]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/ln/payment_tests.rs
Merge pull request #2226 from alecchendev/2023-04-persist-network-graph-on-rgs
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, HTLC_FAIL_BACK_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::sign::EntropySource;
17 use crate::chain::transaction::OutPoint;
18 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, PathFailure, PaymentFailureReason};
19 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
20 use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS, RecentPaymentDetails, RecipientOnionFields};
21 use crate::ln::features::InvoiceFeatures;
22 use crate::ln::msgs;
23 use crate::ln::msgs::ChannelMessageHandler;
24 use crate::ln::outbound_payment::Retry;
25 use crate::routing::gossip::{EffectiveCapacity, RoutingFees};
26 use crate::routing::router::{get_route, Path, PaymentParameters, Route, Router, RouteHint, RouteHintHop, RouteHop, RouteParameters};
27 use crate::routing::scoring::ChannelUsage;
28 use crate::util::test_utils;
29 use crate::util::errors::APIError;
30 use crate::util::ser::Writeable;
31 use crate::util::string::UntrustedString;
32
33 use bitcoin::network::constants::Network;
34
35 use crate::prelude::*;
36
37 use crate::ln::functional_test_utils::*;
38 use crate::routing::gossip::NodeId;
39 #[cfg(feature = "std")]
40 use {
41         crate::util::time::tests::SinceEpoch,
42         std::time::{SystemTime, Instant, Duration}
43 };
44
45 #[test]
46 fn mpp_failure() {
47         let chanmon_cfgs = create_chanmon_cfgs(4);
48         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
49         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
50         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
51
52         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
53         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
54         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
55         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
56
57         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
58         let path = route.paths[0].clone();
59         route.paths.push(path);
60         route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
61         route.paths[0].hops[0].short_channel_id = chan_1_id;
62         route.paths[0].hops[1].short_channel_id = chan_3_id;
63         route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
64         route.paths[1].hops[0].short_channel_id = chan_2_id;
65         route.paths[1].hops[1].short_channel_id = chan_4_id;
66         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
67         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
68 }
69
70 #[test]
71 fn mpp_retry() {
72         let chanmon_cfgs = create_chanmon_cfgs(4);
73         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
74         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
75         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
76
77         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
78         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
79         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
80         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2);
81         // Rebalance
82         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
83
84         let amt_msat = 1_000_000;
85         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], amt_msat);
86         let path = route.paths[0].clone();
87         route.paths.push(path);
88         route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
89         route.paths[0].hops[0].short_channel_id = chan_1_update.contents.short_channel_id;
90         route.paths[0].hops[1].short_channel_id = chan_3_update.contents.short_channel_id;
91         route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
92         route.paths[1].hops[0].short_channel_id = chan_2_update.contents.short_channel_id;
93         route.paths[1].hops[1].short_channel_id = chan_4_update.contents.short_channel_id;
94
95         // Initiate the MPP payment.
96         let payment_id = PaymentId(payment_hash.0);
97         let mut route_params = RouteParameters {
98                 payment_params: route.payment_params.clone().unwrap(),
99                 final_value_msat: amt_msat,
100         };
101
102         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
103         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
104                 payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
105         check_added_monitors!(nodes[0], 2); // one monitor per path
106         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
107         assert_eq!(events.len(), 2);
108
109         // Pass half of the payment along the success path.
110         let success_path_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
111         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
112
113         // Add the HTLC along the first hop.
114         let fail_path_msgs_1 = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
115         let (update_add, commitment_signed) = match fail_path_msgs_1 {
116                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
117                         assert_eq!(update_add_htlcs.len(), 1);
118                         assert!(update_fail_htlcs.is_empty());
119                         assert!(update_fulfill_htlcs.is_empty());
120                         assert!(update_fail_malformed_htlcs.is_empty());
121                         assert!(update_fee.is_none());
122                         (update_add_htlcs[0].clone(), commitment_signed.clone())
123                 },
124                 _ => panic!("Unexpected event"),
125         };
126         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
127         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
128
129         // Attempt to forward the payment and complete the 2nd path's failure.
130         expect_pending_htlcs_forwardable!(&nodes[2]);
131         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
132         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
133         assert!(htlc_updates.update_add_htlcs.is_empty());
134         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
135         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
136         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
137         check_added_monitors!(nodes[2], 1);
138         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
139         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
140         let mut events = nodes[0].node.get_and_clear_pending_events();
141         match events[1] {
142                 Event::PendingHTLCsForwardable { .. } => {},
143                 _ => panic!("Unexpected event")
144         }
145         events.remove(1);
146         expect_payment_failed_conditions_event(events, payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
147
148         // Rebalance the channel so the second half of the payment can succeed.
149         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
150
151         // Retry the second half of the payment and make sure it succeeds.
152         route.paths.remove(0);
153         route_params.final_value_msat = 1_000_000;
154         route_params.payment_params.previously_failed_channels.push(chan_4_update.contents.short_channel_id);
155         nodes[0].router.expect_find_route(route_params, Ok(route));
156         nodes[0].node.process_pending_htlc_forwards();
157         check_added_monitors!(nodes[0], 1);
158         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
159         assert_eq!(events.len(), 1);
160         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
161         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
162 }
163
164 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
165         let chanmon_cfgs = create_chanmon_cfgs(4);
166         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
167         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
168         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
169
170         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
171         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
172         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
173         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3);
174
175         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
176         let path = route.paths[0].clone();
177         route.paths.push(path);
178         route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
179         route.paths[0].hops[0].short_channel_id = chan_1_update.contents.short_channel_id;
180         route.paths[0].hops[1].short_channel_id = chan_3_update.contents.short_channel_id;
181         route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
182         route.paths[1].hops[0].short_channel_id = chan_2_update.contents.short_channel_id;
183         route.paths[1].hops[1].short_channel_id = chan_4_update.contents.short_channel_id;
184
185         // Initiate the MPP payment.
186         nodes[0].node.send_payment_with_route(&route, payment_hash,
187                 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
188         check_added_monitors!(nodes[0], 2); // one monitor per path
189         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
190         assert_eq!(events.len(), 2);
191
192         // Pass half of the payment along the first path.
193         let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
194         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None);
195
196         if send_partial_mpp {
197                 // Time out the partial MPP
198                 for _ in 0..MPP_TIMEOUT_TICKS {
199                         nodes[3].node.timer_tick_occurred();
200                 }
201
202                 // Failed HTLC from node 3 -> 1
203                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
204                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
205                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
206                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
207                 check_added_monitors!(nodes[3], 1);
208                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
209
210                 // Failed HTLC from node 1 -> 0
211                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
212                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
213                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
214                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
215                 check_added_monitors!(nodes[1], 1);
216                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
217
218                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
219         } else {
220                 // Pass half of the payment along the second path.
221                 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
222                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None);
223
224                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
225                 for _ in 0..MPP_TIMEOUT_TICKS {
226                         nodes[3].node.timer_tick_occurred();
227                 }
228
229                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
230         }
231 }
232
233 #[test]
234 fn mpp_receive_timeout() {
235         do_mpp_receive_timeout(true);
236         do_mpp_receive_timeout(false);
237 }
238
239 #[test]
240 fn no_pending_leak_on_initial_send_failure() {
241         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
242         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
243         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
244         // pending payment forever and never time it out.
245         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
246         // try, and then check that no pending payment is being tracked.
247         let chanmon_cfgs = create_chanmon_cfgs(2);
248         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
249         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
250         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
251
252         create_announced_chan_between_nodes(&nodes, 0, 1);
253
254         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
255
256         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
257         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
258
259         unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, payment_hash,
260                         RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)
261                 ), true, APIError::ChannelUnavailable { ref err },
262                 assert_eq!(err, "Peer for first hop currently disconnected"));
263
264         assert!(!nodes[0].node.has_pending_payments());
265 }
266
267 fn do_retry_with_no_persist(confirm_before_reload: bool) {
268         // If we send a pending payment and `send_payment` returns success, we should always either
269         // return a payment failure event or a payment success event, and on failure the payment should
270         // be retryable.
271         //
272         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
273         // always persisted asynchronously), the ChannelManager has to reload some payment data from
274         // ChannelMonitor(s) in some cases. This tests that reloading.
275         //
276         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
277         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
278         // which has separate codepaths for "commitment transaction already confirmed" and not.
279         let chanmon_cfgs = create_chanmon_cfgs(3);
280         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
281         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
282         let persister: test_utils::TestPersister;
283         let new_chain_monitor: test_utils::TestChainMonitor;
284         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
285         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
286
287         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
288         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
289
290         // Serialize the ChannelManager prior to sending payments
291         let nodes_0_serialized = nodes[0].node.encode();
292
293         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
294         // out and retry.
295         let amt_msat = 1_000_000;
296         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
297         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
298         let route_params = RouteParameters {
299                 payment_params: route.payment_params.clone().unwrap(),
300                 final_value_msat: amt_msat,
301         };
302         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
303                 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
304         check_added_monitors!(nodes[0], 1);
305
306         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
307         assert_eq!(events.len(), 1);
308         let payment_event = SendEvent::from_event(events.pop().unwrap());
309         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
310
311         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
312         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
313         // which would prevent retry.
314         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id());
315         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
316
317         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
318         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
319         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
320         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
321
322         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
323
324         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
325         if confirm_before_reload {
326                 mine_transaction(&nodes[0], &as_commitment_tx);
327                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
328         }
329
330         // The ChannelMonitor should always be the latest version, as we're required to persist it
331         // during the `commitment_signed_dance!()`.
332         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
333         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
334
335         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
336         // force-close the channel.
337         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
338         assert!(nodes[0].node.list_channels().is_empty());
339         assert!(nodes[0].node.has_pending_payments());
340         nodes[0].node.timer_tick_occurred();
341         if !confirm_before_reload {
342                 let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
343                 assert_eq!(as_broadcasted_txn.len(), 1);
344                 assert_eq!(as_broadcasted_txn[0].txid(), as_commitment_tx.txid());
345         } else {
346                 assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
347         }
348         check_added_monitors!(nodes[0], 1);
349
350         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
351         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
352         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
353
354         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
355         // error, as the channel has hit the chain.
356         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
357         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
358         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
359         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
360         assert_eq!(as_err.len(), 1);
361         match as_err[0] {
362                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
363                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
364                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
365                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
366                         check_added_monitors!(nodes[1], 1);
367                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
368                 },
369                 _ => panic!("Unexpected event"),
370         }
371         check_closed_broadcast!(nodes[1], false);
372
373         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
374         // we close in a moment.
375         nodes[2].node.claim_funds(payment_preimage_1);
376         check_added_monitors!(nodes[2], 1);
377         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
378
379         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
380         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
381         check_added_monitors!(nodes[1], 1);
382         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
383         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
384
385         if confirm_before_reload {
386                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
387                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
388         }
389
390         // Create a new channel on which to retry the payment before we fail the payment via the
391         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
392         // connecting several blocks while creating the channel (implying time has passed).
393         create_announced_chan_between_nodes(&nodes, 0, 1);
394         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
395
396         mine_transaction(&nodes[1], &as_commitment_tx);
397         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
398         assert_eq!(bs_htlc_claim_txn.len(), 1);
399         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
400
401         if !confirm_before_reload {
402                 mine_transaction(&nodes[0], &as_commitment_tx);
403         }
404         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
405         expect_payment_sent!(nodes[0], payment_preimage_1);
406         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
407         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = {
408                 let mut txn = nodes[0].tx_broadcaster.unique_txn_broadcast();
409                 assert_eq!(txn.len(), 2);
410                 (txn.remove(0), txn.remove(0))
411         };
412         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
413         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
414         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
415                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
416         } else {
417                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
418         }
419         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
420         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
421
422         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
423         // reloaded) via a route over the new channel, which work without issue and eventually be
424         // received and claimed at the recipient just like any other payment.
425         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
426
427         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
428         // and not the original fee. We also update node[1]'s relevant config as
429         // do_claim_payment_along_route expects us to never overpay.
430         {
431                 let per_peer_state = nodes[1].node.per_peer_state.read().unwrap();
432                 let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id())
433                         .unwrap().lock().unwrap();
434                 let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap();
435                 let mut new_config = channel.config();
436                 new_config.forwarding_fee_base_msat += 100_000;
437                 channel.update_config(&new_config);
438                 new_route.paths[0].hops[0].fee_msat += 100_000;
439         }
440
441         // Force expiration of the channel's previous config.
442         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
443                 nodes[1].node.timer_tick_occurred();
444         }
445
446         assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash, // Shouldn't be allowed to retry a fulfilled payment
447                 RecipientOnionFields::secret_only(payment_secret), payment_id_1).is_err());
448         nodes[0].node.send_payment_with_route(&new_route, payment_hash,
449                 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
450         check_added_monitors!(nodes[0], 1);
451         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
452         assert_eq!(events.len(), 1);
453         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
454         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
455         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0].hops[0].fee_msat));
456 }
457
458 #[test]
459 fn retry_with_no_persist() {
460         do_retry_with_no_persist(true);
461         do_retry_with_no_persist(false);
462 }
463
464 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
465         // Test that an off-chain completed payment is not retryable on restart. This was previously
466         // broken for dust payments, but we test for both dust and non-dust payments.
467         //
468         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
469         // output at all.
470         let chanmon_cfgs = create_chanmon_cfgs(3);
471         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
472
473         let mut manually_accept_config = test_default_channel_config();
474         manually_accept_config.manually_accept_inbound_channels = true;
475
476         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
477
478         let first_persister: test_utils::TestPersister;
479         let first_new_chain_monitor: test_utils::TestChainMonitor;
480         let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
481         let second_persister: test_utils::TestPersister;
482         let second_new_chain_monitor: test_utils::TestChainMonitor;
483         let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
484         let third_persister: test_utils::TestPersister;
485         let third_new_chain_monitor: test_utils::TestChainMonitor;
486         let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
487
488         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
489
490         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
491         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
492         confirm_transaction(&nodes[0], &funding_tx);
493         confirm_transaction(&nodes[1], &funding_tx);
494         // Ignore the announcement_signatures messages
495         nodes[0].node.get_and_clear_pending_msg_events();
496         nodes[1].node.get_and_clear_pending_msg_events();
497         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
498
499         // Serialize the ChannelManager prior to sending payments
500         let mut nodes_0_serialized = nodes[0].node.encode();
501
502         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
503         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
504
505         // The ChannelMonitor should always be the latest version, as we're required to persist it
506         // during the `commitment_signed_dance!()`.
