn[0], node_txn[1]);
522         check_spends!(claim_txn[1], funding_tx);
523         check_spends!(claim_txn[2], claim_txn[1]);
524
525         header.prev_blockhash = nodes[0].best_block_hash();
526         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
527
528         if confirm_commitment_tx {
529                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
530         }
531
532         header.prev_blockhash = nodes[0].best_block_hash();
533         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
534
535         if payment_timeout {
536                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
537                 connect_block(&nodes[0], &claim_block);
538                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
539         }
540
541         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
542         // returning TemporaryFailure. This should cause the claim event to never make its way to the
543         // ChannelManager.
544         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
545         chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
546
547         if payment_timeout {
548                 connect_blocks(&nodes[0], 1);
549         } else {
550                 connect_block(&nodes[0], &claim_block);
551         }
552
553         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
554         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
555                 .get_mut(&funding_txo).unwrap().drain().collect();
556         assert_eq!(mon_updates.len(), 1);
557         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
558         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
559
560         // If we persist the ChannelManager here, we should get the PaymentSent event after
561         // deserialization.
562         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
563         if !persist_manager_post_event {
564                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
565         }
566
567         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
568         // payment sent event.
569         chanmon_cfgs[0].persister.set_update_ret(Ok(()));
570         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
571         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
572         nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
573         if payment_timeout {
574                 expect_payment_failed!(nodes[0], payment_hash, true);
575         } else {
576                 expect_payment_sent!(nodes[0], payment_preimage);
577         }
578
579         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
580         // twice.
581         if persist_manager_post_event {
582                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
583         }
584
585         // Now reload nodes[0]...
586         persister = test_utils::TestPersister::new();
587         let keys_manager = &chanmon_cfgs[0].keys_manager;
588         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
589         nodes[0].chain_monitor = &new_chain_monitor;
590         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
591         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
592                 &mut chan_0_monitor_read, keys_manager).unwrap();
593         assert!(chan_0_monitor_read.is_empty());
594
595         let (_, nodes_0_deserialized_tmp) = {
596                 let mut channel_monitors = HashMap::new();
597                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
598                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
599                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
600                                 default_config: Default::default(),
601                                 keys_manager,
602                                 fee_estimator: node_cfgs[0].fee_estimator,
603                                 chain_monitor: nodes[0].chain_monitor,
604                                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
605                                 logger: nodes[0].logger,
606                                 channel_monitors,
607                         }).unwrap()
608         };
609         nodes_0_deserialized = nodes_0_deserialized_tmp;
610
611         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
612         check_added_monitors!(nodes[0], 1);
613         nodes[0].node = &nodes_0_deserialized;
614
615         if persist_manager_post_event {
616                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
617         } else if payment_timeout {
618                 expect_payment_failed!(nodes[0], payment_hash, true);
619         } else {
620                 expect_payment_sent!(nodes[0], payment_preimage);
621         }
622
623         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
624         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
625         // payment events should kick in, leaving us with no pending events here.
626         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
627         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
628         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
629 }
630
631 #[test]
632 fn test_dup_htlc_onchain_fails_on_reload() {
633         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
634         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
635         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
636         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
637         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
638         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
639 }
640
641 #[test]
642 fn test_fulfill_restart_failure() {
643         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
644         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
645         // again, or fail it, giving us free money.
646         //
647         // Of course probably they won't fail it and give us free money, but because we have code to
648         // handle it, we should test the logic for it anyway. We do that here.
649         let chanmon_cfgs = create_chanmon_cfgs(2);
650         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
651         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
652         let persister: test_utils::TestPersister;
653         let new_chain_monitor: test_utils::TestChainMonitor;
654         let nodes_1_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
655         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
656
657         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2;
658         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
659
660         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
661         // pre-fulfill, which we do by serializing it here.
662         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
663         nodes[1].node.write(&mut chan_manager_serialized).unwrap();
664         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
665         get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
666
667         nodes[1].node.claim_funds(payment_preimage);
668         check_added_monitors!(nodes[1], 1);
669         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
670         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
671         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
672
673         // Now reload nodes[1]...
674         persister = test_utils::TestPersister::new();
675         let keys_manager = &chanmon_cfgs[1].keys_manager;
676         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager);
677         nodes[1].chain_monitor = &new_chain_monitor;
678         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
679         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
680                 &mut chan_0_monitor_read, keys_manager).unwrap();
681         assert!(chan_0_monitor_read.is_empty());
682
683         let (_, nodes_1_deserialized_tmp) = {
684                 let mut channel_monitors = HashMap::new();
685                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
686                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
687                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
688                                 default_config: Default::default(),
689                                 keys_manager,
690                                 fee_estimator: node_cfgs[1].fee_estimator,
691                                 chain_monitor: nodes[1].chain_monitor,
692                                 tx_broadcaster: nodes[1].tx_broadcaster.clone(),
693                                 logger: nodes[1].logger,
694                                 channel_monitors,
695                         }).unwrap()
696         };
697         nodes_1_deserialized = nodes_1_deserialized_tmp;
698
699         assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
700         check_added_monitors!(nodes[1], 1);
701         nodes[1].node = &nodes_1_deserialized;
702
703         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
704         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
705
706         nodes[1].node.fail_htlc_backwards(&payment_hash);
707         expect_pending_htlcs_forwardable!(nodes[1]);
708         check_added_monitors!(nodes[1], 1);
709         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
710         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
711         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
712         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
713         // it had already considered the payment fulfilled, and now they just got free money.
714         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
715 }
716
717 #[test]
718 fn get_ldk_payment_preimage() {
719         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
720         let chanmon_cfgs = create_chanmon_cfgs(2);
721         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
722         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
723         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
724         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
725
726         let amt_msat = 60_000;
727         let expiry_secs = 60 * 60;
728         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap();
729
730         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id())
731                 .with_features(InvoiceFeatures::known());
732         let scorer = test_utils::TestScorer::with_penalty(0);
733         let route = get_route(
734                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph,
735                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
736                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer).unwrap();
737         let _payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
738         check_added_monitors!(nodes[0], 1);
739
740         // Make sure to use `get_payment_preimage`
741         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
742         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
743         assert_eq!(events.len(), 1);
744         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
745         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
746 }