Merge pull request #1839 from ariard/2022-11-increase-visibility-helpers
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::transaction::OutPoint;
17 use crate::chain::keysinterface::KeysInterface;
18 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use crate::ln::channelmanager::{self, BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS};
20 use crate::ln::msgs;
21 use crate::ln::msgs::ChannelMessageHandler;
22 use crate::routing::router::{PaymentParameters, get_route};
23 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
24 use crate::util::test_utils;
25 use crate::util::errors::APIError;
26 use crate::util::ser::Writeable;
27
28 use bitcoin::{Block, BlockHeader, TxMerkleNode};
29 use bitcoin::hashes::Hash;
30 use bitcoin::network::constants::Network;
31
32 use crate::prelude::*;
33
34 use crate::ln::functional_test_utils::*;
35 use crate::routing::gossip::NodeId;
36
37 #[test]
38 fn retry_single_path_payment() {
39         let chanmon_cfgs = create_chanmon_cfgs(3);
40         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
41         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
42         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
43
44         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
45         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
46         // Rebalance to find a route
47         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
48
49         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
50
51         // Rebalance so that the first hop fails.
52         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
53
54         // Make sure the payment fails on the first hop.
55         let payment_id = PaymentId(payment_hash.0);
56         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
57         check_added_monitors!(nodes[0], 1);
58         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
59         assert_eq!(events.len(), 1);
60         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
61         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
62         check_added_monitors!(nodes[1], 0);
63         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
64         expect_pending_htlcs_forwardable!(nodes[1]);
65         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
66         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
67         assert!(htlc_updates.update_add_htlcs.is_empty());
68         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
69         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
70         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
71         check_added_monitors!(nodes[1], 1);
72         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
73         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
74         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
75
76         // Rebalance the channel so the retry succeeds.
77         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
78
79         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
80         connect_blocks(&nodes[0], 2);
81
82         // Retry the payment and make sure it succeeds.
83         nodes[0].node.retry_payment(&route, payment_id).unwrap();
84         check_added_monitors!(nodes[0], 1);
85         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
86         assert_eq!(events.len(), 1);
87         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
88         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
89 }
90
91 #[test]
92 fn mpp_failure() {
93         let chanmon_cfgs = create_chanmon_cfgs(4);
94         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
95         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
96         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
97
98         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
99         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
100         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
101         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
102
103         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
104         let path = route.paths[0].clone();
105         route.paths.push(path);
106         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
107         route.paths[0][0].short_channel_id = chan_1_id;
108         route.paths[0][1].short_channel_id = chan_3_id;
109         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
110         route.paths[1][0].short_channel_id = chan_2_id;
111         route.paths[1][1].short_channel_id = chan_4_id;
112         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
113         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
114 }
115
116 #[test]
117 fn mpp_retry() {
118         let chanmon_cfgs = create_chanmon_cfgs(4);
119         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
120         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
121         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
122
123         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
124         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
125         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
126         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
127         // Rebalance
128         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
129
130         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
131         let path = route.paths[0].clone();
132         route.paths.push(path);
133         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
134         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
135         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
136         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
137         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
138         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
139
140         // Initiate the MPP payment.
141         let payment_id = PaymentId(payment_hash.0);
142         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
143         check_added_monitors!(nodes[0], 2); // one monitor per path
144         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
145         assert_eq!(events.len(), 2);
146
147         // Pass half of the payment along the success path.
148         let success_path_msgs = events.remove(0);
149         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
150
151         // Add the HTLC along the first hop.
152         let fail_path_msgs_1 = events.remove(0);
153         let (update_add, commitment_signed) = match fail_path_msgs_1 {
154                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
155                         assert_eq!(update_add_htlcs.len(), 1);
156                         assert!(update_fail_htlcs.is_empty());
157                         assert!(update_fulfill_htlcs.is_empty());
158                         assert!(update_fail_malformed_htlcs.is_empty());
159                         assert!(update_fee.is_none());
160                         (update_add_htlcs[0].clone(), commitment_signed.clone())
161                 },
162                 _ => panic!("Unexpected event"),
163         };
164         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
165         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
166
167         // Attempt to forward the payment and complete the 2nd path's failure.
168         expect_pending_htlcs_forwardable!(&nodes[2]);
169         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
170         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
171         assert!(htlc_updates.update_add_htlcs.is_empty());
172         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
173         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
174         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
175         check_added_monitors!(nodes[2], 1);
176         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
177         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
178         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
179
180         // Rebalance the channel so the second half of the payment can succeed.
