a65da368709a77aa84147b86dc11e55ae367a558
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::transaction::OutPoint;
17 use crate::chain::keysinterface::KeysInterface;
18 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use crate::ln::channelmanager::{self, BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS};
20 use crate::ln::msgs;
21 use crate::ln::msgs::ChannelMessageHandler;
22 use crate::routing::router::{PaymentParameters, get_route};
23 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
24 use crate::util::test_utils;
25 use crate::util::errors::APIError;
26 use crate::util::enforcing_trait_impls::EnforcingSigner;
27 use crate::util::ser::{ReadableArgs, Writeable};
28 use crate::io;
29
30 use bitcoin::{Block, BlockHeader, BlockHash, TxMerkleNode};
31 use bitcoin::hashes::Hash;
32 use bitcoin::network::constants::Network;
33
34 use crate::prelude::*;
35
36 use crate::ln::functional_test_utils::*;
37
38 #[test]
39 fn retry_single_path_payment() {
40         let chanmon_cfgs = create_chanmon_cfgs(3);
41         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
42         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
43         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
44
45         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
46         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
47         // Rebalance to find a route
48         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
49
50         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
51
52         // Rebalance so that the first hop fails.
53         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
54
55         // Make sure the payment fails on the first hop.
56         let payment_id = PaymentId(payment_hash.0);
57         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
58         check_added_monitors!(nodes[0], 1);
59         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
60         assert_eq!(events.len(), 1);
61         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
62         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
63         check_added_monitors!(nodes[1], 0);
64         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
65         expect_pending_htlcs_forwardable!(nodes[1]);
66         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
67         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
68         assert!(htlc_updates.update_add_htlcs.is_empty());
69         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
70         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
71         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
72         check_added_monitors!(nodes[1], 1);
73         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
74         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
75         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
76
77         // Rebalance the channel so the retry succeeds.
78         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
79
80         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
81         connect_blocks(&nodes[0], 2);
82
83         // Retry the payment and make sure it succeeds.
84         nodes[0].node.retry_payment(&route, payment_id).unwrap();
85         check_added_monitors!(nodes[0], 1);
86         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
87         assert_eq!(events.len(), 1);
88         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
89         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
90 }
91
92 #[test]
93 fn mpp_failure() {
94         let chanmon_cfgs = create_chanmon_cfgs(4);
95         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
96         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
97         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
98
99         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
100         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
101         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
102         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
103
104         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
105         let path = route.paths[0].clone();
106         route.paths.push(path);
107         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
108         route.paths[0][0].short_channel_id = chan_1_id;
109         route.paths[0][1].short_channel_id = chan_3_id;
110         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
111         route.paths[1][0].short_channel_id = chan_2_id;
112         route.paths[1][1].short_channel_id = chan_4_id;
113         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
114         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
115 }
116
117 #[test]
118 fn mpp_retry() {
119         let chanmon_cfgs = create_chanmon_cfgs(4);
120         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
121         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
122         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
123
124         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
125         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
126         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
127         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
128         // Rebalance
129         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
130
131         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
132         let path = route.paths[0].clone();
133         route.paths.push(path);
134         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
135         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
136         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
137         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
138         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
139         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
140
141         // Initiate the MPP payment.
142         let payment_id = PaymentId(payment_hash.0);
143         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
144         check_added_monitors!(nodes[0], 2); // one monitor per path
145         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
146         assert_eq!(events.len(), 2);
147
148         // Pass half of the payment along the success path.
149         let success_path_msgs = events.remove(0);
150         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
151
152         // Add the HTLC along the first hop.
153         let fail_path_msgs_1 = events.remove(0);
154         let (update_add, commitment_signed) = match fail_path_msgs_1 {
155                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
156                         assert_eq!(update_add_htlcs.len(), 1);
157                         assert!(update_fail_htlcs.is_empty());
158                         assert!(update_fulfill_htlcs.is_empty());
159                         assert!(update_fail_malformed_htlcs.is_empty());
160                         assert!(update_fee.is_none());
161                         (update_add_htlcs[0].clone(), commitment_signed.clone())
162                 },
163                 _ => panic!("Unexpected event"),
164         };
165         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
166         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
167
168         // Attempt to forward the payment and complete the 2nd path's failure.
169         expect_pending_htlcs_forwardable!(&nodes[2]);
170         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
171         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
172         assert!(htlc_updates.update_add_htlcs.is_empty());
173         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
174         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
175         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
176         check_added_monitors!(nodes[2], 1);
177         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
178         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
179         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
180
181         // Rebalance the channel so the second half of the payment can succeed.
182         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
183
184         // Make sure it errors as expected given a too-large amount.
