Remove retry_payments method
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::keysinterface::EntropySource;
17 use crate::chain::transaction::OutPoint;
18 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS, RecentPaymentDetails};
20 use crate::ln::features::InvoiceFeatures;
21 use crate::ln::msgs;
22 use crate::ln::msgs::ChannelMessageHandler;
23 use crate::ln::outbound_payment::Retry;
24 use crate::routing::gossip::{EffectiveCapacity, RoutingFees};
25 use crate::routing::router::{get_route, PaymentParameters, Route, RouteHint, RouteHintHop, RouteHop, RouteParameters};
26 use crate::routing::scoring::ChannelUsage;
27 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
28 use crate::util::test_utils;
29 use crate::util::errors::APIError;
30 use crate::util::ser::Writeable;
31
32 use bitcoin::{Block, BlockHeader, TxMerkleNode};
33 use bitcoin::hashes::Hash;
34 use bitcoin::network::constants::Network;
35
36 use crate::prelude::*;
37
38 use crate::ln::functional_test_utils::*;
39 use crate::routing::gossip::NodeId;
40 #[cfg(feature = "std")]
41 use {
42         crate::util::time::tests::SinceEpoch,
43         std::time::{SystemTime, Duration}
44 };
45
46 #[test]
47 fn mpp_failure() {
48         let chanmon_cfgs = create_chanmon_cfgs(4);
49         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
50         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
51         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
52
53         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
54         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
55         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
56         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
57
58         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
59         let path = route.paths[0].clone();
60         route.paths.push(path);
61         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
62         route.paths[0][0].short_channel_id = chan_1_id;
63         route.paths[0][1].short_channel_id = chan_3_id;
64         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
65         route.paths[1][0].short_channel_id = chan_2_id;
66         route.paths[1][1].short_channel_id = chan_4_id;
67         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
68         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
69 }
70
71 #[test]
72 fn mpp_retry() {
73         let chanmon_cfgs = create_chanmon_cfgs(4);
74         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
75         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
76         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
77
78         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
79         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
80         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
81         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2);
82         // Rebalance
83         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
84
85         let amt_msat = 1_000_000;
86         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], amt_msat);
87         let path = route.paths[0].clone();
88         route.paths.push(path);
89         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
90         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
91         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
92         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
93         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
94         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
95
96         // Initiate the MPP payment.
97         let payment_id = PaymentId(payment_hash.0);
98         let mut route_params = RouteParameters {
99                 payment_params: route.payment_params.clone().unwrap(),
100                 final_value_msat: amt_msat,
101                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
102         };
103
104         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
105         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
106         check_added_monitors!(nodes[0], 2); // one monitor per path
107         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
108         assert_eq!(events.len(), 2);
109
110         // Pass half of the payment along the success path.
111         let success_path_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
112         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
113
114         // Add the HTLC along the first hop.
115         let fail_path_msgs_1 = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
116         let (update_add, commitment_signed) = match fail_path_msgs_1 {
117                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
118                         assert_eq!(update_add_htlcs.len(), 1);
119                         assert!(update_fail_htlcs.is_empty());
120                         assert!(update_fulfill_htlcs.is_empty());
121                         assert!(update_fail_malformed_htlcs.is_empty());
122                         assert!(update_fee.is_none());
123                         (update_add_htlcs[0].clone(), commitment_signed.clone())
124                 },
125                 _ => panic!("Unexpected event"),
126         };
127         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
128         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
129
130         // Attempt to forward the payment and complete the 2nd path's failure.
131         expect_pending_htlcs_forwardable!(&nodes[2]);
132         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
133         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
134         assert!(htlc_updates.update_add_htlcs.is_empty());
135         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
136         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
137         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
138         check_added_monitors!(nodes[2], 1);
139         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
140         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
141         let mut events = nodes[0].node.get_and_clear_pending_events();
142         match events[1] {
143                 Event::PendingHTLCsForwardable { .. } => {},
144                 _ => panic!("Unexpected event")
145         }
146         events.remove(1);
147         expect_payment_failed_conditions_event(events, payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
148
149         // Rebalance the channel so the second half of the payment can succeed.
150         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
151
152         // Retry the second half of the payment and make sure it succeeds.
153         route.paths.remove(0);
154         route_params.final_value_msat = 1_000_000;
155         route_params.payment_params.previously_failed_channels.push(chan_4_update.contents.short_channel_id);
156         nodes[0].router.expect_find_route(route_params, Ok(route));
157         nodes[0].node.process_pending_htlc_forwards();
158         check_added_monitors!(nodes[0], 1);
159         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
160         assert_eq!(events.len(), 1);
161         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
162         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
163 }
164
165 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
166         let chanmon_cfgs = create_chanmon_cfgs(4);
167         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
168         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
169         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
170
171         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
172         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
173         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
174         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3);
175
176         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
177         let path = route.paths[0].clone();
178         route.paths.push(path);
179         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
180         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
181         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
182         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
183         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
184         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
185
186         // Initiate the MPP payment.
187         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
188         check_added_monitors!(nodes[0], 2); // one monitor per path
189         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
190         assert_eq!(events.len(), 2);
191
192         // Pass half of the payment along the first path.
193         let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
194         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None);
195
196         if send_partial_mpp {
197                 // Time out the partial MPP
198                 for _ in 0..MPP_TIMEOUT_TICKS {
199                         nodes[3].node.timer_tick_occurred();
200                 }
201
202                 // Failed HTLC from node 3 -> 1
203                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
204                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
205                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
206                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
207                 check_added_monitors!(nodes[3], 1);
208                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
209
210                 // Failed HTLC from node 1 -> 0
211                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
212                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
213                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
214                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
215                 check_added_monitors!(nodes[1], 1);
216                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
217
218                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
219         } else {
220                 // Pass half of the payment along the second path.
221                 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
222                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None);
223
224                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
225                 for _ in 0..MPP_TIMEOUT_TICKS {
226                         nodes[3].node.timer_tick_occurred();
227                 }
228
229                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
230         }
231 }
232
233 #[test]
234 fn mpp_receive_timeout() {
235         do_mpp_receive_timeout(true);
236         do_mpp_receive_timeout(false);
237 }
238
239 #[test]
240 fn no_pending_leak_on_initial_send_failure() {
241         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
242         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
243         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
244         // pending payment forever and never time it out.
245         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
246         // try, and then check that no pending payment is being tracked.
247         let chanmon_cfgs = create_chanmon_cfgs(2);
248         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
249         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
250         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
251
252         create_announced_chan_between_nodes(&nodes, 0, 1);
253
254         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
255
256         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
257         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
258
259         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
260                 true, APIError::ChannelUnavailable { ref err },
261                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
262
263         assert!(!nodes[0].node.has_pending_payments());
264 }
265
266 fn do_retry_with_no_persist(confirm_before_reload: bool) {
267         // If we send a pending payment and `send_payment` returns success, we should always either
268         // return a payment failure event or a payment success event, and on failure the payment should
269         // be retryable.
270         //
271         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
272         // always persisted asynchronously), the ChannelManager has to reload some payment data from
273         // ChannelMonitor(s) in some cases. This tests that reloading.
274         //
275         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
276         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
277         // which has separate codepaths for "commitment transaction already confirmed" and not.
278         let chanmon_cfgs = create_chanmon_cfgs(3);
279         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
280         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
281         let persister: test_utils::TestPersister;
282         let new_chain_monitor: test_utils::TestChainMonitor;
283         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
284         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
285
286         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
287         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
288
289         // Serialize the ChannelManager prior to sending payments
290         let nodes_0_serialized = nodes[0].node.encode();
291
292         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
293         // out and retry.
294         let amt_msat = 1_000_000;
295         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
296         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
297         let route_params = RouteParameters {
298                 payment_params: route.payment_params.clone().unwrap(),
299                 final_value_msat: amt_msat,
300                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
301         };
302         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
303         check_added_monitors!(nodes[0], 1);
304
305         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
306         assert_eq!(events.len(), 1);
307         let payment_event = SendEvent::from_event(events.pop().unwrap());
308         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
309
310         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
311         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
312         // which would prevent retry.
313         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
314         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
315
316         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
317         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
318         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
319         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
320
321         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
322
323         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
324         if confirm_before_reload {
325                 mine_transaction(&nodes[0], &as_commitment_tx);
326                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
327         }
328
329         // The ChannelMonitor should always be the latest version, as we're required to persist it
330         // during the `commitment_signed_dance!()`.
331         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
332         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
333
334         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
335         // force-close the channel.
336         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
337         assert!(nodes[0].node.list_channels().is_empty());
338         assert!(nodes[0].node.has_pending_payments());
339         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
340         assert_eq!(as_broadcasted_txn.len(), 1);
341         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
342
343         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
344         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
345         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
346
347         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
348         // error, as the channel has hit the chain.
349         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
350         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
351         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
352         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
353         assert_eq!(as_err.len(), 1);
354         match as_err[0] {
355                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
356                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
357                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
358                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) });
359                         check_added_monitors!(nodes[1], 1);
360                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
361                 },
362                 _ => panic!("Unexpected event"),
363         }
364         check_closed_broadcast!(nodes[1], false);
365
366         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
367         // we close in a moment.
368         nodes[2].node.claim_funds(payment_preimage_1);
369         check_added_monitors!(nodes[2], 1);
370         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
371
372         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
373         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
374         check_added_monitors!(nodes[1], 1);
375         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
376         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
377
378         if confirm_before_reload {
379                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
380                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
381         }
382
383         // Create a new channel on which to retry the payment before we fail the payment via the
384         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
385         // connecting several blocks while creating the channel (implying time has passed).