181         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
182
183         // Make sure it errors as expected given a too-large amount.
184         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
185                 assert!(err.contains("over total_payment_amt_msat"));
186         } else { panic!("Unexpected error"); }
187
188         // Make sure it errors as expected given the wrong payment_id.
189         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
190                 assert!(err.contains("not found"));
191         } else { panic!("Unexpected error"); }
192
193         // Retry the second half of the payment and make sure it succeeds.
194         let mut path = route.clone();
195         path.paths.remove(0);
196         nodes[0].node.retry_payment(&path, payment_id).unwrap();
197         check_added_monitors!(nodes[0], 1);
198         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
199         assert_eq!(events.len(), 1);
200         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
201         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
202 }
203
204 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
205         let chanmon_cfgs = create_chanmon_cfgs(4);
206         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
207         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
208         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
209
210         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
211         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
212         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
213         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
214
215         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
216         let path = route.paths[0].clone();
217         route.paths.push(path);
218         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
219         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
220         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
221         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
222         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
223         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
224
225         // Initiate the MPP payment.
226         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
227         check_added_monitors!(nodes[0], 2); // one monitor per path
228         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
229         assert_eq!(events.len(), 2);
230
231         // Pass half of the payment along the first path.
232         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), false, None);
233
234         if send_partial_mpp {
235                 // Time out the partial MPP
236                 for _ in 0..MPP_TIMEOUT_TICKS {
237                         nodes[3].node.timer_tick_occurred();
238                 }
239
240                 // Failed HTLC from node 3 -> 1
241                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
242                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
243                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
244                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
245                 check_added_monitors!(nodes[3], 1);
246                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
247
248                 // Failed HTLC from node 1 -> 0
249                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
250                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
251                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
252                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
253                 check_added_monitors!(nodes[1], 1);
254                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
255
256                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
257         } else {
258                 // Pass half of the payment along the second path.
259                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), true, None);
260
261                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
262                 for _ in 0..MPP_TIMEOUT_TICKS {
263                         nodes[3].node.timer_tick_occurred();
264                 }
265
266                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
267         }
268 }
269
270 #[test]
271 fn mpp_receive_timeout() {
272         do_mpp_receive_timeout(true);
273         do_mpp_receive_timeout(false);
274 }
275
276 #[test]
277 fn retry_expired_payment() {
278         let chanmon_cfgs = create_chanmon_cfgs(3);
279         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
280         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
281         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
282
283         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
284         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
285         // Rebalance to find a route
286         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
287
288         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
289
290         // Rebalance so that the first hop fails.
291         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
292
293         // Make sure the payment fails on the first hop.
294         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
295         check_added_monitors!(nodes[0], 1);
296         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
297         assert_eq!(events.len(), 1);
298         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
299         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
300         check_added_monitors!(nodes[1], 0);
301         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
302         expect_pending_htlcs_forwardable!(nodes[1]);
303         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
304         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
305         assert!(htlc_updates.update_add_htlcs.is_empty());
306         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
307         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
308         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
309         check_added_monitors!(nodes[1], 1);
310         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
311         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
312         expect_payment_failed!(nodes[0], payment_hash, false);
313
314         // Mine blocks so the payment will have expired.
315         connect_blocks(&nodes[0], 3);
316
317         // Retry the payment and make sure it errors as expected.
318         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId(payment_hash.0)) {
319                 assert!(err.contains("not found"));
320         } else {
321                 panic!("Unexpected error");
322         }
323 }
324
325 #[test]
326 fn no_pending_leak_on_initial_send_failure() {
327         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
328         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
329         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
330         // pending payment forever and never time it out.
331         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
332         // try, and then check that no pending payment is being tracked.
333         let chanmon_cfgs = create_chanmon_cfgs(2);
334         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
335         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
336         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
337
338         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
339
340         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
341
342         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
343         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
344
345         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
346                 true, APIError::ChannelUnavailable { ref err },
347                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
348
349         assert!(!nodes[0].node.has_pending_payments());
350 }
351
352 fn do_retry_with_no_persist(confirm_before_reload: bool) {
353         // If we send a pending payment and `send_payment` returns success, we should always either
354         // return a payment failure event or a payment success event, and on failure the payment should
355         // be retryable.
