1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::transaction::OutPoint;
17 use crate::chain::keysinterface::KeysInterface;
18 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use crate::ln::channelmanager::{self, BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS};
21 use crate::ln::msgs::ChannelMessageHandler;
22 use crate::routing::gossip::RoutingFees;
23 use crate::routing::router::{get_route, PaymentParameters, RouteHint, RouteHintHop, RouteParameters};
24 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
25 use crate::util::test_utils;
26 use crate::util::errors::APIError;
27 use crate::util::ser::Writeable;
29 use bitcoin::{Block, BlockHeader, TxMerkleNode};
30 use bitcoin::hashes::Hash;
31 use bitcoin::network::constants::Network;
33 use crate::prelude::*;
35 use crate::ln::functional_test_utils::*;
36 use crate::routing::gossip::NodeId;
39 fn retry_single_path_payment() {
40 let chanmon_cfgs = create_chanmon_cfgs(3);
41 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
42 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
43 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
45 let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
46 let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
47 // Rebalance to find a route
48 send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
50 let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
52 // Rebalance so that the first hop fails.
53 send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
55 // Make sure the payment fails on the first hop.
56 let payment_id = PaymentId(payment_hash.0);
57 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
58 check_added_monitors!(nodes[0], 1);
59 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
60 assert_eq!(events.len(), 1);
61 let mut payment_event = SendEvent::from_event(events.pop().unwrap());
62 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
63 check_added_monitors!(nodes[1], 0);
64 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
65 expect_pending_htlcs_forwardable!(nodes[1]);
66 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
67 let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
68 assert!(htlc_updates.update_add_htlcs.is_empty());
69 assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
70 assert!(htlc_updates.update_fulfill_htlcs.is_empty());
71 assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
72 check_added_monitors!(nodes[1], 1);
73 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
74 commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
75 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
77 // Rebalance the channel so the retry succeeds.
78 send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
80 // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
81 connect_blocks(&nodes[0], 2);
83 // Retry the payment and make sure it succeeds.
84 nodes[0].node.retry_payment(&route, payment_id).unwrap();
85 check_added_monitors!(nodes[0], 1);
86 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
87 assert_eq!(events.len(), 1);
88 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
89 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
94 let chanmon_cfgs = create_chanmon_cfgs(4);
95 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
96 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
97 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
99 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
100 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
101 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
102 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
104 let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
105 let path = route.paths[0].clone();
106 route.paths.push(path);
107 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
108 route.paths[0][0].short_channel_id = chan_1_id;
109 route.paths[0][1].short_channel_id = chan_3_id;
110 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
111 route.paths[1][0].short_channel_id = chan_2_id;
112 route.paths[1][1].short_channel_id = chan_4_id;
113 send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
114 fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
119 let chanmon_cfgs = create_chanmon_cfgs(4);
120 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
121 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
122 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
124 let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
125 let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
126 let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
127 let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
129 send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
131 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
132 let path = route.paths[0].clone();
133 route.paths.push(path);
134 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
135 route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
136 route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
137 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
138 route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
139 route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
141 // Initiate the MPP payment.
142 let payment_id = PaymentId(payment_hash.0);
143 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
144 check_added_monitors!(nodes[0], 2); // one monitor per path
145 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
146 assert_eq!(events.len(), 2);
148 // Pass half of the payment along the success path.
149 let success_path_msgs = events.remove(0);
150 pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
152 // Add the HTLC along the first hop.
153 let fail_path_msgs_1 = events.remove(0);
154 let (update_add, commitment_signed) = match fail_path_msgs_1 {
155 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
156 assert_eq!(update_add_htlcs.len(), 1);
157 assert!(update_fail_htlcs.is_empty());
158 assert!(update_fulfill_htlcs.is_empty());
159 assert!(update_fail_malformed_htlcs.is_empty());
160 assert!(update_fee.is_none());
161 (update_add_htlcs[0].clone(), commitment_signed.clone())
163 _ => panic!("Unexpected event"),
165 nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
166 commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
168 // Attempt to forward the payment and complete the 2nd path's failure.
169 expect_pending_htlcs_forwardable!(&nodes[2]);
170 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
171 let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
172 assert!(htlc_updates.update_add_htlcs.is_empty());
173 assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
174 assert!(htlc_updates.update_fulfill_htlcs.is_empty());
175 assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
176 check_added_monitors!(nodes[2], 1);
177 nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
178 commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
179 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
181 // Rebalance the channel so the second half of the payment can succeed.
182 send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
184 // Make sure it errors as expected given a too-large amount.
185 if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
186 assert!(err.contains("over total_payment_amt_msat"));
187 } else { panic!("Unexpected error"); }
189 // Make sure it errors as expected given the wrong payment_id.
190 if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
191 assert!(err.contains("not found"));
192 } else { panic!("Unexpected error"); }
194 // Retry the second half of the payment and make sure it succeeds.