386         create_announced_chan_between_nodes(&nodes, 0, 1);
387         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
388
389         mine_transaction(&nodes[1], &as_commitment_tx);
390         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
391         assert_eq!(bs_htlc_claim_txn.len(), 1);
392         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
393
394         if !confirm_before_reload {
395                 mine_transaction(&nodes[0], &as_commitment_tx);
396         }
397         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
398         expect_payment_sent!(nodes[0], payment_preimage_1);
399         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
400         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
401         assert_eq!(as_htlc_timeout_txn.len(), 2);
402         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
403         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
404         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
405         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
406                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
407         } else {
408                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
409         }
410         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
411         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
412
413         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
414         // reloaded) via a route over the new channel, which work without issue and eventually be
415         // received and claimed at the recipient just like any other payment.
416         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
417
418         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
419         // and not the original fee. We also update node[1]'s relevant config as
420         // do_claim_payment_along_route expects us to never overpay.
421         {
422                 let per_peer_state = nodes[1].node.per_peer_state.read().unwrap();
423                 let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id())
424                         .unwrap().lock().unwrap();
425                 let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap();
426                 let mut new_config = channel.config();
427                 new_config.forwarding_fee_base_msat += 100_000;
428                 channel.update_config(&new_config);
429                 new_route.paths[0][0].fee_msat += 100_000;
430         }
431
432         // Force expiration of the channel's previous config.
433         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
434                 nodes[1].node.timer_tick_occurred();
435         }
436
437         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
438         nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
439         check_added_monitors!(nodes[0], 1);
440         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
441         assert_eq!(events.len(), 1);
442         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
443         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
444         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
445 }
446
447 #[test]
448 fn retry_with_no_persist() {
449         do_retry_with_no_persist(true);
450         do_retry_with_no_persist(false);
451 }
452
453 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
454         // Test that an off-chain completed payment is not retryable on restart. This was previously
455         // broken for dust payments, but we test for both dust and non-dust payments.
456         //
457         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
458         // output at all.
459         let chanmon_cfgs = create_chanmon_cfgs(3);
460         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
461
462         let mut manually_accept_config = test_default_channel_config();
463         manually_accept_config.manually_accept_inbound_channels = true;
464
465         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
466
467         let first_persister: test_utils::TestPersister;
468         let first_new_chain_monitor: test_utils::TestChainMonitor;
469         let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
470         let second_persister: test_utils::TestPersister;
471         let second_new_chain_monitor: test_utils::TestChainMonitor;
472         let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
473         let third_persister: test_utils::TestPersister;
474         let third_new_chain_monitor: test_utils::TestChainMonitor;
475         let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
476
477         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
478
479         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
480         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
481         confirm_transaction(&nodes[0], &funding_tx);
482         confirm_transaction(&nodes[1], &funding_tx);
483         // Ignore the announcement_signatures messages
484         nodes[0].node.get_and_clear_pending_msg_events();
485         nodes[1].node.get_and_clear_pending_msg_events();
486         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
487
488         // Serialize the ChannelManager prior to sending payments
489         let mut nodes_0_serialized = nodes[0].node.encode();
490
491         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
492         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
493
494         // The ChannelMonitor should always be the latest version, as we're required to persist it
495         // during the `commitment_signed_dance!()`.
496         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
497
498         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
499         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
500
501         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
502         // force-close the channel.
503         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
504         assert!(nodes[0].node.list_channels().is_empty());
505         assert!(nodes[0].node.has_pending_payments());
506         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
507
508         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
509         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
510
511         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
512         // error, as the channel has hit the chain.
513         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
514         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
515         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
516         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
517         assert_eq!(as_err.len(), 1);
518         let bs_commitment_tx;
519         match as_err[0] {
520                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
521                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
522                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
523                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) });
524                         check_added_monitors!(nodes[1], 1);
525                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
526                 },
527                 _ => panic!("Unexpected event"),
528         }
529         check_closed_broadcast!(nodes[1], false);
530
531         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
532         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
533         // incoming HTLCs with the same payment hash later.
534         nodes[2].node.fail_htlc_backwards(&payment_hash);
535         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
536         check_added_monitors!(nodes[2], 1);
537
538         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
539         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
540         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
541         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
542                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
543
544         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
545         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
546         // after the commitment transaction, so always connect the commitment transaction.
547         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
548         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
549         if !use_dust {
550                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
551                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
552                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
553                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
554                 assert_eq!(as_htlc_timeout.len(), 1);
555
556                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
557                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
558                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
559                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
560         }
561
562         // Create a new channel on which to retry the payment before we fail the payment via the
563         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
564         // connecting several blocks while creating the channel (implying time has passed).
565         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
566         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
567         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
568
569         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
570         // confirming, we will fail as it's considered still-pending...
571         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
572         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
573                 Err(PaymentSendFailure::DuplicatePayment) => {},
574                 _ => panic!("Unexpected error")
575         }
576         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
577
578         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
579         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
580         // (which should also still work).
581         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
582         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
583         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
584
585         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
586         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
587         nodes_0_serialized = nodes[0].node.encode();
588
589         // After the payment failed, we're free to send it again.
590         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id).is_ok());
591         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
592
593         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
594         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
595
596         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
597
598         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
599         // the payment is not (spuriously) listed as still pending.
600         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id).is_ok());
601         check_added_monitors!(nodes[0], 1);
602         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
603         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
604
605         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
606                 Err(PaymentSendFailure::DuplicatePayment) => {},
607                 _ => panic!("Unexpected error")
608         }
609         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
610
611         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
612         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
613         nodes_0_serialized = nodes[0].node.encode();
614
615         // Check that after reload we can send the payment again (though we shouldn't, since it was
616         // claimed previously).
617         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
618         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
619
620         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
621
622         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
623                 Err(PaymentSendFailure::DuplicatePayment) => {},
624                 _ => panic!("Unexpected error")
625         }
626         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
627 }
628
629 #[test]
630 fn test_completed_payment_not_retryable_on_reload() {
631         do_test_completed_payment_not_retryable_on_reload(true);
632         do_test_completed_payment_not_retryable_on_reload(false);
633 }
634
635
636 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
637         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
638         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
639         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
640         // the ChannelMonitor tells it to.
641         //
642         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
643         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
644         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
645         let chanmon_cfgs = create_chanmon_cfgs(2);
646         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
647         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
648         let persister: test_utils::TestPersister;
649         let new_chain_monitor: test_utils::TestChainMonitor;
650         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
651         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
652
653         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
654
655         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
656         // nodes[0].
657         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
658         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
659         check_closed_broadcast!(nodes[0], true);
660         check_added_monitors!(nodes[0], 1);
661         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
662
663         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
664         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
665
666         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
667         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
668         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
669         assert_eq!(node_txn.len(), 3);
670         assert_eq!(node_txn[0], node_txn[1]);
671         check_spends!(node_txn[1], funding_tx);
672         check_spends!(node_txn[2], node_txn[1]);
673         let timeout_txn = vec![node_txn[2].clone()];
674
675         nodes[1].node.claim_funds(payment_preimage);
676         check_added_monitors!(nodes[1], 1);
677         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
678
679         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
680         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
681         check_closed_broadcast!(nodes[1], true);
682         check_added_monitors!(nodes[1], 1);
683         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
684         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
685         assert_eq!(claim_txn.len(), 1);
686         check_spends!(claim_txn[0], node_txn[1]);
687
688         header.prev_blockhash = nodes[0].best_block_hash();
689         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
690
691         if confirm_commitment_tx {
692                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
693         }
694
695         header.prev_blockhash = nodes[0].best_block_hash();
696         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
697
698         if payment_timeout {
699                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
700                 connect_block(&nodes[0], &claim_block);
701                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
702         }
703
704         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
705         // returning InProgress. This should cause the claim event to never make its way to the
706         // ChannelManager.
707         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
708         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
709
710         if payment_timeout {
711                 connect_blocks(&nodes[0], 1);
712         } else {
713                 connect_block(&nodes[0], &claim_block);
714         }
715
716         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
717         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
718                 .get_mut(&funding_txo).unwrap().drain().collect();
719         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
720         // If we're testing connection idempotency we may get substantially more.
721         assert!(mon_updates.len() >= 1);
722         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
723         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
724
725         // If we persist the ChannelManager here, we should get the PaymentSent event after
726         // deserialization.
727         let mut chan_manager_serialized = Vec::new();
728         if !persist_manager_post_event {
729                 chan_manager_serialized = nodes[0].node.encode();
730         }
731
732         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
733         // payment sent event.
734         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
735         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
736         for update in mon_updates {
737                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
738         }
739         if payment_timeout {
740                 expect_payment_failed!(nodes[0], payment_hash, false);
741         } else {
742                 expect_payment_sent!(nodes[0], payment_preimage);
743         }
744
745         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
746         // twice.
747         if persist_manager_post_event {
748                 chan_manager_serialized = nodes[0].node.encode();
749         }
750
751         // Now reload nodes[0]...
752         reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
753
754         if persist_manager_post_event {
755                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
756         } else if payment_timeout {
757                 expect_payment_failed!(nodes[0], payment_hash, false);
758         } else {
759                 expect_payment_sent!(nodes[0], payment_preimage);
760         }
761
762         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
763         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
764         // payment events should kick in, leaving us with no pending events here.
765         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
766         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
767         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
768 }
769
770 #[test]
771 fn test_dup_htlc_onchain_fails_on_reload() {
772         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
773         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
774         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
775         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
776         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
777         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
778 }
779
780 #[test]
781 fn test_fulfill_restart_failure() {
782         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
783         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
784         // again, or fail it, giving us free money.
785         //
786         // Of course probably they won't fail it and give us free money, but because we have code to
787         // handle it, we should test the logic for it anyway. We do that here.
788         let chanmon_cfgs = create_chanmon_cfgs(2);
789         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
790         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
791         let persister: test_utils::TestPersister;
792         let new_chain_monitor: test_utils::TestChainMonitor;
793         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
794         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
795
796         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
797         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
798
799         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
800         // pre-fulfill, which we do by serializing it here.