356         //
357         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
358         // always persisted asynchronously), the ChannelManager has to reload some payment data from
359         // ChannelMonitor(s) in some cases. This tests that reloading.
360         //
361         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
362         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
363         // which has separate codepaths for "commitment transaction already confirmed" and not.
364         let chanmon_cfgs = create_chanmon_cfgs(3);
365         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
366         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
367         let persister: test_utils::TestPersister;
368         let new_chain_monitor: test_utils::TestChainMonitor;
369         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
370         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
371
372         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
373         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
374
375         // Serialize the ChannelManager prior to sending payments
376         let nodes_0_serialized = nodes[0].node.encode();
377
378         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
379         // out and retry.
380         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
381         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
382         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
383         check_added_monitors!(nodes[0], 1);
384
385         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
386         assert_eq!(events.len(), 1);
387         let payment_event = SendEvent::from_event(events.pop().unwrap());
388         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
389
390         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
391         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
392         // which would prevent retry.
393         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
394         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
395
396         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
397         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
398         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
399         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
400
401         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
402
403         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
404         if confirm_before_reload {
405                 mine_transaction(&nodes[0], &as_commitment_tx);
406                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
407         }
408
409         // The ChannelMonitor should always be the latest version, as we're required to persist it
410         // during the `commitment_signed_dance!()`.
411         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
412         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
413
414         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
415         // force-close the channel.
416         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
417         assert!(nodes[0].node.list_channels().is_empty());
418         assert!(nodes[0].node.has_pending_payments());
419         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
420         assert_eq!(as_broadcasted_txn.len(), 1);
421         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
422
423         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
424         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
425         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
426
427         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
428         // error, as the channel has hit the chain.
429         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
430         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
431         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
432         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
433         assert_eq!(as_err.len(), 1);
434         match as_err[0] {
435                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
436                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
437                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
438                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
439                         check_added_monitors!(nodes[1], 1);
440                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
441                 },
442                 _ => panic!("Unexpected event"),
443         }
444         check_closed_broadcast!(nodes[1], false);
445
446         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
447         // we close in a moment.
448         nodes[2].node.claim_funds(payment_preimage_1);
449         check_added_monitors!(nodes[2], 1);
450         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
451
452         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
453         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
454         check_added_monitors!(nodes[1], 1);
455         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
456         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
457
458         if confirm_before_reload {
459                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
460                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
461         }
462
463         // Create a new channel on which to retry the payment before we fail the payment via the
464         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
465         // connecting several blocks while creating the channel (implying time has passed).
466         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
467         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
468
469         mine_transaction(&nodes[1], &as_commitment_tx);
470         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
471         assert_eq!(bs_htlc_claim_txn.len(), 1);
472         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
473
474         if !confirm_before_reload {
475                 mine_transaction(&nodes[0], &as_commitment_tx);
476         }
477         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
478         expect_payment_sent!(nodes[0], payment_preimage_1);
479         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
480         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
481         assert_eq!(as_htlc_timeout_txn.len(), 2);
482         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
483         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
484         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
485         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
486                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
487         } else {
488                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
489         }
490         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
491         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
492
493         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
494         // reloaded) via a route over the new channel, which work without issue and eventually be
495         // received and claimed at the recipient just like any other payment.
496         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
497
498         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
499         // and not the original fee. We also update node[1]'s relevant config as
500         // do_claim_payment_along_route expects us to never overpay.
501         {
502                 let mut channel_state = nodes[1].node.channel_state.lock().unwrap();
503                 let mut channel = channel_state.by_id.get_mut(&chan_id_2).unwrap();
504                 let mut new_config = channel.config();
505                 new_config.forwarding_fee_base_msat += 100_000;
506                 channel.update_config(&new_config);
507                 new_route.paths[0][0].fee_msat += 100_000;
508         }
509
510         // Force expiration of the channel's previous config.
511         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
512                 nodes[1].node.timer_tick_occurred();
513         }
514
515         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
516         nodes[0].node.retry_payment(&new_route, PaymentId(payment_hash.0)).unwrap();
517         check_added_monitors!(nodes[0], 1);
518         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
519         assert_eq!(events.len(), 1);
520         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
521         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
522         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
523 }
524
525 #[test]
526 fn retry_with_no_persist() {
527         do_retry_with_no_persist(true);
528         do_retry_with_no_persist(false);
529 }
530
531 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
532         // Test that an off-chain completed payment is not retryable on restart. This was previously
533         // broken for dust payments, but we test for both dust and non-dust payments.