195 let mut path = route.clone();
196 path.paths.remove(0);
197 nodes[0].node.retry_payment(&path, payment_id).unwrap();
198 check_added_monitors!(nodes[0], 1);
199 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
200 assert_eq!(events.len(), 1);
201 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
202 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
205 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
206 let chanmon_cfgs = create_chanmon_cfgs(4);
207 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
208 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
209 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
211 let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
212 let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
213 let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
214 let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
216 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
217 let path = route.paths[0].clone();
218 route.paths.push(path);
219 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
220 route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
221 route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
222 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
223 route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
224 route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
226 // Initiate the MPP payment.
227 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
228 check_added_monitors!(nodes[0], 2); // one monitor per path
229 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
230 assert_eq!(events.len(), 2);
232 // Pass half of the payment along the first path.
233 pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), false, None);
235 if send_partial_mpp {
236 // Time out the partial MPP
237 for _ in 0..MPP_TIMEOUT_TICKS {
238 nodes[3].node.timer_tick_occurred();
241 // Failed HTLC from node 3 -> 1
242 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
243 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
244 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
245 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
246 check_added_monitors!(nodes[3], 1);
247 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
249 // Failed HTLC from node 1 -> 0
250 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
251 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
252 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
253 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
254 check_added_monitors!(nodes[1], 1);
255 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
257 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
259 // Pass half of the payment along the second path.
260 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), true, None);
262 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
263 for _ in 0..MPP_TIMEOUT_TICKS {
264 nodes[3].node.timer_tick_occurred();
267 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
272 fn mpp_receive_timeout() {
273 do_mpp_receive_timeout(true);
274 do_mpp_receive_timeout(false);
278 fn retry_expired_payment() {
279 let chanmon_cfgs = create_chanmon_cfgs(3);
280 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
281 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
282 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
284 let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
285 let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
286 // Rebalance to find a route
287 send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
289 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
291 // Rebalance so that the first hop fails.
292 send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
294 // Make sure the payment fails on the first hop.
295 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
296 check_added_monitors!(nodes[0], 1);
297 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
298 assert_eq!(events.len(), 1);
299 let mut payment_event = SendEvent::from_event(events.pop().unwrap());
300 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
301 check_added_monitors!(nodes[1], 0);
302 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
303 expect_pending_htlcs_forwardable!(nodes[1]);
304 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
305 let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
306 assert!(htlc_updates.update_add_htlcs.is_empty());
307 assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
308 assert!(htlc_updates.update_fulfill_htlcs.is_empty());
309 assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
310 check_added_monitors!(nodes[1], 1);
311 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
312 commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
313 expect_payment_failed!(nodes[0], payment_hash, false);
315 // Mine blocks so the payment will have expired.
316 connect_blocks(&nodes[0], 3);
318 // Retry the payment and make sure it errors as expected.
319 if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId(payment_hash.0)) {
320 assert!(err.contains("not found"));
322 panic!("Unexpected error");
327 fn no_pending_leak_on_initial_send_failure() {
328 // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
329 // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
330 // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
331 // pending payment forever and never time it out.
332 // Here we test exactly that - retrying a payment when a peer was disconnected on the first
333 // try, and then check that no pending payment is being tracked.
334 let chanmon_cfgs = create_chanmon_cfgs(2);
335 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
336 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
337 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
339 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
341 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
343 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
344 nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
346 unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
347 true, APIError::ChannelUnavailable { ref err },
348 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
350 assert!(!nodes[0].node.has_pending_payments());
353 fn do_retry_with_no_persist(confirm_before_reload: bool) {
354 // If we send a pending payment and `send_payment` returns success, we should always either
355 // return a payment failure event or a payment success event, and on failure the payment should
358 // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
359 // always persisted asynchronously), the ChannelManager has to reload some payment data from
360 // ChannelMonitor(s) in some cases. This tests that reloading.
362 // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
363 // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
364 // which has separate codepaths for "commitment transaction already confirmed" and not.
365 let chanmon_cfgs = create_chanmon_cfgs(3);
366 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
367 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
368 let persister: test_utils::TestPersister;
369 let new_chain_monitor: test_utils::TestChainMonitor;
370 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
371 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
373 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
374 let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
376 // Serialize the ChannelManager prior to sending payments
377 let nodes_0_serialized = nodes[0].node.encode();
379 // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
381 let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
382 let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
383 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
384 check_added_monitors!(nodes[0], 1);
386 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
387 assert_eq!(events.len(), 1);
388 let payment_event = SendEvent::from_event(events.pop().unwrap());
389 assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
391 // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
392 // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
393 // which would prevent retry.
394 nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
395 nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
397 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
398 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
399 // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
400 let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
402 reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
404 let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
405 if confirm_before_reload {
406 mine_transaction(&nodes[0], &as_commitment_tx);
407 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
410 // The ChannelMonitor should always be the latest version, as we're required to persist it
411 // during the `commitment_signed_dance!()`.