185         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
186                 assert!(err.contains("over total_payment_amt_msat"));
187         } else { panic!("Unexpected error"); }
188
189         // Make sure it errors as expected given the wrong payment_id.
190         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
191                 assert!(err.contains("not found"));
192         } else { panic!("Unexpected error"); }
193
194         // Retry the second half of the payment and make sure it succeeds.
195         let mut path = route.clone();
196         path.paths.remove(0);
197         nodes[0].node.retry_payment(&path, payment_id).unwrap();
198         check_added_monitors!(nodes[0], 1);
199         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
200         assert_eq!(events.len(), 1);
201         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
202         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
203 }
204
205 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
206         let chanmon_cfgs = create_chanmon_cfgs(4);
207         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
208         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
209         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
210
211         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
212         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
213         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
214         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
215
216         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
217         let path = route.paths[0].clone();
218         route.paths.push(path);
219         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
220         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
221         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
222         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
223         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
224         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
225
226         // Initiate the MPP payment.
227         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
228         check_added_monitors!(nodes[0], 2); // one monitor per path
229         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
230         assert_eq!(events.len(), 2);
231
232         // Pass half of the payment along the first path.
233         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), false, None);
234
235         if send_partial_mpp {
236                 // Time out the partial MPP
237                 for _ in 0..MPP_TIMEOUT_TICKS {
238                         nodes[3].node.timer_tick_occurred();
239                 }
240
241                 // Failed HTLC from node 3 -> 1
242                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
243                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
244                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
245                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
246                 check_added_monitors!(nodes[3], 1);
247                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
248
249                 // Failed HTLC from node 1 -> 0
250                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
251                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
252                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
253                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
254                 check_added_monitors!(nodes[1], 1);
255                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
256
257                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
258         } else {
259                 // Pass half of the payment along the second path.
260                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), true, None);
261
262                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
263                 for _ in 0..MPP_TIMEOUT_TICKS {
264                         nodes[3].node.timer_tick_occurred();
265                 }
266
267                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
268         }
269 }
270
271 #[test]
272 fn mpp_receive_timeout() {
273         do_mpp_receive_timeout(true);
274         do_mpp_receive_timeout(false);
275 }
276
277 #[test]
278 fn retry_expired_payment() {
279         let chanmon_cfgs = create_chanmon_cfgs(3);
280         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
281         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
282         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
283
284         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
285         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
286         // Rebalance to find a route
287         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
288
289         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
290
291         // Rebalance so that the first hop fails.
292         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
293
294         // Make sure the payment fails on the first hop.
295         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
296         check_added_monitors!(nodes[0], 1);
297         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
298         assert_eq!(events.len(), 1);
299         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
300         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
301         check_added_monitors!(nodes[1], 0);
302         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
303         expect_pending_htlcs_forwardable!(nodes[1]);
304         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
305         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
306         assert!(htlc_updates.update_add_htlcs.is_empty());
307         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
308         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
309         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
310         check_added_monitors!(nodes[1], 1);
311         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
312         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
313         expect_payment_failed!(nodes[0], payment_hash, false);
314
315         // Mine blocks so the payment will have expired.
316         connect_blocks(&nodes[0], 3);
317
318         // Retry the payment and make sure it errors as expected.
319         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId(payment_hash.0)) {
320                 assert!(err.contains("not found"));
321         } else {
322                 panic!("Unexpected error");
323         }
324 }
325
326 #[test]
327 fn no_pending_leak_on_initial_send_failure() {
328         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
329         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
330         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
331         // pending payment forever and never time it out.
332         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
333         // try, and then check that no pending payment is being tracked.
334         let chanmon_cfgs = create_chanmon_cfgs(2);
335         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
336         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
337         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
338
339         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
340
341         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
342
343         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
344         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
345
346         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
347                 true, APIError::ChannelUnavailable { ref err },
348                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
349
350         assert!(!nodes[0].node.has_pending_payments());
351 }
352
353 fn do_retry_with_no_persist(confirm_before_reload: bool) {
354         // If we send a pending payment and `send_payment` returns success, we should always either
355         // return a payment failure event or a payment success event, and on failure the payment should
356         // be retryable.
357         //
358         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
359         // always persisted asynchronously), the ChannelManager has to reload some payment data from
360         // ChannelMonitor(s) in some cases. This tests that reloading.
361         //
362         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
363         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
364         // which has separate codepaths for "commitment transaction already confirmed" and not.
365         let chanmon_cfgs = create_chanmon_cfgs(3);
366         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
367         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
368         let persister: test_utils::TestPersister;
369         let new_chain_monitor: test_utils::TestChainMonitor;
370         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
371         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
372
373         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
374         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
375
376         // Serialize the ChannelManager prior to sending payments
377         let nodes_0_serialized = nodes[0].node.encode();
378
379         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
380         // out and retry.