534         //
535         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
536         // output at all.
537         let chanmon_cfgs = create_chanmon_cfgs(3);
538         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
539
540         let mut manually_accept_config = test_default_channel_config();
541         manually_accept_config.manually_accept_inbound_channels = true;
542
543         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
544
545         let first_persister: test_utils::TestPersister;
546         let first_new_chain_monitor: test_utils::TestChainMonitor;
547         let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
548         let second_persister: test_utils::TestPersister;
549         let second_new_chain_monitor: test_utils::TestChainMonitor;
550         let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
551         let third_persister: test_utils::TestPersister;
552         let third_new_chain_monitor: test_utils::TestChainMonitor;
553         let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
554
555         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
556
557         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
558         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
559         confirm_transaction(&nodes[0], &funding_tx);
560         confirm_transaction(&nodes[1], &funding_tx);
561         // Ignore the announcement_signatures messages
562         nodes[0].node.get_and_clear_pending_msg_events();
563         nodes[1].node.get_and_clear_pending_msg_events();
564         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
565
566         // Serialize the ChannelManager prior to sending payments
567         let mut nodes_0_serialized = nodes[0].node.encode();
568
569         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
570         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
571
572         // The ChannelMonitor should always be the latest version, as we're required to persist it
573         // during the `commitment_signed_dance!()`.
574         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
575
576         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
577         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
578
579         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
580         // force-close the channel.
581         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
582         assert!(nodes[0].node.list_channels().is_empty());
583         assert!(nodes[0].node.has_pending_payments());
584         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
585
586         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
587         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
588
589         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
590         // error, as the channel has hit the chain.
591         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
592         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
593         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
594         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
595         assert_eq!(as_err.len(), 1);
596         let bs_commitment_tx;
597         match as_err[0] {
598                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
599                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
600                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
601                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
602                         check_added_monitors!(nodes[1], 1);
603                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
604                 },
605                 _ => panic!("Unexpected event"),
606         }
607         check_closed_broadcast!(nodes[1], false);
608
609         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
610         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
611         // incoming HTLCs with the same payment hash later.
612         nodes[2].node.fail_htlc_backwards(&payment_hash);
613         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
614         check_added_monitors!(nodes[2], 1);
615
616         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
617         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
618         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
619         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
620                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
621
622         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
623         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
624         // after the commitment transaction, so always connect the commitment transaction.
625         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
626         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
627         if !use_dust {
628                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
629                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
630                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
631                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
632                 assert_eq!(as_htlc_timeout.len(), 1);
633
634                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
635                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
636                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
637                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
638         }
639
640         // Create a new channel on which to retry the payment before we fail the payment via the
641         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
642         // connecting several blocks while creating the channel (implying time has passed).
643         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
644         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
645         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
646
647         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
648         // confirming, we will fail as it's considered still-pending...
649         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
650         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
651         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
652
653         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
654         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
655         // (which should also still work).
656         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
657         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
658         // We set mpp_parts_remain to avoid having abandon_payment called
659         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
660
661         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
662         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
663         nodes_0_serialized = nodes[0].node.encode();
664
665         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
666         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
667
668         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
669         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
670
671         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
672
673         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
674         // the payment is not (spuriously) listed as still pending.
675         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
676         check_added_monitors!(nodes[0], 1);
677         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
678         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
679
680         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
681         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
682
683         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
684         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
685         nodes_0_serialized = nodes[0].node.encode();
686
687         // Ensure that after reload we cannot retry the payment.
688         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
689         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
690
691         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
692
693         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
694         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
695 }
696
697 #[test]
698 fn test_completed_payment_not_retryable_on_reload() {
699         do_test_completed_payment_not_retryable_on_reload(true);
700         do_test_completed_payment_not_retryable_on_reload(false);
701 }
702
703
704 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
705         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
706         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
707         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
708         // the ChannelMonitor tells it to.
709         //
710         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
711         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
712         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
713         let chanmon_cfgs = create_chanmon_cfgs(2);
714         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
715         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
716         let persister: test_utils::TestPersister;
717         let new_chain_monitor: test_utils::TestChainMonitor;
718         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
719         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
720
721         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
722
723         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
724         // nodes[0].