412 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
413 reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
415 // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
416 // force-close the channel.
417 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
418 assert!(nodes[0].node.list_channels().is_empty());
419 assert!(nodes[0].node.has_pending_payments());
420 let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
421 assert_eq!(as_broadcasted_txn.len(), 1);
422 assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
424 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
425 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
426 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
428 // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
429 // error, as the channel has hit the chain.
430 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
431 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
432 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
433 let as_err = nodes[0].node.get_and_clear_pending_msg_events();
434 assert_eq!(as_err.len(), 1);
436 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
437 assert_eq!(node_id, nodes[1].node.get_our_node_id());
438 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
439 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
440 check_added_monitors!(nodes[1], 1);
441 assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
443 _ => panic!("Unexpected event"),
445 check_closed_broadcast!(nodes[1], false);
447 // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
448 // we close in a moment.
449 nodes[2].node.claim_funds(payment_preimage_1);
450 check_added_monitors!(nodes[2], 1);
451 expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
453 let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
454 nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
455 check_added_monitors!(nodes[1], 1);
456 commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
457 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
459 if confirm_before_reload {
460 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
461 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
464 // Create a new channel on which to retry the payment before we fail the payment via the
465 // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
466 // connecting several blocks while creating the channel (implying time has passed).
467 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
468 assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
470 mine_transaction(&nodes[1], &as_commitment_tx);
471 let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
472 assert_eq!(bs_htlc_claim_txn.len(), 1);
473 check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
475 if !confirm_before_reload {
476 mine_transaction(&nodes[0], &as_commitment_tx);
478 mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
479 expect_payment_sent!(nodes[0], payment_preimage_1);
480 connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
481 let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
482 assert_eq!(as_htlc_timeout_txn.len(), 2);
483 let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
484 check_spends!(first_htlc_timeout_tx, as_commitment_tx);
485 check_spends!(second_htlc_timeout_tx, as_commitment_tx);
486 if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
487 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
489 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
491 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
492 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
494 // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
495 // reloaded) via a route over the new channel, which work without issue and eventually be
496 // received and claimed at the recipient just like any other payment.
497 let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
499 // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
500 // and not the original fee. We also update node[1]'s relevant config as
501 // do_claim_payment_along_route expects us to never overpay.
503 let mut channel_state = nodes[1].node.channel_state.lock().unwrap();
504 let mut channel = channel_state.by_id.get_mut(&chan_id_2).unwrap();
505 let mut new_config = channel.config();
506 new_config.forwarding_fee_base_msat += 100_000;
507 channel.update_config(&new_config);
508 new_route.paths[0][0].fee_msat += 100_000;
511 // Force expiration of the channel's previous config.
512 for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
513 nodes[1].node.timer_tick_occurred();
516 assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
517 nodes[0].node.retry_payment(&new_route, PaymentId(payment_hash.0)).unwrap();
518 check_added_monitors!(nodes[0], 1);
519 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
520 assert_eq!(events.len(), 1);
521 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
522 do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
523 expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
527 fn retry_with_no_persist() {
528 do_retry_with_no_persist(true);
529 do_retry_with_no_persist(false);
532 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
533 // Test that an off-chain completed payment is not retryable on restart. This was previously
534 // broken for dust payments, but we test for both dust and non-dust payments.
536 // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
538 let chanmon_cfgs = create_chanmon_cfgs(3);
539 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
541 let mut manually_accept_config = test_default_channel_config();
542 manually_accept_config.manually_accept_inbound_channels = true;
544 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
546 let first_persister: test_utils::TestPersister;
547 let first_new_chain_monitor: test_utils::TestChainMonitor;
548 let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
549 let second_persister: test_utils::TestPersister;
550 let second_new_chain_monitor: test_utils::TestChainMonitor;
551 let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
552 let third_persister: test_utils::TestPersister;
553 let third_new_chain_monitor: test_utils::TestChainMonitor;
554 let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
556 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
558 // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
559 let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
560 confirm_transaction(&nodes[0], &funding_tx);
561 confirm_transaction(&nodes[1], &funding_tx);
562 // Ignore the announcement_signatures messages
563 nodes[0].node.get_and_clear_pending_msg_events();
564 nodes[1].node.get_and_clear_pending_msg_events();
565 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
567 // Serialize the ChannelManager prior to sending payments
568 let mut nodes_0_serialized = nodes[0].node.encode();
570 let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
571 let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
573 // The ChannelMonitor should always be the latest version, as we're required to persist it
574 // during the `commitment_signed_dance!()`.
575 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
577 reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
578 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
580 // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
581 // force-close the channel.
582 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
583 assert!(nodes[0].node.list_channels().is_empty());
584 assert!(nodes[0].node.has_pending_payments());
585 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
587 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
588 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
590 // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
591 // error, as the channel has hit the chain.