507         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
508
509         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
510         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
511
512         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
513         // force-close the channel.
514         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
515         nodes[0].node.timer_tick_occurred();
516         assert!(nodes[0].node.list_channels().is_empty());
517         assert!(nodes[0].node.has_pending_payments());
518         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
519         check_added_monitors!(nodes[0], 1);
520
521         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
522         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
523
524         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
525         // error, as the channel has hit the chain.
526         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
527         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
528         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
529         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
530         assert_eq!(as_err.len(), 1);
531         let bs_commitment_tx;
532         match as_err[0] {
533                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
534                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
535                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
536                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
537                         check_added_monitors!(nodes[1], 1);
538                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
539                 },
540                 _ => panic!("Unexpected event"),
541         }
542         check_closed_broadcast!(nodes[1], false);
543
544         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
545         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
546         // incoming HTLCs with the same payment hash later.
547         nodes[2].node.fail_htlc_backwards(&payment_hash);
548         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
549         check_added_monitors!(nodes[2], 1);
550
551         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
552         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
553         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
554         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
555                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
556
557         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
558         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
559         // after the commitment transaction, so always connect the commitment transaction.
560         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
561         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
562         if !use_dust {
563                 connect_blocks(&nodes[0], TEST_FINAL_CLTV + (MIN_CLTV_EXPIRY_DELTA as u32));
564                 connect_blocks(&nodes[1], TEST_FINAL_CLTV + (MIN_CLTV_EXPIRY_DELTA as u32));
565                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
566                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
567                 assert_eq!(as_htlc_timeout.len(), 1);
568
569                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
570                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
571                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
572                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
573         }
574
575         // Create a new channel on which to retry the payment before we fail the payment via the
576         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
577         // connecting several blocks while creating the channel (implying time has passed).
578         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
579         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
580         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
581
582         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
583         // confirming, we will fail as it's considered still-pending...
584         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
585         match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
586                 Err(PaymentSendFailure::DuplicatePayment) => {},
587                 _ => panic!("Unexpected error")
588         }
589         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
590
591         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
592         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
593         // (which should also still work).
594         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
595         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
596         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
597
598         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
599         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
600         nodes_0_serialized = nodes[0].node.encode();
601
602         // After the payment failed, we're free to send it again.
603         assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash,
604                 RecipientOnionFields::secret_only(payment_secret), payment_id).is_ok());
605         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
606
607         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
608         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
609
610         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
611
612         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
613         // the payment is not (spuriously) listed as still pending.
614         assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash,
615                 RecipientOnionFields::secret_only(payment_secret), payment_id).is_ok());
616         check_added_monitors!(nodes[0], 1);
617         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
618         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
619
620         match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
621                 Err(PaymentSendFailure::DuplicatePayment) => {},
622                 _ => panic!("Unexpected error")
623         }
624         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
625
626         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
627         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
628         nodes_0_serialized = nodes[0].node.encode();
629
630         // Check that after reload we can send the payment again (though we shouldn't, since it was
631         // claimed previously).
632         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
633         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
634
635         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
636
637         match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
638                 Err(PaymentSendFailure::DuplicatePayment) => {},
639                 _ => panic!("Unexpected error")
640         }
641         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
642 }
643
644 #[test]
645 fn test_completed_payment_not_retryable_on_reload() {
646         do_test_completed_payment_not_retryable_on_reload(true);
647         do_test_completed_payment_not_retryable_on_reload(false);
648 }
649
650
651 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
652         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
653         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
654         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
655         // the ChannelMonitor tells it to.
656         //
657         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
658         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
659         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
660         let chanmon_cfgs = create_chanmon_cfgs(2);
661         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
662         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
663         let persister: test_utils::TestPersister;
664         let new_chain_monitor: test_utils::TestChainMonitor;
665         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
666         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
667
668         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
669
670         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
671         // nodes[0].
672         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
673         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
674         check_closed_broadcast!(nodes[0], true);
675         check_added_monitors!(nodes[0], 1);
676         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
677
678         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
679         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
680
681         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
682         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
683         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
684         assert_eq!(node_txn.len(), 3);
685         assert_eq!(node_txn[0].txid(), node_txn[1].txid());
686         check_spends!(node_txn[1], funding_tx);
687         check_spends!(node_txn[2], node_txn[1]);
688         let timeout_txn = vec![node_txn[2].clone()];
689
690         nodes[1].node.claim_funds(payment_preimage);
691         check_added_monitors!(nodes[1], 1);
692         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
693
694         connect_block(&nodes[1], &create_dummy_block(nodes[1].best_block_hash(), 42, vec![node_txn[1].clone()]));
695         check_closed_broadcast!(nodes[1], true);
696         check_added_monitors!(nodes[1], 1);
697         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
698         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
699         assert_eq!(claim_txn.len(), 1);
700         check_spends!(claim_txn[0], node_txn[1]);
701
702         connect_block(&nodes[0], &create_dummy_block(nodes[0].best_block_hash(), 42, vec![node_txn[1].clone()]));
703
704         if confirm_commitment_tx {
705                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
706         }
707
708         let claim_block = create_dummy_block(nodes[0].best_block_hash(), 42, if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] });
709
710         if payment_timeout {
711                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
712                 connect_block(&nodes[0], &claim_block);
713                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
714         }
715
716         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
717         // returning InProgress. This should cause the claim event to never make its way to the
718         // ChannelManager.
719         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
720         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
721
722         if payment_timeout {
723                 connect_blocks(&nodes[0], 1);
724         } else {
725                 connect_block(&nodes[0], &claim_block);
726         }
727
728         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
729         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
730                 .get_mut(&funding_txo).unwrap().drain().collect();
731         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
732         // If we're testing connection idempotency we may get substantially more.
733         assert!(mon_updates.len() >= 1);
734         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
735         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
736
737         // If we persist the ChannelManager here, we should get the PaymentSent event after
738         // deserialization.
739         let mut chan_manager_serialized = Vec::new();
740         if !persist_manager_post_event {
741                 chan_manager_serialized = nodes[0].node.encode();
742         }
743
744         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
745         // payment sent event.
746         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
747         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
748         for update in mon_updates {
749                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
750         }
751         if payment_timeout {
752                 expect_payment_failed!(nodes[0], payment_hash, false);
753         } else {
754                 expect_payment_sent!(nodes[0], payment_preimage);
755         }
756
757         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
758         // twice.
759         if persist_manager_post_event {
760                 chan_manager_serialized = nodes[0].node.encode();
761         }
762
763         // Now reload nodes[0]...
764         reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
765
766         if persist_manager_post_event {
767                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
768         } else if payment_timeout {
769                 expect_payment_failed!(nodes[0], payment_hash, false);
770         } else {
771                 expect_payment_sent!(nodes[0], payment_preimage);
772         }
773
774         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
775         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
776         // payment events should kick in, leaving us with no pending events here.
777         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
778         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
779         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
780 }
781
782 #[test]
783 fn test_dup_htlc_onchain_fails_on_reload() {
784         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
785         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
786         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
787         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
788         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
789         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
790 }
791
792 #[test]
793 fn test_fulfill_restart_failure() {
794         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
795         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
796         // again, or fail it, giving us free money.
797         //
798         // Of course probably they won't fail it and give us free money, but because we have code to
799         // handle it, we should test the logic for it anyway. We do that here.
800         let chanmon_cfgs = create_chanmon_cfgs(2);
801         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
802         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
803         let persister: test_utils::TestPersister;
804         let new_chain_monitor: test_utils::TestChainMonitor;
805         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
806         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
807
808         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
809         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
810
811         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
812         // pre-fulfill, which we do by serializing it here.
813         let chan_manager_serialized = nodes[1].node.encode();
814         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
815
816         nodes[1].node.claim_funds(payment_preimage);
817         check_added_monitors!(nodes[1], 1);
818         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
819
820         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
821         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
822         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
823
824         // Now reload nodes[1]...
825         reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
826
827         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
828         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
829
830         nodes[1].node.fail_htlc_backwards(&payment_hash);
831         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
832         check_added_monitors!(nodes[1], 1);
833         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
834         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
835         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
836         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
837         // it had already considered the payment fulfilled, and now they just got free money.
838         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
839 }
840
841 #[test]
842 fn get_ldk_payment_preimage() {
843         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
844         let chanmon_cfgs = create_chanmon_cfgs(2);
845         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
846         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
847         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
848         create_announced_chan_between_nodes(&nodes, 0, 1);
849
850         let amt_msat = 60_000;
851         let expiry_secs = 60 * 60;
852         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs, None).unwrap();
853
854         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
855                 .with_bolt11_features(nodes[1].node.invoice_features()).unwrap();
856         let scorer = test_utils::TestScorer::new();
857         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
858         let random_seed_bytes = keys_manager.get_secure_random_bytes();
859         let route = get_route(
860                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
861                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
862                 amt_msat, nodes[0].logger, &scorer, &(), &random_seed_bytes).unwrap();
863         nodes[0].node.send_payment_with_route(&route, payment_hash,
864                 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
865         check_added_monitors!(nodes[0], 1);
866
867         // Make sure to use `get_payment_preimage`
868         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
869         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
870         assert_eq!(events.len(), 1);
871         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
872         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
873 }
874
875 #[test]
876 fn sent_probe_is_probe_of_sending_node() {
877         let chanmon_cfgs = create_chanmon_cfgs(3);
878         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
879         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
880         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
881
882         create_announced_chan_between_nodes(&nodes, 0, 1);
883         create_announced_chan_between_nodes(&nodes, 1, 2);
884
885         // First check we refuse to build a single-hop probe
886         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
887         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
888
889         // Then build an actual two-hop probing path
890         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
891
892         match nodes[0].node.send_probe(route.paths[0].clone()) {
893                 Ok((payment_hash, payment_id)) => {
894                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
895                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
896                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
897                 },
898                 _ => panic!(),
899         }
900
901         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
902         check_added_monitors!(nodes[0], 1);
903 }
904
905 #[test]
906 fn successful_probe_yields_event() {
907         let chanmon_cfgs = create_chanmon_cfgs(3);
908         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
909         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
910         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
911
912         create_announced_chan_between_nodes(&nodes, 0, 1);
913         create_announced_chan_between_nodes(&nodes, 1, 2);
914
915         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
916
917         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
918
919         // node[0] -- update_add_htlcs -> node[1]
920         check_added_monitors!(nodes[0], 1);
921         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
922         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
923         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
924         check_added_monitors!(nodes[1], 0);
925         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
926         expect_pending_htlcs_forwardable!(nodes[1]);
927
928         // node[1] -- update_add_htlcs -> node[2]
929         check_added_monitors!(nodes[1], 1);
930         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
931         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
932         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
933         check_added_monitors!(nodes[2], 0);
934         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
935
936         // node[1] <- update_fail_htlcs -- node[2]
937         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
938         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
939         check_added_monitors!(nodes[1], 0);
940         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
941
942         // node[0] <- update_fail_htlcs -- node[1]
943         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
944         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
945         check_added_monitors!(nodes[0], 0);
946         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
947
948         let mut events = nodes[0].node.get_and_clear_pending_events();
949         assert_eq!(events.len(), 1);
950         match events.drain(..).next().unwrap() {
951                 crate::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
952                         assert_eq!(payment_id, ev_pid);
953                         assert_eq!(payment_hash, ev_ph);
954                 },
955                 _ => panic!(),
956         };
957         assert!(!nodes[0].node.has_pending_payments());
958 }
959
960 #[test]
961 fn failed_probe_yields_event() {
962         let chanmon_cfgs = create_chanmon_cfgs(3);
963         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
964         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
965         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
966
967         create_announced_chan_between_nodes(&nodes, 0, 1);
968         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000);
969
970         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
971
972         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000);
973
974         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
975
976         // node[0] -- update_add_htlcs -> node[1]
977         check_added_monitors!(nodes[0], 1);
978         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
979         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
980         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
981         check_added_monitors!(nodes[1], 0);
982         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
983         expect_pending_htlcs_forwardable!(nodes[1]);
984
985         // node[0] <- update_fail_htlcs -- node[1]
986         check_added_monitors!(nodes[1], 1);
987         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
988         // Skip the PendingHTLCsForwardable event
989         let _events = nodes[1].node.get_and_clear_pending_events();
990         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
991         check_added_monitors!(nodes[0], 0);
992         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
993
994         let mut events = nodes[0].node.get_and_clear_pending_events();
995         assert_eq!(events.len(), 1);
996         match events.drain(..).next().unwrap() {
997                 crate::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
998                         assert_eq!(payment_id, ev_pid);
999                         assert_eq!(payment_hash, ev_ph);
1000                 },
1001                 _ => panic!(),
1002         };
1003         assert!(!nodes[0].node.has_pending_payments());
1004 }
1005
1006 #[test]
1007 fn onchain_failed_probe_yields_event() {
1008         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
1009         // event.
1010         let chanmon_cfgs = create_chanmon_cfgs(3);
1011         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1012         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1013         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1014
1015         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1016         create_announced_chan_between_nodes(&nodes, 1, 2);
1017
1018         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
1019
1020         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1021         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000);
1022         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1023
1024         // node[0] -- update_add_htlcs -> node[1]
1025         check_added_monitors!(nodes[0], 1);
1026         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1027         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1028         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1029         check_added_monitors!(nodes[1], 0);
1030         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1031         expect_pending_htlcs_forwardable!(nodes[1]);
1032
1033         check_added_monitors!(nodes[1], 1);
1034         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1035
1036         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1037         // Node A, which after 6 confirmations should result in a probe failure event.