725         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
726         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
727         check_closed_broadcast!(nodes[0], true);
728         check_added_monitors!(nodes[0], 1);
729         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
730
731         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
732         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
733
734         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
735         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
736         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
737         assert_eq!(node_txn.len(), 3);
738         assert_eq!(node_txn[0], node_txn[1]);
739         check_spends!(node_txn[1], funding_tx);
740         check_spends!(node_txn[2], node_txn[1]);
741         let timeout_txn = vec![node_txn[2].clone()];
742
743         nodes[1].node.claim_funds(payment_preimage);
744         check_added_monitors!(nodes[1], 1);
745         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
746
747         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
748         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
749         check_closed_broadcast!(nodes[1], true);
750         check_added_monitors!(nodes[1], 1);
751         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
752         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
753         assert_eq!(claim_txn.len(), 3);
754         check_spends!(claim_txn[0], node_txn[1]);
755         check_spends!(claim_txn[1], funding_tx);
756         check_spends!(claim_txn[2], claim_txn[1]);
757
758         header.prev_blockhash = nodes[0].best_block_hash();
759         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
760
761         if confirm_commitment_tx {
762                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
763         }
764
765         header.prev_blockhash = nodes[0].best_block_hash();
766         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
767
768         if payment_timeout {
769                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
770                 connect_block(&nodes[0], &claim_block);
771                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
772         }
773
774         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
775         // returning InProgress. This should cause the claim event to never make its way to the
776         // ChannelManager.
777         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
778         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
779
780         if payment_timeout {
781                 connect_blocks(&nodes[0], 1);
782         } else {
783                 connect_block(&nodes[0], &claim_block);
784         }
785
786         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
787         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
788                 .get_mut(&funding_txo).unwrap().drain().collect();
789         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
790         // If we're testing connection idempotency we may get substantially more.
791         assert!(mon_updates.len() >= 1);
792         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
793         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
794
795         // If we persist the ChannelManager here, we should get the PaymentSent event after
796         // deserialization.
797         let mut chan_manager_serialized = Vec::new();
798         if !persist_manager_post_event {
799                 chan_manager_serialized = nodes[0].node.encode();
800         }
801
802         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
803         // payment sent event.
804         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
805         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
806         for update in mon_updates {
807                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
808         }
809         if payment_timeout {
810                 expect_payment_failed!(nodes[0], payment_hash, false);
811         } else {
812                 expect_payment_sent!(nodes[0], payment_preimage);
813         }
814
815         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
816         // twice.
817         if persist_manager_post_event {
818                 chan_manager_serialized = nodes[0].node.encode();
819         }
820
821         // Now reload nodes[0]...
822         reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
823
824         if persist_manager_post_event {
825                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
826         } else if payment_timeout {
827                 expect_payment_failed!(nodes[0], payment_hash, false);
828         } else {
829                 expect_payment_sent!(nodes[0], payment_preimage);
830         }
831
832         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
833         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
834         // payment events should kick in, leaving us with no pending events here.
835         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
836         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
837         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
838 }
839
840 #[test]
841 fn test_dup_htlc_onchain_fails_on_reload() {
842         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
843         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
844         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
845         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
846         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
847         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
848 }
849
850 #[test]
851 fn test_fulfill_restart_failure() {
852         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
853         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
854         // again, or fail it, giving us free money.
855         //
856         // Of course probably they won't fail it and give us free money, but because we have code to
857         // handle it, we should test the logic for it anyway. We do that here.
858         let chanmon_cfgs = create_chanmon_cfgs(2);
859         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
860         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
861         let persister: test_utils::TestPersister;
862         let new_chain_monitor: test_utils::TestChainMonitor;
863         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
864         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
865
866         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
867         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
868
869         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
870         // pre-fulfill, which we do by serializing it here.
871         let chan_manager_serialized = nodes[1].node.encode();
872         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
873
874         nodes[1].node.claim_funds(payment_preimage);
875         check_added_monitors!(nodes[1], 1);
876         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
877
878         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
879         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
880         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
881
882         // Now reload nodes[1]...
883         reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
884
885         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
886         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
887
888         nodes[1].node.fail_htlc_backwards(&payment_hash);
889         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
890         check_added_monitors!(nodes[1], 1);
891         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
892         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
893         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
894         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
895         // it had already considered the payment fulfilled, and now they just got free money.