592 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
593 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
594 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
595 let as_err = nodes[0].node.get_and_clear_pending_msg_events();
596 assert_eq!(as_err.len(), 1);
597 let bs_commitment_tx;
599 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
600 assert_eq!(node_id, nodes[1].node.get_our_node_id());
601 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
602 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
603 check_added_monitors!(nodes[1], 1);
604 bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
606 _ => panic!("Unexpected event"),
608 check_closed_broadcast!(nodes[1], false);
610 // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
611 // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
612 // incoming HTLCs with the same payment hash later.
613 nodes[2].node.fail_htlc_backwards(&payment_hash);
614 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
615 check_added_monitors!(nodes[2], 1);
617 let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
618 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
619 commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
620 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
621 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
623 // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
624 // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
625 // after the commitment transaction, so always connect the commitment transaction.
626 mine_transaction(&nodes[0], &bs_commitment_tx[0]);
627 mine_transaction(&nodes[1], &bs_commitment_tx[0]);
629 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
630 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
631 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
632 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
633 assert_eq!(as_htlc_timeout.len(), 1);
635 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
636 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
637 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
638 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
641 // Create a new channel on which to retry the payment before we fail the payment via the
642 // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
643 // connecting several blocks while creating the channel (implying time has passed).
644 // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
645 let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
646 assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
648 // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
649 // confirming, we will fail as it's considered still-pending...
650 let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
651 assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
652 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
654 // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
655 // again. We serialize the node first as we'll then test retrying the HTLC after a restart
656 // (which should also still work).
657 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
658 connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
659 // We set mpp_parts_remain to avoid having abandon_payment called
660 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
662 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
663 let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
664 nodes_0_serialized = nodes[0].node.encode();
666 assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
667 assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
669 reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
670 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
672 reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
674 // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
675 // the payment is not (spuriously) listed as still pending.
676 assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
677 check_added_monitors!(nodes[0], 1);
678 pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
679 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
681 assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
682 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
684 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
685 let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
686 nodes_0_serialized = nodes[0].node.encode();
688 // Ensure that after reload we cannot retry the payment.
689 reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
690 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
692 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
694 assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
695 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
699 fn test_completed_payment_not_retryable_on_reload() {
700 do_test_completed_payment_not_retryable_on_reload(true);
701 do_test_completed_payment_not_retryable_on_reload(false);
705 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
706 // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
707 // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
708 // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
709 // the ChannelMonitor tells it to.
711 // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
712 // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
713 // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
714 let chanmon_cfgs = create_chanmon_cfgs(2);
715 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
716 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
717 let persister: test_utils::TestPersister;
718 let new_chain_monitor: test_utils::TestChainMonitor;
719 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
720 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
722 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
724 // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
726 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
727 nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
728 check_closed_broadcast!(nodes[0], true);
729 check_added_monitors!(nodes[0], 1);
730 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
732 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
733 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
735 // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
736 connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
737 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
738 assert_eq!(node_txn.len(), 3);
739 assert_eq!(node_txn[0], node_txn[1]);
740 check_spends!(node_txn[1], funding_tx);
741 check_spends!(node_txn[2], node_txn[1]);
742 let timeout_txn = vec![node_txn[2].clone()];
744 nodes[1].node.claim_funds(payment_preimage);
745 check_added_monitors!(nodes[1], 1);
746 expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
748 let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
749 connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
750 check_closed_broadcast!(nodes[1], true);
751 check_added_monitors!(nodes[1], 1);
752 check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
753 let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
754 assert_eq!(claim_txn.len(), 3);
755 check_spends!(claim_txn[0], node_txn[1]);
756 check_spends!(claim_txn[1], funding_tx);
757 check_spends!(claim_txn[2], claim_txn[1]);
759 header.prev_blockhash = nodes[0].best_block_hash();
760 connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
762 if confirm_commitment_tx {
763 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
766 header.prev_blockhash = nodes[0].best_block_hash();
767 let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
770 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
771 connect_block(&nodes[0], &claim_block);
772 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
775 // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
776 // returning InProgress. This should cause the claim event to never make its way to the
778 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
779 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
782 connect_blocks(&nodes[0], 1);
784 connect_block(&nodes[0], &claim_block);
787 let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
788 let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
789 .get_mut(&funding_txo).unwrap().drain().collect();
790 // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
791 // If we're testing connection idempotency we may get substantially more.
792 assert!(mon_updates.len() >= 1);
793 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
794 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
796 // If we persist the ChannelManager here, we should get the PaymentSent event after
798 let mut chan_manager_serialized = Vec::new();
799 if !persist_manager_post_event {
800 chan_manager_serialized = nodes[0].node.encode();
803 // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
804 // payment sent event.