801         let chan_manager_serialized = nodes[1].node.encode();
802         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
803
804         nodes[1].node.claim_funds(payment_preimage);
805         check_added_monitors!(nodes[1], 1);
806         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
807
808         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
809         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
810         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
811
812         // Now reload nodes[1]...
813         reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
814
815         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
816         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
817
818         nodes[1].node.fail_htlc_backwards(&payment_hash);
819         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
820         check_added_monitors!(nodes[1], 1);
821         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
822         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
823         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
824         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
825         // it had already considered the payment fulfilled, and now they just got free money.
826         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
827 }
828
829 #[test]
830 fn get_ldk_payment_preimage() {
831         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
832         let chanmon_cfgs = create_chanmon_cfgs(2);
833         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
834         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
835         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
836         create_announced_chan_between_nodes(&nodes, 0, 1);
837
838         let amt_msat = 60_000;
839         let expiry_secs = 60 * 60;
840         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs, None).unwrap();
841
842         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
843                 .with_features(nodes[1].node.invoice_features());
844         let scorer = test_utils::TestScorer::new();
845         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
846         let random_seed_bytes = keys_manager.get_secure_random_bytes();
847         let route = get_route(
848                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
849                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
850                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
851         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
852         check_added_monitors!(nodes[0], 1);
853
854         // Make sure to use `get_payment_preimage`
855         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
856         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
857         assert_eq!(events.len(), 1);
858         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
859         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
860 }
861
862 #[test]
863 fn sent_probe_is_probe_of_sending_node() {
864         let chanmon_cfgs = create_chanmon_cfgs(3);
865         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
866         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
867         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
868
869         create_announced_chan_between_nodes(&nodes, 0, 1);
870         create_announced_chan_between_nodes(&nodes, 1, 2);
871
872         // First check we refuse to build a single-hop probe
873         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
874         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
875
876         // Then build an actual two-hop probing path
877         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
878
879         match nodes[0].node.send_probe(route.paths[0].clone()) {
880                 Ok((payment_hash, payment_id)) => {
881                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
882                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
883                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
884                 },
885                 _ => panic!(),
886         }
887
888         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
889         check_added_monitors!(nodes[0], 1);
890 }
891
892 #[test]
893 fn successful_probe_yields_event() {
894         let chanmon_cfgs = create_chanmon_cfgs(3);
895         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
896         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
897         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
898
899         create_announced_chan_between_nodes(&nodes, 0, 1);
900         create_announced_chan_between_nodes(&nodes, 1, 2);
901
902         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
903
904         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
905
906         // node[0] -- update_add_htlcs -> node[1]
907         check_added_monitors!(nodes[0], 1);
908         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
909         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
910         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
911         check_added_monitors!(nodes[1], 0);
912         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
913         expect_pending_htlcs_forwardable!(nodes[1]);
914
915         // node[1] -- update_add_htlcs -> node[2]
916         check_added_monitors!(nodes[1], 1);
917         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
918         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
919         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
920         check_added_monitors!(nodes[2], 0);
921         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
922
923         // node[1] <- update_fail_htlcs -- node[2]
924         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
925         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
926         check_added_monitors!(nodes[1], 0);
927         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
928
929         // node[0] <- update_fail_htlcs -- node[1]
930         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
931         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
932         check_added_monitors!(nodes[0], 0);
933         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
934
935         let mut events = nodes[0].node.get_and_clear_pending_events();
936         assert_eq!(events.len(), 1);
937         match events.drain(..).next().unwrap() {
938                 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
939                         assert_eq!(payment_id, ev_pid);
940                         assert_eq!(payment_hash, ev_ph);
941                 },
942                 _ => panic!(),
943         };
944 }
945
946 #[test]
947 fn failed_probe_yields_event() {
948         let chanmon_cfgs = create_chanmon_cfgs(3);
949         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
950         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
951         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
952
953         create_announced_chan_between_nodes(&nodes, 0, 1);
954         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000);
955
956         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
957
958         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
959
960         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
961
962         // node[0] -- update_add_htlcs -> node[1]
963         check_added_monitors!(nodes[0], 1);
964         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
965         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
966         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
967         check_added_monitors!(nodes[1], 0);
968         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
969         expect_pending_htlcs_forwardable!(nodes[1]);
970
971         // node[0] <- update_fail_htlcs -- node[1]
972         check_added_monitors!(nodes[1], 1);
973         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
974         // Skip the PendingHTLCsForwardable event
975         let _events = nodes[1].node.get_and_clear_pending_events();
976         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
977         check_added_monitors!(nodes[0], 0);
978         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
979
980         let mut events = nodes[0].node.get_and_clear_pending_events();
981         assert_eq!(events.len(), 1);
982         match events.drain(..).next().unwrap() {
983                 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
984                         assert_eq!(payment_id, ev_pid);
985                         assert_eq!(payment_hash, ev_ph);
986                 },
987                 _ => panic!(),
988         };
989 }
990
991 #[test]
992 fn onchain_failed_probe_yields_event() {
993         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
994         // event.
995         let chanmon_cfgs = create_chanmon_cfgs(3);
996         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
997         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
998         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
999
1000         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1001         create_announced_chan_between_nodes(&nodes, 1, 2);
1002
1003         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
1004
1005         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1006         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1007         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1008
1009         // node[0] -- update_add_htlcs -> node[1]
1010         check_added_monitors!(nodes[0], 1);
1011         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1012         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1013         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1014         check_added_monitors!(nodes[1], 0);
1015         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1016         expect_pending_htlcs_forwardable!(nodes[1]);
1017
1018         check_added_monitors!(nodes[1], 1);
1019         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1020
1021         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1022         // Node A, which after 6 confirmations should result in a probe failure event.
1023         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1024         confirm_transaction(&nodes[0], &bs_txn[0]);
1025         check_closed_broadcast!(&nodes[0], true);
1026         check_added_monitors!(nodes[0], 1);
1027
1028         let mut events = nodes[0].node.get_and_clear_pending_events();
1029         assert_eq!(events.len(), 2);
1030         let mut found_probe_failed = false;
1031         for event in events.drain(..) {
1032                 match event {
1033                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1034                                 assert_eq!(payment_id, ev_pid);
1035                                 assert_eq!(payment_hash, ev_ph);
1036                                 found_probe_failed = true;
1037                         },
1038                         Event::ChannelClosed { .. } => {},
1039                         _ => panic!(),
1040                 }
1041         }
1042         assert!(found_probe_failed);
1043 }
1044
1045 #[test]
1046 fn claimed_send_payment_idempotent() {
1047         // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1048         let chanmon_cfgs = create_chanmon_cfgs(2);
1049         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1050         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1051         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1052
1053         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1054
1055         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1056         let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1057
1058         macro_rules! check_send_rejected {
1059                 () => {
1060                         // If we try to resend a new payment with a different payment_hash but with the same
1061                         // payment_id, it should be rejected.
1062                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1063                         match send_result {
1064                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1065                                 _ => panic!("Unexpected send result: {:?}", send_result),
1066                         }
1067
1068                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1069                         // also be rejected.
1070                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1071                         match send_result {
1072                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1073                                 _ => panic!("Unexpected send result: {:?}", send_result),
1074                         }
1075                 }
1076         }
1077
1078         check_send_rejected!();
1079
1080         // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1081         // not been seen by the user. At this point, from the user perspective nothing has changed, so
1082         // we must remain just as idempotent as we were before.
1083         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1084
1085         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1086                 nodes[0].node.timer_tick_occurred();
1087         }
1088
1089         check_send_rejected!();
1090
1091         // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1092         // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1093         // the payment complete. However, they could have called `send_payment` while the event was
1094         // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1095         // after the event is handled a duplicate payment should sitll be rejected.
1096         expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1097         check_send_rejected!();
1098
1099         // If relatively little time has passed, a duplicate payment should still fail.
1100         nodes[0].node.timer_tick_occurred();
1101         check_send_rejected!();
1102
1103         // However, after some time has passed (at least more than the one timer tick above), a
1104         // duplicate payment should go through, as ChannelManager should no longer have any remaining
1105         // references to the old payment data.
1106         for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1107                 nodes[0].node.timer_tick_occurred();
1108         }
1109
1110         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1111         check_added_monitors!(nodes[0], 1);
1112         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1113         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1114 }
1115
1116 #[test]
1117 fn abandoned_send_payment_idempotent() {
1118         // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1119         // abandon_payment.
1120         let chanmon_cfgs = create_chanmon_cfgs(2);
1121         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1122         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1123         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1124
1125         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1126
1127         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1128         let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1129
1130         macro_rules! check_send_rejected {
1131                 () => {
1132                         // If we try to resend a new payment with a different payment_hash but with the same
1133                         // payment_id, it should be rejected.
1134                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1135                         match send_result {
1136                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1137                                 _ => panic!("Unexpected send result: {:?}", send_result),
1138                         }
1139
1140                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1141                         // also be rejected.
1142                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1143                         match send_result {
1144                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1145                                 _ => panic!("Unexpected send result: {:?}", send_result),
1146                         }
1147                 }
1148         }
1149
1150         check_send_rejected!();
1151
1152         nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1153         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1154
1155         // Until we abandon the payment upon path failure, no matter how many timer ticks pass, we still cannot reuse the
1156         // PaymentId.
1157         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1158                 nodes[0].node.timer_tick_occurred();
1159         }
1160         check_send_rejected!();
1161
1162         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash);
1163
1164         // However, we can reuse the PaymentId immediately after we `abandon_payment` upon passing the
1165         // failed payment back.
1166         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1167         check_added_monitors!(nodes[0], 1);
1168         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1169         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1170 }
1171
1172 #[derive(PartialEq)]
1173 enum InterceptTest {
1174         Forward,
1175         Fail,
1176         Timeout,
1177 }
1178
1179 #[test]
1180 fn test_trivial_inflight_htlc_tracking(){
1181         // In this test, we test three scenarios:
1182         // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1183         // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1184         // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1185         let chanmon_cfgs = create_chanmon_cfgs(3);
1186         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1187         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1188         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1189
1190         let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
1191         let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
1192
1193         // Send and claim the payment. Inflight HTLCs should be empty.
1194         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 500000);
1195         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1196         check_added_monitors!(nodes[0], 1);
1197         pass_along_route(&nodes[0], &[&vec!(&nodes[1], &nodes[2])[..]], 500000, payment_hash, payment_secret);
1198         claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], payment_preimage);
1199         {
1200                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1201
1202                 let mut node_0_per_peer_lock;
1203                 let mut node_0_peer_state_lock;
1204                 let mut node_1_per_peer_lock;
1205                 let mut node_1_peer_state_lock;
1206                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1207                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1208
1209                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1210                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1211                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1212                         channel_1.get_short_channel_id().unwrap()
1213                 );
1214                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1215                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1216                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1217                         channel_2.get_short_channel_id().unwrap()
1218                 );
1219
1220                 assert_eq!(chan_1_used_liquidity, None);
1221                 assert_eq!(chan_2_used_liquidity, None);
1222         }
1223         let pending_payments = nodes[0].node.list_recent_payments();
1224         assert_eq!(pending_payments.len(), 1);
1225         assert_eq!(pending_payments[0], RecentPaymentDetails::Fulfilled { payment_hash: Some(payment_hash) });
1226
1227         // Remove fulfilled payment
1228         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1229                 nodes[0].node.timer_tick_occurred();
1230         }
1231
1232         // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1233         let (payment_preimage, payment_hash,  _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000);
1234         {
1235                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1236
1237                 let mut node_0_per_peer_lock;
1238                 let mut node_0_peer_state_lock;
1239                 let mut node_1_per_peer_lock;
1240                 let mut node_1_peer_state_lock;
1241                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1242                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1243
1244                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1245                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1246                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1247                         channel_1.get_short_channel_id().unwrap()
1248                 );
1249                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1250                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1251                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1252                         channel_2.get_short_channel_id().unwrap()
1253                 );
1254
1255                 // First hop accounts for expected 1000 msat fee
1256                 assert_eq!(chan_1_used_liquidity, Some(501000));
1257                 assert_eq!(chan_2_used_liquidity, Some(500000));
1258         }
1259         let pending_payments = nodes[0].node.list_recent_payments();
1260         assert_eq!(pending_payments.len(), 1);
1261         assert_eq!(pending_payments[0], RecentPaymentDetails::Pending { payment_hash, total_msat: 500000 });
1262
1263         // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1264         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1265
1266         // Remove fulfilled payment
1267         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1268                 nodes[0].node.timer_tick_occurred();
1269         }
1270
1271         {
1272                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1273
1274                 let mut node_0_per_peer_lock;
1275                 let mut node_0_peer_state_lock;
1276                 let mut node_1_per_peer_lock;
1277                 let mut node_1_peer_state_lock;
1278                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1279                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1280
1281                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1282                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1283                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1284                         channel_1.get_short_channel_id().unwrap()
1285                 );
1286                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1287                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1288                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1289                         channel_2.get_short_channel_id().unwrap()
1290                 );
1291
1292                 assert_eq!(chan_1_used_liquidity, None);
1293                 assert_eq!(chan_2_used_liquidity, None);
1294         }
1295
1296         let pending_payments = nodes[0].node.list_recent_payments();
1297         assert_eq!(pending_payments.len(), 0);
1298 }
1299
1300 #[test]
1301 fn test_holding_cell_inflight_htlcs() {
1302         let chanmon_cfgs = create_chanmon_cfgs(2);
1303         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1304         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1305         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1306         let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1307
1308         let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1309         let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1310
1311         // Queue up two payments - one will be delivered right away, one immediately goes into the
1312         // holding cell as nodes[0] is AwaitingRAA.
1313         {
1314                 nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1315                 check_added_monitors!(nodes[0], 1);
1316                 nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1317                 check_added_monitors!(nodes[0], 0);
1318         }
1319
1320         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1321
1322         {
1323                 let mut node_0_per_peer_lock;
1324                 let mut node_0_peer_state_lock;
1325                 let channel =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id);
1326
1327                 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1328                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1329                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1330                         channel.get_short_channel_id().unwrap()
1331                 );
1332
1333                 assert_eq!(used_liquidity, Some(2000000));
1334         }
1335
1336         // Clear pending events so test doesn't throw a "Had excess message on node..." error
1337         nodes[0].node.get_and_clear_pending_msg_events();
1338 }
1339
1340 #[test]
1341 fn intercepted_payment() {
1342         // Test that detecting an intercept scid on payment forward will signal LDK to generate an
1343         // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
1344         // payment or (b) fail the payment.
1345         do_test_intercepted_payment(InterceptTest::Forward);
1346         do_test_intercepted_payment(InterceptTest::Fail);
1347         // Make sure that intercepted payments will be automatically failed back if too many blocks pass.
1348         do_test_intercepted_payment(InterceptTest::Timeout);
1349 }
1350
1351 fn do_test_intercepted_payment(test: InterceptTest) {
1352         let chanmon_cfgs = create_chanmon_cfgs(3);
1353         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1354
1355         let mut zero_conf_chan_config = test_default_channel_config();
1356         zero_conf_chan_config.manually_accept_inbound_channels = true;
1357         let mut intercept_forwards_config = test_default_channel_config();
1358         intercept_forwards_config.accept_intercept_htlcs = true;
1359         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
1360
1361         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1362         let scorer = test_utils::TestScorer::new();
1363         let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
1364
1365         let _ = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1366
1367         let amt_msat = 100_000;
1368         let intercept_scid = nodes[1].node.get_intercept_scid();
1369         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1370                 .with_route_hints(vec![
1371                         RouteHint(vec![RouteHintHop {
1372                                 src_node_id: nodes[1].node.get_our_node_id(),
1373                                 short_channel_id: intercept_scid,
1374                                 fees: RoutingFees {
1375                                         base_msat: 1000,
1376                                         proportional_millionths: 0,
1377                                 },
1378                                 cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
1379                                 htlc_minimum_msat: None,
1380                                 htlc_maximum_msat: None,
1381                         }])
1382                 ])
1383                 .with_features(nodes[2].node.invoice_features());
1384         let route_params = RouteParameters {
1385                 payment_params,
1386                 final_value_msat: amt_msat,
1387                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
1388         };
1389         let route = get_route(
1390                 &nodes[0].node.get_our_node_id(), &route_params.payment_params,
1391                 &nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
1392                 route_params.final_cltv_expiry_delta, nodes[0].logger, &scorer, &random_seed_bytes
1393         ).unwrap();
1394
1395         let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60, None).unwrap();
1396         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1397         let payment_event = {
1398                 {
1399                         let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
1400                         assert_eq!(added_monitors.len(), 1);
1401                         added_monitors.clear();
1402                 }
1403                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1404                 assert_eq!(events.len(), 1);
1405                 SendEvent::from_event(events.remove(0))
1406         };
1407         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1408         commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
1409
1410         // Check that we generate the PaymentIntercepted event when an intercept forward is detected.
1411         let events = nodes[1].node.get_and_clear_pending_events();
1412         assert_eq!(events.len(), 1);
1413         let (intercept_id, expected_outbound_amount_msat) = match events[0] {
1414                 crate::util::events::Event::HTLCIntercepted {
1415                         intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
1416                 } => {
1417                         assert_eq!(pmt_hash, payment_hash);
1418                         assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
1419                         assert_eq!(short_channel_id, intercept_scid);
1420                         (intercept_id, expected_outbound_amount_msat)
1421                 },
1422                 _ => panic!()
1423         };
1424
1425         // Check for unknown channel id error.
1426         let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1427         assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable  { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) });
1428
1429         if test == InterceptTest::Fail {
1430                 // Ensure we can fail the intercepted payment back.
1431                 nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
1432                 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
1433                 nodes[1].node.process_pending_htlc_forwards();
1434                 let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1435                 check_added_monitors!(&nodes[1], 1);
1436                 assert!(update_fail.update_fail_htlcs.len() == 1);
1437                 let fail_msg = update_fail.update_fail_htlcs[0].clone();
1438                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1439                 commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
1440
1441                 // Ensure the payment fails with the expected error.
1442                 let fail_conditions = PaymentFailedConditions::new()
1443                         .blamed_scid(intercept_scid)
1444                         .blamed_chan_closed(true)
1445                         .expected_htlc_error_data(0x4000 | 10, &[]);
1446                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
1447         } else if test == InterceptTest::Forward {
1448                 // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
1449                 let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
1450                 let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1451                 assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
1452                 assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
1453
1454                 // Open the just-in-time channel so the payment can then be forwarded.
1455                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1456
1457                 // Finally, forward the intercepted payment through and claim it.
1458                 nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
1459                 expect_pending_htlcs_forwardable!(nodes[1]);
1460
1461                 let payment_event = {
1462                         {
1463                                 let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
1464                                 assert_eq!(added_monitors.len(), 1);
1465                                 added_monitors.clear();
1466                         }
1467                         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
1468                         assert_eq!(events.len(), 1);
1469                         SendEvent::from_event(events.remove(0))
1470                 };
1471                 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
1472                 commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
1473                 expect_pending_htlcs_forwardable!(nodes[2]);
1474
1475                 let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1476                 expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
1477                 do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
1478                 let events = nodes[0].node.get_and_clear_pending_events();
1479                 assert_eq!(events.len(), 2);
1480                 match events[0] {
1481                         Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
1482                                 assert_eq!(payment_preimage, *ev_preimage);
1483                                 assert_eq!(payment_hash, *ev_hash);
1484                                 assert_eq!(fee_paid_msat, &Some(1000));
1485                         },
1486                         _ => panic!("Unexpected event")
1487                 }
1488                 match events[1] {
1489                         Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
1490                                 assert_eq!(hash, Some(payment_hash));
1491                         },
1492                         _ => panic!("Unexpected event")
1493                 }
1494         } else if test == InterceptTest::Timeout {
1495                 let mut block = Block {
1496                         header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
1497                         txdata: vec![],
1498                 };
1499                 connect_block(&nodes[0], &block);
1500                 connect_block(&nodes[1], &block);
1501                 for _ in 0..TEST_FINAL_CLTV {
1502                         block.header.prev_blockhash = block.block_hash();
1503                         connect_block(&nodes[0], &block);
1504                         connect_block(&nodes[1], &block);
1505                 }
1506                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
1507                 check_added_monitors!(nodes[1], 1);
1508                 let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1509                 assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
1510                 assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
1511                 assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
1512                 assert!(htlc_timeout_updates.update_fee.is_none());
1513
1514                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
1515                 commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
1516                 expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
1517
1518                 // Check for unknown intercept id error.
1519                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1520                 let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1521                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1522                 let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
1523                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1524         }
1525 }
1526
1527 #[derive(PartialEq)]
1528 enum AutoRetry {
1529         Success,
1530         Spontaneous,
1531         FailAttempts,
1532         FailTimeout,
1533         FailOnRestart,
1534         FailOnRetry,
1535 }
1536
1537 #[test]
1538 fn automatic_retries() {
1539         do_automatic_retries(AutoRetry::Success);
1540         do_automatic_retries(AutoRetry::Spontaneous);
1541         do_automatic_retries(AutoRetry::FailAttempts);
1542         do_automatic_retries(AutoRetry::FailTimeout);
1543         do_automatic_retries(AutoRetry::FailOnRestart);
1544         do_automatic_retries(AutoRetry::FailOnRetry);
1545 }
1546 fn do_automatic_retries(test: AutoRetry) {
1547         // Test basic automatic payment retries in ChannelManager. See individual `test` variant comments
1548         // below.
1549         let chanmon_cfgs = create_chanmon_cfgs(3);
1550         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1551         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1552
1553         let persister;
1554         let new_chain_monitor;
1555         let node_0_deserialized;
1556
1557         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1558         let channel_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1559         let channel_id_2 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1560
1561         // Marshall data to send the payment
1562         #[cfg(feature = "std")]
1563         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1564         #[cfg(not(feature = "std"))]
1565         let payment_expiry_secs = 60 * 60;
1566         let amt_msat = 1000;
1567         let mut invoice_features = InvoiceFeatures::empty();
1568         invoice_features.set_variable_length_onion_required();
1569         invoice_features.set_payment_secret_required();
1570         invoice_features.set_basic_mpp_optional();
1571         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1572                 .with_expiry_time(payment_expiry_secs as u64)
1573                 .with_features(invoice_features);
1574         let route_params = RouteParameters {
1575                 payment_params,
1576                 final_value_msat: amt_msat,
1577                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
1578         };
1579         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
1580
1581         macro_rules! pass_failed_attempt_with_retry_along_path {
1582                 ($failing_channel_id: expr, $expect_pending_htlcs_forwardable: expr) => {
1583                         // Send a payment attempt that fails due to lack of liquidity on the second hop
1584                         check_added_monitors!(nodes[0], 1);
1585                         let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1586                         let mut update_add = update_0.update_add_htlcs[0].clone();
1587                         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
1588                         commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
1589                         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1590                         nodes[1].node.process_pending_htlc_forwards();
1591                         expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1],
1592                                 vec![HTLCDestination::NextHopChannel {
1593                                         node_id: Some(nodes[2].node.get_our_node_id()),
1594                                         channel_id: $failing_channel_id,
1595                                 }]);
1596                         nodes[1].node.process_pending_htlc_forwards();
1597                         let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1598                         check_added_monitors!(&nodes[1], 1);
1599                         assert!(update_1.update_fail_htlcs.len() == 1);
1600                         let fail_msg = update_1.update_fail_htlcs[0].clone();
1601                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1602                         commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
1603
1604                         // Ensure the attempt fails and a new PendingHTLCsForwardable event is generated for the retry
1605                         let mut events = nodes[0].node.get_and_clear_pending_events();
1606                         assert_eq!(events.len(), 2);
1607                         match events[0] {
1608                                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
1609                                         assert_eq!(payment_hash, ev_payment_hash);
1610                                         assert_eq!(payment_failed_permanently, false);
1611                                 },
1612                                 _ => panic!("Unexpected event"),
1613                         }
1614                         if $expect_pending_htlcs_forwardable {
1615                                 match events[1] {
1616                                         Event::PendingHTLCsForwardable { .. } => {},
1617                                         _ => panic!("Unexpected event"),
1618                                 }
1619                         } else {
1620                                 match events[1] {
1621                                         Event::PaymentFailed { payment_hash: ev_payment_hash, .. } => {
1622                                                 assert_eq!(payment_hash, ev_payment_hash);
1623                                         },
1624                                         _ => panic!("Unexpected event"),
1625                                 }
1626                         }
1627                 }
1628         }
1629
1630         if test == AutoRetry::Success {
1631                 // Test that we can succeed on the first retry.
1632                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1633                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1634
1635                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1636                 // attempt, since the initial second hop channel will be excluded from pathfinding
1637                 create_announced_chan_between_nodes(&nodes, 1, 2);
1638
1639                 // We retry payments in `process_pending_htlc_forwards`
1640                 nodes[0].node.process_pending_htlc_forwards();
1641                 check_added_monitors!(nodes[0], 1);
1642                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1643                 assert_eq!(msg_events.len(), 1);
1644                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, Some(payment_secret), msg_events.pop().unwrap(), true, None);
1645                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1646         } else if test == AutoRetry::Spontaneous {
1647                 nodes[0].node.send_spontaneous_payment_with_retry(Some(payment_preimage), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1648                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1649
1650                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1651                 // attempt, since the initial second hop channel will be excluded from pathfinding
1652                 create_announced_chan_between_nodes(&nodes, 1, 2);
1653
1654                 // We retry payments in `process_pending_htlc_forwards`
1655                 nodes[0].node.process_pending_htlc_forwards();
1656                 check_added_monitors!(nodes[0], 1);
1657                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1658                 assert_eq!(msg_events.len(), 1);
1659                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, None, msg_events.pop().unwrap(), true, Some(payment_preimage));
1660                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1661         } else if test == AutoRetry::FailAttempts {
1662                 // Ensure ChannelManager will not retry a payment if it has run out of payment attempts.
1663                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1664                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1665
1666                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1667                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1668                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1669
1670                 // We retry payments in `process_pending_htlc_forwards`
1671                 nodes[0].node.process_pending_htlc_forwards();
1672                 pass_failed_attempt_with_retry_along_path!(channel_id_3, false);
1673
1674                 // Ensure we won't retry a second time.
1675                 nodes[0].node.process_pending_htlc_forwards();
1676                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1677                 assert_eq!(msg_events.len(), 0);
1678         } else if test == AutoRetry::FailTimeout {
1679                 #[cfg(not(feature = "no-std"))] {
1680                         // Ensure ChannelManager will not retry a payment if it times out due to Retry::Timeout.
1681                         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Timeout(Duration::from_secs(60))).unwrap();
1682                         pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1683
1684                         // Advance the time so the second attempt fails due to timeout.
1685                         SinceEpoch::advance(Duration::from_secs(61));
1686
1687                         // Make sure we don't retry again.
1688                         nodes[0].node.process_pending_htlc_forwards();
1689                         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1690                         assert_eq!(msg_events.len(), 0);
1691
1692                         let mut events = nodes[0].node.get_and_clear_pending_events();
1693                         assert_eq!(events.len(), 1);
1694                         match events[0] {
1695                                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1696                                         assert_eq!(payment_hash, *ev_payment_hash);
1697                                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1698                                 },
1699                                 _ => panic!("Unexpected event"),
1700                         }
1701                 }
1702         } else if test == AutoRetry::FailOnRestart {
1703                 // Ensure ChannelManager will not retry a payment after restart, even if there were retry
1704                 // attempts remaining prior to restart.
1705                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(2)).unwrap();
1706                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1707
1708                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1709                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1710                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1711
1712                 // Ensure the first retry attempt fails, with 1 retry attempt remaining
1713                 nodes[0].node.process_pending_htlc_forwards();
1714                 pass_failed_attempt_with_retry_along_path!(channel_id_3, true);
1715
1716                 // Restart the node and ensure that ChannelManager does not use its remaining retry attempt
1717                 let node_encoded = nodes[0].node.encode();
1718                 let chan_1_monitor_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1719                 reload_node!(nodes[0], node_encoded, &[&chan_1_monitor_serialized], persister, new_chain_monitor, node_0_deserialized);
1720
1721                 // Make sure we don't retry again.
1722                 nodes[0].node.process_pending_htlc_forwards();
1723                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1724                 assert_eq!(msg_events.len(), 0);
1725
1726                 let mut events = nodes[0].node.get_and_clear_pending_events();
1727                 assert_eq!(events.len(), 1);
1728                 match events[0] {
1729                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1730                                 assert_eq!(payment_hash, *ev_payment_hash);
1731                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1732                         },
1733                         _ => panic!("Unexpected event"),
1734                 }
1735         } else if test == AutoRetry::FailOnRetry {
1736                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1737                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1738
1739                 // We retry payments in `process_pending_htlc_forwards`. Since our channel closed, we should
1740                 // fail to find a route.
1741                 nodes[0].node.process_pending_htlc_forwards();
1742                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1743                 assert_eq!(msg_events.len(), 0);
1744
1745                 let mut events = nodes[0].node.get_and_clear_pending_events();
1746                 assert_eq!(events.len(), 1);
1747                 match events[0] {
1748                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1749                                 assert_eq!(payment_hash, *ev_payment_hash);
1750                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1751                         },
1752                         _ => panic!("Unexpected event"),
1753                 }
1754         }
1755 }
1756
1757 #[test]
1758 fn auto_retry_partial_failure() {
1759         // Test that we'll retry appropriately on send partial failure and retry partial failure.
1760         let chanmon_cfgs = create_chanmon_cfgs(2);
1761         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1762         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1763         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1764
1765         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1766         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1767         let chan_3_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1768
1769         // Marshall data to send the payment
1770         let amt_msat = 20_000;
1771         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1772         #[cfg(feature = "std")]
1773         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1774         #[cfg(not(feature = "std"))]
1775         let payment_expiry_secs = 60 * 60;
1776         let mut invoice_features = InvoiceFeatures::empty();
1777         invoice_features.set_variable_length_onion_required();
1778         invoice_features.set_payment_secret_required();
1779         invoice_features.set_basic_mpp_optional();
1780         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1781                 .with_expiry_time(payment_expiry_secs as u64)
1782                 .with_features(invoice_features);
1783         let route_params = RouteParameters {
1784                 payment_params,
1785                 final_value_msat: amt_msat,
1786                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
1787         };
1788
1789         // Ensure the first monitor update (for the initial send path1 over chan_1) succeeds, but the
1790         // second (for the initial send path2 over chan_2) fails.
1791         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1792         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1793         // Ensure third monitor update (for the retry1's path1 over chan_1) succeeds, but the fourth (for
1794         // the retry1's path2 over chan_3) fails, and monitor updates succeed after that.
1795         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1796         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1797         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1798
1799         // Configure the initial send, retry1 and retry2's paths.
1800         let send_route = Route {
1801                 paths: vec![
1802                         vec![RouteHop {
1803                                 pubkey: nodes[1].node.get_our_node_id(),
1804                                 node_features: nodes[1].node.node_features(),
1805                                 short_channel_id: chan_1_id,
1806                                 channel_features: nodes[1].node.channel_features(),
1807                                 fee_msat: amt_msat / 2,
1808                                 cltv_expiry_delta: 100,
1809                         }],
1810                         vec![RouteHop {
1811                                 pubkey: nodes[1].node.get_our_node_id(),
1812                                 node_features: nodes[1].node.node_features(),
1813                                 short_channel_id: chan_2_id,
1814                                 channel_features: nodes[1].node.channel_features(),
1815                                 fee_msat: amt_msat / 2,
1816                                 cltv_expiry_delta: 100,
1817                         }],
1818                 ],
1819                 payment_params: Some(route_params.payment_params.clone()),
1820         };
1821         let retry_1_route = Route {
1822                 paths: vec![
1823                         vec![RouteHop {
1824                                 pubkey: nodes[1].node.get_our_node_id(),
1825                                 node_features: nodes[1].node.node_features(),
1826                                 short_channel_id: chan_1_id,
1827                                 channel_features: nodes[1].node.channel_features(),
1828                                 fee_msat: amt_msat / 4,
1829                                 cltv_expiry_delta: 100,
1830                         }],
1831                         vec![RouteHop {
1832                                 pubkey: nodes[1].node.get_our_node_id(),
1833                                 node_features: nodes[1].node.node_features(),
1834                                 short_channel_id: chan_3_id,
1835                                 channel_features: nodes[1].node.channel_features(),
1836                                 fee_msat: amt_msat / 4,
1837                                 cltv_expiry_delta: 100,
1838                         }],
1839                 ],
1840                 payment_params: Some(route_params.payment_params.clone()),
1841         };
1842         let retry_2_route = Route {
1843                 paths: vec![
1844                         vec![RouteHop {
1845                                 pubkey: nodes[1].node.get_our_node_id(),
1846                                 node_features: nodes[1].node.node_features(),
1847                                 short_channel_id: chan_1_id,
1848                                 channel_features: nodes[1].node.channel_features(),
1849                                 fee_msat: amt_msat / 4,
1850                                 cltv_expiry_delta: 100,
1851                         }],
1852                 ],
1853                 payment_params: Some(route_params.payment_params.clone()),
1854         };
1855         nodes[0].router.expect_find_route(route_params.clone(), Ok(send_route));
1856         nodes[0].router.expect_find_route(RouteParameters {
1857                         payment_params: route_params.payment_params.clone(),
1858                         final_value_msat: amt_msat / 2, final_cltv_expiry_delta: TEST_FINAL_CLTV
1859                 }, Ok(retry_1_route));
1860         nodes[0].router.expect_find_route(RouteParameters {
1861                         payment_params: route_params.payment_params.clone(),
1862                         final_value_msat: amt_msat / 4, final_cltv_expiry_delta: TEST_FINAL_CLTV
1863                 }, Ok(retry_2_route));
1864
1865         // Send a payment that will partially fail on send, then partially fail on retry, then succeed.
1866         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(3)).unwrap();
1867         let closed_chan_events = nodes[0].node.get_and_clear_pending_events();
1868         assert_eq!(closed_chan_events.len(), 2);
1869         match closed_chan_events[0] {
1870                 Event::ChannelClosed { .. } => {},
1871                 _ => panic!("Unexpected event"),
1872         }
1873         match closed_chan_events[1] {
1874                 Event::ChannelClosed { .. } => {},
1875                 _ => panic!("Unexpected event"),
1876         }
1877
1878         // Pass the first part of the payment along the path.
1879         check_added_monitors!(nodes[0], 5); // three outbound channel updates succeeded, two permanently failed
1880         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1881
1882         // First message is the first update_add, remaining messages are broadcasting channel updates and
1883         // errors for the permfailed channels
1884         assert_eq!(msg_events.len(), 5);
1885         let mut payment_event = SendEvent::from_event(msg_events.remove(0));
1886
1887         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1888         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg);
1889         check_added_monitors!(nodes[1], 1);
1890         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1891
1892         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
1893         check_added_monitors!(nodes[0], 1);
1894         let as_second_htlc_updates = SendEvent::from_node(&nodes[0]);
1895
1896         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
1897         check_added_monitors!(nodes[0], 1);
1898         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1899
1900         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
1901         check_added_monitors!(nodes[1], 1);
1902
1903         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[0]);
1904         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[1]);
1905         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.commitment_msg);
1906         check_added_monitors!(nodes[1], 1);
1907         let (bs_second_raa, bs_second_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1908
1909         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1910         check_added_monitors!(nodes[0], 1);
1911
1912         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_cs);
1913         check_added_monitors!(nodes[0], 1);
1914         let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1915
1916         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
1917         check_added_monitors!(nodes[1], 1);
1918
1919         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1920         nodes[1].node.process_pending_htlc_forwards();
1921         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, amt_msat);
1922         nodes[1].node.claim_funds(payment_preimage);
1923         expect_payment_claimed!(nodes[1], payment_hash, amt_msat);
1924         let bs_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1925         assert_eq!(bs_claim_update.update_fulfill_htlcs.len(), 1);
1926
1927         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_claim_update.update_fulfill_htlcs[0]);
1928         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_claim_update.commitment_signed);
1929         check_added_monitors!(nodes[0], 1);
1930         let (as_third_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1931
1932         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
1933         check_added_monitors!(nodes[1], 4);
1934         let bs_second_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1935
1936         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
1937         check_added_monitors!(nodes[1], 1);
1938         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1939
1940         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
1941         check_added_monitors!(nodes[0], 1);
1942
1943         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[0]);
1944         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[1]);
1945         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.commitment_signed);
1946         check_added_monitors!(nodes[0], 1);
1947         let (as_fourth_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1948
1949         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_fourth_raa);
1950         check_added_monitors!(nodes[1], 1);
1951
1952         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
1953         check_added_monitors!(nodes[1], 1);
1954         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1955
1956         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1957         check_added_monitors!(nodes[0], 1);
1958         expect_payment_sent!(nodes[0], payment_preimage);
1959 }
1960
1961 #[test]
1962 fn auto_retry_zero_attempts_send_error() {
1963         let chanmon_cfgs = create_chanmon_cfgs(2);
1964         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1965         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1966         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1967
1968         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1969         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1970
1971         // Marshall data to send the payment
1972         let amt_msat = 20_000;
1973         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1974         #[cfg(feature = "std")]
1975         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1976         #[cfg(not(feature = "std"))]
1977         let payment_expiry_secs = 60 * 60;
1978         let mut invoice_features = InvoiceFeatures::empty();
1979         invoice_features.set_variable_length_onion_required();
1980         invoice_features.set_payment_secret_required();
1981         invoice_features.set_basic_mpp_optional();
1982         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1983                 .with_expiry_time(payment_expiry_secs as u64)
1984                 .with_features(invoice_features);
1985         let route_params = RouteParameters {
1986                 payment_params,
1987                 final_value_msat: amt_msat,
1988                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
1989         };
1990
1991         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1992         let err = nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(0)).unwrap_err();
1993         if let PaymentSendFailure::AllFailedResendSafe(_) = err {
1994         } else { panic!("Unexpected error"); }
1995         assert_eq!(nodes[0].node.get_and_clear_pending_msg_events().len(), 2); // channel close messages
1996         assert_eq!(nodes[0].node.get_and_clear_pending_events().len(), 1); // channel close event
1997         check_added_monitors!(nodes[0], 2);
1998 }
1999
2000 #[test]
2001 fn fails_paying_after_rejected_by_payee() {
2002         let chanmon_cfgs = create_chanmon_cfgs(2);
2003         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2004         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2005         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2006
2007         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2008
2009         // Marshall data to send the payment
2010         let amt_msat = 20_000;
2011         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2012         #[cfg(feature = "std")]
2013         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2014         #[cfg(not(feature = "std"))]
2015         let payment_expiry_secs = 60 * 60;
2016         let mut invoice_features = InvoiceFeatures::empty();
2017         invoice_features.set_variable_length_onion_required();
2018         invoice_features.set_payment_secret_required();
2019         invoice_features.set_basic_mpp_optional();
2020         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2021                 .with_expiry_time(payment_expiry_secs as u64)
2022                 .with_features(invoice_features);
2023         let route_params = RouteParameters {
2024                 payment_params,
2025                 final_value_msat: amt_msat,
2026                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
2027         };
2028
2029         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2030         check_added_monitors!(nodes[0], 1);
2031         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
2032         assert_eq!(events.len(), 1);
2033         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
2034         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
2035         check_added_monitors!(nodes[1], 0);
2036         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
2037         expect_pending_htlcs_forwardable!(nodes[1]);
2038         expect_payment_claimable!(&nodes[1], payment_hash, payment_secret, amt_msat);
2039
2040         nodes[1].node.fail_htlc_backwards(&payment_hash);
2041         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash }]);
2042         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, payment_hash);
2043 }
2044
2045 #[test]
2046 fn retry_multi_path_single_failed_payment() {
2047         // Tests that we can/will retry after a single path of an MPP payment failed immediately
2048         let chanmon_cfgs = create_chanmon_cfgs(2);
2049         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2050         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2051         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2052
2053         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2054         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2055
2056         let amt_msat = 100_010_000;
2057
2058         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2059         #[cfg(feature = "std")]
2060         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2061         #[cfg(not(feature = "std"))]
2062         let payment_expiry_secs = 60 * 60;
2063         let mut invoice_features = InvoiceFeatures::empty();
2064         invoice_features.set_variable_length_onion_required();
2065         invoice_features.set_payment_secret_required();
2066         invoice_features.set_basic_mpp_optional();
2067         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2068                 .with_expiry_time(payment_expiry_secs as u64)
2069                 .with_features(invoice_features);
2070         let route_params = RouteParameters {
2071                 payment_params: payment_params.clone(),
2072                 final_value_msat: amt_msat,
2073                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
2074         };
2075
2076         let chans = nodes[0].node.list_usable_channels();
2077         let mut route = Route {
2078                 paths: vec![
2079                         vec![RouteHop {
2080                                 pubkey: nodes[1].node.get_our_node_id(),
2081                                 node_features: nodes[1].node.node_features(),
2082                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2083                                 channel_features: nodes[1].node.channel_features(),
2084                                 fee_msat: 10_000,
2085                                 cltv_expiry_delta: 100,
2086                         }],
2087                         vec![RouteHop {
2088                                 pubkey: nodes[1].node.get_our_node_id(),
2089                                 node_features: nodes[1].node.node_features(),
2090                                 short_channel_id: chans[1].short_channel_id.unwrap(),
2091                                 channel_features: nodes[1].node.channel_features(),
2092                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2093                                 cltv_expiry_delta: 100,
2094                         }],
2095                 ],
2096                 payment_params: Some(payment_params),
2097         };
2098         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2099         // On retry, split the payment across both channels.
2100         route.paths[0][0].fee_msat = 50_000_001;
2101         route.paths[1][0].fee_msat = 50_000_000;
2102         nodes[0].router.expect_find_route(RouteParameters {
2103                         payment_params: route.payment_params.clone().unwrap(),
2104                         // Note that the second request here requests the amount we originally failed to send,
2105                         // not the amount remaining on the full payment, which should be changed.
2106                         final_value_msat: 100_000_001, final_cltv_expiry_delta: TEST_FINAL_CLTV
2107                 }, Ok(route.clone()));
2108
2109         {
2110                 let scorer = chanmon_cfgs[0].scorer.lock().unwrap();
2111                 // The initial send attempt, 2 paths
2112                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 10_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2113                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 100_000_001, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2114                 // The retry, 2 paths. Ensure that the in-flight HTLC amount is factored in.
2115                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_001, inflight_htlc_msat: 10_000, effective_capacity: EffectiveCapacity::Unknown });
2116                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2117         }
2118
2119         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2120         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2121         assert_eq!(htlc_msgs.len(), 2);
2122         check_added_monitors!(nodes[0], 2);
2123 }
2124
2125 #[test]
2126 fn immediate_retry_on_failure() {
2127         // Tests that we can/will retry immediately after a failure
2128         let chanmon_cfgs = create_chanmon_cfgs(2);
2129         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2130         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2131         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2132
2133         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2134         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2135
2136         let amt_msat = 100_000_001;
2137         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2138         #[cfg(feature = "std")]
2139         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2140         #[cfg(not(feature = "std"))]
2141         let payment_expiry_secs = 60 * 60;
2142         let mut invoice_features = InvoiceFeatures::empty();
2143         invoice_features.set_variable_length_onion_required();
2144         invoice_features.set_payment_secret_required();
2145         invoice_features.set_basic_mpp_optional();
2146         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2147                 .with_expiry_time(payment_expiry_secs as u64)
2148                 .with_features(invoice_features);
2149         let route_params = RouteParameters {
2150                 payment_params,
2151                 final_value_msat: amt_msat,
2152                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
2153         };
2154
2155         let chans = nodes[0].node.list_usable_channels();
2156         let mut route = Route {
2157                 paths: vec![
2158                         vec![RouteHop {
2159                                 pubkey: nodes[1].node.get_our_node_id(),
2160                                 node_features: nodes[1].node.node_features(),
2161                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2162                                 channel_features: nodes[1].node.channel_features(),
2163                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2164                                 cltv_expiry_delta: 100,
2165                         }],
2166                 ],
2167                 payment_params: Some(PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)),
2168         };
2169         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2170         // On retry, split the payment across both channels.
2171         route.paths.push(route.paths[0].clone());
2172         route.paths[0][0].short_channel_id = chans[1].short_channel_id.unwrap();
2173         route.paths[0][0].fee_msat = 50_000_000;
2174         route.paths[1][0].fee_msat = 50_000_001;
2175         nodes[0].router.expect_find_route(RouteParameters {
2176                         payment_params: route_params.payment_params.clone(),
2177                         final_value_msat: amt_msat, final_cltv_expiry_delta: TEST_FINAL_CLTV
2178                 }, Ok(route.clone()));
2179
2180         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2181         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2182         assert_eq!(htlc_msgs.len(), 2);
2183         check_added_monitors!(nodes[0], 2);
2184 }
2185
2186 #[test]
2187 fn no_extra_retries_on_back_to_back_fail() {
2188         // In a previous release, we had a race where we may exceed the payment retry count if we
2189         // get two failures in a row with the second having `all_paths_failed` set.
2190         // Generally, when we give up trying to retry a payment, we don't know for sure what the
2191         // current state of the ChannelManager event queue is. Specifically, we cannot be sure that
2192         // there are not multiple additional `PaymentPathFailed` or even `PaymentSent` events
2193         // pending which we will see later. Thus, when we previously removed the retry tracking map
2194         // entry after a `all_paths_failed` `PaymentPathFailed` event, we may have dropped the
2195         // retry entry even though more events for the same payment were still pending. This led to
2196         // us retrying a payment again even though we'd already given up on it.
2197         //
2198         // We now have a separate event - `PaymentFailed` which indicates no HTLCs remain and which
2199         // is used to remove the payment retry counter entries instead. This tests for the specific
2200         // excess-retry case while also testing `PaymentFailed` generation.
2201
2202         let chanmon_cfgs = create_chanmon_cfgs(3);
2203         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2204         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2205         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2206
2207         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2208         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2209
2210         let amt_msat = 200_000_000;
2211         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2212         #[cfg(feature = "std")]
2213         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2214         #[cfg(not(feature = "std"))]
2215         let payment_expiry_secs = 60 * 60;
2216         let mut invoice_features = InvoiceFeatures::empty();
2217         invoice_features.set_variable_length_onion_required();
2218         invoice_features.set_payment_secret_required();
2219         invoice_features.set_basic_mpp_optional();
2220         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2221                 .with_expiry_time(payment_expiry_secs as u64)
2222                 .with_features(invoice_features);
2223         let route_params = RouteParameters {
2224                 payment_params,
2225                 final_value_msat: amt_msat,
2226                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
2227         };
2228
2229         let mut route = Route {
2230                 paths: vec![
2231                         vec![RouteHop {
2232                                 pubkey: nodes[1].node.get_our_node_id(),
2233                                 node_features: nodes[1].node.node_features(),
2234                                 short_channel_id: chan_1_scid,
2235                                 channel_features: nodes[1].node.channel_features(),
2236                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2237                                 cltv_expiry_delta: 100,
2238                         }, RouteHop {
2239                                 pubkey: nodes[2].node.get_our_node_id(),
2240                                 node_features: nodes[2].node.node_features(),
2241                                 short_channel_id: chan_2_scid,
2242                                 channel_features: nodes[2].node.channel_features(),
2243                                 fee_msat: 100_000_000,
2244                                 cltv_expiry_delta: 100,
2245                         }],
2246                         vec![RouteHop {
2247                                 pubkey: nodes[1].node.get_our_node_id(),
2248                                 node_features: nodes[1].node.node_features(),
2249                                 short_channel_id: chan_1_scid,
2250                                 channel_features: nodes[1].node.channel_features(),
2251                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2252                                 cltv_expiry_delta: 100,
2253                         }, RouteHop {
2254                                 pubkey: nodes[2].node.get_our_node_id(),
2255                                 node_features: nodes[2].node.node_features(),
2256                                 short_channel_id: chan_2_scid,
2257                                 channel_features: nodes[2].node.channel_features(),
2258                                 fee_msat: 100_000_000,
2259                                 cltv_expiry_delta: 100,
2260                         }]
2261                 ],
2262                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2263         };
2264         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2265         let mut second_payment_params = route_params.payment_params.clone();
2266         second_payment_params.previously_failed_channels = vec![chan_2_scid, chan_2_scid];
2267         // On retry, we'll only return one path
2268         route.paths.remove(1);
2269         route.paths[0][1].fee_msat = amt_msat;
2270         nodes[0].router.expect_find_route(RouteParameters {
2271                         payment_params: second_payment_params,
2272                         final_value_msat: amt_msat, final_cltv_expiry_delta: TEST_FINAL_CLTV,
2273                 }, Ok(route.clone()));
2274
2275         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2276         let htlc_updates = SendEvent::from_node(&nodes[0]);
2277         check_added_monitors!(nodes[0], 1);
2278         assert_eq!(htlc_updates.msgs.len(), 1);
2279
2280         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2281         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2282         check_added_monitors!(nodes[1], 1);
2283         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2284
2285         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2286         check_added_monitors!(nodes[0], 1);
2287         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2288
2289         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2290         check_added_monitors!(nodes[0], 1);
2291         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2292
2293         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2294         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2295         check_added_monitors!(nodes[1], 1);
2296         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2297
2298         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2299         check_added_monitors!(nodes[1], 1);
2300         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2301
2302         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2303         check_added_monitors!(nodes[0], 1);
2304
2305         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2306         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2307         check_added_monitors!(nodes[0], 1);
2308         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2309
2310         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2311         check_added_monitors!(nodes[1], 1);
2312         let bs_second_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2313
2314         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2315         check_added_monitors!(nodes[1], 1);
2316         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2317
2318         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.update_fail_htlcs[0]);
2319         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.commitment_signed);
2320         check_added_monitors!(nodes[0], 1);
2321
2322         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2323         check_added_monitors!(nodes[0], 1);
2324         let (as_third_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2325
2326         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
2327         check_added_monitors!(nodes[1], 1);
2328         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
2329         check_added_monitors!(nodes[1], 1);
2330         let bs_fourth_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2331
2332         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_fourth_raa);
2333         check_added_monitors!(nodes[0], 1);
2334
2335         // At this point A has sent two HTLCs which both failed due to lack of fee. It now has two
2336         // pending `PaymentPathFailed` events, one with `all_paths_failed` unset, and the second
2337         // with it set.
2338         //
2339         // Previously, we retried payments in an event consumer, which would retry each
2340         // `PaymentPathFailed` individually. In that setup, we had retried the payment in response to
2341         // the first `PaymentPathFailed`, then seen the second `PaymentPathFailed` with
2342         // `all_paths_failed` set and assumed the payment was completely failed. We ultimately fixed it
2343         // by adding the `PaymentFailed` event.
2344         //
2345         // Because we now retry payments as a batch, we simply return a single-path route in the
2346         // second, batched, request, have that fail, ensure the payment was abandoned.
2347         let mut events = nodes[0].node.get_and_clear_pending_events();
2348         assert_eq!(events.len(), 4);
2349         match events[0] {
2350                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2351                         assert_eq!(payment_hash, ev_payment_hash);
2352                         assert_eq!(payment_failed_permanently, false);
2353                 },
2354                 _ => panic!("Unexpected event"),
2355         }
2356         match events[1] {
2357                 Event::PendingHTLCsForwardable { .. } => {},
2358                 _ => panic!("Unexpected event"),
2359         }
2360         match events[2] {
2361                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2362                         assert_eq!(payment_hash, ev_payment_hash);
2363                         assert_eq!(payment_failed_permanently, false);
2364                 },
2365                 _ => panic!("Unexpected event"),
2366         }
2367         match events[3] {
2368                 Event::PendingHTLCsForwardable { .. } => {},
2369                 _ => panic!("Unexpected event"),
2370         }
2371
2372         nodes[0].node.process_pending_htlc_forwards();
2373         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2374         check_added_monitors!(nodes[0], 1);
2375
2376         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2377         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2378         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2379         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2380         commitment_signed_dance!(nodes[0], nodes[1], &bs_fail_update.commitment_signed, false, true);
2381
2382         let mut events = nodes[0].node.get_and_clear_pending_events();
2383         assert_eq!(events.len(), 2);
2384         match events[0] {
2385                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2386                         assert_eq!(payment_hash, ev_payment_hash);
2387                         assert_eq!(payment_failed_permanently, false);
2388                 },
2389                 _ => panic!("Unexpected event"),
2390         }
2391         match events[1] {
2392                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
2393                         assert_eq!(payment_hash, *ev_payment_hash);
2394                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
2395                 },
2396                 _ => panic!("Unexpected event"),
2397         }
2398 }
2399
2400 #[test]
2401 fn test_simple_partial_retry() {
2402         // In the first version of the in-`ChannelManager` payment retries, retries were sent for the
2403         // full amount of the payment, rather than only the missing amount. Here we simply test for
2404         // this by sending a payment with two parts, failing one, and retrying the second. Note that
2405         // `TestRouter` will check that the `RouteParameters` (which contain the amount) matches the
2406         // request.
2407         let chanmon_cfgs = create_chanmon_cfgs(3);
2408         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2409         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2410         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2411
2412         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2413         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2414
2415         let amt_msat = 200_000_000;
2416         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2417         #[cfg(feature = "std")]
2418         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2419         #[cfg(not(feature = "std"))]
2420         let payment_expiry_secs = 60 * 60;
2421         let mut invoice_features = InvoiceFeatures::empty();
2422         invoice_features.set_variable_length_onion_required();
2423         invoice_features.set_payment_secret_required();
2424         invoice_features.set_basic_mpp_optional();
2425         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2426                 .with_expiry_time(payment_expiry_secs as u64)
2427                 .with_features(invoice_features);
2428         let route_params = RouteParameters {
2429                 payment_params,
2430                 final_value_msat: amt_msat,
2431                 final_cltv_expiry_delta: TEST_FINAL_CLTV,
2432         };
2433
2434         let mut route = Route {
2435                 paths: vec![
2436                         vec![RouteHop {
2437                                 pubkey: nodes[1].node.get_our_node_id(),
2438                                 node_features: nodes[1].node.node_features(),
2439                                 short_channel_id: chan_1_scid,
2440                                 channel_features: nodes[1].node.channel_features(),
2441                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2442                                 cltv_expiry_delta: 100,
2443                         }, RouteHop {
2444                                 pubkey: nodes[2].node.get_our_node_id(),
2445                                 node_features: nodes[2].node.node_features(),
2446                                 short_channel_id: chan_2_scid,
2447                                 channel_features: nodes[2].node.channel_features(),
2448                                 fee_msat: 100_000_000,
2449                                 cltv_expiry_delta: 100,
2450                         }],
2451                         vec![RouteHop {
2452                                 pubkey: nodes[1].node.get_our_node_id(),
2453                                 node_features: nodes[1].node.node_features(),
2454                                 short_channel_id: chan_1_scid,
2455                                 channel_features: nodes[1].node.channel_features(),
2456                                 fee_msat: 100_000,
2457                                 cltv_expiry_delta: 100,
2458                         }, RouteHop {
2459                                 pubkey: nodes[2].node.get_our_node_id(),
2460                                 node_features: nodes[2].node.node_features(),
2461                                 short_channel_id: chan_2_scid,
2462                                 channel_features: nodes[2].node.channel_features(),
2463                                 fee_msat: 100_000_000,
2464                                 cltv_expiry_delta: 100,
2465                         }]
2466                 ],
2467                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2468         };
2469         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2470         let mut second_payment_params = route_params.payment_params.clone();
2471         second_payment_params.previously_failed_channels = vec![chan_2_scid];
2472         // On retry, we'll only be asked for one path (or 100k sats)
2473         route.paths.remove(0);
2474         nodes[0].router.expect_find_route(RouteParameters {
2475                         payment_params: second_payment_params,
2476                         final_value_msat: amt_msat / 2, final_cltv_expiry_delta: TEST_FINAL_CLTV,
2477                 }, Ok(route.clone()));
2478
2479         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2480         let htlc_updates = SendEvent::from_node(&nodes[0]);
2481         check_added_monitors!(nodes[0], 1);
2482         assert_eq!(htlc_updates.msgs.len(), 1);
2483
2484         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2485         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2486         check_added_monitors!(nodes[1], 1);
2487         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2488
2489         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2490         check_added_monitors!(nodes[0], 1);
2491         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2492
2493         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2494         check_added_monitors!(nodes[0], 1);
2495         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2496
2497         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2498         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2499         check_added_monitors!(nodes[1], 1);
2500         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2501
2502         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2503         check_added_monitors!(nodes[1], 1);
2504         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2505
2506         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2507         check_added_monitors!(nodes[0], 1);
2508
2509         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2510         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2511         check_added_monitors!(nodes[0], 1);
2512         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2513
2514         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2515         check_added_monitors!(nodes[1], 1);
2516
2517         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2518         check_added_monitors!(nodes[1], 1);
2519
2520         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2521
2522         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2523         check_added_monitors!(nodes[0], 1);
2524
2525         let mut events = nodes[0].node.get_and_clear_pending_events();
2526         assert_eq!(events.len(), 2);
2527         match events[0] {
2528                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2529                         assert_eq!(payment_hash, ev_payment_hash);
2530                         assert_eq!(payment_failed_permanently, false);
2531                 },
2532                 _ => panic!("Unexpected event"),
2533         }
2534         match events[1] {
2535                 Event::PendingHTLCsForwardable { .. } => {},
2536                 _ => panic!("Unexpected event"),
2537         }
2538
2539         nodes[0].node.process_pending_htlc_forwards();
2540         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2541         check_added_monitors!(nodes[0], 1);
2542
2543         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2544         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2545
2546         expect_pending_htlcs_forwardable!(nodes[1]);
2547         check_added_monitors!(nodes[1], 1);
2548
2549         let bs_forward_update = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
2550         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[0]);
2551         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[1]);
2552         commitment_signed_dance!(nodes[2], nodes[1], &bs_forward_update.commitment_signed, false);
2553
2554         expect_pending_htlcs_forwardable!(nodes[2]);
2555         expect_payment_claimable!(nodes[2], payment_hash, payment_secret, amt_msat);
2556 }