896         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
897 }
898
899 #[test]
900 fn get_ldk_payment_preimage() {
901         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
902         let chanmon_cfgs = create_chanmon_cfgs(2);
903         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
904         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
905         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
906         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
907
908         let amt_msat = 60_000;
909         let expiry_secs = 60 * 60;
910         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap();
911
912         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id())
913                 .with_features(channelmanager::provided_invoice_features());
914         let scorer = test_utils::TestScorer::with_penalty(0);
915         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
916         let random_seed_bytes = keys_manager.get_secure_random_bytes();
917         let route = get_route(
918                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
919                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
920                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
921         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
922         check_added_monitors!(nodes[0], 1);
923
924         // Make sure to use `get_payment_preimage`
925         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
926         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
927         assert_eq!(events.len(), 1);
928         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
929         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
930 }
931
932 #[test]
933 fn sent_probe_is_probe_of_sending_node() {
934         let chanmon_cfgs = create_chanmon_cfgs(3);
935         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
936         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
937         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
938
939         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
940         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
941
942         // First check we refuse to build a single-hop probe
943         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
944         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
945
946         // Then build an actual two-hop probing path
947         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
948
949         match nodes[0].node.send_probe(route.paths[0].clone()) {
950                 Ok((payment_hash, payment_id)) => {
951                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
952                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
953                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
954                 },
955                 _ => panic!(),
956         }
957
958         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
959         check_added_monitors!(nodes[0], 1);
960 }
961
962 #[test]
963 fn successful_probe_yields_event() {
964         let chanmon_cfgs = create_chanmon_cfgs(3);
965         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
966         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
967         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
968
969         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
970         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
971
972         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
973
974         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
975
976         // node[0] -- update_add_htlcs -> node[1]
977         check_added_monitors!(nodes[0], 1);
978         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
979         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
980         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
981         check_added_monitors!(nodes[1], 0);
982         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
983         expect_pending_htlcs_forwardable!(nodes[1]);
984
985         // node[1] -- update_add_htlcs -> node[2]
986         check_added_monitors!(nodes[1], 1);
987         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
988         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
989         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
990         check_added_monitors!(nodes[2], 0);
991         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
992
993         // node[1] <- update_fail_htlcs -- node[2]
994         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
995         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
996         check_added_monitors!(nodes[1], 0);
997         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
998
999         // node[0] <- update_fail_htlcs -- node[1]
1000         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1001         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1002         check_added_monitors!(nodes[0], 0);
1003         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1004
1005         let mut events = nodes[0].node.get_and_clear_pending_events();
1006         assert_eq!(events.len(), 1);
1007         match events.drain(..).next().unwrap() {
1008                 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1009                         assert_eq!(payment_id, ev_pid);
1010                         assert_eq!(payment_hash, ev_ph);
1011                 },
1012                 _ => panic!(),
1013         };
1014 }
1015
1016 #[test]
1017 fn failed_probe_yields_event() {
1018         let chanmon_cfgs = create_chanmon_cfgs(3);
1019         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1020         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1021         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1022
1023         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1024         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1025
1026         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1027
1028         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
1029
1030         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1031
1032         // node[0] -- update_add_htlcs -> node[1]
1033         check_added_monitors!(nodes[0], 1);
1034         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1035         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1036         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1037         check_added_monitors!(nodes[1], 0);
1038         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1039         expect_pending_htlcs_forwardable!(nodes[1]);
1040
1041         // node[0] <- update_fail_htlcs -- node[1]
1042         check_added_monitors!(nodes[1], 1);
1043         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1044         // Skip the PendingHTLCsForwardable event
1045         let _events = nodes[1].node.get_and_clear_pending_events();
1046         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1047         check_added_monitors!(nodes[0], 0);
1048         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1049
1050         let mut events = nodes[0].node.get_and_clear_pending_events();
1051         assert_eq!(events.len(), 1);
1052         match events.drain(..).next().unwrap() {
1053                 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1054                         assert_eq!(payment_id, ev_pid);
1055                         assert_eq!(payment_hash, ev_ph);
1056                 },
1057                 _ => panic!(),
1058         };
1059 }
1060
1061 #[test]
1062 fn onchain_failed_probe_yields_event() {
1063         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
1064         // event.
1065         let chanmon_cfgs = create_chanmon_cfgs(3);
1066         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1067         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1068         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1069
1070         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1071         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1072
1073         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1074
1075         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1076         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1077         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1078
1079         // node[0] -- update_add_htlcs -> node[1]
1080         check_added_monitors!(nodes[0], 1);
1081         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1082         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1083         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1084         check_added_monitors!(nodes[1], 0);
1085         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1086         expect_pending_htlcs_forwardable!(nodes[1]);
1087
1088         check_added_monitors!(nodes[1], 1);
1089         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1090
1091         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1092         // Node A, which after 6 confirmations should result in a probe failure event.
1093         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1094         confirm_transaction(&nodes[0], &bs_txn[0]);
1095         check_closed_broadcast!(&nodes[0], true);
1096         check_added_monitors!(nodes[0], 1);
1097
1098         let mut events = nodes[0].node.get_and_clear_pending_events();
1099         assert_eq!(events.len(), 2);
1100         let mut found_probe_failed = false;
1101         for event in events.drain(..) {
1102                 match event {
1103                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1104                                 assert_eq!(payment_id, ev_pid);
1105                                 assert_eq!(payment_hash, ev_ph);
1106                                 found_probe_failed = true;
1107                         },
1108                         Event::ChannelClosed { .. } => {},
1109                         _ => panic!(),
1110                 }
1111         }
1112         assert!(found_probe_failed);
1113 }
1114
1115 #[test]
1116 fn claimed_send_payment_idempotent() {
1117         // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1118         let chanmon_cfgs = create_chanmon_cfgs(2);
1119         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1120         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1121         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1122
1123         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1124
1125         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1126         let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1127
1128         macro_rules! check_send_rejected {
1129                 () => {
1130                         // If we try to resend a new payment with a different payment_hash but with the same
1131                         // payment_id, it should be rejected.
1132                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1133                         match send_result {
1134                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1135                                 _ => panic!("Unexpected send result: {:?}", send_result),
1136                         }
1137
1138                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1139                         // also be rejected.
1140                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1141                         match send_result {
1142                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1143                                 _ => panic!("Unexpected send result: {:?}", send_result),
1144                         }
1145                 }
1146         }
1147
1148         check_send_rejected!();
1149
1150         // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1151         // not been seen by the user. At this point, from the user perspective nothing has changed, so
1152         // we must remain just as idempotent as we were before.
1153         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1154
1155         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1156                 nodes[0].node.timer_tick_occurred();
1157         }
1158
1159         check_send_rejected!();
1160
1161         // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1162         // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1163         // the payment complete. However, they could have called `send_payment` while the event was
1164         // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1165         // after the event is handled a duplicate payment should sitll be rejected.
1166         expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1167         check_send_rejected!();
1168
1169         // If relatively little time has passed, a duplicate payment should still fail.
1170         nodes[0].node.timer_tick_occurred();
1171         check_send_rejected!();
1172
1173         // However, after some time has passed (at least more than the one timer tick above), a
1174         // duplicate payment should go through, as ChannelManager should no longer have any remaining
1175         // references to the old payment data.
1176         for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1177                 nodes[0].node.timer_tick_occurred();
1178         }
1179
1180         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1181         check_added_monitors!(nodes[0], 1);
1182         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1183         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1184 }
1185
1186 #[test]
1187 fn abandoned_send_payment_idempotent() {
1188         // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1189         // abandon_payment.
1190         let chanmon_cfgs = create_chanmon_cfgs(2);
1191         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1192         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1193         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1194
1195         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1196
1197         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1198         let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1199
1200         macro_rules! check_send_rejected {
1201                 () => {
1202                         // If we try to resend a new payment with a different payment_hash but with the same
1203                         // payment_id, it should be rejected.
1204                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1205                         match send_result {
1206                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1207                                 _ => panic!("Unexpected send result: {:?}", send_result),
1208                         }
1209
1210                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1211                         // also be rejected.
1212                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1213                         match send_result {
1214                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1215                                 _ => panic!("Unexpected send result: {:?}", send_result),
1216                         }
1217                 }
1218         }
1219
1220         check_send_rejected!();
1221
1222         nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1223         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1224
1225         pass_failed_payment_back_no_abandon(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash);
1226         check_send_rejected!();
1227
1228         // Until we abandon the payment, no matter how many timer ticks pass, we still cannot reuse the
1229         // PaymentId.
1230         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1231                 nodes[0].node.timer_tick_occurred();
1232         }
1233         check_send_rejected!();
1234
1235         nodes[0].node.abandon_payment(payment_id);
1236         get_event!(nodes[0], Event::PaymentFailed);
1237
1238         // However, we can reuse the PaymentId immediately after we `abandon_payment`.
1239         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1240         check_added_monitors!(nodes[0], 1);
1241         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1242         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1243 }
1244
1245 #[test]
1246 fn test_trivial_inflight_htlc_tracking(){
1247         // In this test, we test three scenarios:
1248         // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1249         // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1250         // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1251         let chanmon_cfgs = create_chanmon_cfgs(3);
1252         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1253         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1254         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1255
1256         let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1257         let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1258
1259         // Send and claim the payment. Inflight HTLCs should be empty.
1260         send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000);
1261         {
1262                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1263
1264                 let node_0_channel_lock = nodes[0].node.channel_state.lock().unwrap();
1265                 let node_1_channel_lock = nodes[1].node.channel_state.lock().unwrap();
1266                 let channel_1 = node_0_channel_lock.by_id.get(&chan_1_id).unwrap();
1267                 let channel_2 = node_1_channel_lock.by_id.get(&chan_2_id).unwrap();
1268
1269                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1270                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1271                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1272                         channel_1.get_short_channel_id().unwrap()
1273                 );
1274                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1275                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1276                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1277                         channel_2.get_short_channel_id().unwrap()
1278                 );
1279
1280                 assert_eq!(chan_1_used_liquidity, None);
1281                 assert_eq!(chan_2_used_liquidity, None);
1282         }
1283
1284         // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1285         let (payment_preimage, _,  _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000);
1286         {
1287                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1288
1289                 let node_0_channel_lock = nodes[0].node.channel_state.lock().unwrap();
1290                 let node_1_channel_lock = nodes[1].node.channel_state.lock().unwrap();
1291                 let channel_1 = node_0_channel_lock.by_id.get(&chan_1_id).unwrap();
1292                 let channel_2 = node_1_channel_lock.by_id.get(&chan_2_id).unwrap();
1293
1294                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1295                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1296                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1297                         channel_1.get_short_channel_id().unwrap()
1298                 );
1299                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1300                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1301                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1302                         channel_2.get_short_channel_id().unwrap()
1303                 );
1304
1305                 // First hop accounts for expected 1000 msat fee
1306                 assert_eq!(chan_1_used_liquidity, Some(501000));
1307                 assert_eq!(chan_2_used_liquidity, Some(500000));
1308         }
1309
1310         // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1311         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1312         {
1313                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1314
1315                 let node_0_channel_lock = nodes[0].node.channel_state.lock().unwrap();
1316                 let node_1_channel_lock = nodes[1].node.channel_state.lock().unwrap();
1317                 let channel_1 = node_0_channel_lock.by_id.get(&chan_1_id).unwrap();
1318                 let channel_2 = node_1_channel_lock.by_id.get(&chan_2_id).unwrap();
1319
1320                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1321                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1322                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1323                         channel_1.get_short_channel_id().unwrap()
1324                 );
1325                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1326                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1327                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1328                         channel_2.get_short_channel_id().unwrap()
1329                 );
1330
1331                 assert_eq!(chan_1_used_liquidity, None);
1332                 assert_eq!(chan_2_used_liquidity, None);
1333         }
1334 }
1335
1336 #[test]
1337 fn test_holding_cell_inflight_htlcs() {
1338         let chanmon_cfgs = create_chanmon_cfgs(2);
1339         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1340         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1341         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1342         let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1343
1344         let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1345         let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1346
1347         // Queue up two payments - one will be delivered right away, one immediately goes into the
1348         // holding cell as nodes[0] is AwaitingRAA.
1349         {
1350                 nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1351                 check_added_monitors!(nodes[0], 1);
1352                 nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1353                 check_added_monitors!(nodes[0], 0);
1354         }
1355
1356         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1357
1358         {
1359                 let channel_lock = nodes[0].node.channel_state.lock().unwrap();
1360                 let channel = channel_lock.by_id.get(&channel_id).unwrap();
1361
1362                 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1363                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1364                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1365                         channel.get_short_channel_id().unwrap()
1366                 );
1367
1368                 assert_eq!(used_liquidity, Some(2000000));
1369         }
1370
1371         // Clear pending events so test doesn't throw a "Had excess message on node..." error
1372         nodes[0].node.get_and_clear_pending_msg_events();
1373 }