805 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
806 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
807 for update in mon_updates {
808 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
811 expect_payment_failed!(nodes[0], payment_hash, false);
813 expect_payment_sent!(nodes[0], payment_preimage);
816 // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
818 if persist_manager_post_event {
819 chan_manager_serialized = nodes[0].node.encode();
822 // Now reload nodes[0]...
823 reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
825 if persist_manager_post_event {
826 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
827 } else if payment_timeout {
828 expect_payment_failed!(nodes[0], payment_hash, false);
830 expect_payment_sent!(nodes[0], payment_preimage);
833 // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
834 // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
835 // payment events should kick in, leaving us with no pending events here.
836 let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
837 nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
838 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
842 fn test_dup_htlc_onchain_fails_on_reload() {
843 do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
844 do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
845 do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
846 do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
847 do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
848 do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
852 fn test_fulfill_restart_failure() {
853 // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
854 // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
855 // again, or fail it, giving us free money.
857 // Of course probably they won't fail it and give us free money, but because we have code to
858 // handle it, we should test the logic for it anyway. We do that here.
859 let chanmon_cfgs = create_chanmon_cfgs(2);
860 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
861 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
862 let persister: test_utils::TestPersister;
863 let new_chain_monitor: test_utils::TestChainMonitor;
864 let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
865 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
867 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
868 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
870 // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
871 // pre-fulfill, which we do by serializing it here.
872 let chan_manager_serialized = nodes[1].node.encode();
873 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
875 nodes[1].node.claim_funds(payment_preimage);
876 check_added_monitors!(nodes[1], 1);
877 expect_payment_claimed!(nodes[1], payment_hash, 100_000);
879 let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
880 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
881 expect_payment_sent_without_paths!(nodes[0], payment_preimage);
883 // Now reload nodes[1]...
884 reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
886 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
887 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
889 nodes[1].node.fail_htlc_backwards(&payment_hash);
890 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
891 check_added_monitors!(nodes[1], 1);
892 let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
893 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
894 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
895 // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
896 // it had already considered the payment fulfilled, and now they just got free money.
897 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
901 fn get_ldk_payment_preimage() {
902 // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
903 let chanmon_cfgs = create_chanmon_cfgs(2);
904 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
905 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
906 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
907 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
909 let amt_msat = 60_000;
910 let expiry_secs = 60 * 60;
911 let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap();
913 let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id())
914 .with_features(channelmanager::provided_invoice_features());
915 let scorer = test_utils::TestScorer::with_penalty(0);
916 let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
917 let random_seed_bytes = keys_manager.get_secure_random_bytes();
918 let route = get_route(
919 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
920 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
921 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
922 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
923 check_added_monitors!(nodes[0], 1);
925 // Make sure to use `get_payment_preimage`
926 let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
927 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
928 assert_eq!(events.len(), 1);
929 pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
930 claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
934 fn sent_probe_is_probe_of_sending_node() {
935 let chanmon_cfgs = create_chanmon_cfgs(3);
936 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
937 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
938 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
940 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
941 create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
943 // First check we refuse to build a single-hop probe
944 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
945 assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
947 // Then build an actual two-hop probing path
948 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
950 match nodes[0].node.send_probe(route.paths[0].clone()) {
951 Ok((payment_hash, payment_id)) => {
952 assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
953 assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
954 assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
959 get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
960 check_added_monitors!(nodes[0], 1);
964 fn successful_probe_yields_event() {
965 let chanmon_cfgs = create_chanmon_cfgs(3);
966 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
967 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
968 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
970 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
971 create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
973 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
975 let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
977 // node[0] -- update_add_htlcs -> node[1]
978 check_added_monitors!(nodes[0], 1);
979 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
980 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
981 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
982 check_added_monitors!(nodes[1], 0);
983 commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
984 expect_pending_htlcs_forwardable!(nodes[1]);
986 // node[1] -- update_add_htlcs -> node[2]
987 check_added_monitors!(nodes[1], 1);
988 let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
989 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
990 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
991 check_added_monitors!(nodes[2], 0);
992 commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
994 // node[1] <- update_fail_htlcs -- node[2]
995 let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
996 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
997 check_added_monitors!(nodes[1], 0);
998 commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
1000 // node[0] <- update_fail_htlcs -- node[1]
1001 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1002 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1003 check_added_monitors!(nodes[0], 0);
1004 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1006 let mut events = nodes[0].node.get_and_clear_pending_events();
1007 assert_eq!(events.len(), 1);
1008 match events.drain(..).next().unwrap() {
1009 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1010 assert_eq!(payment_id, ev_pid);
1011 assert_eq!(payment_hash, ev_ph);
1018 fn failed_probe_yields_event() {
1019 let chanmon_cfgs = create_chanmon_cfgs(3);
1020 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1021 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1022 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1024 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1025 create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1027 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1029 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
1031 let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1033 // node[0] -- update_add_htlcs -> node[1]
1034 check_added_monitors!(nodes[0], 1);
1035 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1036 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1037 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1038 check_added_monitors!(nodes[1], 0);
1039 commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1040 expect_pending_htlcs_forwardable!(nodes[1]);
1042 // node[0] <- update_fail_htlcs -- node[1]
1043 check_added_monitors!(nodes[1], 1);
1044 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1045 // Skip the PendingHTLCsForwardable event
1046 let _events = nodes[1].node.get_and_clear_pending_events();
1047 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1048 check_added_monitors!(nodes[0], 0);
1049 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1051 let mut events = nodes[0].node.get_and_clear_pending_events();
1052 assert_eq!(events.len(), 1);
1053 match events.drain(..).next().unwrap() {
1054 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1055 assert_eq!(payment_id, ev_pid);
1056 assert_eq!(payment_hash, ev_ph);
1063 fn onchain_failed_probe_yields_event() {
1064 // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
1066 let chanmon_cfgs = create_chanmon_cfgs(3);
1067 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1068 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1069 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1071 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1072 create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1074 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1076 // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1077 let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1078 let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1080 // node[0] -- update_add_htlcs -> node[1]
1081 check_added_monitors!(nodes[0], 1);
1082 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1083 let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1084 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1085 check_added_monitors!(nodes[1], 0);
1086 commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1087 expect_pending_htlcs_forwardable!(nodes[1]);
1089 check_added_monitors!(nodes[1], 1);
1090 let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1092 // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1093 // Node A, which after 6 confirmations should result in a probe failure event.