1038         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1039         confirm_transaction(&nodes[0], &bs_txn[0]);
1040         check_closed_broadcast!(&nodes[0], true);
1041         check_added_monitors!(nodes[0], 1);
1042
1043         let mut events = nodes[0].node.get_and_clear_pending_events();
1044         assert_eq!(events.len(), 2);
1045         let mut found_probe_failed = false;
1046         for event in events.drain(..) {
1047                 match event {
1048                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1049                                 assert_eq!(payment_id, ev_pid);
1050                                 assert_eq!(payment_hash, ev_ph);
1051                                 found_probe_failed = true;
1052                         },
1053                         Event::ChannelClosed { .. } => {},
1054                         _ => panic!(),
1055                 }
1056         }
1057         assert!(found_probe_failed);
1058         assert!(!nodes[0].node.has_pending_payments());
1059 }
1060
1061 #[test]
1062 fn claimed_send_payment_idempotent() {
1063         // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1064         let chanmon_cfgs = create_chanmon_cfgs(2);
1065         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1066         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1067         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1068
1069         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1070
1071         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1072         let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1073
1074         macro_rules! check_send_rejected {
1075                 () => {
1076                         // If we try to resend a new payment with a different payment_hash but with the same
1077                         // payment_id, it should be rejected.
1078                         let send_result = nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1079                                 RecipientOnionFields::secret_only(second_payment_secret), payment_id);
1080                         match send_result {
1081                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1082                                 _ => panic!("Unexpected send result: {:?}", send_result),
1083                         }
1084
1085                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1086                         // also be rejected.
1087                         let send_result = nodes[0].node.send_spontaneous_payment(
1088                                 &route, None, RecipientOnionFields::spontaneous_empty(), payment_id);
1089                         match send_result {
1090                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1091                                 _ => panic!("Unexpected send result: {:?}", send_result),
1092                         }
1093                 }
1094         }
1095
1096         check_send_rejected!();
1097
1098         // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1099         // not been seen by the user. At this point, from the user perspective nothing has changed, so
1100         // we must remain just as idempotent as we were before.
1101         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1102
1103         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1104                 nodes[0].node.timer_tick_occurred();
1105         }
1106
1107         check_send_rejected!();
1108
1109         // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1110         // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1111         // the payment complete. However, they could have called `send_payment` while the event was
1112         // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1113         // after the event is handled a duplicate payment should sitll be rejected.
1114         expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1115         check_send_rejected!();
1116
1117         // If relatively little time has passed, a duplicate payment should still fail.
1118         nodes[0].node.timer_tick_occurred();
1119         check_send_rejected!();
1120
1121         // However, after some time has passed (at least more than the one timer tick above), a
1122         // duplicate payment should go through, as ChannelManager should no longer have any remaining
1123         // references to the old payment data.
1124         for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1125                 nodes[0].node.timer_tick_occurred();
1126         }
1127
1128         nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1129                 RecipientOnionFields::secret_only(second_payment_secret), payment_id).unwrap();
1130         check_added_monitors!(nodes[0], 1);
1131         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1132         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1133 }
1134
1135 #[test]
1136 fn abandoned_send_payment_idempotent() {
1137         // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1138         // abandon_payment.
1139         let chanmon_cfgs = create_chanmon_cfgs(2);
1140         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1141         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1142         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1143
1144         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1145
1146         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1147         let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1148
1149         macro_rules! check_send_rejected {
1150                 () => {
1151                         // If we try to resend a new payment with a different payment_hash but with the same
1152                         // payment_id, it should be rejected.
1153                         let send_result = nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1154                                 RecipientOnionFields::secret_only(second_payment_secret), payment_id);
1155                         match send_result {
1156                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1157                                 _ => panic!("Unexpected send result: {:?}", send_result),
1158                         }
1159
1160                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1161                         // also be rejected.
1162                         let send_result = nodes[0].node.send_spontaneous_payment(
1163                                 &route, None, RecipientOnionFields::spontaneous_empty(), payment_id);
1164                         match send_result {
1165                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1166                                 _ => panic!("Unexpected send result: {:?}", send_result),
1167                         }
1168                 }
1169         }
1170
1171         check_send_rejected!();
1172
1173         nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1174         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1175
1176         // Until we abandon the payment upon path failure, no matter how many timer ticks pass, we still cannot reuse the
1177         // PaymentId.
1178         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1179                 nodes[0].node.timer_tick_occurred();
1180         }
1181         check_send_rejected!();
1182
1183         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash, PaymentFailureReason::RecipientRejected);
1184
1185         // However, we can reuse the PaymentId immediately after we `abandon_payment` upon passing the
1186         // failed payment back.
1187         nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1188                 RecipientOnionFields::secret_only(second_payment_secret), payment_id).unwrap();
1189         check_added_monitors!(nodes[0], 1);
1190         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1191         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1192 }
1193
1194 #[derive(PartialEq)]
1195 enum InterceptTest {
1196         Forward,
1197         Fail,
1198         Timeout,
1199 }
1200
1201 #[test]
1202 fn test_trivial_inflight_htlc_tracking(){
1203         // In this test, we test three scenarios:
1204         // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1205         // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1206         // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1207         let chanmon_cfgs = create_chanmon_cfgs(3);
1208         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1209         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1210         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1211
1212         let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
1213         let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
1214
1215         // Send and claim the payment. Inflight HTLCs should be empty.
1216         let payment_hash = send_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000).1;
1217         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1218         {
1219                 let mut node_0_per_peer_lock;
1220                 let mut node_0_peer_state_lock;
1221                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1222
1223                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1224                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1225                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1226                         channel_1.get_short_channel_id().unwrap()
1227                 );
1228                 assert_eq!(chan_1_used_liquidity, None);
1229         }
1230         {
1231                 let mut node_1_per_peer_lock;
1232                 let mut node_1_peer_state_lock;
1233                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1234
1235                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1236                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1237                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1238                         channel_2.get_short_channel_id().unwrap()
1239                 );
1240
1241                 assert_eq!(chan_2_used_liquidity, None);
1242         }
1243         let pending_payments = nodes[0].node.list_recent_payments();
1244         assert_eq!(pending_payments.len(), 1);
1245         assert_eq!(pending_payments[0], RecentPaymentDetails::Fulfilled { payment_hash: Some(payment_hash) });
1246
1247         // Remove fulfilled payment
1248         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1249                 nodes[0].node.timer_tick_occurred();
1250         }
1251
1252         // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1253         let (payment_preimage, payment_hash,  _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000);
1254         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1255         {
1256                 let mut node_0_per_peer_lock;
1257                 let mut node_0_peer_state_lock;
1258                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1259
1260                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1261                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1262                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1263                         channel_1.get_short_channel_id().unwrap()
1264                 );
1265                 // First hop accounts for expected 1000 msat fee
1266                 assert_eq!(chan_1_used_liquidity, Some(501000));
1267         }
1268         {
1269                 let mut node_1_per_peer_lock;
1270                 let mut node_1_peer_state_lock;
1271                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1272
1273                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1274                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1275                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1276                         channel_2.get_short_channel_id().unwrap()
1277                 );
1278
1279                 assert_eq!(chan_2_used_liquidity, Some(500000));
1280         }
1281         let pending_payments = nodes[0].node.list_recent_payments();
1282         assert_eq!(pending_payments.len(), 1);
1283         assert_eq!(pending_payments[0], RecentPaymentDetails::Pending { payment_hash, total_msat: 500000 });
1284
1285         // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1286         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1287
1288         // Remove fulfilled payment
1289         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1290                 nodes[0].node.timer_tick_occurred();
1291         }
1292
1293         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1294         {
1295                 let mut node_0_per_peer_lock;
1296                 let mut node_0_peer_state_lock;
1297                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1298
1299                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1300                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1301                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1302                         channel_1.get_short_channel_id().unwrap()
1303                 );
1304                 assert_eq!(chan_1_used_liquidity, None);
1305         }
1306         {
1307                 let mut node_1_per_peer_lock;
1308                 let mut node_1_peer_state_lock;
1309                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1310
1311                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1312                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1313                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1314                         channel_2.get_short_channel_id().unwrap()
1315                 );
1316                 assert_eq!(chan_2_used_liquidity, None);
1317         }
1318
1319         let pending_payments = nodes[0].node.list_recent_payments();
1320         assert_eq!(pending_payments.len(), 0);
1321 }
1322
1323 #[test]
1324 fn test_holding_cell_inflight_htlcs() {
1325         let chanmon_cfgs = create_chanmon_cfgs(2);
1326         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1327         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1328         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1329         let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1330
1331         let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1332         let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1333
1334         // Queue up two payments - one will be delivered right away, one immediately goes into the
1335         // holding cell as nodes[0] is AwaitingRAA.
1336         {
1337                 nodes[0].node.send_payment_with_route(&route, payment_hash_1,
1338                         RecipientOnionFields::secret_only(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1339                 check_added_monitors!(nodes[0], 1);
1340                 nodes[0].node.send_payment_with_route(&route, payment_hash_2,
1341                         RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1342                 check_added_monitors!(nodes[0], 0);
1343         }
1344
1345         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1346
1347         {
1348                 let mut node_0_per_peer_lock;
1349                 let mut node_0_peer_state_lock;
1350                 let channel =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id);
1351
1352                 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1353                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1354                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1355                         channel.get_short_channel_id().unwrap()
1356                 );
1357
1358                 assert_eq!(used_liquidity, Some(2000000));
1359         }
1360
1361         // Clear pending events so test doesn't throw a "Had excess message on node..." error
1362         nodes[0].node.get_and_clear_pending_msg_events();
1363 }
1364
1365 #[test]
1366 fn intercepted_payment() {
1367         // Test that detecting an intercept scid on payment forward will signal LDK to generate an
1368         // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
1369         // payment or (b) fail the payment.
1370         do_test_intercepted_payment(InterceptTest::Forward);
1371         do_test_intercepted_payment(InterceptTest::Fail);
1372         // Make sure that intercepted payments will be automatically failed back if too many blocks pass.
1373         do_test_intercepted_payment(InterceptTest::Timeout);
1374 }
1375
1376 fn do_test_intercepted_payment(test: InterceptTest) {
1377         let chanmon_cfgs = create_chanmon_cfgs(3);
1378         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1379
1380         let mut zero_conf_chan_config = test_default_channel_config();
1381         zero_conf_chan_config.manually_accept_inbound_channels = true;
1382         let mut intercept_forwards_config = test_default_channel_config();
1383         intercept_forwards_config.accept_intercept_htlcs = true;
1384         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
1385
1386         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1387         let scorer = test_utils::TestScorer::new();
1388         let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
1389
1390         let _ = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1391
1392         let amt_msat = 100_000;
1393         let intercept_scid = nodes[1].node.get_intercept_scid();
1394         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1395                 .with_route_hints(vec![
1396                         RouteHint(vec![RouteHintHop {
1397                                 src_node_id: nodes[1].node.get_our_node_id(),
1398                                 short_channel_id: intercept_scid,
1399                                 fees: RoutingFees {
1400                                         base_msat: 1000,
1401                                         proportional_millionths: 0,
1402                                 },
1403                                 cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
1404                                 htlc_minimum_msat: None,
1405                                 htlc_maximum_msat: None,
1406                         }])
1407                 ]).unwrap()
1408                 .with_bolt11_features(nodes[2].node.invoice_features()).unwrap();
1409         let route_params = RouteParameters {
1410                 payment_params,
1411                 final_value_msat: amt_msat,
1412         };
1413         let route = get_route(
1414                 &nodes[0].node.get_our_node_id(), &route_params.payment_params,
1415                 &nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
1416                 nodes[0].logger, &scorer, &(), &random_seed_bytes,
1417         ).unwrap();
1418
1419         let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60, None).unwrap();
1420         nodes[0].node.send_payment_with_route(&route, payment_hash,
1421                 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
1422         let payment_event = {
1423                 {
1424                         let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
1425                         assert_eq!(added_monitors.len(), 1);
1426                         added_monitors.clear();
1427                 }
1428                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1429                 assert_eq!(events.len(), 1);
1430                 SendEvent::from_event(events.remove(0))
1431         };
1432         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1433         commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
1434
1435         // Check that we generate the PaymentIntercepted event when an intercept forward is detected.
1436         let events = nodes[1].node.get_and_clear_pending_events();
1437         assert_eq!(events.len(), 1);
1438         let (intercept_id, expected_outbound_amount_msat) = match events[0] {
1439                 crate::events::Event::HTLCIntercepted {
1440                         intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
1441                 } => {
1442                         assert_eq!(pmt_hash, payment_hash);
1443                         assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
1444                         assert_eq!(short_channel_id, intercept_scid);
1445                         (intercept_id, expected_outbound_amount_msat)
1446                 },
1447                 _ => panic!()
1448         };
1449
1450         // Check for unknown channel id error.
1451         let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1452         assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable  { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) });
1453
1454         if test == InterceptTest::Fail {
1455                 // Ensure we can fail the intercepted payment back.
1456                 nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
1457                 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
1458                 nodes[1].node.process_pending_htlc_forwards();
1459                 let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1460                 check_added_monitors!(&nodes[1], 1);
1461                 assert!(update_fail.update_fail_htlcs.len() == 1);
1462                 let fail_msg = update_fail.update_fail_htlcs[0].clone();
1463                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1464                 commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
1465
1466                 // Ensure the payment fails with the expected error.
1467                 let fail_conditions = PaymentFailedConditions::new()
1468                         .blamed_scid(intercept_scid)
1469                         .blamed_chan_closed(true)
1470                         .expected_htlc_error_data(0x4000 | 10, &[]);
1471                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
1472         } else if test == InterceptTest::Forward {
1473                 // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
1474                 let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
1475                 let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1476                 assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
1477                 assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
1478
1479                 // Open the just-in-time channel so the payment can then be forwarded.
1480                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1481
1482                 // Finally, forward the intercepted payment through and claim it.
1483                 nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
1484                 expect_pending_htlcs_forwardable!(nodes[1]);
1485
1486                 let payment_event = {
1487                         {
1488                                 let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
1489                                 assert_eq!(added_monitors.len(), 1);
1490                                 added_monitors.clear();
1491                         }
1492                         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
1493                         assert_eq!(events.len(), 1);
1494                         SendEvent::from_event(events.remove(0))
1495                 };
1496                 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
1497                 commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
1498                 expect_pending_htlcs_forwardable!(nodes[2]);
1499
1500                 let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1501                 expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
1502                 do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
1503                 let events = nodes[0].node.get_and_clear_pending_events();
1504                 assert_eq!(events.len(), 2);
1505                 match events[0] {
1506                         Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
1507                                 assert_eq!(payment_preimage, *ev_preimage);
1508                                 assert_eq!(payment_hash, *ev_hash);
1509                                 assert_eq!(fee_paid_msat, &Some(1000));
1510                         },
1511                         _ => panic!("Unexpected event")
1512                 }
1513                 match events[1] {
1514                         Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
1515                                 assert_eq!(hash, Some(payment_hash));
1516                         },
1517                         _ => panic!("Unexpected event")
1518                 }
1519         } else if test == InterceptTest::Timeout {
1520                 let mut block = create_dummy_block(nodes[0].best_block_hash(), 42, Vec::new());
1521                 connect_block(&nodes[0], &block);
1522                 connect_block(&nodes[1], &block);
1523                 for _ in 0..TEST_FINAL_CLTV {
1524                         block.header.prev_blockhash = block.block_hash();
1525                         connect_block(&nodes[0], &block);
1526                         connect_block(&nodes[1], &block);
1527                 }
1528                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
1529                 check_added_monitors!(nodes[1], 1);
1530                 let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1531                 assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
1532                 assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
1533                 assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
1534                 assert!(htlc_timeout_updates.update_fee.is_none());
1535
1536                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
1537                 commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
1538                 expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
1539
1540                 // Check for unknown intercept id error.
1541                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1542                 let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1543                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1544                 let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
1545                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1546         }
1547 }
1548
1549 #[derive(PartialEq)]
1550 enum AutoRetry {
1551         Success,
1552         Spontaneous,
1553         FailAttempts,
1554         FailTimeout,
1555         FailOnRestart,
1556         FailOnRetry,
1557 }
1558
1559 #[test]
1560 fn automatic_retries() {
1561         do_automatic_retries(AutoRetry::Success);
1562         do_automatic_retries(AutoRetry::Spontaneous);
1563         do_automatic_retries(AutoRetry::FailAttempts);
1564         do_automatic_retries(AutoRetry::FailTimeout);
1565         do_automatic_retries(AutoRetry::FailOnRestart);
1566         do_automatic_retries(AutoRetry::FailOnRetry);
1567 }
1568 fn do_automatic_retries(test: AutoRetry) {
1569         // Test basic automatic payment retries in ChannelManager. See individual `test` variant comments
1570         // below.
1571         let chanmon_cfgs = create_chanmon_cfgs(3);
1572         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1573         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1574
1575         let persister;
1576         let new_chain_monitor;
1577         let node_0_deserialized;
1578
1579         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1580         let channel_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1581         let channel_id_2 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1582
1583         // Marshall data to send the payment
1584         #[cfg(feature = "std")]
1585         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1586         #[cfg(not(feature = "std"))]
1587         let payment_expiry_secs = 60 * 60;
1588         let amt_msat = 1000;
1589         let mut invoice_features = InvoiceFeatures::empty();
1590         invoice_features.set_variable_length_onion_required();
1591         invoice_features.set_payment_secret_required();
1592         invoice_features.set_basic_mpp_optional();
1593         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1594                 .with_expiry_time(payment_expiry_secs as u64)
1595                 .with_bolt11_features(invoice_features).unwrap();
1596         let route_params = RouteParameters {
1597                 payment_params,
1598                 final_value_msat: amt_msat,
1599         };
1600         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
1601
1602         macro_rules! pass_failed_attempt_with_retry_along_path {
1603                 ($failing_channel_id: expr, $expect_pending_htlcs_forwardable: expr) => {
1604                         // Send a payment attempt that fails due to lack of liquidity on the second hop
1605                         check_added_monitors!(nodes[0], 1);
1606                         let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1607                         let mut update_add = update_0.update_add_htlcs[0].clone();
1608                         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
1609                         commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
1610                         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1611                         nodes[1].node.process_pending_htlc_forwards();
1612                         expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1],
1613                                 vec![HTLCDestination::NextHopChannel {
1614                                         node_id: Some(nodes[2].node.get_our_node_id()),
1615                                         channel_id: $failing_channel_id,
1616                                 }]);
1617                         nodes[1].node.process_pending_htlc_forwards();
1618                         let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1619                         check_added_monitors!(&nodes[1], 1);
1620                         assert!(update_1.update_fail_htlcs.len() == 1);
1621                         let fail_msg = update_1.update_fail_htlcs[0].clone();
1622                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1623                         commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
1624
1625                         // Ensure the attempt fails and a new PendingHTLCsForwardable event is generated for the retry
1626                         let mut events = nodes[0].node.get_and_clear_pending_events();
1627                         assert_eq!(events.len(), 2);
1628                         match events[0] {
1629                                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
1630                                         assert_eq!(payment_hash, ev_payment_hash);
1631                                         assert_eq!(payment_failed_permanently, false);
1632                                 },
1633                                 _ => panic!("Unexpected event"),
1634                         }
1635                         if $expect_pending_htlcs_forwardable {
1636                                 match events[1] {
1637                                         Event::PendingHTLCsForwardable { .. } => {},
1638                                         _ => panic!("Unexpected event"),
1639                                 }
1640                         } else {
1641                                 match events[1] {
1642                                         Event::PaymentFailed { payment_hash: ev_payment_hash, .. } => {
1643                                                 assert_eq!(payment_hash, ev_payment_hash);
1644                                         },
1645                                         _ => panic!("Unexpected event"),
1646                                 }
1647                         }
1648                 }
1649         }
1650
1651         if test == AutoRetry::Success {
1652                 // Test that we can succeed on the first retry.
1653                 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1654                         PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1655                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1656
1657                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1658                 // attempt, since the initial second hop channel will be excluded from pathfinding
1659                 create_announced_chan_between_nodes(&nodes, 1, 2);
1660
1661                 // We retry payments in `process_pending_htlc_forwards`
1662                 nodes[0].node.process_pending_htlc_forwards();
1663                 check_added_monitors!(nodes[0], 1);
1664                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1665                 assert_eq!(msg_events.len(), 1);
1666                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, Some(payment_secret), msg_events.pop().unwrap(), true, None);
1667                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1668         } else if test == AutoRetry::Spontaneous {
1669                 nodes[0].node.send_spontaneous_payment_with_retry(Some(payment_preimage),
1670                         RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0), route_params,
1671                         Retry::Attempts(1)).unwrap();
1672                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1673
1674                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1675                 // attempt, since the initial second hop channel will be excluded from pathfinding
1676                 create_announced_chan_between_nodes(&nodes, 1, 2);
1677
1678                 // We retry payments in `process_pending_htlc_forwards`
1679                 nodes[0].node.process_pending_htlc_forwards();
1680                 check_added_monitors!(nodes[0], 1);
1681                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1682                 assert_eq!(msg_events.len(), 1);
1683                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, None, msg_events.pop().unwrap(), true, Some(payment_preimage));
1684                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1685         } else if test == AutoRetry::FailAttempts {
1686                 // Ensure ChannelManager will not retry a payment if it has run out of payment attempts.
1687                 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1688                         PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1689                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1690
1691                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1692                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1693                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1694
1695                 // We retry payments in `process_pending_htlc_forwards`
1696                 nodes[0].node.process_pending_htlc_forwards();
1697                 pass_failed_attempt_with_retry_along_path!(channel_id_3, false);
1698
1699                 // Ensure we won't retry a second time.
1700                 nodes[0].node.process_pending_htlc_forwards();
1701                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1702                 assert_eq!(msg_events.len(), 0);
1703         } else if test == AutoRetry::FailTimeout {
1704                 #[cfg(not(feature = "no-std"))] {
1705                         // Ensure ChannelManager will not retry a payment if it times out due to Retry::Timeout.
1706                         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1707                                 PaymentId(payment_hash.0), route_params, Retry::Timeout(Duration::from_secs(60))).unwrap();
1708                         pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1709
1710                         // Advance the time so the second attempt fails due to timeout.
1711                         SinceEpoch::advance(Duration::from_secs(61));
1712
1713                         // Make sure we don't retry again.
1714                         nodes[0].node.process_pending_htlc_forwards();
1715                         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1716                         assert_eq!(msg_events.len(), 0);
1717
1718                         let mut events = nodes[0].node.get_and_clear_pending_events();
1719                         assert_eq!(events.len(), 1);
1720                         match events[0] {
1721                                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
1722                                         assert_eq!(payment_hash, *ev_payment_hash);
1723                                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1724                                         assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
1725                                 },
1726                                 _ => panic!("Unexpected event"),
1727                         }
1728                 }
1729         } else if test == AutoRetry::FailOnRestart {
1730                 // Ensure ChannelManager will not retry a payment after restart, even if there were retry
1731                 // attempts remaining prior to restart.
1732                 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1733                         PaymentId(payment_hash.0), route_params, Retry::Attempts(2)).unwrap();
1734                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1735
1736                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1737                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1738                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1739
1740                 // Ensure the first retry attempt fails, with 1 retry attempt remaining
1741                 nodes[0].node.process_pending_htlc_forwards();
1742                 pass_failed_attempt_with_retry_along_path!(channel_id_3, true);
1743
1744                 // Restart the node and ensure that ChannelManager does not use its remaining retry attempt
1745                 let node_encoded = nodes[0].node.encode();
1746                 let chan_1_monitor_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1747                 reload_node!(nodes[0], node_encoded, &[&chan_1_monitor_serialized], persister, new_chain_monitor, node_0_deserialized);
1748
1749                 let mut events = nodes[0].node.get_and_clear_pending_events();
1750                 expect_pending_htlcs_forwardable_from_events!(nodes[0], events, true);
1751                 // Make sure we don't retry again.
1752                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1753                 assert_eq!(msg_events.len(), 0);
1754
1755                 let mut events = nodes[0].node.get_and_clear_pending_events();
1756                 assert_eq!(events.len(), 1);
1757                 match events[0] {
1758                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
1759                                 assert_eq!(payment_hash, *ev_payment_hash);
1760                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1761                                 assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
1762                         },
1763                         _ => panic!("Unexpected event"),
1764                 }
1765         } else if test == AutoRetry::FailOnRetry {
1766                 nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1767                         PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1768                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1769
1770                 // We retry payments in `process_pending_htlc_forwards`. Since our channel closed, we should
1771                 // fail to find a route.
1772                 nodes[0].node.process_pending_htlc_forwards();
1773                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1774                 assert_eq!(msg_events.len(), 0);
1775
1776                 let mut events = nodes[0].node.get_and_clear_pending_events();
1777                 assert_eq!(events.len(), 1);
1778                 match events[0] {
1779                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
1780                                 assert_eq!(payment_hash, *ev_payment_hash);
1781                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1782                                 assert_eq!(PaymentFailureReason::RouteNotFound, ev_reason.unwrap());
1783                         },
1784                         _ => panic!("Unexpected event"),
1785                 }
1786         }
1787 }
1788
1789 #[test]
1790 fn auto_retry_partial_failure() {
1791         // Test that we'll retry appropriately on send partial failure and retry partial failure.
1792         let chanmon_cfgs = create_chanmon_cfgs(2);
1793         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1794         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1795         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1796
1797         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1798         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1799         let chan_3_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1800
1801         // Marshall data to send the payment
1802         let amt_msat = 20_000;
1803         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1804         #[cfg(feature = "std")]
1805         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1806         #[cfg(not(feature = "std"))]
1807         let payment_expiry_secs = 60 * 60;
1808         let mut invoice_features = InvoiceFeatures::empty();
1809         invoice_features.set_variable_length_onion_required();
1810         invoice_features.set_payment_secret_required();
1811         invoice_features.set_basic_mpp_optional();
1812         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1813                 .with_expiry_time(payment_expiry_secs as u64)
1814                 .with_bolt11_features(invoice_features).unwrap();
1815         let route_params = RouteParameters {
1816                 payment_params,
1817                 final_value_msat: amt_msat,
1818         };
1819
1820         // Ensure the first monitor update (for the initial send path1 over chan_1) succeeds, but the
1821         // second (for the initial send path2 over chan_2) fails.
1822         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1823         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1824         // Ensure third monitor update (for the retry1's path1 over chan_1) succeeds, but the fourth (for
1825         // the retry1's path2 over chan_3) fails, and monitor updates succeed after that.
1826         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1827         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1828         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1829
1830         // Configure the initial send, retry1 and retry2's paths.
1831         let send_route = Route {
1832                 paths: vec![
1833                         Path { hops: vec![RouteHop {
1834                                 pubkey: nodes[1].node.get_our_node_id(),
1835                                 node_features: nodes[1].node.node_features(),
1836                                 short_channel_id: chan_1_id,
1837                                 channel_features: nodes[1].node.channel_features(),
1838                                 fee_msat: amt_msat / 2,
1839                                 cltv_expiry_delta: 100,
1840                         }], blinded_tail: None },
1841                         Path { hops: vec![RouteHop {
1842                                 pubkey: nodes[1].node.get_our_node_id(),
1843                                 node_features: nodes[1].node.node_features(),
1844                                 short_channel_id: chan_2_id,
1845                                 channel_features: nodes[1].node.channel_features(),
1846                                 fee_msat: amt_msat / 2,
1847                                 cltv_expiry_delta: 100,
1848                         }], blinded_tail: None },
1849                 ],
1850                 payment_params: Some(route_params.payment_params.clone()),
1851         };
1852         let retry_1_route = Route {
1853                 paths: vec![
1854                         Path { hops: vec![RouteHop {
1855                                 pubkey: nodes[1].node.get_our_node_id(),
1856                                 node_features: nodes[1].node.node_features(),
1857                                 short_channel_id: chan_1_id,
1858                                 channel_features: nodes[1].node.channel_features(),
1859                                 fee_msat: amt_msat / 4,
1860                                 cltv_expiry_delta: 100,
1861                         }], blinded_tail: None },
1862                         Path { hops: vec![RouteHop {
1863                                 pubkey: nodes[1].node.get_our_node_id(),
1864                                 node_features: nodes[1].node.node_features(),
1865                                 short_channel_id: chan_3_id,
1866                                 channel_features: nodes[1].node.channel_features(),
1867                                 fee_msat: amt_msat / 4,
1868                                 cltv_expiry_delta: 100,
1869                         }], blinded_tail: None },
1870                 ],
1871                 payment_params: Some(route_params.payment_params.clone()),
1872         };
1873         let retry_2_route = Route {
1874                 paths: vec![
1875                         Path { hops: vec![RouteHop {
1876                                 pubkey: nodes[1].node.get_our_node_id(),
1877                                 node_features: nodes[1].node.node_features(),
1878                                 short_channel_id: chan_1_id,
1879                                 channel_features: nodes[1].node.channel_features(),
1880                                 fee_msat: amt_msat / 4,
1881                                 cltv_expiry_delta: 100,
1882                         }], blinded_tail: None },
1883                 ],
1884                 payment_params: Some(route_params.payment_params.clone()),
1885         };
1886         nodes[0].router.expect_find_route(route_params.clone(), Ok(send_route));
1887         let mut payment_params = route_params.payment_params.clone();
1888         payment_params.previously_failed_channels.push(chan_2_id);
1889         nodes[0].router.expect_find_route(RouteParameters {
1890                         payment_params, final_value_msat: amt_msat / 2,
1891                 }, Ok(retry_1_route));
1892         let mut payment_params = route_params.payment_params.clone();
1893         payment_params.previously_failed_channels.push(chan_3_id);
1894         nodes[0].router.expect_find_route(RouteParameters {
1895                         payment_params, final_value_msat: amt_msat / 4,
1896                 }, Ok(retry_2_route));
1897
1898         // Send a payment that will partially fail on send, then partially fail on retry, then succeed.
1899         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
1900                 PaymentId(payment_hash.0), route_params, Retry::Attempts(3)).unwrap();
1901         let closed_chan_events = nodes[0].node.get_and_clear_pending_events();
1902         assert_eq!(closed_chan_events.len(), 4);
1903         match closed_chan_events[0] {
1904                 Event::ChannelClosed { .. } => {},
1905                 _ => panic!("Unexpected event"),
1906         }
1907         match closed_chan_events[1] {
1908                 Event::PaymentPathFailed { .. } => {},
1909                 _ => panic!("Unexpected event"),
1910         }
1911         match closed_chan_events[2] {
1912                 Event::ChannelClosed { .. } => {},
1913                 _ => panic!("Unexpected event"),
1914         }
1915         match closed_chan_events[3] {
1916                 Event::PaymentPathFailed { .. } => {},
1917                 _ => panic!("Unexpected event"),
1918         }
1919
1920         // Pass the first part of the payment along the path.
1921         check_added_monitors!(nodes[0], 5); // three outbound channel updates succeeded, two permanently failed
1922         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1923
1924         // First message is the first update_add, remaining messages are broadcasting channel updates and
1925         // errors for the permfailed channels
1926         assert_eq!(msg_events.len(), 5);
1927         let mut payment_event = SendEvent::from_event(msg_events.remove(0));
1928
1929         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1930         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg);
1931         check_added_monitors!(nodes[1], 1);
1932         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1933
1934         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
1935         check_added_monitors!(nodes[0], 1);
1936         let as_second_htlc_updates = SendEvent::from_node(&nodes[0]);
1937
1938         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
1939         check_added_monitors!(nodes[0], 1);
1940         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1941
1942         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
1943         check_added_monitors!(nodes[1], 1);
1944
1945         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[0]);
1946         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[1]);
1947         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.commitment_msg);
1948         check_added_monitors!(nodes[1], 1);
1949         let (bs_second_raa, bs_second_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1950
1951         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1952         check_added_monitors!(nodes[0], 1);
1953
1954         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_cs);
1955         check_added_monitors!(nodes[0], 1);
1956         let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1957
1958         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
1959         check_added_monitors!(nodes[1], 1);
1960
1961         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1962         nodes[1].node.process_pending_htlc_forwards();
1963         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, amt_msat);
1964         nodes[1].node.claim_funds(payment_preimage);
1965         expect_payment_claimed!(nodes[1], payment_hash, amt_msat);
1966         let bs_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1967         assert_eq!(bs_claim_update.update_fulfill_htlcs.len(), 1);
1968
1969         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_claim_update.update_fulfill_htlcs[0]);
1970         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_claim_update.commitment_signed);
1971         check_added_monitors!(nodes[0], 1);
1972         let (as_third_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1973
1974         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
1975         check_added_monitors!(nodes[1], 4);
1976         let bs_second_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1977
1978         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
1979         check_added_monitors!(nodes[1], 1);
1980         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1981
1982         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
1983         check_added_monitors!(nodes[0], 1);
1984
1985         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[0]);
1986         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[1]);
1987         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.commitment_signed);
1988         check_added_monitors!(nodes[0], 1);
1989         let (as_fourth_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1990
1991         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_fourth_raa);
1992         check_added_monitors!(nodes[1], 1);
1993
1994         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
1995         check_added_monitors!(nodes[1], 1);
1996         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1997
1998         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1999         check_added_monitors!(nodes[0], 1);
2000         expect_payment_sent!(nodes[0], payment_preimage);
2001 }
2002
2003 #[test]
2004 fn auto_retry_zero_attempts_send_error() {
2005         let chanmon_cfgs = create_chanmon_cfgs(2);
2006         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2007         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2008         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2009
2010         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2011         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2012
2013         // Marshall data to send the payment
2014         let amt_msat = 20_000;
2015         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2016         #[cfg(feature = "std")]
2017         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2018         #[cfg(not(feature = "std"))]
2019         let payment_expiry_secs = 60 * 60;
2020         let mut invoice_features = InvoiceFeatures::empty();
2021         invoice_features.set_variable_length_onion_required();
2022         invoice_features.set_payment_secret_required();
2023         invoice_features.set_basic_mpp_optional();
2024         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2025                 .with_expiry_time(payment_expiry_secs as u64)
2026                 .with_bolt11_features(invoice_features).unwrap();
2027         let route_params = RouteParameters {
2028                 payment_params,
2029                 final_value_msat: amt_msat,
2030         };
2031
2032         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
2033         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2034                 PaymentId(payment_hash.0), route_params, Retry::Attempts(0)).unwrap();
2035         assert_eq!(nodes[0].node.get_and_clear_pending_msg_events().len(), 2); // channel close messages
2036         let events = nodes[0].node.get_and_clear_pending_events();
2037         assert_eq!(events.len(), 3);
2038         if let Event::ChannelClosed { .. } = events[0] { } else { panic!(); }
2039         if let Event::PaymentPathFailed { .. } = events[1] { } else { panic!(); }
2040         if let Event::PaymentFailed { .. } = events[2] { } else { panic!(); }
2041         check_added_monitors!(nodes[0], 2);
2042 }
2043
2044 #[test]
2045 fn fails_paying_after_rejected_by_payee() {
2046         let chanmon_cfgs = create_chanmon_cfgs(2);
2047         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2048         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2049         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2050
2051         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2052
2053         // Marshall data to send the payment
2054         let amt_msat = 20_000;
2055         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2056         #[cfg(feature = "std")]
2057         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2058         #[cfg(not(feature = "std"))]
2059         let payment_expiry_secs = 60 * 60;
2060         let mut invoice_features = InvoiceFeatures::empty();
2061         invoice_features.set_variable_length_onion_required();
2062         invoice_features.set_payment_secret_required();
2063         invoice_features.set_basic_mpp_optional();
2064         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2065                 .with_expiry_time(payment_expiry_secs as u64)
2066                 .with_bolt11_features(invoice_features).unwrap();
2067         let route_params = RouteParameters {
2068                 payment_params,
2069                 final_value_msat: amt_msat,
2070         };
2071
2072         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2073                 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2074         check_added_monitors!(nodes[0], 1);
2075         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
2076         assert_eq!(events.len(), 1);
2077         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
2078         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
2079         check_added_monitors!(nodes[1], 0);
2080         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
2081         expect_pending_htlcs_forwardable!(nodes[1]);
2082         expect_payment_claimable!(&nodes[1], payment_hash, payment_secret, amt_msat);
2083
2084         nodes[1].node.fail_htlc_backwards(&payment_hash);
2085         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash }]);
2086         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, payment_hash, PaymentFailureReason::RecipientRejected);
2087 }
2088
2089 #[test]
2090 fn retry_multi_path_single_failed_payment() {
2091         // Tests that we can/will retry after a single path of an MPP payment failed immediately
2092         let chanmon_cfgs = create_chanmon_cfgs(2);
2093         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2094         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2095         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2096
2097         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2098         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2099
2100         let amt_msat = 100_010_000;
2101
2102         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2103         #[cfg(feature = "std")]
2104         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2105         #[cfg(not(feature = "std"))]
2106         let payment_expiry_secs = 60 * 60;
2107         let mut invoice_features = InvoiceFeatures::empty();
2108         invoice_features.set_variable_length_onion_required();
2109         invoice_features.set_payment_secret_required();
2110         invoice_features.set_basic_mpp_optional();
2111         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2112                 .with_expiry_time(payment_expiry_secs as u64)
2113                 .with_bolt11_features(invoice_features).unwrap();
2114         let route_params = RouteParameters {
2115                 payment_params: payment_params.clone(),
2116                 final_value_msat: amt_msat,
2117         };
2118
2119         let chans = nodes[0].node.list_usable_channels();
2120         let mut route = Route {
2121                 paths: vec![
2122                         Path { hops: vec![RouteHop {
2123                                 pubkey: nodes[1].node.get_our_node_id(),
2124                                 node_features: nodes[1].node.node_features(),
2125                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2126                                 channel_features: nodes[1].node.channel_features(),
2127                                 fee_msat: 10_000,
2128                                 cltv_expiry_delta: 100,
2129                         }], blinded_tail: None },
2130                         Path { hops: vec![RouteHop {
2131                                 pubkey: nodes[1].node.get_our_node_id(),
2132                                 node_features: nodes[1].node.node_features(),
2133                                 short_channel_id: chans[1].short_channel_id.unwrap(),
2134                                 channel_features: nodes[1].node.channel_features(),
2135                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2136                                 cltv_expiry_delta: 100,
2137                         }], blinded_tail: None },
2138                 ],
2139                 payment_params: Some(payment_params),
2140         };
2141         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2142         // On retry, split the payment across both channels.
2143         route.paths[0].hops[0].fee_msat = 50_000_001;
2144         route.paths[1].hops[0].fee_msat = 50_000_000;
2145         let mut pay_params = route.payment_params.clone().unwrap();
2146         pay_params.previously_failed_channels.push(chans[1].short_channel_id.unwrap());
2147         nodes[0].router.expect_find_route(RouteParameters {
2148                         payment_params: pay_params,
2149                         // Note that the second request here requests the amount we originally failed to send,
2150                         // not the amount remaining on the full payment, which should be changed.
2151                         final_value_msat: 100_000_001,
2152                 }, Ok(route.clone()));
2153
2154         {
2155                 let scorer = chanmon_cfgs[0].scorer.lock().unwrap();
2156                 // The initial send attempt, 2 paths
2157                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 10_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2158                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 100_000_001, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2159                 // The retry, 2 paths. Ensure that the in-flight HTLC amount is factored in.
2160                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_001, inflight_htlc_msat: 10_000, effective_capacity: EffectiveCapacity::Unknown });
2161                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2162         }
2163
2164         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2165                 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2166         let events = nodes[0].node.get_and_clear_pending_events();
2167         assert_eq!(events.len(), 1);
2168         match events[0] {
2169                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2170                         failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2171                         short_channel_id: Some(expected_scid), .. } =>
2172                 {
2173                         assert_eq!(payment_hash, ev_payment_hash);
2174                         assert_eq!(expected_scid, route.paths[1].hops[0].short_channel_id);
2175                         assert!(err_msg.contains("max HTLC"));
2176                 },
2177                 _ => panic!("Unexpected event"),
2178         }
2179         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2180         assert_eq!(htlc_msgs.len(), 2);
2181         check_added_monitors!(nodes[0], 2);
2182 }
2183
2184 #[test]
2185 fn immediate_retry_on_failure() {
2186         // Tests that we can/will retry immediately after a failure
2187         let chanmon_cfgs = create_chanmon_cfgs(2);
2188         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2189         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2190         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2191
2192         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2193         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2194
2195         let amt_msat = 100_000_001;
2196         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2197         #[cfg(feature = "std")]
2198         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2199         #[cfg(not(feature = "std"))]
2200         let payment_expiry_secs = 60 * 60;
2201         let mut invoice_features = InvoiceFeatures::empty();
2202         invoice_features.set_variable_length_onion_required();
2203         invoice_features.set_payment_secret_required();
2204         invoice_features.set_basic_mpp_optional();
2205         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2206                 .with_expiry_time(payment_expiry_secs as u64)
2207                 .with_bolt11_features(invoice_features).unwrap();
2208         let route_params = RouteParameters {
2209                 payment_params,
2210                 final_value_msat: amt_msat,
2211         };
2212
2213         let chans = nodes[0].node.list_usable_channels();
2214         let mut route = Route {
2215                 paths: vec![
2216                         Path { hops: vec![RouteHop {
2217                                 pubkey: nodes[1].node.get_our_node_id(),
2218                                 node_features: nodes[1].node.node_features(),
2219                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2220                                 channel_features: nodes[1].node.channel_features(),
2221                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2222                                 cltv_expiry_delta: 100,
2223                         }], blinded_tail: None },
2224                 ],
2225                 payment_params: Some(PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)),
2226         };
2227         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2228         // On retry, split the payment across both channels.
2229         route.paths.push(route.paths[0].clone());
2230         route.paths[0].hops[0].short_channel_id = chans[1].short_channel_id.unwrap();
2231         route.paths[0].hops[0].fee_msat = 50_000_000;
2232         route.paths[1].hops[0].fee_msat = 50_000_001;
2233         let mut pay_params = route_params.payment_params.clone();
2234         pay_params.previously_failed_channels.push(chans[0].short_channel_id.unwrap());
2235         nodes[0].router.expect_find_route(RouteParameters {
2236                         payment_params: pay_params, final_value_msat: amt_msat,
2237                 }, Ok(route.clone()));
2238
2239         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2240                 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2241         let events = nodes[0].node.get_and_clear_pending_events();
2242         assert_eq!(events.len(), 1);
2243         match events[0] {
2244                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2245                         failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2246                         short_channel_id: Some(expected_scid), .. } =>
2247                 {
2248                         assert_eq!(payment_hash, ev_payment_hash);
2249                         assert_eq!(expected_scid, route.paths[1].hops[0].short_channel_id);
2250                         assert!(err_msg.contains("max HTLC"));
2251                 },
2252                 _ => panic!("Unexpected event"),
2253         }
2254         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2255         assert_eq!(htlc_msgs.len(), 2);
2256         check_added_monitors!(nodes[0], 2);
2257 }
2258
2259 #[test]
2260 fn no_extra_retries_on_back_to_back_fail() {
2261         // In a previous release, we had a race where we may exceed the payment retry count if we
2262         // get two failures in a row with the second indicating that all paths had failed (this field,
2263         // `all_paths_failed`, has since been removed).
2264         // Generally, when we give up trying to retry a payment, we don't know for sure what the
2265         // current state of the ChannelManager event queue is. Specifically, we cannot be sure that
2266         // there are not multiple additional `PaymentPathFailed` or even `PaymentSent` events
2267         // pending which we will see later. Thus, when we previously removed the retry tracking map
2268         // entry after a `all_paths_failed` `PaymentPathFailed` event, we may have dropped the
2269         // retry entry even though more events for the same payment were still pending. This led to
2270         // us retrying a payment again even though we'd already given up on it.
2271         //
2272         // We now have a separate event - `PaymentFailed` which indicates no HTLCs remain and which
2273         // is used to remove the payment retry counter entries instead. This tests for the specific
2274         // excess-retry case while also testing `PaymentFailed` generation.
2275
2276         let chanmon_cfgs = create_chanmon_cfgs(3);
2277         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2278         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2279         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2280
2281         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2282         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2283
2284         let amt_msat = 200_000_000;
2285         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2286         #[cfg(feature = "std")]
2287         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2288         #[cfg(not(feature = "std"))]
2289         let payment_expiry_secs = 60 * 60;
2290         let mut invoice_features = InvoiceFeatures::empty();
2291         invoice_features.set_variable_length_onion_required();
2292         invoice_features.set_payment_secret_required();
2293         invoice_features.set_basic_mpp_optional();
2294         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2295                 .with_expiry_time(payment_expiry_secs as u64)
2296                 .with_bolt11_features(invoice_features).unwrap();
2297         let route_params = RouteParameters {
2298                 payment_params,
2299                 final_value_msat: amt_msat,
2300         };
2301
2302         let mut route = Route {
2303                 paths: vec![
2304                         Path { hops: vec![RouteHop {
2305                                 pubkey: nodes[1].node.get_our_node_id(),
2306                                 node_features: nodes[1].node.node_features(),
2307                                 short_channel_id: chan_1_scid,
2308                                 channel_features: nodes[1].node.channel_features(),
2309                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2310                                 cltv_expiry_delta: 100,
2311                         }, RouteHop {
2312                                 pubkey: nodes[2].node.get_our_node_id(),
2313                                 node_features: nodes[2].node.node_features(),
2314                                 short_channel_id: chan_2_scid,
2315                                 channel_features: nodes[2].node.channel_features(),
2316                                 fee_msat: 100_000_000,
2317                                 cltv_expiry_delta: 100,
2318                         }], blinded_tail: None },
2319                         Path { hops: vec![RouteHop {
2320                                 pubkey: nodes[1].node.get_our_node_id(),
2321                                 node_features: nodes[1].node.node_features(),
2322                                 short_channel_id: chan_1_scid,
2323                                 channel_features: nodes[1].node.channel_features(),
2324                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2325                                 cltv_expiry_delta: 100,
2326                         }, RouteHop {
2327                                 pubkey: nodes[2].node.get_our_node_id(),
2328                                 node_features: nodes[2].node.node_features(),
2329                                 short_channel_id: chan_2_scid,
2330                                 channel_features: nodes[2].node.channel_features(),
2331                                 fee_msat: 100_000_000,
2332                                 cltv_expiry_delta: 100,
2333                         }], blinded_tail: None }
2334                 ],
2335                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2336         };
2337         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2338         let mut second_payment_params = route_params.payment_params.clone();
2339         second_payment_params.previously_failed_channels = vec![chan_2_scid, chan_2_scid];
2340         // On retry, we'll only return one path
2341         route.paths.remove(1);
2342         route.paths[0].hops[1].fee_msat = amt_msat;
2343         nodes[0].router.expect_find_route(RouteParameters {
2344                         payment_params: second_payment_params,
2345                         final_value_msat: amt_msat,
2346                 }, Ok(route.clone()));
2347
2348         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2349                 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2350         let htlc_updates = SendEvent::from_node(&nodes[0]);
2351         check_added_monitors!(nodes[0], 1);
2352         assert_eq!(htlc_updates.msgs.len(), 1);
2353
2354         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2355         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2356         check_added_monitors!(nodes[1], 1);
2357         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2358
2359         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2360         check_added_monitors!(nodes[0], 1);
2361         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2362
2363         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2364         check_added_monitors!(nodes[0], 1);
2365         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2366
2367         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2368         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2369         check_added_monitors!(nodes[1], 1);
2370         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2371
2372         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2373         check_added_monitors!(nodes[1], 1);
2374         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2375
2376         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2377         check_added_monitors!(nodes[0], 1);
2378
2379         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2380         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2381         check_added_monitors!(nodes[0], 1);
2382         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2383
2384         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2385         check_added_monitors!(nodes[1], 1);
2386         let bs_second_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2387
2388         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2389         check_added_monitors!(nodes[1], 1);
2390         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2391
2392         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.update_fail_htlcs[0]);
2393         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.commitment_signed);
2394         check_added_monitors!(nodes[0], 1);
2395
2396         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2397         check_added_monitors!(nodes[0], 1);
2398         let (as_third_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2399
2400         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
2401         check_added_monitors!(nodes[1], 1);
2402         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
2403         check_added_monitors!(nodes[1], 1);
2404         let bs_fourth_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2405
2406         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_fourth_raa);
2407         check_added_monitors!(nodes[0], 1);
2408
2409         // At this point A has sent two HTLCs which both failed due to lack of fee. It now has two
2410         // pending `PaymentPathFailed` events, one with `all_paths_failed` unset, and the second
2411         // with it set.
2412         //
2413         // Previously, we retried payments in an event consumer, which would retry each
2414         // `PaymentPathFailed` individually. In that setup, we had retried the payment in response to
2415         // the first `PaymentPathFailed`, then seen the second `PaymentPathFailed` with
2416         // `all_paths_failed` set and assumed the payment was completely failed. We ultimately fixed it
2417         // by adding the `PaymentFailed` event.
2418         //
2419         // Because we now retry payments as a batch, we simply return a single-path route in the
2420         // second, batched, request, have that fail, ensure the payment was abandoned.
2421         let mut events = nodes[0].node.get_and_clear_pending_events();
2422         assert_eq!(events.len(), 3);
2423         match events[0] {
2424                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2425                         assert_eq!(payment_hash, ev_payment_hash);
2426                         assert_eq!(payment_failed_permanently, false);
2427                 },
2428                 _ => panic!("Unexpected event"),
2429         }
2430         match events[1] {
2431                 Event::PendingHTLCsForwardable { .. } => {},
2432                 _ => panic!("Unexpected event"),
2433         }
2434         match events[2] {
2435                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2436                         assert_eq!(payment_hash, ev_payment_hash);
2437                         assert_eq!(payment_failed_permanently, false);
2438                 },
2439                 _ => panic!("Unexpected event"),
2440         }
2441
2442         nodes[0].node.process_pending_htlc_forwards();
2443         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2444         check_added_monitors!(nodes[0], 1);
2445
2446         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2447         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2448         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2449         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2450         commitment_signed_dance!(nodes[0], nodes[1], &bs_fail_update.commitment_signed, false, true);
2451
2452         let mut events = nodes[0].node.get_and_clear_pending_events();
2453         assert_eq!(events.len(), 2);
2454         match events[0] {
2455                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2456                         assert_eq!(payment_hash, ev_payment_hash);
2457                         assert_eq!(payment_failed_permanently, false);
2458                 },
2459                 _ => panic!("Unexpected event"),
2460         }
2461         match events[1] {
2462                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
2463                         assert_eq!(payment_hash, *ev_payment_hash);
2464                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
2465                         assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
2466                 },
2467                 _ => panic!("Unexpected event"),
2468         }
2469 }
2470
2471 #[test]
2472 fn test_simple_partial_retry() {
2473         // In the first version of the in-`ChannelManager` payment retries, retries were sent for the
2474         // full amount of the payment, rather than only the missing amount. Here we simply test for
2475         // this by sending a payment with two parts, failing one, and retrying the second. Note that
2476         // `TestRouter` will check that the `RouteParameters` (which contain the amount) matches the
2477         // request.
2478         let chanmon_cfgs = create_chanmon_cfgs(3);
2479         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2480         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2481         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2482
2483         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2484         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2485
2486         let amt_msat = 200_000_000;
2487         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2488         #[cfg(feature = "std")]
2489         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2490         #[cfg(not(feature = "std"))]
2491         let payment_expiry_secs = 60 * 60;
2492         let mut invoice_features = InvoiceFeatures::empty();
2493         invoice_features.set_variable_length_onion_required();
2494         invoice_features.set_payment_secret_required();
2495         invoice_features.set_basic_mpp_optional();
2496         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2497                 .with_expiry_time(payment_expiry_secs as u64)
2498                 .with_bolt11_features(invoice_features).unwrap();
2499         let route_params = RouteParameters {
2500                 payment_params,
2501                 final_value_msat: amt_msat,
2502         };
2503
2504         let mut route = Route {
2505                 paths: vec![
2506                         Path { hops: vec![RouteHop {
2507                                 pubkey: nodes[1].node.get_our_node_id(),
2508                                 node_features: nodes[1].node.node_features(),
2509                                 short_channel_id: chan_1_scid,
2510                                 channel_features: nodes[1].node.channel_features(),
2511                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2512                                 cltv_expiry_delta: 100,
2513                         }, RouteHop {
2514                                 pubkey: nodes[2].node.get_our_node_id(),
2515                                 node_features: nodes[2].node.node_features(),
2516                                 short_channel_id: chan_2_scid,
2517                                 channel_features: nodes[2].node.channel_features(),
2518                                 fee_msat: 100_000_000,
2519                                 cltv_expiry_delta: 100,
2520                         }], blinded_tail: None },
2521                         Path { hops: vec![RouteHop {
2522                                 pubkey: nodes[1].node.get_our_node_id(),
2523                                 node_features: nodes[1].node.node_features(),
2524                                 short_channel_id: chan_1_scid,
2525                                 channel_features: nodes[1].node.channel_features(),
2526                                 fee_msat: 100_000,
2527                                 cltv_expiry_delta: 100,
2528                         }, RouteHop {
2529                                 pubkey: nodes[2].node.get_our_node_id(),
2530                                 node_features: nodes[2].node.node_features(),
2531                                 short_channel_id: chan_2_scid,
2532                                 channel_features: nodes[2].node.channel_features(),
2533                                 fee_msat: 100_000_000,
2534                                 cltv_expiry_delta: 100,
2535                         }], blinded_tail: None }
2536                 ],
2537                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2538         };
2539         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2540         let mut second_payment_params = route_params.payment_params.clone();
2541         second_payment_params.previously_failed_channels = vec![chan_2_scid];
2542         // On retry, we'll only be asked for one path (or 100k sats)
2543         route.paths.remove(0);
2544         nodes[0].router.expect_find_route(RouteParameters {
2545                         payment_params: second_payment_params,
2546                         final_value_msat: amt_msat / 2,
2547                 }, Ok(route.clone()));
2548
2549         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2550                 PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2551         let htlc_updates = SendEvent::from_node(&nodes[0]);
2552         check_added_monitors!(nodes[0], 1);
2553         assert_eq!(htlc_updates.msgs.len(), 1);
2554
2555         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2556         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2557         check_added_monitors!(nodes[1], 1);
2558         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2559
2560         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2561         check_added_monitors!(nodes[0], 1);
2562         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2563
2564         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2565         check_added_monitors!(nodes[0], 1);
2566         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2567
2568         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2569         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2570         check_added_monitors!(nodes[1], 1);
2571         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2572
2573         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2574         check_added_monitors!(nodes[1], 1);
2575         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2576
2577         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2578         check_added_monitors!(nodes[0], 1);
2579
2580         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2581         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2582         check_added_monitors!(nodes[0], 1);
2583         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2584
2585         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2586         check_added_monitors!(nodes[1], 1);
2587
2588         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2589         check_added_monitors!(nodes[1], 1);
2590
2591         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2592
2593         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2594         check_added_monitors!(nodes[0], 1);
2595
2596         let mut events = nodes[0].node.get_and_clear_pending_events();
2597         assert_eq!(events.len(), 2);
2598         match events[0] {
2599                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2600                         assert_eq!(payment_hash, ev_payment_hash);
2601                         assert_eq!(payment_failed_permanently, false);
2602                 },
2603                 _ => panic!("Unexpected event"),
2604         }
2605         match events[1] {
2606                 Event::PendingHTLCsForwardable { .. } => {},
2607                 _ => panic!("Unexpected event"),
2608         }
2609
2610         nodes[0].node.process_pending_htlc_forwards();
2611         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2612         check_added_monitors!(nodes[0], 1);
2613
2614         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2615         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2616
2617         expect_pending_htlcs_forwardable!(nodes[1]);
2618         check_added_monitors!(nodes[1], 1);
2619
2620         let bs_forward_update = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
2621         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[0]);
2622         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[1]);
2623         commitment_signed_dance!(nodes[2], nodes[1], &bs_forward_update.commitment_signed, false);
2624
2625         expect_pending_htlcs_forwardable!(nodes[2]);
2626         expect_payment_claimable!(nodes[2], payment_hash, payment_secret, amt_msat);
2627 }
2628
2629 #[test]
2630 #[cfg(feature = "std")]
2631 fn test_threaded_payment_retries() {
2632         // In the first version of the in-`ChannelManager` payment retries, retries weren't limited to
2633         // a single thread and would happily let multiple threads run retries at the same time. Because
2634         // retries are done by first calculating the amount we need to retry, then dropping the
2635         // relevant lock, then actually sending, we would happily let multiple threads retry the same
2636         // amount at the same time, overpaying our original HTLC!
2637         let chanmon_cfgs = create_chanmon_cfgs(4);
2638         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
2639         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
2640         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
2641
2642         // There is one mitigating guardrail when retrying payments - we can never over-pay by more
2643         // than 10% of the original value. Thus, we want all our retries to be below that. In order to
2644         // keep things simple, we route one HTLC for 0.1% of the payment over channel 1 and the rest
2645         // out over channel 3+4. This will let us ignore 99% of the payment value and deal with only
2646         // our channel.
2647         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2648         create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 10_000_000, 0);
2649         let chan_3_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 10_000_000, 0).0.contents.short_channel_id;
2650         let chan_4_scid = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 10_000_000, 0).0.contents.short_channel_id;
2651
2652         let amt_msat = 100_000_000;
2653         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2654         #[cfg(feature = "std")]
2655         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2656         #[cfg(not(feature = "std"))]
2657         let payment_expiry_secs = 60 * 60;
2658         let mut invoice_features = InvoiceFeatures::empty();
2659         invoice_features.set_variable_length_onion_required();
2660         invoice_features.set_payment_secret_required();
2661         invoice_features.set_basic_mpp_optional();
2662         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2663                 .with_expiry_time(payment_expiry_secs as u64)
2664                 .with_bolt11_features(invoice_features).unwrap();
2665         let mut route_params = RouteParameters {
2666                 payment_params,
2667                 final_value_msat: amt_msat,
2668         };
2669
2670         let mut route = Route {
2671                 paths: vec![
2672                         Path { hops: vec![RouteHop {
2673                                 pubkey: nodes[1].node.get_our_node_id(),
2674                                 node_features: nodes[1].node.node_features(),
2675                                 short_channel_id: chan_1_scid,
2676                                 channel_features: nodes[1].node.channel_features(),
2677                                 fee_msat: 0,
2678                                 cltv_expiry_delta: 100,
2679                         }, RouteHop {
2680                                 pubkey: nodes[3].node.get_our_node_id(),
2681                                 node_features: nodes[2].node.node_features(),
2682                                 short_channel_id: 42, // Set a random SCID which nodes[1] will fail as unknown
2683                                 channel_features: nodes[2].node.channel_features(),
2684                                 fee_msat: amt_msat / 1000,
2685                                 cltv_expiry_delta: 100,
2686                         }], blinded_tail: None },
2687                         Path { hops: vec![RouteHop {
2688                                 pubkey: nodes[2].node.get_our_node_id(),
2689                                 node_features: nodes[2].node.node_features(),
2690                                 short_channel_id: chan_3_scid,
2691                                 channel_features: nodes[2].node.channel_features(),
2692                                 fee_msat: 100_000,
2693                                 cltv_expiry_delta: 100,
2694                         }, RouteHop {
2695                                 pubkey: nodes[3].node.get_our_node_id(),
2696                                 node_features: nodes[3].node.node_features(),
2697                                 short_channel_id: chan_4_scid,
2698                                 channel_features: nodes[3].node.channel_features(),
2699                                 fee_msat: amt_msat - amt_msat / 1000,
2700                                 cltv_expiry_delta: 100,
2701                         }], blinded_tail: None }
2702                 ],
2703                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2704         };
2705         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2706
2707         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2708                 PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(0xdeadbeef)).unwrap();
2709         check_added_monitors!(nodes[0], 2);
2710         let mut send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2711         assert_eq!(send_msg_events.len(), 2);
2712         send_msg_events.retain(|msg|
2713                 if let MessageSendEvent::UpdateHTLCs { node_id, .. } = msg {
2714                         // Drop the commitment update for nodes[2], we can just let that one sit pending
2715                         // forever.
2716                         *node_id == nodes[1].node.get_our_node_id()
2717                 } else { panic!(); }
2718         );
2719
2720         // from here on out, the retry `RouteParameters` amount will be amt/1000
2721         route_params.final_value_msat /= 1000;
2722         route.paths.pop();
2723
2724         let end_time = Instant::now() + Duration::from_secs(1);
2725         macro_rules! thread_body { () => { {
2726                 // We really want std::thread::scope, but its not stable until 1.63. Until then, we get unsafe.
2727                 let node_ref = NodePtr::from_node(&nodes[0]);
2728                 move || {
2729                         let node_a = unsafe { &*node_ref.0 };
2730                         while Instant::now() < end_time {
2731                                 node_a.node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2732                                 // Ignore if we have any pending events, just always pretend we just got a
2733                                 // PendingHTLCsForwardable
2734                                 node_a.node.process_pending_htlc_forwards();
2735                         }
2736                 }
2737         } } }
2738         let mut threads = Vec::new();
2739         for _ in 0..16 { threads.push(std::thread::spawn(thread_body!())); }
2740
2741         // Back in the main thread, poll pending messages and make sure that we never have more than
2742         // one HTLC pending at a time. Note that the commitment_signed_dance will fail horribly if
2743         // there are HTLC messages shoved in while its running. This allows us to test that we never
2744         // generate an additional update_add_htlc until we've fully failed the first.
2745         let mut previously_failed_channels = Vec::new();
2746         loop {
2747                 assert_eq!(send_msg_events.len(), 1);
2748                 let send_event = SendEvent::from_event(send_msg_events.pop().unwrap());
2749                 assert_eq!(send_event.msgs.len(), 1);
2750
2751                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_event.msgs[0]);
2752                 commitment_signed_dance!(nodes[1], nodes[0], send_event.commitment_msg, false, true);
2753
2754                 // Note that we only push one route into `expect_find_route` at a time, because that's all
2755                 // the retries (should) need. If the bug is reintroduced "real" routes may be selected, but
2756                 // we should still ultimately fail for the same reason - because we're trying to send too
2757                 // many HTLCs at once.
2758                 let mut new_route_params = route_params.clone();
2759                 previously_failed_channels.push(route.paths[0].hops[1].short_channel_id);
2760                 new_route_params.payment_params.previously_failed_channels = previously_failed_channels.clone();
2761                 route.paths[0].hops[1].short_channel_id += 1;
2762                 nodes[0].router.expect_find_route(new_route_params, Ok(route.clone()));
2763
2764                 let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2765                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]);
2766                 // The "normal" commitment_signed_dance delivers the final RAA and then calls
2767                 // `check_added_monitors` to ensure only the one RAA-generated monitor update was created.
2768                 // This races with our other threads which may generate an add-HTLCs commitment update via
2769                 // `process_pending_htlc_forwards`. Instead, we defer the monitor update check until after
2770                 // *we've* called `process_pending_htlc_forwards` when its guaranteed to have two updates.
2771                 let last_raa = commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true, false, true);
2772                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &last_raa);
2773
2774                 let cur_time = Instant::now();
2775                 if cur_time > end_time {
2776                         for thread in threads.drain(..) { thread.join().unwrap(); }
2777                 }
2778
2779                 // Make sure we have some events to handle when we go around...
2780                 nodes[0].node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2781                 nodes[0].node.process_pending_htlc_forwards();
2782                 send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2783                 check_added_monitors!(nodes[0], 2);
2784
2785                 if cur_time > end_time {
2786                         break;
2787                 }
2788         }
2789 }
2790
2791 fn do_no_missing_sent_on_midpoint_reload(persist_manager_with_payment: bool) {
2792         // Test that if we reload in the middle of an HTLC claim commitment signed dance we'll still
2793         // receive the PaymentSent event even if the ChannelManager had no idea about the payment when
2794         // it was last persisted.
2795         let chanmon_cfgs = create_chanmon_cfgs(2);
2796         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2797         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2798         let (persister_a, persister_b, persister_c);
2799         let (chain_monitor_a, chain_monitor_b, chain_monitor_c);
2800         let (nodes_0_deserialized, nodes_0_deserialized_b, nodes_0_deserialized_c);
2801         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2802
2803         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
2804
2805         let mut nodes_0_serialized = Vec::new();
2806         if !persist_manager_with_payment {
2807                 nodes_0_serialized = nodes[0].node.encode();
2808         }
2809
2810         let (our_payment_preimage, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
2811
2812         if persist_manager_with_payment {
2813                 nodes_0_serialized = nodes[0].node.encode();
2814         }
2815
2816         nodes[1].node.claim_funds(our_payment_preimage);
2817         check_added_monitors!(nodes[1], 1);
2818         expect_payment_claimed!(nodes[1], our_payment_hash, 1_000_000);
2819
2820         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2821         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
2822         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
2823         check_added_monitors!(nodes[0], 1);
2824
2825         // The ChannelMonitor should always be the latest version, as we're required to persist it
2826         // during the commitment signed handling.
2827         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2828         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister_a, chain_monitor_a, nodes_0_deserialized);
2829
2830         let events = nodes[0].node.get_and_clear_pending_events();
2831         assert_eq!(events.len(), 2);
2832         if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[0] {} else { panic!(); }
2833         if let Event::PaymentSent { payment_preimage, .. } = events[1] { assert_eq!(payment_preimage, our_payment_preimage); } else { panic!(); }
2834         // Note that we don't get a PaymentPathSuccessful here as we leave the HTLC pending to avoid
2835         // the double-claim that would otherwise appear at the end of this test.
2836         nodes[0].node.timer_tick_occurred();
2837         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2838         assert_eq!(as_broadcasted_txn.len(), 1);
2839
2840         // Ensure that, even after some time, if we restart we still include *something* in the current
2841         // `ChannelManager` which prevents a `PaymentFailed` when we restart even if pending resolved
2842         // payments have since been timed out thanks to `IDEMPOTENCY_TIMEOUT_TICKS`.
2843         // A naive implementation of the fix here would wipe the pending payments set, causing a
2844         // failure event when we restart.
2845         for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
2846
2847         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2848         reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_b, chain_monitor_b, nodes_0_deserialized_b);
2849         let events = nodes[0].node.get_and_clear_pending_events();
2850         assert!(events.is_empty());
2851
2852         // Ensure that we don't generate any further events even after the channel-closing commitment
2853         // transaction is confirmed on-chain.
2854         confirm_transaction(&nodes[0], &as_broadcasted_txn[0]);
2855         for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
2856
2857         let events = nodes[0].node.get_and_clear_pending_events();
2858         assert!(events.is_empty());
2859
2860         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2861         reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_c, chain_monitor_c, nodes_0_deserialized_c);
2862         let events = nodes[0].node.get_and_clear_pending_events();
2863         assert!(events.is_empty());
2864 }
2865
2866 #[test]
2867 fn no_missing_sent_on_midpoint_reload() {
2868         do_no_missing_sent_on_midpoint_reload(false);
2869         do_no_missing_sent_on_midpoint_reload(true);
2870 }
2871
2872 fn do_claim_from_closed_chan(fail_payment: bool) {
2873         // Previously, LDK would refuse to claim a payment if a channel on which the payment was
2874         // received had been closed between when the HTLC was received and when we went to claim it.
2875         // This makes sense in the payment case - why pay an on-chain fee to claim the HTLC when
2876         // presumably the sender may retry later. Long ago it also reduced total code in the claim
2877         // pipeline.
2878         //
2879         // However, this doesn't make sense if you're trying to do an atomic swap or some other
2880         // protocol that requires atomicity with some other action - if your money got claimed
2881         // elsewhere you need to be able to claim the HTLC in lightning no matter what. Further, this
2882         // is an over-optimization - there should be a very, very low likelihood that a channel closes
2883         // between when we receive the last HTLC for a payment and the user goes to claim the payment.
2884         // Since we now have code to handle this anyway we should allow it.
2885
2886         // Build 4 nodes and send an MPP payment across two paths. By building a route manually set the
2887         // CLTVs on the paths to different value resulting in a different claim deadline.
2888         let chanmon_cfgs = create_chanmon_cfgs(4);
2889         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
2890         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
2891         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
2892
2893         create_announced_chan_between_nodes(&nodes, 0, 1);
2894         create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 1_000_000, 0);
2895         let chan_bd = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 1_000_000, 0).2;
2896         create_announced_chan_between_nodes(&nodes, 2, 3);
2897
2898         let (payment_preimage, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[3]);
2899         let mut route_params = RouteParameters {
2900                 payment_params: PaymentParameters::from_node_id(nodes[3].node.get_our_node_id(), TEST_FINAL_CLTV)
2901                         .with_bolt11_features(nodes[1].node.invoice_features()).unwrap(),
2902                 final_value_msat: 10_000_000,
2903         };
2904         let mut route = nodes[0].router.find_route(&nodes[0].node.get_our_node_id(), &route_params,
2905                 None, &nodes[0].node.compute_inflight_htlcs()).unwrap();
2906         // Make sure the route is ordered as the B->D path before C->D
2907         route.paths.sort_by(|a, _| if a.hops[0].pubkey == nodes[1].node.get_our_node_id() {
2908                 std::cmp::Ordering::Less } else { std::cmp::Ordering::Greater });
2909
2910         // Note that we add an extra 1 in the send pipeline to compensate for any blocks found while
2911         // the HTLC is being relayed.
2912         route.paths[0].hops[1].cltv_expiry_delta = TEST_FINAL_CLTV + 8;
2913         route.paths[1].hops[1].cltv_expiry_delta = TEST_FINAL_CLTV + 12;
2914         let final_cltv = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 8 + 1;
2915
2916         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2917         nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
2918                 PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(1)).unwrap();
2919         check_added_monitors(&nodes[0], 2);
2920         let mut send_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2921         send_msgs.sort_by(|a, _| {
2922                 let a_node_id =
2923                         if let MessageSendEvent::UpdateHTLCs { node_id, .. } = a { node_id } else { panic!() };
2924                 let node_b_id = nodes[1].node.get_our_node_id();
2925                 if *a_node_id == node_b_id { std::cmp::Ordering::Less } else { std::cmp::Ordering::Greater }
2926         });
2927
2928         assert_eq!(send_msgs.len(), 2);
2929         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 10_000_000,
2930                 payment_hash, Some(payment_secret), send_msgs.remove(0), false, None);
2931         let receive_event = pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 10_000_000,
2932                 payment_hash, Some(payment_secret), send_msgs.remove(0), true, None);
2933
2934         match receive_event.unwrap() {
2935                 Event::PaymentClaimable { claim_deadline, .. } => {
2936                         assert_eq!(claim_deadline.unwrap(), final_cltv - HTLC_FAIL_BACK_BUFFER);
2937                 },
2938                 _ => panic!(),
2939         }
2940
2941         // Ensure that the claim_deadline is correct, with the payment failing at exactly the given
2942         // height.
2943         connect_blocks(&nodes[3], final_cltv - HTLC_FAIL_BACK_BUFFER - nodes[3].best_block_info().1
2944                 - if fail_payment { 0 } else { 2 });
2945         if fail_payment {
2946                 // We fail the HTLC on the A->B->D path first as it expires 4 blocks earlier. We go ahead
2947                 // and expire both immediately, though, by connecting another 4 blocks.
2948                 let reason = HTLCDestination::FailedPayment { payment_hash };
2949                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[3], [reason.clone()]);
2950                 connect_blocks(&nodes[3], 4);
2951                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[3], [reason]);
2952                 pass_failed_payment_back(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash, PaymentFailureReason::RecipientRejected);
2953         } else {
2954                 nodes[1].node.force_close_broadcasting_latest_txn(&chan_bd, &nodes[3].node.get_our_node_id()).unwrap();
2955                 check_closed_event(&nodes[1], 1, ClosureReason::HolderForceClosed, false);
2956                 check_closed_broadcast(&nodes[1], 1, true);
2957                 let bs_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2958                 assert_eq!(bs_tx.len(), 1);
2959
2960                 mine_transaction(&nodes[3], &bs_tx[0]);
2961                 check_added_monitors(&nodes[3], 1);
2962                 check_closed_broadcast(&nodes[3], 1, true);
2963                 check_closed_event(&nodes[3], 1, ClosureReason::CommitmentTxConfirmed, false);
2964
2965                 nodes[3].node.claim_funds(payment_preimage);
2966                 check_added_monitors(&nodes[3], 2);
2967                 expect_payment_claimed!(nodes[3], payment_hash, 10_000_000);
2968
2969                 let ds_tx = nodes[3].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2970                 assert_eq!(ds_tx.len(), 1);
2971                 check_spends!(&ds_tx[0], &bs_tx[0]);
2972
2973                 mine_transactions(&nodes[1], &[&bs_tx[0], &ds_tx[0]]);
2974                 check_added_monitors(&nodes[1], 1);
2975                 expect_payment_forwarded!(nodes[1], nodes[0], nodes[3], Some(1000), false, true);
2976
2977                 let bs_claims = nodes[1].node.get_and_clear_pending_msg_events();
2978                 check_added_monitors(&nodes[1], 1);
2979                 assert_eq!(bs_claims.len(), 1);
2980                 if let MessageSendEvent::UpdateHTLCs { updates, .. } = &bs_claims[0] {
2981                         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
2982                         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false, true);
2983                 } else { panic!(); }
2984
2985                 expect_payment_sent!(nodes[0], payment_preimage);
2986
2987                 let ds_claim_msgs = nodes[3].node.get_and_clear_pending_msg_events();
2988                 assert_eq!(ds_claim_msgs.len(), 1);
2989                 let cs_claim_msgs = if let MessageSendEvent::UpdateHTLCs { updates, .. } = &ds_claim_msgs[0] {
2990                         nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
2991                         let cs_claim_msgs = nodes[2].node.get_and_clear_pending_msg_events();
2992                         check_added_monitors(&nodes[2], 1);
2993                         commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
2994                         expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
2995                         cs_claim_msgs
2996                 } else { panic!(); };
2997
2998                 assert_eq!(cs_claim_msgs.len(), 1);
2999                 if let MessageSendEvent::UpdateHTLCs { updates, .. } = &cs_claim_msgs[0] {
3000                         nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
3001                         commitment_signed_dance!(nodes[0], nodes[2], updates.commitment_signed, false, true);
3002                 } else { panic!(); }
3003
3004                 expect_payment_path_successful!(nodes[0]);
3005         }
3006 }
3007
3008 #[test]
3009 fn claim_from_closed_chan() {
3010         do_claim_from_closed_chan(true);
3011         do_claim_from_closed_chan(false);
3012 }
3013
3014 fn do_test_payment_metadata_consistency(do_reload: bool, do_modify: bool) {
3015         // Check that a payment metadata received on one HTLC that doesn't match the one received on
3016         // another results in the HTLC being rejected.
3017         //
3018         // We first set up a diamond shaped network, allowing us to split a payment into two HTLCs, the
3019         // first of which we'll deliver and the second of which we'll fail and then re-send with
3020         // modified payment metadata, which will in turn result in it being failed by the recipient.
3021         let chanmon_cfgs = create_chanmon_cfgs(4);
3022         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
3023         let mut config = test_default_channel_config();
3024         config.channel_handshake_config.max_inbound_htlc_value_in_flight_percent_of_channel = 50;
3025         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, Some(config), Some(config), Some(config)]);
3026
3027         let persister;
3028         let new_chain_monitor;
3029         let nodes_0_deserialized;
3030
3031         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
3032
3033         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
3034         let chan_id_bd = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 1_000_000, 0).2;
3035         create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 1_000_000, 0);
3036         let chan_id_cd = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 1_000_000, 0).2;
3037
3038         // Pay more than half of each channel's max, requiring MPP
3039         let amt_msat = 750_000_000;
3040         let (payment_preimage, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[3], Some(amt_msat));
3041         let payment_id = PaymentId(payment_hash.0);
3042         let payment_metadata = vec![44, 49, 52, 142];
3043
3044         let payment_params = PaymentParameters::from_node_id(nodes[3].node.get_our_node_id(), TEST_FINAL_CLTV)
3045                 .with_bolt11_features(nodes[1].node.invoice_features()).unwrap();
3046         let mut route_params = RouteParameters {
3047                 payment_params,
3048                 final_value_msat: amt_msat,
3049         };
3050
3051         // Send the MPP payment, delivering the updated commitment state to nodes[1].
3052         nodes[0].node.send_payment(payment_hash, RecipientOnionFields {
3053                         payment_secret: Some(payment_secret), payment_metadata: Some(payment_metadata),
3054                 }, payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
3055         check_added_monitors!(nodes[0], 2);
3056
3057         let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
3058         assert_eq!(send_events.len(), 2);
3059         let first_send = SendEvent::from_event(send_events.pop().unwrap());
3060         let second_send = SendEvent::from_event(send_events.pop().unwrap());
3061
3062         let (b_recv_ev, c_recv_ev) = if first_send.node_id == nodes[1].node.get_our_node_id() {
3063                 (&first_send, &second_send)
3064         } else {
3065                 (&second_send, &first_send)
3066         };
3067         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &b_recv_ev.msgs[0]);
3068         commitment_signed_dance!(nodes[1], nodes[0], b_recv_ev.commitment_msg, false, true);
3069
3070         expect_pending_htlcs_forwardable!(nodes[1]);
3071         check_added_monitors(&nodes[1], 1);
3072         let b_forward_ev = SendEvent::from_node(&nodes[1]);
3073         nodes[3].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &b_forward_ev.msgs[0]);
3074         commitment_signed_dance!(nodes[3], nodes[1], b_forward_ev.commitment_msg, false, true);
3075
3076         expect_pending_htlcs_forwardable!(nodes[3]);
3077
3078         // Before delivering the second MPP HTLC to nodes[2], disconnect nodes[2] and nodes[3], which
3079         // will result in nodes[2] failing the HTLC back.
3080         nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
3081         nodes[3].node.peer_disconnected(&nodes[2].node.get_our_node_id());
3082
3083         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &c_recv_ev.msgs[0]);
3084         commitment_signed_dance!(nodes[2], nodes[0], c_recv_ev.commitment_msg, false, true);
3085
3086         let cs_fail = get_htlc_update_msgs(&nodes[2], &nodes[0].node.get_our_node_id());
3087         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &cs_fail.update_fail_htlcs[0]);
3088         commitment_signed_dance!(nodes[0], nodes[2], cs_fail.commitment_signed, false, true);
3089
3090         let payment_fail_retryable_evs = nodes[0].node.get_and_clear_pending_events();
3091         assert_eq!(payment_fail_retryable_evs.len(), 2);
3092         if let Event::PaymentPathFailed { .. } = payment_fail_retryable_evs[0] {} else { panic!(); }
3093         if let Event::PendingHTLCsForwardable { .. } = payment_fail_retryable_evs[1] {} else { panic!(); }
3094
3095         // Before we allow the HTLC to be retried, optionally change the payment_metadata we have
3096         // stored for our payment.
3097         if do_modify {
3098                 nodes[0].node.test_set_payment_metadata(payment_id, Some(Vec::new()));
3099         }
3100
3101         // Optionally reload nodes[3] to check that the payment_metadata is properly serialized with
3102         // the payment state.
3103         if do_reload {
3104                 let mon_bd = get_monitor!(nodes[3], chan_id_bd).encode();
3105                 let mon_cd = get_monitor!(nodes[3], chan_id_cd).encode();
3106                 reload_node!(nodes[3], config, &nodes[3].node.encode(), &[&mon_bd, &mon_cd],
3107                         persister, new_chain_monitor, nodes_0_deserialized);
3108                 nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
3109                 reconnect_nodes(&nodes[1], &nodes[3], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
3110         }
3111         reconnect_nodes(&nodes[2], &nodes[3], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
3112
3113         // Create a new channel between C and D as A will refuse to retry on the existing one because
3114         // it just failed.
3115         let chan_id_cd_2 = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 1_000_000, 0).2;
3116
3117         // Now retry the failed HTLC.
3118         nodes[0].node.process_pending_htlc_forwards();
3119         check_added_monitors(&nodes[0], 1);
3120         let as_resend = SendEvent::from_node(&nodes[0]);
3121         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_resend.msgs[0]);
3122         commitment_signed_dance!(nodes[2], nodes[0], as_resend.commitment_msg, false, true);
3123
3124         expect_pending_htlcs_forwardable!(nodes[2]);
3125         check_added_monitors(&nodes[2], 1);
3126         let cs_forward = SendEvent::from_node(&nodes[2]);
3127         nodes[3].node.handle_update_add_htlc(&nodes[2].node.get_our_node_id(), &cs_forward.msgs[0]);
3128         commitment_signed_dance!(nodes[3], nodes[2], cs_forward.commitment_msg, false, true);
3129
3130         // Finally, check that nodes[3] does the correct thing - either accepting the payment or, if
3131         // the payment metadata was modified, failing only the one modified HTLC and retaining the
3132         // other.
3133         if do_modify {
3134                 expect_pending_htlcs_forwardable_ignore!(nodes[3]);
3135                 nodes[3].node.process_pending_htlc_forwards();
3136                 expect_pending_htlcs_forwardable_conditions(nodes[3].node.get_and_clear_pending_events(),
3137                         &[HTLCDestination::FailedPayment {payment_hash}]);
3138                 nodes[3].node.process_pending_htlc_forwards();
3139
3140                 check_added_monitors(&nodes[3], 1);
3141                 let ds_fail = get_htlc_update_msgs(&nodes[3], &nodes[2].node.get_our_node_id());
3142
3143                 nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &ds_fail.update_fail_htlcs[0]);
3144                 commitment_signed_dance!(nodes[2], nodes[3], ds_fail.commitment_signed, false, true);
3145                 expect_pending_htlcs_forwardable_conditions(nodes[2].node.get_and_clear_pending_events(),
3146                         &[HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_id_cd_2 }]);
3147         } else {
3148                 expect_pending_htlcs_forwardable!(nodes[3]);
3149                 expect_payment_claimable!(nodes[3], payment_hash, payment_secret, amt_msat);
3150                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
3151         }
3152 }
3153
3154 #[test]
3155 fn test_payment_metadata_consistency() {
3156         do_test_payment_metadata_consistency(true, true);
3157         do_test_payment_metadata_consistency(true, false);
3158         do_test_payment_metadata_consistency(false, true);
3159         do_test_payment_metadata_consistency(false, false);
3160 }