381         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
382         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
383         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
384         check_added_monitors!(nodes[0], 1);
385
386         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
387         assert_eq!(events.len(), 1);
388         let payment_event = SendEvent::from_event(events.pop().unwrap());
389         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
390
391         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
392         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
393         // which would prevent retry.
394         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
395         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
396
397         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
398         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
399         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
400         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
401
402         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
403
404         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
405         if confirm_before_reload {
406                 mine_transaction(&nodes[0], &as_commitment_tx);
407                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
408         }
409
410         // The ChannelMonitor should always be the latest version, as we're required to persist it
411         // during the `commitment_signed_dance!()`.
412         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
413         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
414
415         persister = test_utils::TestPersister::new();
416         let keys_manager = &chanmon_cfgs[0].keys_manager;
417         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
418         nodes[0].chain_monitor = &new_chain_monitor;
419         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
420         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
421                 &mut chan_0_monitor_read, keys_manager).unwrap();
422         assert!(chan_0_monitor_read.is_empty());
423
424         let mut nodes_0_read = &nodes_0_serialized[..];
425         let (_, nodes_0_deserialized_tmp) = {
426                 let mut channel_monitors = HashMap::new();
427                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
428                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
429                         default_config: test_default_channel_config(),
430                         keys_manager,
431                         fee_estimator: node_cfgs[0].fee_estimator,
432                         chain_monitor: nodes[0].chain_monitor,
433                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
434                         logger: nodes[0].logger,
435                         channel_monitors,
436                 }).unwrap()
437         };
438         nodes_0_deserialized = nodes_0_deserialized_tmp;
439         assert!(nodes_0_read.is_empty());
440
441         assert_eq!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
442                 ChannelMonitorUpdateStatus::Completed);
443         nodes[0].node = &nodes_0_deserialized;
444         check_added_monitors!(nodes[0], 1);
445
446         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
447         // force-close the channel.
448         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
449         assert!(nodes[0].node.list_channels().is_empty());
450         assert!(nodes[0].node.has_pending_payments());
451         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
452         assert_eq!(as_broadcasted_txn.len(), 1);
453         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
454
455         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
456         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
457         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
458
459         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
460         // error, as the channel has hit the chain.
461         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
462         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
463         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
464         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
465         assert_eq!(as_err.len(), 1);
466         match as_err[0] {
467                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
468                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
469                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
470                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
471                         check_added_monitors!(nodes[1], 1);
472                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
473                 },
474                 _ => panic!("Unexpected event"),
475         }
476         check_closed_broadcast!(nodes[1], false);
477
478         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
479         // we close in a moment.
480         nodes[2].node.claim_funds(payment_preimage_1);
481         check_added_monitors!(nodes[2], 1);
482         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
483
484         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
485         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
486         check_added_monitors!(nodes[1], 1);
487         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
488         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
489
490         if confirm_before_reload {
491                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
492                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
493         }
494
495         // Create a new channel on which to retry the payment before we fail the payment via the
496         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
497         // connecting several blocks while creating the channel (implying time has passed).
498         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
499         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
500
501         mine_transaction(&nodes[1], &as_commitment_tx);
502         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
503         assert_eq!(bs_htlc_claim_txn.len(), 1);
504         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
505
506         if !confirm_before_reload {
507                 mine_transaction(&nodes[0], &as_commitment_tx);
508         }
509         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
510         expect_payment_sent!(nodes[0], payment_preimage_1);
511         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
512         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
513         assert_eq!(as_htlc_timeout_txn.len(), 2);
514         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
515         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
516         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
517         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
518                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
519         } else {
520                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
521         }
522         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
523         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
524
525         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
526         // reloaded) via a route over the new channel, which work without issue and eventually be
527         // received and claimed at the recipient just like any other payment.
528         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
529
530         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
531         // and not the original fee. We also update node[1]'s relevant config as
532         // do_claim_payment_along_route expects us to never overpay.
533         {
534                 let mut channel_state = nodes[1].node.channel_state.lock().unwrap();
535                 let mut channel = channel_state.by_id.get_mut(&chan_id_2).unwrap();
536                 let mut new_config = channel.config();
537                 new_config.forwarding_fee_base_msat += 100_000;
538                 channel.update_config(&new_config);
539                 new_route.paths[0][0].fee_msat += 100_000;
540         }
541
542         // Force expiration of the channel's previous config.
543         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
544                 nodes[1].node.timer_tick_occurred();
545         }
546
547         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
548         nodes[0].node.retry_payment(&new_route, PaymentId(payment_hash.0)).unwrap();
549         check_added_monitors!(nodes[0], 1);
550         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
551         assert_eq!(events.len(), 1);
552         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
553         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
554         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
555 }
556
557 #[test]
558 fn retry_with_no_persist() {
559         do_retry_with_no_persist(true);
560         do_retry_with_no_persist(false);
561 }
562
563 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
564         // Test that an off-chain completed payment is not retryable on restart. This was previously
565         // broken for dust payments, but we test for both dust and non-dust payments.
566         //
567         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
568         // output at all.
569         let chanmon_cfgs = create_chanmon_cfgs(3);
570         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
571
572         let mut manually_accept_config = test_default_channel_config();
573         manually_accept_config.manually_accept_inbound_channels = true;
574
575         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
576
577         let first_persister: test_utils::TestPersister;
578         let first_new_chain_monitor: test_utils::TestChainMonitor;
579         let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
580         let second_persister: test_utils::TestPersister;
581         let second_new_chain_monitor: test_utils::TestChainMonitor;
582         let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
583         let third_persister: test_utils::TestPersister;
584         let third_new_chain_monitor: test_utils::TestChainMonitor;
585         let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
586
587         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
588
589         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
590         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
591         confirm_transaction(&nodes[0], &funding_tx);
592         confirm_transaction(&nodes[1], &funding_tx);
593         // Ignore the announcement_signatures messages
594         nodes[0].node.get_and_clear_pending_msg_events();
595         nodes[1].node.get_and_clear_pending_msg_events();
596         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
597
598         // Serialize the ChannelManager prior to sending payments
599         let mut nodes_0_serialized = nodes[0].node.encode();
600
601         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
602         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
603
604         // The ChannelMonitor should always be the latest version, as we're required to persist it
605         // during the `commitment_signed_dance!()`.
606         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
607         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
608
609         let mut chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
610
611         macro_rules! reload_node {
612                 ($chain_monitor: ident, $chan_manager: ident, $persister: ident) => { {
613                         $persister = test_utils::TestPersister::new();
614                         let keys_manager = &chanmon_cfgs[0].keys_manager;
615                         $chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &$persister, keys_manager);
616                         nodes[0].chain_monitor = &$chain_monitor;
617                         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
618                         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
619                                 &mut chan_0_monitor_read, keys_manager).unwrap();
620                         assert!(chan_0_monitor_read.is_empty());
621
622                         let mut chan_1_monitor = None;
623                         let mut channel_monitors = HashMap::new();
624                         channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
625
626                         if !chan_1_monitor_serialized.0.is_empty() {
627                                 let mut chan_1_monitor_read = &chan_1_monitor_serialized.0[..];
628                                 chan_1_monitor = Some(<(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
629                                         &mut chan_1_monitor_read, keys_manager).unwrap().1);
630                                 assert!(chan_1_monitor_read.is_empty());
631                                 channel_monitors.insert(chan_1_monitor.as_ref().unwrap().get_funding_txo().0, chan_1_monitor.as_mut().unwrap());
632                         }
633
634                         let mut nodes_0_read = &nodes_0_serialized[..];
635                         let (_, nodes_0_deserialized_tmp) = {
636                                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
637                                         default_config: test_default_channel_config(),
638                                         keys_manager,
639                                         fee_estimator: node_cfgs[0].fee_estimator,
640                                         chain_monitor: nodes[0].chain_monitor,
641                                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
642                                         logger: nodes[0].logger,
643                                         channel_monitors,
644                                 }).unwrap()
645                         };
646                         $chan_manager = nodes_0_deserialized_tmp;
647                         assert!(nodes_0_read.is_empty());
648
649                         assert_eq!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
650                                 ChannelMonitorUpdateStatus::Completed);
651                         if !chan_1_monitor_serialized.0.is_empty() {
652                                 let funding_txo = chan_1_monitor.as_ref().unwrap().get_funding_txo().0;
653                                 assert_eq!(nodes[0].chain_monitor.watch_channel(funding_txo, chan_1_monitor.unwrap()),
654                                         ChannelMonitorUpdateStatus::Completed);
655                         }
656                         nodes[0].node = &$chan_manager;
657                         check_added_monitors!(nodes[0], if !chan_1_monitor_serialized.0.is_empty() { 2 } else { 1 });
658
659                         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
660                 } }
661         }
662
663         reload_node!(first_new_chain_monitor, first_nodes_0_deserialized, first_persister);
664
665         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
666         // force-close the channel.
667         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
668         assert!(nodes[0].node.list_channels().is_empty());
669         assert!(nodes[0].node.has_pending_payments());
670         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
671
672         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
673         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
674
675         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
676         // error, as the channel has hit the chain.
677         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
678         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
679         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
680         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
681         assert_eq!(as_err.len(), 1);
682         let bs_commitment_tx;
683         match as_err[0] {
684                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
685                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
686                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
687                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
688                         check_added_monitors!(nodes[1], 1);
689                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
690                 },
691                 _ => panic!("Unexpected event"),
692         }
693         check_closed_broadcast!(nodes[1], false);
694
695         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
696         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
697         // incoming HTLCs with the same payment hash later.
698         nodes[2].node.fail_htlc_backwards(&payment_hash);
699         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
700         check_added_monitors!(nodes[2], 1);
701
702         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
703         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
704         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
705         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
706                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
707
708         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
709         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
710         // after the commitment transaction, so always connect the commitment transaction.
711         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
712         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
713         if !use_dust {
714                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
715                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
716                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
717                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
718                 assert_eq!(as_htlc_timeout.len(), 1);
719
720                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
721                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
722                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
723                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
724         }
725
726         // Create a new channel on which to retry the payment before we fail the payment via the
727         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
728         // connecting several blocks while creating the channel (implying time has passed).
729         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
730         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
731         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
732
733         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
734         // confirming, we will fail as it's considered still-pending...
735         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
736         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
737         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
738
739         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
740         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
741         // (which should also still work).
742         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
743         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
744         // We set mpp_parts_remain to avoid having abandon_payment called
745         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
746
747         chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
748         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
749         chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
750         get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
751         nodes_0_serialized = nodes[0].node.encode();
752
753         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
754         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
755
756         reload_node!(second_new_chain_monitor, second_nodes_0_deserialized, second_persister);
757         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
758
759         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
760         // the payment is not (spuriously) listed as still pending.
761         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
762         check_added_monitors!(nodes[0], 1);
763         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
764         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
765
766         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
767         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
768
769         chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
770         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
771         chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
772         get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
773         nodes_0_serialized = nodes[0].node.encode();
774
775         // Ensure that after reload we cannot retry the payment.
776         reload_node!(third_new_chain_monitor, third_nodes_0_deserialized, third_persister);
777         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
778
779         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
780         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
781 }
782
783 #[test]
784 fn test_completed_payment_not_retryable_on_reload() {
785         do_test_completed_payment_not_retryable_on_reload(true);
786         do_test_completed_payment_not_retryable_on_reload(false);
787 }
788
789
790 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
791         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
792         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
793         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
794         // the ChannelMonitor tells it to.
795         //
796         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
797         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
798         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
799         let chanmon_cfgs = create_chanmon_cfgs(2);
800         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
801         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
802         let persister: test_utils::TestPersister;
803         let new_chain_monitor: test_utils::TestChainMonitor;
804         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
805         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
806
807         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
808
809         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
810         // nodes[0].
811         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
812         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
813         check_closed_broadcast!(nodes[0], true);
814         check_added_monitors!(nodes[0], 1);
815         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
816
817         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
818         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
819
820         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
821         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
822         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
823         assert_eq!(node_txn.len(), 3);
824         assert_eq!(node_txn[0], node_txn[1]);
825         check_spends!(node_txn[1], funding_tx);
826         check_spends!(node_txn[2], node_txn[1]);
827         let timeout_txn = vec![node_txn[2].clone()];
828
829         nodes[1].node.claim_funds(payment_preimage);
830         check_added_monitors!(nodes[1], 1);
831         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
832
833         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
834         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
835         check_closed_broadcast!(nodes[1], true);
836         check_added_monitors!(nodes[1], 1);
837         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
838         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
839         assert_eq!(claim_txn.len(), 3);
840         check_spends!(claim_txn[0], node_txn[1]);
841         check_spends!(claim_txn[1], funding_tx);
842         check_spends!(claim_txn[2], claim_txn[1]);
843
844         header.prev_blockhash = nodes[0].best_block_hash();
845         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
846
847         if confirm_commitment_tx {
848                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
849         }
850
851         header.prev_blockhash = nodes[0].best_block_hash();
852         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
853
854         if payment_timeout {
855                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
856                 connect_block(&nodes[0], &claim_block);
857                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
858         }
859
860         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
861         // returning InProgress. This should cause the claim event to never make its way to the
862         // ChannelManager.
863         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
864         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
865
866         if payment_timeout {
867                 connect_blocks(&nodes[0], 1);
868         } else {
869                 connect_block(&nodes[0], &claim_block);
870         }
871
872         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
873         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
874                 .get_mut(&funding_txo).unwrap().drain().collect();
875         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice
876         assert!(mon_updates.len() == 1 || mon_updates.len() == 2);
877         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
878         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
879
880         // If we persist the ChannelManager here, we should get the PaymentSent event after
881         // deserialization.
882         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
883         if !persist_manager_post_event {
884                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
885         }
886
887         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
888         // payment sent event.
889         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
890         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
891         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
892         for update in mon_updates {
893                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
894         }
895         if payment_timeout {
896                 expect_payment_failed!(nodes[0], payment_hash, false);
897         } else {
898                 expect_payment_sent!(nodes[0], payment_preimage);
899         }
900
901         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
902         // twice.
903         if persist_manager_post_event {
904                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
905         }
906
907         // Now reload nodes[0]...
908         persister = test_utils::TestPersister::new();
909         let keys_manager = &chanmon_cfgs[0].keys_manager;
910         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
911         nodes[0].chain_monitor = &new_chain_monitor;
912         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
913         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
914                 &mut chan_0_monitor_read, keys_manager).unwrap();
915         assert!(chan_0_monitor_read.is_empty());
916
917         let (_, nodes_0_deserialized_tmp) = {
918                 let mut channel_monitors = HashMap::new();
919                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
920                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
921                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
922                                 default_config: Default::default(),
923                                 keys_manager,
924                                 fee_estimator: node_cfgs[0].fee_estimator,
925                                 chain_monitor: nodes[0].chain_monitor,
926                                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
927                                 logger: nodes[0].logger,
928                                 channel_monitors,
929                         }).unwrap()
930         };
931         nodes_0_deserialized = nodes_0_deserialized_tmp;
932
933         assert_eq!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
934                 ChannelMonitorUpdateStatus::Completed);
935         check_added_monitors!(nodes[0], 1);
936         nodes[0].node = &nodes_0_deserialized;
937
938         if persist_manager_post_event {
939                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
940         } else if payment_timeout {
941                 expect_payment_failed!(nodes[0], payment_hash, false);
942         } else {
943                 expect_payment_sent!(nodes[0], payment_preimage);
944         }
945
946         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
947         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
948         // payment events should kick in, leaving us with no pending events here.
949         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
950         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
951         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
952 }
953
954 #[test]
955 fn test_dup_htlc_onchain_fails_on_reload() {
956         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
957         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
958         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
959         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
960         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
961         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
962 }
963
964 #[test]
965 fn test_fulfill_restart_failure() {
966         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
967         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
968         // again, or fail it, giving us free money.
969         //
970         // Of course probably they won't fail it and give us free money, but because we have code to
971         // handle it, we should test the logic for it anyway. We do that here.
972         let chanmon_cfgs = create_chanmon_cfgs(2);
973         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
974         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
975         let persister: test_utils::TestPersister;
976         let new_chain_monitor: test_utils::TestChainMonitor;
977         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
978         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
979
980         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
981         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
982
983         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
984         // pre-fulfill, which we do by serializing it here.
985         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
986         nodes[1].node.write(&mut chan_manager_serialized).unwrap();
987         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
988         get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
989
990         nodes[1].node.claim_funds(payment_preimage);
991         check_added_monitors!(nodes[1], 1);
992         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
993
994         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
995         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
996         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
997
998         // Now reload nodes[1]...
999         persister = test_utils::TestPersister::new();
1000         let keys_manager = &chanmon_cfgs[1].keys_manager;
1001         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager);
1002         nodes[1].chain_monitor = &new_chain_monitor;
1003         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
1004         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
1005                 &mut chan_0_monitor_read, keys_manager).unwrap();
1006         assert!(chan_0_monitor_read.is_empty());
1007
1008         let (_, nodes_1_deserialized_tmp) = {
1009                 let mut channel_monitors = HashMap::new();
1010                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
1011                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
1012                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
1013                                 default_config: Default::default(),
1014                                 keys_manager,
1015                                 fee_estimator: node_cfgs[1].fee_estimator,
1016                                 chain_monitor: nodes[1].chain_monitor,
1017                                 tx_broadcaster: nodes[1].tx_broadcaster.clone(),
1018                                 logger: nodes[1].logger,
1019                                 channel_monitors,
1020                         }).unwrap()
1021         };
1022         nodes_1_deserialized = nodes_1_deserialized_tmp;
1023
1024         assert_eq!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
1025                 ChannelMonitorUpdateStatus::Completed);
1026         check_added_monitors!(nodes[1], 1);
1027         nodes[1].node = &nodes_1_deserialized;
1028
1029         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
1030         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
1031
1032         nodes[1].node.fail_htlc_backwards(&payment_hash);
1033         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
1034         check_added_monitors!(nodes[1], 1);
1035         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1036         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
1037         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
1038         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
1039         // it had already considered the payment fulfilled, and now they just got free money.
1040         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
1041 }
1042
1043 #[test]
1044 fn get_ldk_payment_preimage() {
1045         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
1046         let chanmon_cfgs = create_chanmon_cfgs(2);
1047         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1048         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1049         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1050         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1051
1052         let amt_msat = 60_000;
1053         let expiry_secs = 60 * 60;
1054         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap();
1055
1056         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id())
1057                 .with_features(channelmanager::provided_invoice_features());
1058         let scorer = test_utils::TestScorer::with_penalty(0);
1059         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
1060         let random_seed_bytes = keys_manager.get_secure_random_bytes();
1061         let route = get_route(
1062                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
1063                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
1064                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
1065         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1066         check_added_monitors!(nodes[0], 1);
1067
1068         // Make sure to use `get_payment_preimage`
1069         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1070         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1071         assert_eq!(events.len(), 1);
1072         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
1073         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
1074 }
1075
1076 #[test]
1077 fn sent_probe_is_probe_of_sending_node() {
1078         let chanmon_cfgs = create_chanmon_cfgs(3);
1079         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1080         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1081         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1082
1083         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1084         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1085
1086         // First check we refuse to build a single-hop probe
1087         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
1088         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
1089
1090         // Then build an actual two-hop probing path
1091         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
1092
1093         match nodes[0].node.send_probe(route.paths[0].clone()) {
1094                 Ok((payment_hash, payment_id)) => {
1095                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
1096                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
1097                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
1098                 },
1099                 _ => panic!(),
1100         }
1101
1102         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1103         check_added_monitors!(nodes[0], 1);
1104 }
1105
1106 #[test]
1107 fn successful_probe_yields_event() {
1108         let chanmon_cfgs = create_chanmon_cfgs(3);
1109         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1110         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1111         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1112
1113         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1114         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1115
1116         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
1117
1118         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1119
1120         // node[0] -- update_add_htlcs -> node[1]
1121         check_added_monitors!(nodes[0], 1);
1122         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1123         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1124         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1125         check_added_monitors!(nodes[1], 0);
1126         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1127         expect_pending_htlcs_forwardable!(nodes[1]);
1128
1129         // node[1] -- update_add_htlcs -> node[2]
1130         check_added_monitors!(nodes[1], 1);
1131         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1132         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1133         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
1134         check_added_monitors!(nodes[2], 0);
1135         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
1136
1137         // node[1] <- update_fail_htlcs -- node[2]
1138         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
1139         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1140         check_added_monitors!(nodes[1], 0);
1141         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
1142
1143         // node[0] <- update_fail_htlcs -- node[1]
1144         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1145         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1146         check_added_monitors!(nodes[0], 0);
1147         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1148
1149         let mut events = nodes[0].node.get_and_clear_pending_events();
1150         assert_eq!(events.len(), 1);
1151         match events.drain(..).next().unwrap() {
1152                 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1153                         assert_eq!(payment_id, ev_pid);
1154                         assert_eq!(payment_hash, ev_ph);
1155                 },
1156                 _ => panic!(),
1157         };
1158 }
1159
1160 #[test]
1161 fn failed_probe_yields_event() {
1162         let chanmon_cfgs = create_chanmon_cfgs(3);
1163         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1164         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1165         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1166
1167         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1168         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1169
1170         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1171
1172         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
1173
1174         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1175
1176         // node[0] -- update_add_htlcs -> node[1]
1177         check_added_monitors!(nodes[0], 1);
1178         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1179         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1180         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1181         check_added_monitors!(nodes[1], 0);
1182         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1183         expect_pending_htlcs_forwardable!(nodes[1]);
1184
1185         // node[0] <- update_fail_htlcs -- node[1]
1186         check_added_monitors!(nodes[1], 1);
1187         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1188         // Skip the PendingHTLCsForwardable event
1189         let _events = nodes[1].node.get_and_clear_pending_events();
1190         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1191         check_added_monitors!(nodes[0], 0);
1192         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1193
1194         let mut events = nodes[0].node.get_and_clear_pending_events();
1195         assert_eq!(events.len(), 1);
1196         match events.drain(..).next().unwrap() {
1197                 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1198                         assert_eq!(payment_id, ev_pid);
1199                         assert_eq!(payment_hash, ev_ph);
1200                 },
1201                 _ => panic!(),
1202         };
1203 }
1204
1205 #[test]
1206 fn onchain_failed_probe_yields_event() {
1207         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
1208         // event.
1209         let chanmon_cfgs = create_chanmon_cfgs(3);
1210         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1211         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1212         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1213
1214         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1215         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1216
1217         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1218
1219         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1220         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1221         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1222
1223         // node[0] -- update_add_htlcs -> node[1]
1224         check_added_monitors!(nodes[0], 1);
1225         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1226         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1227         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1228         check_added_monitors!(nodes[1], 0);
1229         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1230         expect_pending_htlcs_forwardable!(nodes[1]);
1231
1232         check_added_monitors!(nodes[1], 1);
1233         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1234
1235         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1236         // Node A, which after 6 confirmations should result in a probe failure event.
1237         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1238         confirm_transaction(&nodes[0], &bs_txn[0]);
1239         check_closed_broadcast!(&nodes[0], true);
1240         check_added_monitors!(nodes[0], 1);
1241
1242         let mut events = nodes[0].node.get_and_clear_pending_events();
1243         assert_eq!(events.len(), 2);
1244         let mut found_probe_failed = false;
1245         for event in events.drain(..) {
1246                 match event {
1247                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1248                                 assert_eq!(payment_id, ev_pid);
1249                                 assert_eq!(payment_hash, ev_ph);
1250                                 found_probe_failed = true;
1251                         },
1252                         Event::ChannelClosed { .. } => {},
1253                         _ => panic!(),
1254                 }
1255         }
1256         assert!(found_probe_failed);
1257 }
1258
1259 #[test]
1260 fn claimed_send_payment_idempotent() {
1261         // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1262         let chanmon_cfgs = create_chanmon_cfgs(2);
1263         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1264         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1265         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1266
1267         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1268
1269         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1270         let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1271
1272         macro_rules! check_send_rejected {
1273                 () => {
1274                         // If we try to resend a new payment with a different payment_hash but with the same
1275                         // payment_id, it should be rejected.
1276                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1277                         match send_result {
1278                                 Err(PaymentSendFailure::ParameterError(APIError::RouteError { err: "Payment already in progress" })) => {},
1279                                 _ => panic!("Unexpected send result: {:?}", send_result),
1280                         }
1281
1282                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1283                         // also be rejected.
1284                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1285                         match send_result {
1286                                 Err(PaymentSendFailure::ParameterError(APIError::RouteError { err: "Payment already in progress" })) => {},
1287                                 _ => panic!("Unexpected send result: {:?}", send_result),
1288                         }
1289                 }
1290         }
1291
1292         check_send_rejected!();
1293
1294         // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1295         // not been seen by the user. At this point, from the user perspective nothing has changed, so
1296         // we must remain just as idempotent as we were before.
1297         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1298
1299         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1300                 nodes[0].node.timer_tick_occurred();
1301         }
1302
1303         check_send_rejected!();
1304
1305         // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1306         // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1307         // the payment complete. However, they could have called `send_payment` while the event was
1308         // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1309         // after the event is handled a duplicate payment should sitll be rejected.
1310         expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1311         check_send_rejected!();
1312
1313         // If relatively little time has passed, a duplicate payment should still fail.
1314         nodes[0].node.timer_tick_occurred();
1315         check_send_rejected!();
1316
1317         // However, after some time has passed (at least more than the one timer tick above), a
1318         // duplicate payment should go through, as ChannelManager should no longer have any remaining
1319         // references to the old payment data.
1320         for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1321                 nodes[0].node.timer_tick_occurred();
1322         }
1323
1324         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1325         check_added_monitors!(nodes[0], 1);
1326         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1327         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1328 }
1329
1330 #[test]
1331 fn abandoned_send_payment_idempotent() {
1332         // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1333         // abandon_payment.
1334         let chanmon_cfgs = create_chanmon_cfgs(2);
1335         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1336         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1337         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1338
1339         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1340
1341         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1342         let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1343
1344         macro_rules! check_send_rejected {
1345                 () => {
1346                         // If we try to resend a new payment with a different payment_hash but with the same
1347                         // payment_id, it should be rejected.
1348                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1349                         match send_result {
1350                                 Err(PaymentSendFailure::ParameterError(APIError::RouteError { err: "Payment already in progress" })) => {},
1351                                 _ => panic!("Unexpected send result: {:?}", send_result),
1352                         }
1353
1354                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1355                         // also be rejected.
1356                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1357                         match send_result {
1358                                 Err(PaymentSendFailure::ParameterError(APIError::RouteError { err: "Payment already in progress" })) => {},
1359                                 _ => panic!("Unexpected send result: {:?}", send_result),
1360                         }
1361                 }
1362         }
1363
1364         check_send_rejected!();
1365
1366         nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1367         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1368
1369         pass_failed_payment_back_no_abandon(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash);
1370         check_send_rejected!();
1371
1372         // Until we abandon the payment, no matter how many timer ticks pass, we still cannot reuse the
1373         // PaymentId.
1374         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1375                 nodes[0].node.timer_tick_occurred();
1376         }
1377         check_send_rejected!();
1378
1379         nodes[0].node.abandon_payment(payment_id);
1380         get_event!(nodes[0], Event::PaymentFailed);
1381
1382         // However, we can reuse the PaymentId immediately after we `abandon_payment`.
1383         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1384         check_added_monitors!(nodes[0], 1);
1385         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1386         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1387 }