1094 let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1095 confirm_transaction(&nodes[0], &bs_txn[0]);
1096 check_closed_broadcast!(&nodes[0], true);
1097 check_added_monitors!(nodes[0], 1);
1099 let mut events = nodes[0].node.get_and_clear_pending_events();
1100 assert_eq!(events.len(), 2);
1101 let mut found_probe_failed = false;
1102 for event in events.drain(..) {
1104 Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1105 assert_eq!(payment_id, ev_pid);
1106 assert_eq!(payment_hash, ev_ph);
1107 found_probe_failed = true;
1109 Event::ChannelClosed { .. } => {},
1113 assert!(found_probe_failed);
1117 fn claimed_send_payment_idempotent() {
1118 // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1119 let chanmon_cfgs = create_chanmon_cfgs(2);
1120 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1121 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1122 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1124 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1126 let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1127 let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1129 macro_rules! check_send_rejected {
1131 // If we try to resend a new payment with a different payment_hash but with the same
1132 // payment_id, it should be rejected.
1133 let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1135 Err(PaymentSendFailure::DuplicatePayment) => {},
1136 _ => panic!("Unexpected send result: {:?}", send_result),
1139 // Further, if we try to send a spontaneous payment with the same payment_id it should
1140 // also be rejected.
1141 let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1143 Err(PaymentSendFailure::DuplicatePayment) => {},
1144 _ => panic!("Unexpected send result: {:?}", send_result),
1149 check_send_rejected!();
1151 // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1152 // not been seen by the user. At this point, from the user perspective nothing has changed, so
1153 // we must remain just as idempotent as we were before.
1154 do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1156 for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1157 nodes[0].node.timer_tick_occurred();
1160 check_send_rejected!();
1162 // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1163 // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1164 // the payment complete. However, they could have called `send_payment` while the event was
1165 // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1166 // after the event is handled a duplicate payment should sitll be rejected.
1167 expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1168 check_send_rejected!();
1170 // If relatively little time has passed, a duplicate payment should still fail.
1171 nodes[0].node.timer_tick_occurred();
1172 check_send_rejected!();
1174 // However, after some time has passed (at least more than the one timer tick above), a
1175 // duplicate payment should go through, as ChannelManager should no longer have any remaining
1176 // references to the old payment data.
1177 for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1178 nodes[0].node.timer_tick_occurred();
1181 nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1182 check_added_monitors!(nodes[0], 1);
1183 pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1184 claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1188 fn abandoned_send_payment_idempotent() {
1189 // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1191 let chanmon_cfgs = create_chanmon_cfgs(2);
1192 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1193 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1194 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1196 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1198 let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1199 let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1201 macro_rules! check_send_rejected {
1203 // If we try to resend a new payment with a different payment_hash but with the same
1204 // payment_id, it should be rejected.
1205 let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1207 Err(PaymentSendFailure::DuplicatePayment) => {},
1208 _ => panic!("Unexpected send result: {:?}", send_result),
1211 // Further, if we try to send a spontaneous payment with the same payment_id it should
1212 // also be rejected.
1213 let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1215 Err(PaymentSendFailure::DuplicatePayment) => {},
1216 _ => panic!("Unexpected send result: {:?}", send_result),
1221 check_send_rejected!();
1223 nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1224 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1226 pass_failed_payment_back_no_abandon(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash);
1227 check_send_rejected!();
1229 // Until we abandon the payment, no matter how many timer ticks pass, we still cannot reuse the
1231 for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1232 nodes[0].node.timer_tick_occurred();
1234 check_send_rejected!();
1236 nodes[0].node.abandon_payment(payment_id);
1237 get_event!(nodes[0], Event::PaymentFailed);
1239 // However, we can reuse the PaymentId immediately after we `abandon_payment`.
1240 nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1241 check_added_monitors!(nodes[0], 1);
1242 pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1243 claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1246 #[derive(PartialEq)]
1247 enum InterceptTest {
1254 fn test_trivial_inflight_htlc_tracking(){
1255 // In this test, we test three scenarios:
1256 // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1257 // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1258 // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1259 let chanmon_cfgs = create_chanmon_cfgs(3);
1260 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1261 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1262 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1264 let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1265 let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1267 // Send and claim the payment. Inflight HTLCs should be empty.
1268 send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000);
1270 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1272 let node_0_channel_lock = nodes[0].node.channel_state.lock().unwrap();
1273 let node_1_channel_lock = nodes[1].node.channel_state.lock().unwrap();
1274 let channel_1 = node_0_channel_lock.by_id.get(&chan_1_id).unwrap();
1275 let channel_2 = node_1_channel_lock.by_id.get(&chan_2_id).unwrap();
1277 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1278 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1279 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1280 channel_1.get_short_channel_id().unwrap()
1282 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1283 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1284 &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1285 channel_2.get_short_channel_id().unwrap()
1288 assert_eq!(chan_1_used_liquidity, None);
1289 assert_eq!(chan_2_used_liquidity, None);
1292 // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1293 let (payment_preimage, _, _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000);
1295 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1297 let node_0_channel_lock = nodes[0].node.channel_state.lock().unwrap();
1298 let node_1_channel_lock = nodes[1].node.channel_state.lock().unwrap();
1299 let channel_1 = node_0_channel_lock.by_id.get(&chan_1_id).unwrap();
1300 let channel_2 = node_1_channel_lock.by_id.get(&chan_2_id).unwrap();
1302 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1303 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1304 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1305 channel_1.get_short_channel_id().unwrap()
1307 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1308 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1309 &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1310 channel_2.get_short_channel_id().unwrap()
1313 // First hop accounts for expected 1000 msat fee
1314 assert_eq!(chan_1_used_liquidity, Some(501000));
1315 assert_eq!(chan_2_used_liquidity, Some(500000));
1318 // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1319 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1321 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1323 let node_0_channel_lock = nodes[0].node.channel_state.lock().unwrap();
1324 let node_1_channel_lock = nodes[1].node.channel_state.lock().unwrap();
1325 let channel_1 = node_0_channel_lock.by_id.get(&chan_1_id).unwrap();
1326 let channel_2 = node_1_channel_lock.by_id.get(&chan_2_id).unwrap();
1328 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1329 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1330 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1331 channel_1.get_short_channel_id().unwrap()
1333 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1334 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1335 &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1336 channel_2.get_short_channel_id().unwrap()
1339 assert_eq!(chan_1_used_liquidity, None);
1340 assert_eq!(chan_2_used_liquidity, None);
1345 fn test_holding_cell_inflight_htlcs() {
1346 let chanmon_cfgs = create_chanmon_cfgs(2);
1347 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1348 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1349 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1350 let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1352 let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1353 let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1355 // Queue up two payments - one will be delivered right away, one immediately goes into the
1356 // holding cell as nodes[0] is AwaitingRAA.
1358 nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1359 check_added_monitors!(nodes[0], 1);
1360 nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1361 check_added_monitors!(nodes[0], 0);
1364 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1367 let channel_lock = nodes[0].node.channel_state.lock().unwrap();
1368 let channel = channel_lock.by_id.get(&channel_id).unwrap();
1370 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1371 &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1372 &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1373 channel.get_short_channel_id().unwrap()
1376 assert_eq!(used_liquidity, Some(2000000));
1379 // Clear pending events so test doesn't throw a "Had excess message on node..." error
1380 nodes[0].node.get_and_clear_pending_msg_events();
1384 fn intercepted_payment() {
1385 // Test that detecting an intercept scid on payment forward will signal LDK to generate an
1386 // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
1387 // payment or (b) fail the payment.
1388 do_test_intercepted_payment(InterceptTest::Forward);
1389 do_test_intercepted_payment(InterceptTest::Fail);
1390 // Make sure that intercepted payments will be automatically failed back if too many blocks pass.
1391 do_test_intercepted_payment(InterceptTest::Timeout);
1394 fn do_test_intercepted_payment(test: InterceptTest) {
1395 let chanmon_cfgs = create_chanmon_cfgs(3);
1396 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1398 let mut zero_conf_chan_config = test_default_channel_config();
1399 zero_conf_chan_config.manually_accept_inbound_channels = true;
1400 let mut intercept_forwards_config = test_default_channel_config();
1401 intercept_forwards_config.accept_intercept_htlcs = true;
1402 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
1404 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1405 let scorer = test_utils::TestScorer::with_penalty(0);
1406 let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
1408 let _ = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1410 let amt_msat = 100_000;
1411 let intercept_scid = nodes[1].node.get_intercept_scid();
1412 let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id())
1413 .with_route_hints(vec![
1414 RouteHint(vec![RouteHintHop {
1415 src_node_id: nodes[1].node.get_our_node_id(),
1416 short_channel_id: intercept_scid,
1419 proportional_millionths: 0,
1421 cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
1422 htlc_minimum_msat: None,
1423 htlc_maximum_msat: None,
1426 .with_features(channelmanager::provided_invoice_features());
1427 let route_params = RouteParameters {
1429 final_value_msat: amt_msat,
1430 final_cltv_expiry_delta: TEST_FINAL_CLTV,
1432 let route = get_route(
1433 &nodes[0].node.get_our_node_id(), &route_params.payment_params,
1434 &nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
1435 route_params.final_cltv_expiry_delta, nodes[0].logger, &scorer, &random_seed_bytes
1438 let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60).unwrap();
1439 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1440 let payment_event = {
1442 let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
1443 assert_eq!(added_monitors.len(), 1);
1444 added_monitors.clear();
1446 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1447 assert_eq!(events.len(), 1);
1448 SendEvent::from_event(events.remove(0))
1450 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1451 commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
1453 // Check that we generate the PaymentIntercepted event when an intercept forward is detected.
1454 let events = nodes[1].node.get_and_clear_pending_events();
1455 assert_eq!(events.len(), 1);
1456 let (intercept_id, expected_outbound_amount_msat) = match events[0] {
1457 crate::util::events::Event::HTLCIntercepted {
1458 intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
1460 assert_eq!(pmt_hash, payment_hash);
1461 assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
1462 assert_eq!(short_channel_id, intercept_scid);
1463 (intercept_id, expected_outbound_amount_msat)
1468 // Check for unknown channel id error.
1469 let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1470 assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not found", log_bytes!([42; 32])) });
1472 if test == InterceptTest::Fail {
1473 // Ensure we can fail the intercepted payment back.
1474 nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
1475 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
1476 nodes[1].node.process_pending_htlc_forwards();
1477 let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1478 check_added_monitors!(&nodes[1], 1);
1479 assert!(update_fail.update_fail_htlcs.len() == 1);
1480 let fail_msg = update_fail.update_fail_htlcs[0].clone();
1481 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1482 commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
1484 // Ensure the payment fails with the expected error.
1485 let fail_conditions = PaymentFailedConditions::new()
1486 .blamed_scid(intercept_scid)
1487 .blamed_chan_closed(true)
1488 .expected_htlc_error_data(0x4000 | 10, &[]);
1489 expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
1490 } else if test == InterceptTest::Forward {
1491 // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
1492 let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
1493 let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1494 assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
1495 assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
1497 // Open the just-in-time channel so the payment can then be forwarded.
1498 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1500 // Finally, forward the intercepted payment through and claim it.
1501 nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
1502 expect_pending_htlcs_forwardable!(nodes[1]);
1504 let payment_event = {
1506 let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
1507 assert_eq!(added_monitors.len(), 1);
1508 added_monitors.clear();
1510 let mut events = nodes[1].node.get_and_clear_pending_msg_events();
1511 assert_eq!(events.len(), 1);
1512 SendEvent::from_event(events.remove(0))
1514 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
1515 commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
1516 expect_pending_htlcs_forwardable!(nodes[2]);
1518 let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1519 expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
1520 do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
1521 let events = nodes[0].node.get_and_clear_pending_events();
1522 assert_eq!(events.len(), 2);
1524 Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
1525 assert_eq!(payment_preimage, *ev_preimage);
1526 assert_eq!(payment_hash, *ev_hash);
1527 assert_eq!(fee_paid_msat, &Some(1000));
1529 _ => panic!("Unexpected event")
1532 Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
1533 assert_eq!(hash, Some(payment_hash));
1535 _ => panic!("Unexpected event")
1537 } else if test == InterceptTest::Timeout {
1538 let mut block = Block {
1539 header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
1542 connect_block(&nodes[0], &block);
1543 connect_block(&nodes[1], &block);
1544 for _ in 0..TEST_FINAL_CLTV {
1545 block.header.prev_blockhash = block.block_hash();
1546 connect_block(&nodes[0], &block);
1547 connect_block(&nodes[1], &block);
1549 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
1550 check_added_monitors!(nodes[1], 1);
1551 let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1552 assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
1553 assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
1554 assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
1555 assert!(htlc_timeout_updates.update_fee.is_none());
1557 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
1558 commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
1559 expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
1561 // Check for unknown intercept id error.
1562 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1563 let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1564 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1565 let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
1566 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });