Merge pull request #2133 from tnull/2023-03-pin-syn
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::keysinterface::EntropySource;
17 use crate::chain::transaction::OutPoint;
18 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, PathFailure};
19 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
20 use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS, RecentPaymentDetails};
21 use crate::ln::features::InvoiceFeatures;
22 use crate::ln::msgs;
23 use crate::ln::msgs::ChannelMessageHandler;
24 use crate::ln::outbound_payment::Retry;
25 use crate::routing::gossip::{EffectiveCapacity, RoutingFees};
26 use crate::routing::router::{get_route, PaymentParameters, Route, RouteHint, RouteHintHop, RouteHop, RouteParameters};
27 use crate::routing::scoring::ChannelUsage;
28 use crate::util::test_utils;
29 use crate::util::errors::APIError;
30 use crate::util::ser::Writeable;
31 use crate::util::string::UntrustedString;
32
33 use bitcoin::{Block, BlockHeader, TxMerkleNode};
34 use bitcoin::hashes::Hash;
35 use bitcoin::network::constants::Network;
36
37 use crate::prelude::*;
38
39 use crate::ln::functional_test_utils::*;
40 use crate::routing::gossip::NodeId;
41 #[cfg(feature = "std")]
42 use {
43         crate::util::time::tests::SinceEpoch,
44         std::time::{SystemTime, Instant, Duration}
45 };
46
47 #[test]
48 fn mpp_failure() {
49         let chanmon_cfgs = create_chanmon_cfgs(4);
50         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
51         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
52         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
53
54         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
55         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
56         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
57         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
58
59         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
60         let path = route.paths[0].clone();
61         route.paths.push(path);
62         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
63         route.paths[0][0].short_channel_id = chan_1_id;
64         route.paths[0][1].short_channel_id = chan_3_id;
65         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
66         route.paths[1][0].short_channel_id = chan_2_id;
67         route.paths[1][1].short_channel_id = chan_4_id;
68         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
69         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
70 }
71
72 #[test]
73 fn mpp_retry() {
74         let chanmon_cfgs = create_chanmon_cfgs(4);
75         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
76         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
77         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
78
79         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
80         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
81         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
82         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2);
83         // Rebalance
84         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
85
86         let amt_msat = 1_000_000;
87         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], amt_msat);
88         let path = route.paths[0].clone();
89         route.paths.push(path);
90         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
91         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
92         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
93         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
94         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
95         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
96
97         // Initiate the MPP payment.
98         let payment_id = PaymentId(payment_hash.0);
99         let mut route_params = RouteParameters {
100                 payment_params: route.payment_params.clone().unwrap(),
101                 final_value_msat: amt_msat,
102         };
103
104         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
105         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
106         check_added_monitors!(nodes[0], 2); // one monitor per path
107         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
108         assert_eq!(events.len(), 2);
109
110         // Pass half of the payment along the success path.
111         let success_path_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
112         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
113
114         // Add the HTLC along the first hop.
115         let fail_path_msgs_1 = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
116         let (update_add, commitment_signed) = match fail_path_msgs_1 {
117                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
118                         assert_eq!(update_add_htlcs.len(), 1);
119                         assert!(update_fail_htlcs.is_empty());
120                         assert!(update_fulfill_htlcs.is_empty());
121                         assert!(update_fail_malformed_htlcs.is_empty());
122                         assert!(update_fee.is_none());
123                         (update_add_htlcs[0].clone(), commitment_signed.clone())
124                 },
125                 _ => panic!("Unexpected event"),
126         };
127         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
128         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
129
130         // Attempt to forward the payment and complete the 2nd path's failure.
131         expect_pending_htlcs_forwardable!(&nodes[2]);
132         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
133         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
134         assert!(htlc_updates.update_add_htlcs.is_empty());
135         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
136         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
137         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
138         check_added_monitors!(nodes[2], 1);
139         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
140         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
141         let mut events = nodes[0].node.get_and_clear_pending_events();
142         match events[1] {
143                 Event::PendingHTLCsForwardable { .. } => {},
144                 _ => panic!("Unexpected event")
145         }
146         events.remove(1);
147         expect_payment_failed_conditions_event(events, payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
148
149         // Rebalance the channel so the second half of the payment can succeed.
150         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
151
152         // Retry the second half of the payment and make sure it succeeds.
153         route.paths.remove(0);
154         route_params.final_value_msat = 1_000_000;
155         route_params.payment_params.previously_failed_channels.push(chan_4_update.contents.short_channel_id);
156         nodes[0].router.expect_find_route(route_params, Ok(route));
157         nodes[0].node.process_pending_htlc_forwards();
158         check_added_monitors!(nodes[0], 1);
159         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
160         assert_eq!(events.len(), 1);
161         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
162         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
163 }
164
165 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
166         let chanmon_cfgs = create_chanmon_cfgs(4);
167         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
168         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
169         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
170
171         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
172         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
173         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
174         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3);
175
176         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
177         let path = route.paths[0].clone();
178         route.paths.push(path);
179         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
180         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
181         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
182         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
183         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
184         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
185
186         // Initiate the MPP payment.
187         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
188         check_added_monitors!(nodes[0], 2); // one monitor per path
189         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
190         assert_eq!(events.len(), 2);
191
192         // Pass half of the payment along the first path.
193         let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
194         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None);
195
196         if send_partial_mpp {
197                 // Time out the partial MPP
198                 for _ in 0..MPP_TIMEOUT_TICKS {
199                         nodes[3].node.timer_tick_occurred();
200                 }
201
202                 // Failed HTLC from node 3 -> 1
203                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
204                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
205                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
206                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
207                 check_added_monitors!(nodes[3], 1);
208                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
209
210                 // Failed HTLC from node 1 -> 0
211                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
212                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
213                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
214                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
215                 check_added_monitors!(nodes[1], 1);
216                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
217
218                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
219         } else {
220                 // Pass half of the payment along the second path.
221                 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
222                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None);
223
224                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
225                 for _ in 0..MPP_TIMEOUT_TICKS {
226                         nodes[3].node.timer_tick_occurred();
227                 }
228
229                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
230         }
231 }
232
233 #[test]
234 fn mpp_receive_timeout() {
235         do_mpp_receive_timeout(true);
236         do_mpp_receive_timeout(false);
237 }
238
239 #[test]
240 fn no_pending_leak_on_initial_send_failure() {
241         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
242         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
243         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
244         // pending payment forever and never time it out.
245         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
246         // try, and then check that no pending payment is being tracked.
247         let chanmon_cfgs = create_chanmon_cfgs(2);
248         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
249         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
250         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
251
252         create_announced_chan_between_nodes(&nodes, 0, 1);
253
254         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
255
256         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
257         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
258
259         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
260                 true, APIError::ChannelUnavailable { ref err },
261                 assert_eq!(err, "Peer for first hop currently disconnected"));
262
263         assert!(!nodes[0].node.has_pending_payments());
264 }
265
266 fn do_retry_with_no_persist(confirm_before_reload: bool) {
267         // If we send a pending payment and `send_payment` returns success, we should always either
268         // return a payment failure event or a payment success event, and on failure the payment should
269         // be retryable.
270         //
271         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
272         // always persisted asynchronously), the ChannelManager has to reload some payment data from
273         // ChannelMonitor(s) in some cases. This tests that reloading.
274         //
275         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
276         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
277         // which has separate codepaths for "commitment transaction already confirmed" and not.
278         let chanmon_cfgs = create_chanmon_cfgs(3);
279         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
280         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
281         let persister: test_utils::TestPersister;
282         let new_chain_monitor: test_utils::TestChainMonitor;
283         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
284         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
285
286         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
287         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
288
289         // Serialize the ChannelManager prior to sending payments
290         let nodes_0_serialized = nodes[0].node.encode();
291
292         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
293         // out and retry.
294         let amt_msat = 1_000_000;
295         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
296         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
297         let route_params = RouteParameters {
298                 payment_params: route.payment_params.clone().unwrap(),
299                 final_value_msat: amt_msat,
300         };
301         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
302         check_added_monitors!(nodes[0], 1);
303
304         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
305         assert_eq!(events.len(), 1);
306         let payment_event = SendEvent::from_event(events.pop().unwrap());
307         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
308
309         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
310         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
311         // which would prevent retry.
312         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id());
313         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
314
315         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
316         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
317         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
318         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
319
320         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
321
322         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
323         if confirm_before_reload {
324                 mine_transaction(&nodes[0], &as_commitment_tx);
325                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
326         }
327
328         // The ChannelMonitor should always be the latest version, as we're required to persist it
329         // during the `commitment_signed_dance!()`.
330         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
331         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
332
333         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
334         // force-close the channel.
335         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
336         assert!(nodes[0].node.list_channels().is_empty());
337         assert!(nodes[0].node.has_pending_payments());
338         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
339         assert_eq!(as_broadcasted_txn.len(), 1);
340         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
341
342         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
343         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
344         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
345
346         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
347         // error, as the channel has hit the chain.
348         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
349         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
350         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
351         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
352         assert_eq!(as_err.len(), 1);
353         match as_err[0] {
354                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
355                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
356                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
357                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
358                         check_added_monitors!(nodes[1], 1);
359                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
360                 },
361                 _ => panic!("Unexpected event"),
362         }
363         check_closed_broadcast!(nodes[1], false);
364
365         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
366         // we close in a moment.
367         nodes[2].node.claim_funds(payment_preimage_1);
368         check_added_monitors!(nodes[2], 1);
369         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
370
371         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
372         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
373         check_added_monitors!(nodes[1], 1);
374         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
375         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
376
377         if confirm_before_reload {
378                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
379                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
380         }
381
382         // Create a new channel on which to retry the payment before we fail the payment via the
383         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
384         // connecting several blocks while creating the channel (implying time has passed).
385         create_announced_chan_between_nodes(&nodes, 0, 1);
386         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
387
388         mine_transaction(&nodes[1], &as_commitment_tx);
389         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
390         assert_eq!(bs_htlc_claim_txn.len(), 1);
391         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
392
393         if !confirm_before_reload {
394                 mine_transaction(&nodes[0], &as_commitment_tx);
395         }
396         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
397         expect_payment_sent!(nodes[0], payment_preimage_1);
398         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
399         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
400         assert_eq!(as_htlc_timeout_txn.len(), 2);
401         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
402         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
403         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
404         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
405                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
406         } else {
407                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
408         }
409         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
410         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
411
412         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
413         // reloaded) via a route over the new channel, which work without issue and eventually be
414         // received and claimed at the recipient just like any other payment.
415         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
416
417         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
418         // and not the original fee. We also update node[1]'s relevant config as
419         // do_claim_payment_along_route expects us to never overpay.
420         {
421                 let per_peer_state = nodes[1].node.per_peer_state.read().unwrap();
422                 let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id())
423                         .unwrap().lock().unwrap();
424                 let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap();
425                 let mut new_config = channel.config();
426                 new_config.forwarding_fee_base_msat += 100_000;
427                 channel.update_config(&new_config);
428                 new_route.paths[0][0].fee_msat += 100_000;
429         }
430
431         // Force expiration of the channel's previous config.
432         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
433                 nodes[1].node.timer_tick_occurred();
434         }
435
436         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
437         nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
438         check_added_monitors!(nodes[0], 1);
439         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
440         assert_eq!(events.len(), 1);
441         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
442         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
443         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
444 }
445
446 #[test]
447 fn retry_with_no_persist() {
448         do_retry_with_no_persist(true);
449         do_retry_with_no_persist(false);
450 }
451
452 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
453         // Test that an off-chain completed payment is not retryable on restart. This was previously
454         // broken for dust payments, but we test for both dust and non-dust payments.
455         //
456         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
457         // output at all.
458         let chanmon_cfgs = create_chanmon_cfgs(3);
459         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
460
461         let mut manually_accept_config = test_default_channel_config();
462         manually_accept_config.manually_accept_inbound_channels = true;
463
464         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
465
466         let first_persister: test_utils::TestPersister;
467         let first_new_chain_monitor: test_utils::TestChainMonitor;
468         let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
469         let second_persister: test_utils::TestPersister;
470         let second_new_chain_monitor: test_utils::TestChainMonitor;
471         let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
472         let third_persister: test_utils::TestPersister;
473         let third_new_chain_monitor: test_utils::TestChainMonitor;
474         let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
475
476         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
477
478         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
479         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
480         confirm_transaction(&nodes[0], &funding_tx);
481         confirm_transaction(&nodes[1], &funding_tx);
482         // Ignore the announcement_signatures messages
483         nodes[0].node.get_and_clear_pending_msg_events();
484         nodes[1].node.get_and_clear_pending_msg_events();
485         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
486
487         // Serialize the ChannelManager prior to sending payments
488         let mut nodes_0_serialized = nodes[0].node.encode();
489
490         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
491         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
492
493         // The ChannelMonitor should always be the latest version, as we're required to persist it
494         // during the `commitment_signed_dance!()`.
495         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
496
497         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
498         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
499
500         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
501         // force-close the channel.
502         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
503         assert!(nodes[0].node.list_channels().is_empty());
504         assert!(nodes[0].node.has_pending_payments());
505         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
506
507         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
508         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
509
510         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
511         // error, as the channel has hit the chain.
512         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
513         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
514         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
515         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
516         assert_eq!(as_err.len(), 1);
517         let bs_commitment_tx;
518         match as_err[0] {
519                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
520                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
521                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
522                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
523                         check_added_monitors!(nodes[1], 1);
524                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
525                 },
526                 _ => panic!("Unexpected event"),
527         }
528         check_closed_broadcast!(nodes[1], false);
529
530         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
531         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
532         // incoming HTLCs with the same payment hash later.
533         nodes[2].node.fail_htlc_backwards(&payment_hash);
534         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
535         check_added_monitors!(nodes[2], 1);
536
537         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
538         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
539         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
540         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
541                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
542
543         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
544         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
545         // after the commitment transaction, so always connect the commitment transaction.
546         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
547         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
548         if !use_dust {
549                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
550                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
551                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
552                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
553                 assert_eq!(as_htlc_timeout.len(), 1);
554
555                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
556                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
557                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
558                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
559         }
560
561         // Create a new channel on which to retry the payment before we fail the payment via the
562         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
563         // connecting several blocks while creating the channel (implying time has passed).
564         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
565         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
566         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
567
568         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
569         // confirming, we will fail as it's considered still-pending...
570         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
571         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
572                 Err(PaymentSendFailure::DuplicatePayment) => {},
573                 _ => panic!("Unexpected error")
574         }
575         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
576
577         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
578         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
579         // (which should also still work).
580         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
581         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
582         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
583
584         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
585         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
586         nodes_0_serialized = nodes[0].node.encode();
587
588         // After the payment failed, we're free to send it again.
589         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id).is_ok());
590         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
591
592         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
593         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
594
595         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
596
597         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
598         // the payment is not (spuriously) listed as still pending.
599         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id).is_ok());
600         check_added_monitors!(nodes[0], 1);
601         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
602         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
603
604         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
605                 Err(PaymentSendFailure::DuplicatePayment) => {},
606                 _ => panic!("Unexpected error")
607         }
608         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
609
610         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
611         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
612         nodes_0_serialized = nodes[0].node.encode();
613
614         // Check that after reload we can send the payment again (though we shouldn't, since it was
615         // claimed previously).
616         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
617         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
618
619         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
620
621         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
622                 Err(PaymentSendFailure::DuplicatePayment) => {},
623                 _ => panic!("Unexpected error")
624         }
625         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
626 }
627
628 #[test]
629 fn test_completed_payment_not_retryable_on_reload() {
630         do_test_completed_payment_not_retryable_on_reload(true);
631         do_test_completed_payment_not_retryable_on_reload(false);
632 }
633
634
635 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
636         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
637         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
638         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
639         // the ChannelMonitor tells it to.
640         //
641         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
642         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
643         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
644         let chanmon_cfgs = create_chanmon_cfgs(2);
645         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
646         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
647         let persister: test_utils::TestPersister;
648         let new_chain_monitor: test_utils::TestChainMonitor;
649         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
650         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
651
652         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
653
654         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
655         // nodes[0].
656         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
657         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
658         check_closed_broadcast!(nodes[0], true);
659         check_added_monitors!(nodes[0], 1);
660         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
661
662         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
663         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
664
665         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
666         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
667         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
668         assert_eq!(node_txn.len(), 3);
669         assert_eq!(node_txn[0], node_txn[1]);
670         check_spends!(node_txn[1], funding_tx);
671         check_spends!(node_txn[2], node_txn[1]);
672         let timeout_txn = vec![node_txn[2].clone()];
673
674         nodes[1].node.claim_funds(payment_preimage);
675         check_added_monitors!(nodes[1], 1);
676         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
677
678         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
679         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
680         check_closed_broadcast!(nodes[1], true);
681         check_added_monitors!(nodes[1], 1);
682         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
683         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
684         assert_eq!(claim_txn.len(), 1);
685         check_spends!(claim_txn[0], node_txn[1]);
686
687         header.prev_blockhash = nodes[0].best_block_hash();
688         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
689
690         if confirm_commitment_tx {
691                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
692         }
693
694         header.prev_blockhash = nodes[0].best_block_hash();
695         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
696
697         if payment_timeout {
698                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
699                 connect_block(&nodes[0], &claim_block);
700                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
701         }
702
703         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
704         // returning InProgress. This should cause the claim event to never make its way to the
705         // ChannelManager.
706         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
707         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
708
709         if payment_timeout {
710                 connect_blocks(&nodes[0], 1);
711         } else {
712                 connect_block(&nodes[0], &claim_block);
713         }
714
715         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
716         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
717                 .get_mut(&funding_txo).unwrap().drain().collect();
718         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
719         // If we're testing connection idempotency we may get substantially more.
720         assert!(mon_updates.len() >= 1);
721         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
722         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
723
724         // If we persist the ChannelManager here, we should get the PaymentSent event after
725         // deserialization.
726         let mut chan_manager_serialized = Vec::new();
727         if !persist_manager_post_event {
728                 chan_manager_serialized = nodes[0].node.encode();
729         }
730
731         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
732         // payment sent event.
733         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
734         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
735         for update in mon_updates {
736                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
737         }
738         if payment_timeout {
739                 expect_payment_failed!(nodes[0], payment_hash, false);
740         } else {
741                 expect_payment_sent!(nodes[0], payment_preimage);
742         }
743
744         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
745         // twice.
746         if persist_manager_post_event {
747                 chan_manager_serialized = nodes[0].node.encode();
748         }
749
750         // Now reload nodes[0]...
751         reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
752
753         if persist_manager_post_event {
754                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
755         } else if payment_timeout {
756                 expect_payment_failed!(nodes[0], payment_hash, false);
757         } else {
758                 expect_payment_sent!(nodes[0], payment_preimage);
759         }
760
761         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
762         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
763         // payment events should kick in, leaving us with no pending events here.
764         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
765         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
766         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
767 }
768
769 #[test]
770 fn test_dup_htlc_onchain_fails_on_reload() {
771         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
772         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
773         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
774         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
775         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
776         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
777 }
778
779 #[test]
780 fn test_fulfill_restart_failure() {
781         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
782         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
783         // again, or fail it, giving us free money.
784         //
785         // Of course probably they won't fail it and give us free money, but because we have code to
786         // handle it, we should test the logic for it anyway. We do that here.
787         let chanmon_cfgs = create_chanmon_cfgs(2);
788         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
789         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
790         let persister: test_utils::TestPersister;
791         let new_chain_monitor: test_utils::TestChainMonitor;
792         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
793         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
794
795         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
796         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
797
798         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
799         // pre-fulfill, which we do by serializing it here.
800         let chan_manager_serialized = nodes[1].node.encode();
801         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
802
803         nodes[1].node.claim_funds(payment_preimage);
804         check_added_monitors!(nodes[1], 1);
805         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
806
807         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
808         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
809         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
810
811         // Now reload nodes[1]...
812         reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
813
814         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
815         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
816
817         nodes[1].node.fail_htlc_backwards(&payment_hash);
818         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
819         check_added_monitors!(nodes[1], 1);
820         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
821         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
822         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
823         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
824         // it had already considered the payment fulfilled, and now they just got free money.
825         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
826 }
827
828 #[test]
829 fn get_ldk_payment_preimage() {
830         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
831         let chanmon_cfgs = create_chanmon_cfgs(2);
832         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
833         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
834         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
835         create_announced_chan_between_nodes(&nodes, 0, 1);
836
837         let amt_msat = 60_000;
838         let expiry_secs = 60 * 60;
839         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs, None).unwrap();
840
841         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
842                 .with_features(nodes[1].node.invoice_features());
843         let scorer = test_utils::TestScorer::new();
844         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
845         let random_seed_bytes = keys_manager.get_secure_random_bytes();
846         let route = get_route(
847                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
848                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
849                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
850         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
851         check_added_monitors!(nodes[0], 1);
852
853         // Make sure to use `get_payment_preimage`
854         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
855         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
856         assert_eq!(events.len(), 1);
857         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
858         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
859 }
860
861 #[test]
862 fn sent_probe_is_probe_of_sending_node() {
863         let chanmon_cfgs = create_chanmon_cfgs(3);
864         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
865         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
866         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
867
868         create_announced_chan_between_nodes(&nodes, 0, 1);
869         create_announced_chan_between_nodes(&nodes, 1, 2);
870
871         // First check we refuse to build a single-hop probe
872         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
873         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
874
875         // Then build an actual two-hop probing path
876         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
877
878         match nodes[0].node.send_probe(route.paths[0].clone()) {
879                 Ok((payment_hash, payment_id)) => {
880                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
881                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
882                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
883                 },
884                 _ => panic!(),
885         }
886
887         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
888         check_added_monitors!(nodes[0], 1);
889 }
890
891 #[test]
892 fn successful_probe_yields_event() {
893         let chanmon_cfgs = create_chanmon_cfgs(3);
894         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
895         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
896         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
897
898         create_announced_chan_between_nodes(&nodes, 0, 1);
899         create_announced_chan_between_nodes(&nodes, 1, 2);
900
901         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
902
903         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
904
905         // node[0] -- update_add_htlcs -> node[1]
906         check_added_monitors!(nodes[0], 1);
907         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
908         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
909         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
910         check_added_monitors!(nodes[1], 0);
911         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
912         expect_pending_htlcs_forwardable!(nodes[1]);
913
914         // node[1] -- update_add_htlcs -> node[2]
915         check_added_monitors!(nodes[1], 1);
916         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
917         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
918         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
919         check_added_monitors!(nodes[2], 0);
920         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
921
922         // node[1] <- update_fail_htlcs -- node[2]
923         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
924         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
925         check_added_monitors!(nodes[1], 0);
926         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
927
928         // node[0] <- update_fail_htlcs -- node[1]
929         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
930         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
931         check_added_monitors!(nodes[0], 0);
932         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
933
934         let mut events = nodes[0].node.get_and_clear_pending_events();
935         assert_eq!(events.len(), 1);
936         match events.drain(..).next().unwrap() {
937                 crate::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
938                         assert_eq!(payment_id, ev_pid);
939                         assert_eq!(payment_hash, ev_ph);
940                 },
941                 _ => panic!(),
942         };
943         assert!(!nodes[0].node.has_pending_payments());
944 }
945
946 #[test]
947 fn failed_probe_yields_event() {
948         let chanmon_cfgs = create_chanmon_cfgs(3);
949         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
950         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
951         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
952
953         create_announced_chan_between_nodes(&nodes, 0, 1);
954         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000);
955
956         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
957
958         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
959
960         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
961
962         // node[0] -- update_add_htlcs -> node[1]
963         check_added_monitors!(nodes[0], 1);
964         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
965         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
966         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
967         check_added_monitors!(nodes[1], 0);
968         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
969         expect_pending_htlcs_forwardable!(nodes[1]);
970
971         // node[0] <- update_fail_htlcs -- node[1]
972         check_added_monitors!(nodes[1], 1);
973         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
974         // Skip the PendingHTLCsForwardable event
975         let _events = nodes[1].node.get_and_clear_pending_events();
976         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
977         check_added_monitors!(nodes[0], 0);
978         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
979
980         let mut events = nodes[0].node.get_and_clear_pending_events();
981         assert_eq!(events.len(), 1);
982         match events.drain(..).next().unwrap() {
983                 crate::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
984                         assert_eq!(payment_id, ev_pid);
985                         assert_eq!(payment_hash, ev_ph);
986                 },
987                 _ => panic!(),
988         };
989         assert!(!nodes[0].node.has_pending_payments());
990 }
991
992 #[test]
993 fn onchain_failed_probe_yields_event() {
994         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
995         // event.
996         let chanmon_cfgs = create_chanmon_cfgs(3);
997         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
998         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
999         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1000
1001         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1002         create_announced_chan_between_nodes(&nodes, 1, 2);
1003
1004         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
1005
1006         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1007         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1008         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1009
1010         // node[0] -- update_add_htlcs -> node[1]
1011         check_added_monitors!(nodes[0], 1);
1012         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1013         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1014         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1015         check_added_monitors!(nodes[1], 0);
1016         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1017         expect_pending_htlcs_forwardable!(nodes[1]);
1018
1019         check_added_monitors!(nodes[1], 1);
1020         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1021
1022         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1023         // Node A, which after 6 confirmations should result in a probe failure event.
1024         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1025         confirm_transaction(&nodes[0], &bs_txn[0]);
1026         check_closed_broadcast!(&nodes[0], true);
1027         check_added_monitors!(nodes[0], 1);
1028
1029         let mut events = nodes[0].node.get_and_clear_pending_events();
1030         assert_eq!(events.len(), 2);
1031         let mut found_probe_failed = false;
1032         for event in events.drain(..) {
1033                 match event {
1034                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1035                                 assert_eq!(payment_id, ev_pid);
1036                                 assert_eq!(payment_hash, ev_ph);
1037                                 found_probe_failed = true;
1038                         },
1039                         Event::ChannelClosed { .. } => {},
1040                         _ => panic!(),
1041                 }
1042         }
1043         assert!(found_probe_failed);
1044         assert!(!nodes[0].node.has_pending_payments());
1045 }
1046
1047 #[test]
1048 fn claimed_send_payment_idempotent() {
1049         // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1050         let chanmon_cfgs = create_chanmon_cfgs(2);
1051         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1052         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1053         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1054
1055         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1056
1057         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1058         let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1059
1060         macro_rules! check_send_rejected {
1061                 () => {
1062                         // If we try to resend a new payment with a different payment_hash but with the same
1063                         // payment_id, it should be rejected.
1064                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1065                         match send_result {
1066                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1067                                 _ => panic!("Unexpected send result: {:?}", send_result),
1068                         }
1069
1070                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1071                         // also be rejected.
1072                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1073                         match send_result {
1074                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1075                                 _ => panic!("Unexpected send result: {:?}", send_result),
1076                         }
1077                 }
1078         }
1079
1080         check_send_rejected!();
1081
1082         // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1083         // not been seen by the user. At this point, from the user perspective nothing has changed, so
1084         // we must remain just as idempotent as we were before.
1085         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1086
1087         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1088                 nodes[0].node.timer_tick_occurred();
1089         }
1090
1091         check_send_rejected!();
1092
1093         // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1094         // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1095         // the payment complete. However, they could have called `send_payment` while the event was
1096         // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1097         // after the event is handled a duplicate payment should sitll be rejected.
1098         expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1099         check_send_rejected!();
1100
1101         // If relatively little time has passed, a duplicate payment should still fail.
1102         nodes[0].node.timer_tick_occurred();
1103         check_send_rejected!();
1104
1105         // However, after some time has passed (at least more than the one timer tick above), a
1106         // duplicate payment should go through, as ChannelManager should no longer have any remaining
1107         // references to the old payment data.
1108         for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1109                 nodes[0].node.timer_tick_occurred();
1110         }
1111
1112         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1113         check_added_monitors!(nodes[0], 1);
1114         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1115         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1116 }
1117
1118 #[test]
1119 fn abandoned_send_payment_idempotent() {
1120         // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1121         // abandon_payment.
1122         let chanmon_cfgs = create_chanmon_cfgs(2);
1123         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1124         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1125         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1126
1127         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1128
1129         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1130         let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1131
1132         macro_rules! check_send_rejected {
1133                 () => {
1134                         // If we try to resend a new payment with a different payment_hash but with the same
1135                         // payment_id, it should be rejected.
1136                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1137                         match send_result {
1138                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1139                                 _ => panic!("Unexpected send result: {:?}", send_result),
1140                         }
1141
1142                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1143                         // also be rejected.
1144                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1145                         match send_result {
1146                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1147                                 _ => panic!("Unexpected send result: {:?}", send_result),
1148                         }
1149                 }
1150         }
1151
1152         check_send_rejected!();
1153
1154         nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1155         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1156
1157         // Until we abandon the payment upon path failure, no matter how many timer ticks pass, we still cannot reuse the
1158         // PaymentId.
1159         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1160                 nodes[0].node.timer_tick_occurred();
1161         }
1162         check_send_rejected!();
1163
1164         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash);
1165
1166         // However, we can reuse the PaymentId immediately after we `abandon_payment` upon passing the
1167         // failed payment back.
1168         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1169         check_added_monitors!(nodes[0], 1);
1170         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1171         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1172 }
1173
1174 #[derive(PartialEq)]
1175 enum InterceptTest {
1176         Forward,
1177         Fail,
1178         Timeout,
1179 }
1180
1181 #[test]
1182 fn test_trivial_inflight_htlc_tracking(){
1183         // In this test, we test three scenarios:
1184         // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1185         // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1186         // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1187         let chanmon_cfgs = create_chanmon_cfgs(3);
1188         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1189         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1190         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1191
1192         let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
1193         let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
1194
1195         // Send and claim the payment. Inflight HTLCs should be empty.
1196         let payment_hash = send_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000).1;
1197         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1198         {
1199                 let mut node_0_per_peer_lock;
1200                 let mut node_0_peer_state_lock;
1201                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1202
1203                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1204                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1205                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1206                         channel_1.get_short_channel_id().unwrap()
1207                 );
1208                 assert_eq!(chan_1_used_liquidity, None);
1209         }
1210         {
1211                 let mut node_1_per_peer_lock;
1212                 let mut node_1_peer_state_lock;
1213                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1214
1215                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1216                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1217                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1218                         channel_2.get_short_channel_id().unwrap()
1219                 );
1220
1221                 assert_eq!(chan_2_used_liquidity, None);
1222         }
1223         let pending_payments = nodes[0].node.list_recent_payments();
1224         assert_eq!(pending_payments.len(), 1);
1225         assert_eq!(pending_payments[0], RecentPaymentDetails::Fulfilled { payment_hash: Some(payment_hash) });
1226
1227         // Remove fulfilled payment
1228         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1229                 nodes[0].node.timer_tick_occurred();
1230         }
1231
1232         // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1233         let (payment_preimage, payment_hash,  _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000);
1234         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1235         {
1236                 let mut node_0_per_peer_lock;
1237                 let mut node_0_peer_state_lock;
1238                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1239
1240                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1241                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1242                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1243                         channel_1.get_short_channel_id().unwrap()
1244                 );
1245                 // First hop accounts for expected 1000 msat fee
1246                 assert_eq!(chan_1_used_liquidity, Some(501000));
1247         }
1248         {
1249                 let mut node_1_per_peer_lock;
1250                 let mut node_1_peer_state_lock;
1251                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1252
1253                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1254                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1255                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1256                         channel_2.get_short_channel_id().unwrap()
1257                 );
1258
1259                 assert_eq!(chan_2_used_liquidity, Some(500000));
1260         }
1261         let pending_payments = nodes[0].node.list_recent_payments();
1262         assert_eq!(pending_payments.len(), 1);
1263         assert_eq!(pending_payments[0], RecentPaymentDetails::Pending { payment_hash, total_msat: 500000 });
1264
1265         // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1266         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1267
1268         // Remove fulfilled payment
1269         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1270                 nodes[0].node.timer_tick_occurred();
1271         }
1272
1273         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1274         {
1275                 let mut node_0_per_peer_lock;
1276                 let mut node_0_peer_state_lock;
1277                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1278
1279                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1280                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1281                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1282                         channel_1.get_short_channel_id().unwrap()
1283                 );
1284                 assert_eq!(chan_1_used_liquidity, None);
1285         }
1286         {
1287                 let mut node_1_per_peer_lock;
1288                 let mut node_1_peer_state_lock;
1289                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1290
1291                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1292                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1293                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1294                         channel_2.get_short_channel_id().unwrap()
1295                 );
1296                 assert_eq!(chan_2_used_liquidity, None);
1297         }
1298
1299         let pending_payments = nodes[0].node.list_recent_payments();
1300         assert_eq!(pending_payments.len(), 0);
1301 }
1302
1303 #[test]
1304 fn test_holding_cell_inflight_htlcs() {
1305         let chanmon_cfgs = create_chanmon_cfgs(2);
1306         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1307         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1308         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1309         let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1310
1311         let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1312         let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1313
1314         // Queue up two payments - one will be delivered right away, one immediately goes into the
1315         // holding cell as nodes[0] is AwaitingRAA.
1316         {
1317                 nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1318                 check_added_monitors!(nodes[0], 1);
1319                 nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1320                 check_added_monitors!(nodes[0], 0);
1321         }
1322
1323         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1324
1325         {
1326                 let mut node_0_per_peer_lock;
1327                 let mut node_0_peer_state_lock;
1328                 let channel =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id);
1329
1330                 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1331                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1332                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1333                         channel.get_short_channel_id().unwrap()
1334                 );
1335
1336                 assert_eq!(used_liquidity, Some(2000000));
1337         }
1338
1339         // Clear pending events so test doesn't throw a "Had excess message on node..." error
1340         nodes[0].node.get_and_clear_pending_msg_events();
1341 }
1342
1343 #[test]
1344 fn intercepted_payment() {
1345         // Test that detecting an intercept scid on payment forward will signal LDK to generate an
1346         // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
1347         // payment or (b) fail the payment.
1348         do_test_intercepted_payment(InterceptTest::Forward);
1349         do_test_intercepted_payment(InterceptTest::Fail);
1350         // Make sure that intercepted payments will be automatically failed back if too many blocks pass.
1351         do_test_intercepted_payment(InterceptTest::Timeout);
1352 }
1353
1354 fn do_test_intercepted_payment(test: InterceptTest) {
1355         let chanmon_cfgs = create_chanmon_cfgs(3);
1356         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1357
1358         let mut zero_conf_chan_config = test_default_channel_config();
1359         zero_conf_chan_config.manually_accept_inbound_channels = true;
1360         let mut intercept_forwards_config = test_default_channel_config();
1361         intercept_forwards_config.accept_intercept_htlcs = true;
1362         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
1363
1364         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1365         let scorer = test_utils::TestScorer::new();
1366         let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
1367
1368         let _ = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1369
1370         let amt_msat = 100_000;
1371         let intercept_scid = nodes[1].node.get_intercept_scid();
1372         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1373                 .with_route_hints(vec![
1374                         RouteHint(vec![RouteHintHop {
1375                                 src_node_id: nodes[1].node.get_our_node_id(),
1376                                 short_channel_id: intercept_scid,
1377                                 fees: RoutingFees {
1378                                         base_msat: 1000,
1379                                         proportional_millionths: 0,
1380                                 },
1381                                 cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
1382                                 htlc_minimum_msat: None,
1383                                 htlc_maximum_msat: None,
1384                         }])
1385                 ])
1386                 .with_features(nodes[2].node.invoice_features());
1387         let route_params = RouteParameters {
1388                 payment_params,
1389                 final_value_msat: amt_msat,
1390         };
1391         let route = get_route(
1392                 &nodes[0].node.get_our_node_id(), &route_params.payment_params,
1393                 &nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
1394                 route_params.payment_params.final_cltv_expiry_delta, nodes[0].logger, &scorer,
1395                 &random_seed_bytes,
1396         ).unwrap();
1397
1398         let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60, None).unwrap();
1399         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1400         let payment_event = {
1401                 {
1402                         let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
1403                         assert_eq!(added_monitors.len(), 1);
1404                         added_monitors.clear();
1405                 }
1406                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1407                 assert_eq!(events.len(), 1);
1408                 SendEvent::from_event(events.remove(0))
1409         };
1410         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1411         commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
1412
1413         // Check that we generate the PaymentIntercepted event when an intercept forward is detected.
1414         let events = nodes[1].node.get_and_clear_pending_events();
1415         assert_eq!(events.len(), 1);
1416         let (intercept_id, expected_outbound_amount_msat) = match events[0] {
1417                 crate::events::Event::HTLCIntercepted {
1418                         intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
1419                 } => {
1420                         assert_eq!(pmt_hash, payment_hash);
1421                         assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
1422                         assert_eq!(short_channel_id, intercept_scid);
1423                         (intercept_id, expected_outbound_amount_msat)
1424                 },
1425                 _ => panic!()
1426         };
1427
1428         // Check for unknown channel id error.
1429         let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1430         assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable  { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) });
1431
1432         if test == InterceptTest::Fail {
1433                 // Ensure we can fail the intercepted payment back.
1434                 nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
1435                 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
1436                 nodes[1].node.process_pending_htlc_forwards();
1437                 let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1438                 check_added_monitors!(&nodes[1], 1);
1439                 assert!(update_fail.update_fail_htlcs.len() == 1);
1440                 let fail_msg = update_fail.update_fail_htlcs[0].clone();
1441                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1442                 commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
1443
1444                 // Ensure the payment fails with the expected error.
1445                 let fail_conditions = PaymentFailedConditions::new()
1446                         .blamed_scid(intercept_scid)
1447                         .blamed_chan_closed(true)
1448                         .expected_htlc_error_data(0x4000 | 10, &[]);
1449                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
1450         } else if test == InterceptTest::Forward {
1451                 // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
1452                 let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
1453                 let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1454                 assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
1455                 assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
1456
1457                 // Open the just-in-time channel so the payment can then be forwarded.
1458                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1459
1460                 // Finally, forward the intercepted payment through and claim it.
1461                 nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
1462                 expect_pending_htlcs_forwardable!(nodes[1]);
1463
1464                 let payment_event = {
1465                         {
1466                                 let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
1467                                 assert_eq!(added_monitors.len(), 1);
1468                                 added_monitors.clear();
1469                         }
1470                         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
1471                         assert_eq!(events.len(), 1);
1472                         SendEvent::from_event(events.remove(0))
1473                 };
1474                 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
1475                 commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
1476                 expect_pending_htlcs_forwardable!(nodes[2]);
1477
1478                 let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1479                 expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
1480                 do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
1481                 let events = nodes[0].node.get_and_clear_pending_events();
1482                 assert_eq!(events.len(), 2);
1483                 match events[0] {
1484                         Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
1485                                 assert_eq!(payment_preimage, *ev_preimage);
1486                                 assert_eq!(payment_hash, *ev_hash);
1487                                 assert_eq!(fee_paid_msat, &Some(1000));
1488                         },
1489                         _ => panic!("Unexpected event")
1490                 }
1491                 match events[1] {
1492                         Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
1493                                 assert_eq!(hash, Some(payment_hash));
1494                         },
1495                         _ => panic!("Unexpected event")
1496                 }
1497         } else if test == InterceptTest::Timeout {
1498                 let mut block = Block {
1499                         header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
1500                         txdata: vec![],
1501                 };
1502                 connect_block(&nodes[0], &block);
1503                 connect_block(&nodes[1], &block);
1504                 for _ in 0..TEST_FINAL_CLTV {
1505                         block.header.prev_blockhash = block.block_hash();
1506                         connect_block(&nodes[0], &block);
1507                         connect_block(&nodes[1], &block);
1508                 }
1509                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
1510                 check_added_monitors!(nodes[1], 1);
1511                 let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1512                 assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
1513                 assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
1514                 assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
1515                 assert!(htlc_timeout_updates.update_fee.is_none());
1516
1517                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
1518                 commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
1519                 expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
1520
1521                 // Check for unknown intercept id error.
1522                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1523                 let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1524                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1525                 let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
1526                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1527         }
1528 }
1529
1530 #[derive(PartialEq)]
1531 enum AutoRetry {
1532         Success,
1533         Spontaneous,
1534         FailAttempts,
1535         FailTimeout,
1536         FailOnRestart,
1537         FailOnRetry,
1538 }
1539
1540 #[test]
1541 fn automatic_retries() {
1542         do_automatic_retries(AutoRetry::Success);
1543         do_automatic_retries(AutoRetry::Spontaneous);
1544         do_automatic_retries(AutoRetry::FailAttempts);
1545         do_automatic_retries(AutoRetry::FailTimeout);
1546         do_automatic_retries(AutoRetry::FailOnRestart);
1547         do_automatic_retries(AutoRetry::FailOnRetry);
1548 }
1549 fn do_automatic_retries(test: AutoRetry) {
1550         // Test basic automatic payment retries in ChannelManager. See individual `test` variant comments
1551         // below.
1552         let chanmon_cfgs = create_chanmon_cfgs(3);
1553         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1554         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1555
1556         let persister;
1557         let new_chain_monitor;
1558         let node_0_deserialized;
1559
1560         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1561         let channel_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1562         let channel_id_2 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1563
1564         // Marshall data to send the payment
1565         #[cfg(feature = "std")]
1566         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1567         #[cfg(not(feature = "std"))]
1568         let payment_expiry_secs = 60 * 60;
1569         let amt_msat = 1000;
1570         let mut invoice_features = InvoiceFeatures::empty();
1571         invoice_features.set_variable_length_onion_required();
1572         invoice_features.set_payment_secret_required();
1573         invoice_features.set_basic_mpp_optional();
1574         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1575                 .with_expiry_time(payment_expiry_secs as u64)
1576                 .with_features(invoice_features);
1577         let route_params = RouteParameters {
1578                 payment_params,
1579                 final_value_msat: amt_msat,
1580         };
1581         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
1582
1583         macro_rules! pass_failed_attempt_with_retry_along_path {
1584                 ($failing_channel_id: expr, $expect_pending_htlcs_forwardable: expr) => {
1585                         // Send a payment attempt that fails due to lack of liquidity on the second hop
1586                         check_added_monitors!(nodes[0], 1);
1587                         let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1588                         let mut update_add = update_0.update_add_htlcs[0].clone();
1589                         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
1590                         commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
1591                         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1592                         nodes[1].node.process_pending_htlc_forwards();
1593                         expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1],
1594                                 vec![HTLCDestination::NextHopChannel {
1595                                         node_id: Some(nodes[2].node.get_our_node_id()),
1596                                         channel_id: $failing_channel_id,
1597                                 }]);
1598                         nodes[1].node.process_pending_htlc_forwards();
1599                         let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1600                         check_added_monitors!(&nodes[1], 1);
1601                         assert!(update_1.update_fail_htlcs.len() == 1);
1602                         let fail_msg = update_1.update_fail_htlcs[0].clone();
1603                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1604                         commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
1605
1606                         // Ensure the attempt fails and a new PendingHTLCsForwardable event is generated for the retry
1607                         let mut events = nodes[0].node.get_and_clear_pending_events();
1608                         assert_eq!(events.len(), 2);
1609                         match events[0] {
1610                                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
1611                                         assert_eq!(payment_hash, ev_payment_hash);
1612                                         assert_eq!(payment_failed_permanently, false);
1613                                 },
1614                                 _ => panic!("Unexpected event"),
1615                         }
1616                         if $expect_pending_htlcs_forwardable {
1617                                 match events[1] {
1618                                         Event::PendingHTLCsForwardable { .. } => {},
1619                                         _ => panic!("Unexpected event"),
1620                                 }
1621                         } else {
1622                                 match events[1] {
1623                                         Event::PaymentFailed { payment_hash: ev_payment_hash, .. } => {
1624                                                 assert_eq!(payment_hash, ev_payment_hash);
1625                                         },
1626                                         _ => panic!("Unexpected event"),
1627                                 }
1628                         }
1629                 }
1630         }
1631
1632         if test == AutoRetry::Success {
1633                 // Test that we can succeed on the first retry.
1634                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1635                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1636
1637                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1638                 // attempt, since the initial second hop channel will be excluded from pathfinding
1639                 create_announced_chan_between_nodes(&nodes, 1, 2);
1640
1641                 // We retry payments in `process_pending_htlc_forwards`
1642                 nodes[0].node.process_pending_htlc_forwards();
1643                 check_added_monitors!(nodes[0], 1);
1644                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1645                 assert_eq!(msg_events.len(), 1);
1646                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, Some(payment_secret), msg_events.pop().unwrap(), true, None);
1647                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1648         } else if test == AutoRetry::Spontaneous {
1649                 nodes[0].node.send_spontaneous_payment_with_retry(Some(payment_preimage), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1650                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1651
1652                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1653                 // attempt, since the initial second hop channel will be excluded from pathfinding
1654                 create_announced_chan_between_nodes(&nodes, 1, 2);
1655
1656                 // We retry payments in `process_pending_htlc_forwards`
1657                 nodes[0].node.process_pending_htlc_forwards();
1658                 check_added_monitors!(nodes[0], 1);
1659                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1660                 assert_eq!(msg_events.len(), 1);
1661                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, None, msg_events.pop().unwrap(), true, Some(payment_preimage));
1662                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1663         } else if test == AutoRetry::FailAttempts {
1664                 // Ensure ChannelManager will not retry a payment if it has run out of payment attempts.
1665                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1666                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1667
1668                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1669                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1670                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1671
1672                 // We retry payments in `process_pending_htlc_forwards`
1673                 nodes[0].node.process_pending_htlc_forwards();
1674                 pass_failed_attempt_with_retry_along_path!(channel_id_3, false);
1675
1676                 // Ensure we won't retry a second time.
1677                 nodes[0].node.process_pending_htlc_forwards();
1678                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1679                 assert_eq!(msg_events.len(), 0);
1680         } else if test == AutoRetry::FailTimeout {
1681                 #[cfg(not(feature = "no-std"))] {
1682                         // Ensure ChannelManager will not retry a payment if it times out due to Retry::Timeout.
1683                         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Timeout(Duration::from_secs(60))).unwrap();
1684                         pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1685
1686                         // Advance the time so the second attempt fails due to timeout.
1687                         SinceEpoch::advance(Duration::from_secs(61));
1688
1689                         // Make sure we don't retry again.
1690                         nodes[0].node.process_pending_htlc_forwards();
1691                         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1692                         assert_eq!(msg_events.len(), 0);
1693
1694                         let mut events = nodes[0].node.get_and_clear_pending_events();
1695                         assert_eq!(events.len(), 1);
1696                         match events[0] {
1697                                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1698                                         assert_eq!(payment_hash, *ev_payment_hash);
1699                                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1700                                 },
1701                                 _ => panic!("Unexpected event"),
1702                         }
1703                 }
1704         } else if test == AutoRetry::FailOnRestart {
1705                 // Ensure ChannelManager will not retry a payment after restart, even if there were retry
1706                 // attempts remaining prior to restart.
1707                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(2)).unwrap();
1708                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1709
1710                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1711                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1712                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1713
1714                 // Ensure the first retry attempt fails, with 1 retry attempt remaining
1715                 nodes[0].node.process_pending_htlc_forwards();
1716                 pass_failed_attempt_with_retry_along_path!(channel_id_3, true);
1717
1718                 // Restart the node and ensure that ChannelManager does not use its remaining retry attempt
1719                 let node_encoded = nodes[0].node.encode();
1720                 let chan_1_monitor_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1721                 reload_node!(nodes[0], node_encoded, &[&chan_1_monitor_serialized], persister, new_chain_monitor, node_0_deserialized);
1722
1723                 let mut events = nodes[0].node.get_and_clear_pending_events();
1724                 expect_pending_htlcs_forwardable_from_events!(nodes[0], events, true);
1725                 // Make sure we don't retry again.
1726                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1727                 assert_eq!(msg_events.len(), 0);
1728
1729                 let mut events = nodes[0].node.get_and_clear_pending_events();
1730                 assert_eq!(events.len(), 1);
1731                 match events[0] {
1732                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1733                                 assert_eq!(payment_hash, *ev_payment_hash);
1734                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1735                         },
1736                         _ => panic!("Unexpected event"),
1737                 }
1738         } else if test == AutoRetry::FailOnRetry {
1739                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1740                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1741
1742                 // We retry payments in `process_pending_htlc_forwards`. Since our channel closed, we should
1743                 // fail to find a route.
1744                 nodes[0].node.process_pending_htlc_forwards();
1745                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1746                 assert_eq!(msg_events.len(), 0);
1747
1748                 let mut events = nodes[0].node.get_and_clear_pending_events();
1749                 assert_eq!(events.len(), 1);
1750                 match events[0] {
1751                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1752                                 assert_eq!(payment_hash, *ev_payment_hash);
1753                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1754                         },
1755                         _ => panic!("Unexpected event"),
1756                 }
1757         }
1758 }
1759
1760 #[test]
1761 fn auto_retry_partial_failure() {
1762         // Test that we'll retry appropriately on send partial failure and retry partial failure.
1763         let chanmon_cfgs = create_chanmon_cfgs(2);
1764         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1765         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1766         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1767
1768         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1769         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1770         let chan_3_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1771
1772         // Marshall data to send the payment
1773         let amt_msat = 20_000;
1774         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1775         #[cfg(feature = "std")]
1776         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1777         #[cfg(not(feature = "std"))]
1778         let payment_expiry_secs = 60 * 60;
1779         let mut invoice_features = InvoiceFeatures::empty();
1780         invoice_features.set_variable_length_onion_required();
1781         invoice_features.set_payment_secret_required();
1782         invoice_features.set_basic_mpp_optional();
1783         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1784                 .with_expiry_time(payment_expiry_secs as u64)
1785                 .with_features(invoice_features);
1786         let route_params = RouteParameters {
1787                 payment_params,
1788                 final_value_msat: amt_msat,
1789         };
1790
1791         // Ensure the first monitor update (for the initial send path1 over chan_1) succeeds, but the
1792         // second (for the initial send path2 over chan_2) fails.
1793         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1794         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1795         // Ensure third monitor update (for the retry1's path1 over chan_1) succeeds, but the fourth (for
1796         // the retry1's path2 over chan_3) fails, and monitor updates succeed after that.
1797         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1798         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1799         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1800
1801         // Configure the initial send, retry1 and retry2's paths.
1802         let send_route = Route {
1803                 paths: vec![
1804                         vec![RouteHop {
1805                                 pubkey: nodes[1].node.get_our_node_id(),
1806                                 node_features: nodes[1].node.node_features(),
1807                                 short_channel_id: chan_1_id,
1808                                 channel_features: nodes[1].node.channel_features(),
1809                                 fee_msat: amt_msat / 2,
1810                                 cltv_expiry_delta: 100,
1811                         }],
1812                         vec![RouteHop {
1813                                 pubkey: nodes[1].node.get_our_node_id(),
1814                                 node_features: nodes[1].node.node_features(),
1815                                 short_channel_id: chan_2_id,
1816                                 channel_features: nodes[1].node.channel_features(),
1817                                 fee_msat: amt_msat / 2,
1818                                 cltv_expiry_delta: 100,
1819                         }],
1820                 ],
1821                 payment_params: Some(route_params.payment_params.clone()),
1822         };
1823         let retry_1_route = Route {
1824                 paths: vec![
1825                         vec![RouteHop {
1826                                 pubkey: nodes[1].node.get_our_node_id(),
1827                                 node_features: nodes[1].node.node_features(),
1828                                 short_channel_id: chan_1_id,
1829                                 channel_features: nodes[1].node.channel_features(),
1830                                 fee_msat: amt_msat / 4,
1831                                 cltv_expiry_delta: 100,
1832                         }],
1833                         vec![RouteHop {
1834                                 pubkey: nodes[1].node.get_our_node_id(),
1835                                 node_features: nodes[1].node.node_features(),
1836                                 short_channel_id: chan_3_id,
1837                                 channel_features: nodes[1].node.channel_features(),
1838                                 fee_msat: amt_msat / 4,
1839                                 cltv_expiry_delta: 100,
1840                         }],
1841                 ],
1842                 payment_params: Some(route_params.payment_params.clone()),
1843         };
1844         let retry_2_route = Route {
1845                 paths: vec![
1846                         vec![RouteHop {
1847                                 pubkey: nodes[1].node.get_our_node_id(),
1848                                 node_features: nodes[1].node.node_features(),
1849                                 short_channel_id: chan_1_id,
1850                                 channel_features: nodes[1].node.channel_features(),
1851                                 fee_msat: amt_msat / 4,
1852                                 cltv_expiry_delta: 100,
1853                         }],
1854                 ],
1855                 payment_params: Some(route_params.payment_params.clone()),
1856         };
1857         nodes[0].router.expect_find_route(route_params.clone(), Ok(send_route));
1858         let mut payment_params = route_params.payment_params.clone();
1859         payment_params.previously_failed_channels.push(chan_2_id);
1860         nodes[0].router.expect_find_route(RouteParameters {
1861                         payment_params, final_value_msat: amt_msat / 2,
1862                 }, Ok(retry_1_route));
1863         let mut payment_params = route_params.payment_params.clone();
1864         payment_params.previously_failed_channels.push(chan_3_id);
1865         nodes[0].router.expect_find_route(RouteParameters {
1866                         payment_params, final_value_msat: amt_msat / 4,
1867                 }, Ok(retry_2_route));
1868
1869         // Send a payment that will partially fail on send, then partially fail on retry, then succeed.
1870         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(3)).unwrap();
1871         let closed_chan_events = nodes[0].node.get_and_clear_pending_events();
1872         assert_eq!(closed_chan_events.len(), 4);
1873         match closed_chan_events[0] {
1874                 Event::ChannelClosed { .. } => {},
1875                 _ => panic!("Unexpected event"),
1876         }
1877         match closed_chan_events[1] {
1878                 Event::PaymentPathFailed { .. } => {},
1879                 _ => panic!("Unexpected event"),
1880         }
1881         match closed_chan_events[2] {
1882                 Event::ChannelClosed { .. } => {},
1883                 _ => panic!("Unexpected event"),
1884         }
1885         match closed_chan_events[3] {
1886                 Event::PaymentPathFailed { .. } => {},
1887                 _ => panic!("Unexpected event"),
1888         }
1889
1890         // Pass the first part of the payment along the path.
1891         check_added_monitors!(nodes[0], 5); // three outbound channel updates succeeded, two permanently failed
1892         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1893
1894         // First message is the first update_add, remaining messages are broadcasting channel updates and
1895         // errors for the permfailed channels
1896         assert_eq!(msg_events.len(), 5);
1897         let mut payment_event = SendEvent::from_event(msg_events.remove(0));
1898
1899         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1900         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg);
1901         check_added_monitors!(nodes[1], 1);
1902         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1903
1904         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
1905         check_added_monitors!(nodes[0], 1);
1906         let as_second_htlc_updates = SendEvent::from_node(&nodes[0]);
1907
1908         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
1909         check_added_monitors!(nodes[0], 1);
1910         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1911
1912         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
1913         check_added_monitors!(nodes[1], 1);
1914
1915         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[0]);
1916         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[1]);
1917         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.commitment_msg);
1918         check_added_monitors!(nodes[1], 1);
1919         let (bs_second_raa, bs_second_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1920
1921         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1922         check_added_monitors!(nodes[0], 1);
1923
1924         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_cs);
1925         check_added_monitors!(nodes[0], 1);
1926         let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1927
1928         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
1929         check_added_monitors!(nodes[1], 1);
1930
1931         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1932         nodes[1].node.process_pending_htlc_forwards();
1933         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, amt_msat);
1934         nodes[1].node.claim_funds(payment_preimage);
1935         expect_payment_claimed!(nodes[1], payment_hash, amt_msat);
1936         let bs_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1937         assert_eq!(bs_claim_update.update_fulfill_htlcs.len(), 1);
1938
1939         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_claim_update.update_fulfill_htlcs[0]);
1940         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_claim_update.commitment_signed);
1941         check_added_monitors!(nodes[0], 1);
1942         let (as_third_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1943
1944         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
1945         check_added_monitors!(nodes[1], 4);
1946         let bs_second_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1947
1948         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
1949         check_added_monitors!(nodes[1], 1);
1950         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1951
1952         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
1953         check_added_monitors!(nodes[0], 1);
1954
1955         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[0]);
1956         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[1]);
1957         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.commitment_signed);
1958         check_added_monitors!(nodes[0], 1);
1959         let (as_fourth_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1960
1961         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_fourth_raa);
1962         check_added_monitors!(nodes[1], 1);
1963
1964         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
1965         check_added_monitors!(nodes[1], 1);
1966         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1967
1968         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1969         check_added_monitors!(nodes[0], 1);
1970         expect_payment_sent!(nodes[0], payment_preimage);
1971 }
1972
1973 #[test]
1974 fn auto_retry_zero_attempts_send_error() {
1975         let chanmon_cfgs = create_chanmon_cfgs(2);
1976         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1977         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1978         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1979
1980         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1981         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1982
1983         // Marshall data to send the payment
1984         let amt_msat = 20_000;
1985         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1986         #[cfg(feature = "std")]
1987         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1988         #[cfg(not(feature = "std"))]
1989         let payment_expiry_secs = 60 * 60;
1990         let mut invoice_features = InvoiceFeatures::empty();
1991         invoice_features.set_variable_length_onion_required();
1992         invoice_features.set_payment_secret_required();
1993         invoice_features.set_basic_mpp_optional();
1994         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1995                 .with_expiry_time(payment_expiry_secs as u64)
1996                 .with_features(invoice_features);
1997         let route_params = RouteParameters {
1998                 payment_params,
1999                 final_value_msat: amt_msat,
2000         };
2001
2002         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
2003         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(0)).unwrap();
2004         assert_eq!(nodes[0].node.get_and_clear_pending_msg_events().len(), 2); // channel close messages
2005         let events = nodes[0].node.get_and_clear_pending_events();
2006         assert_eq!(events.len(), 3);
2007         if let Event::ChannelClosed { .. } = events[0] { } else { panic!(); }
2008         if let Event::PaymentPathFailed { .. } = events[1] { } else { panic!(); }
2009         if let Event::PaymentFailed { .. } = events[2] { } else { panic!(); }
2010         check_added_monitors!(nodes[0], 2);
2011 }
2012
2013 #[test]
2014 fn fails_paying_after_rejected_by_payee() {
2015         let chanmon_cfgs = create_chanmon_cfgs(2);
2016         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2017         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2018         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2019
2020         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2021
2022         // Marshall data to send the payment
2023         let amt_msat = 20_000;
2024         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2025         #[cfg(feature = "std")]
2026         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2027         #[cfg(not(feature = "std"))]
2028         let payment_expiry_secs = 60 * 60;
2029         let mut invoice_features = InvoiceFeatures::empty();
2030         invoice_features.set_variable_length_onion_required();
2031         invoice_features.set_payment_secret_required();
2032         invoice_features.set_basic_mpp_optional();
2033         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2034                 .with_expiry_time(payment_expiry_secs as u64)
2035                 .with_features(invoice_features);
2036         let route_params = RouteParameters {
2037                 payment_params,
2038                 final_value_msat: amt_msat,
2039         };
2040
2041         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2042         check_added_monitors!(nodes[0], 1);
2043         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
2044         assert_eq!(events.len(), 1);
2045         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
2046         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
2047         check_added_monitors!(nodes[1], 0);
2048         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
2049         expect_pending_htlcs_forwardable!(nodes[1]);
2050         expect_payment_claimable!(&nodes[1], payment_hash, payment_secret, amt_msat);
2051
2052         nodes[1].node.fail_htlc_backwards(&payment_hash);
2053         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash }]);
2054         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, payment_hash);
2055 }
2056
2057 #[test]
2058 fn retry_multi_path_single_failed_payment() {
2059         // Tests that we can/will retry after a single path of an MPP payment failed immediately
2060         let chanmon_cfgs = create_chanmon_cfgs(2);
2061         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2062         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2063         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2064
2065         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2066         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2067
2068         let amt_msat = 100_010_000;
2069
2070         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2071         #[cfg(feature = "std")]
2072         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2073         #[cfg(not(feature = "std"))]
2074         let payment_expiry_secs = 60 * 60;
2075         let mut invoice_features = InvoiceFeatures::empty();
2076         invoice_features.set_variable_length_onion_required();
2077         invoice_features.set_payment_secret_required();
2078         invoice_features.set_basic_mpp_optional();
2079         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2080                 .with_expiry_time(payment_expiry_secs as u64)
2081                 .with_features(invoice_features);
2082         let route_params = RouteParameters {
2083                 payment_params: payment_params.clone(),
2084                 final_value_msat: amt_msat,
2085         };
2086
2087         let chans = nodes[0].node.list_usable_channels();
2088         let mut route = Route {
2089                 paths: vec![
2090                         vec![RouteHop {
2091                                 pubkey: nodes[1].node.get_our_node_id(),
2092                                 node_features: nodes[1].node.node_features(),
2093                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2094                                 channel_features: nodes[1].node.channel_features(),
2095                                 fee_msat: 10_000,
2096                                 cltv_expiry_delta: 100,
2097                         }],
2098                         vec![RouteHop {
2099                                 pubkey: nodes[1].node.get_our_node_id(),
2100                                 node_features: nodes[1].node.node_features(),
2101                                 short_channel_id: chans[1].short_channel_id.unwrap(),
2102                                 channel_features: nodes[1].node.channel_features(),
2103                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2104                                 cltv_expiry_delta: 100,
2105                         }],
2106                 ],
2107                 payment_params: Some(payment_params),
2108         };
2109         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2110         // On retry, split the payment across both channels.
2111         route.paths[0][0].fee_msat = 50_000_001;
2112         route.paths[1][0].fee_msat = 50_000_000;
2113         let mut pay_params = route.payment_params.clone().unwrap();
2114         pay_params.previously_failed_channels.push(chans[1].short_channel_id.unwrap());
2115         nodes[0].router.expect_find_route(RouteParameters {
2116                         payment_params: pay_params,
2117                         // Note that the second request here requests the amount we originally failed to send,
2118                         // not the amount remaining on the full payment, which should be changed.
2119                         final_value_msat: 100_000_001,
2120                 }, Ok(route.clone()));
2121
2122         {
2123                 let scorer = chanmon_cfgs[0].scorer.lock().unwrap();
2124                 // The initial send attempt, 2 paths
2125                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 10_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2126                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 100_000_001, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2127                 // The retry, 2 paths. Ensure that the in-flight HTLC amount is factored in.
2128                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_001, inflight_htlc_msat: 10_000, effective_capacity: EffectiveCapacity::Unknown });
2129                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2130         }
2131
2132         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2133         let events = nodes[0].node.get_and_clear_pending_events();
2134         assert_eq!(events.len(), 1);
2135         match events[0] {
2136                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2137                         failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2138                         short_channel_id: Some(expected_scid), .. } =>
2139                 {
2140                         assert_eq!(payment_hash, ev_payment_hash);
2141                         assert_eq!(expected_scid, route.paths[1][0].short_channel_id);
2142                         assert!(err_msg.contains("max HTLC"));
2143                 },
2144                 _ => panic!("Unexpected event"),
2145         }
2146         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2147         assert_eq!(htlc_msgs.len(), 2);
2148         check_added_monitors!(nodes[0], 2);
2149 }
2150
2151 #[test]
2152 fn immediate_retry_on_failure() {
2153         // Tests that we can/will retry immediately after a failure
2154         let chanmon_cfgs = create_chanmon_cfgs(2);
2155         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2156         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2157         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2158
2159         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2160         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2161
2162         let amt_msat = 100_000_001;
2163         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2164         #[cfg(feature = "std")]
2165         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2166         #[cfg(not(feature = "std"))]
2167         let payment_expiry_secs = 60 * 60;
2168         let mut invoice_features = InvoiceFeatures::empty();
2169         invoice_features.set_variable_length_onion_required();
2170         invoice_features.set_payment_secret_required();
2171         invoice_features.set_basic_mpp_optional();
2172         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2173                 .with_expiry_time(payment_expiry_secs as u64)
2174                 .with_features(invoice_features);
2175         let route_params = RouteParameters {
2176                 payment_params,
2177                 final_value_msat: amt_msat,
2178         };
2179
2180         let chans = nodes[0].node.list_usable_channels();
2181         let mut route = Route {
2182                 paths: vec![
2183                         vec![RouteHop {
2184                                 pubkey: nodes[1].node.get_our_node_id(),
2185                                 node_features: nodes[1].node.node_features(),
2186                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2187                                 channel_features: nodes[1].node.channel_features(),
2188                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2189                                 cltv_expiry_delta: 100,
2190                         }],
2191                 ],
2192                 payment_params: Some(PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)),
2193         };
2194         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2195         // On retry, split the payment across both channels.
2196         route.paths.push(route.paths[0].clone());
2197         route.paths[0][0].short_channel_id = chans[1].short_channel_id.unwrap();
2198         route.paths[0][0].fee_msat = 50_000_000;
2199         route.paths[1][0].fee_msat = 50_000_001;
2200         let mut pay_params = route_params.payment_params.clone();
2201         pay_params.previously_failed_channels.push(chans[0].short_channel_id.unwrap());
2202         nodes[0].router.expect_find_route(RouteParameters {
2203                         payment_params: pay_params, final_value_msat: amt_msat,
2204                 }, Ok(route.clone()));
2205
2206         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2207         let events = nodes[0].node.get_and_clear_pending_events();
2208         assert_eq!(events.len(), 1);
2209         match events[0] {
2210                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2211                         failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2212                         short_channel_id: Some(expected_scid), .. } =>
2213                 {
2214                         assert_eq!(payment_hash, ev_payment_hash);
2215                         assert_eq!(expected_scid, route.paths[1][0].short_channel_id);
2216                         assert!(err_msg.contains("max HTLC"));
2217                 },
2218                 _ => panic!("Unexpected event"),
2219         }
2220         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2221         assert_eq!(htlc_msgs.len(), 2);
2222         check_added_monitors!(nodes[0], 2);
2223 }
2224
2225 #[test]
2226 fn no_extra_retries_on_back_to_back_fail() {
2227         // In a previous release, we had a race where we may exceed the payment retry count if we
2228         // get two failures in a row with the second indicating that all paths had failed (this field,
2229         // `all_paths_failed`, has since been removed).
2230         // Generally, when we give up trying to retry a payment, we don't know for sure what the
2231         // current state of the ChannelManager event queue is. Specifically, we cannot be sure that
2232         // there are not multiple additional `PaymentPathFailed` or even `PaymentSent` events
2233         // pending which we will see later. Thus, when we previously removed the retry tracking map
2234         // entry after a `all_paths_failed` `PaymentPathFailed` event, we may have dropped the
2235         // retry entry even though more events for the same payment were still pending. This led to
2236         // us retrying a payment again even though we'd already given up on it.
2237         //
2238         // We now have a separate event - `PaymentFailed` which indicates no HTLCs remain and which
2239         // is used to remove the payment retry counter entries instead. This tests for the specific
2240         // excess-retry case while also testing `PaymentFailed` generation.
2241
2242         let chanmon_cfgs = create_chanmon_cfgs(3);
2243         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2244         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2245         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2246
2247         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2248         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2249
2250         let amt_msat = 200_000_000;
2251         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2252         #[cfg(feature = "std")]
2253         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2254         #[cfg(not(feature = "std"))]
2255         let payment_expiry_secs = 60 * 60;
2256         let mut invoice_features = InvoiceFeatures::empty();
2257         invoice_features.set_variable_length_onion_required();
2258         invoice_features.set_payment_secret_required();
2259         invoice_features.set_basic_mpp_optional();
2260         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2261                 .with_expiry_time(payment_expiry_secs as u64)
2262                 .with_features(invoice_features);
2263         let route_params = RouteParameters {
2264                 payment_params,
2265                 final_value_msat: amt_msat,
2266         };
2267
2268         let mut route = Route {
2269                 paths: vec![
2270                         vec![RouteHop {
2271                                 pubkey: nodes[1].node.get_our_node_id(),
2272                                 node_features: nodes[1].node.node_features(),
2273                                 short_channel_id: chan_1_scid,
2274                                 channel_features: nodes[1].node.channel_features(),
2275                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2276                                 cltv_expiry_delta: 100,
2277                         }, RouteHop {
2278                                 pubkey: nodes[2].node.get_our_node_id(),
2279                                 node_features: nodes[2].node.node_features(),
2280                                 short_channel_id: chan_2_scid,
2281                                 channel_features: nodes[2].node.channel_features(),
2282                                 fee_msat: 100_000_000,
2283                                 cltv_expiry_delta: 100,
2284                         }],
2285                         vec![RouteHop {
2286                                 pubkey: nodes[1].node.get_our_node_id(),
2287                                 node_features: nodes[1].node.node_features(),
2288                                 short_channel_id: chan_1_scid,
2289                                 channel_features: nodes[1].node.channel_features(),
2290                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2291                                 cltv_expiry_delta: 100,
2292                         }, RouteHop {
2293                                 pubkey: nodes[2].node.get_our_node_id(),
2294                                 node_features: nodes[2].node.node_features(),
2295                                 short_channel_id: chan_2_scid,
2296                                 channel_features: nodes[2].node.channel_features(),
2297                                 fee_msat: 100_000_000,
2298                                 cltv_expiry_delta: 100,
2299                         }]
2300                 ],
2301                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2302         };
2303         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2304         let mut second_payment_params = route_params.payment_params.clone();
2305         second_payment_params.previously_failed_channels = vec![chan_2_scid, chan_2_scid];
2306         // On retry, we'll only return one path
2307         route.paths.remove(1);
2308         route.paths[0][1].fee_msat = amt_msat;
2309         nodes[0].router.expect_find_route(RouteParameters {
2310                         payment_params: second_payment_params,
2311                         final_value_msat: amt_msat,
2312                 }, Ok(route.clone()));
2313
2314         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2315         let htlc_updates = SendEvent::from_node(&nodes[0]);
2316         check_added_monitors!(nodes[0], 1);
2317         assert_eq!(htlc_updates.msgs.len(), 1);
2318
2319         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2320         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2321         check_added_monitors!(nodes[1], 1);
2322         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2323
2324         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2325         check_added_monitors!(nodes[0], 1);
2326         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2327
2328         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2329         check_added_monitors!(nodes[0], 1);
2330         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2331
2332         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2333         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2334         check_added_monitors!(nodes[1], 1);
2335         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2336
2337         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2338         check_added_monitors!(nodes[1], 1);
2339         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2340
2341         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2342         check_added_monitors!(nodes[0], 1);
2343
2344         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2345         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2346         check_added_monitors!(nodes[0], 1);
2347         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2348
2349         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2350         check_added_monitors!(nodes[1], 1);
2351         let bs_second_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2352
2353         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2354         check_added_monitors!(nodes[1], 1);
2355         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2356
2357         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.update_fail_htlcs[0]);
2358         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.commitment_signed);
2359         check_added_monitors!(nodes[0], 1);
2360
2361         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2362         check_added_monitors!(nodes[0], 1);
2363         let (as_third_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2364
2365         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
2366         check_added_monitors!(nodes[1], 1);
2367         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
2368         check_added_monitors!(nodes[1], 1);
2369         let bs_fourth_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2370
2371         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_fourth_raa);
2372         check_added_monitors!(nodes[0], 1);
2373
2374         // At this point A has sent two HTLCs which both failed due to lack of fee. It now has two
2375         // pending `PaymentPathFailed` events, one with `all_paths_failed` unset, and the second
2376         // with it set.
2377         //
2378         // Previously, we retried payments in an event consumer, which would retry each
2379         // `PaymentPathFailed` individually. In that setup, we had retried the payment in response to
2380         // the first `PaymentPathFailed`, then seen the second `PaymentPathFailed` with
2381         // `all_paths_failed` set and assumed the payment was completely failed. We ultimately fixed it
2382         // by adding the `PaymentFailed` event.
2383         //
2384         // Because we now retry payments as a batch, we simply return a single-path route in the
2385         // second, batched, request, have that fail, ensure the payment was abandoned.
2386         let mut events = nodes[0].node.get_and_clear_pending_events();
2387         assert_eq!(events.len(), 3);
2388         match events[0] {
2389                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2390                         assert_eq!(payment_hash, ev_payment_hash);
2391                         assert_eq!(payment_failed_permanently, false);
2392                 },
2393                 _ => panic!("Unexpected event"),
2394         }
2395         match events[1] {
2396                 Event::PendingHTLCsForwardable { .. } => {},
2397                 _ => panic!("Unexpected event"),
2398         }
2399         match events[2] {
2400                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2401                         assert_eq!(payment_hash, ev_payment_hash);
2402                         assert_eq!(payment_failed_permanently, false);
2403                 },
2404                 _ => panic!("Unexpected event"),
2405         }
2406
2407         nodes[0].node.process_pending_htlc_forwards();
2408         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2409         check_added_monitors!(nodes[0], 1);
2410
2411         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2412         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2413         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2414         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2415         commitment_signed_dance!(nodes[0], nodes[1], &bs_fail_update.commitment_signed, false, true);
2416
2417         let mut events = nodes[0].node.get_and_clear_pending_events();
2418         assert_eq!(events.len(), 2);
2419         match events[0] {
2420                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2421                         assert_eq!(payment_hash, ev_payment_hash);
2422                         assert_eq!(payment_failed_permanently, false);
2423                 },
2424                 _ => panic!("Unexpected event"),
2425         }
2426         match events[1] {
2427                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
2428                         assert_eq!(payment_hash, *ev_payment_hash);
2429                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
2430                 },
2431                 _ => panic!("Unexpected event"),
2432         }
2433 }
2434
2435 #[test]
2436 fn test_simple_partial_retry() {
2437         // In the first version of the in-`ChannelManager` payment retries, retries were sent for the
2438         // full amount of the payment, rather than only the missing amount. Here we simply test for
2439         // this by sending a payment with two parts, failing one, and retrying the second. Note that
2440         // `TestRouter` will check that the `RouteParameters` (which contain the amount) matches the
2441         // request.
2442         let chanmon_cfgs = create_chanmon_cfgs(3);
2443         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2444         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2445         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2446
2447         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2448         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2449
2450         let amt_msat = 200_000_000;
2451         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2452         #[cfg(feature = "std")]
2453         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2454         #[cfg(not(feature = "std"))]
2455         let payment_expiry_secs = 60 * 60;
2456         let mut invoice_features = InvoiceFeatures::empty();
2457         invoice_features.set_variable_length_onion_required();
2458         invoice_features.set_payment_secret_required();
2459         invoice_features.set_basic_mpp_optional();
2460         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2461                 .with_expiry_time(payment_expiry_secs as u64)
2462                 .with_features(invoice_features);
2463         let route_params = RouteParameters {
2464                 payment_params,
2465                 final_value_msat: amt_msat,
2466         };
2467
2468         let mut route = Route {
2469                 paths: vec![
2470                         vec![RouteHop {
2471                                 pubkey: nodes[1].node.get_our_node_id(),
2472                                 node_features: nodes[1].node.node_features(),
2473                                 short_channel_id: chan_1_scid,
2474                                 channel_features: nodes[1].node.channel_features(),
2475                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2476                                 cltv_expiry_delta: 100,
2477                         }, RouteHop {
2478                                 pubkey: nodes[2].node.get_our_node_id(),
2479                                 node_features: nodes[2].node.node_features(),
2480                                 short_channel_id: chan_2_scid,
2481                                 channel_features: nodes[2].node.channel_features(),
2482                                 fee_msat: 100_000_000,
2483                                 cltv_expiry_delta: 100,
2484                         }],
2485                         vec![RouteHop {
2486                                 pubkey: nodes[1].node.get_our_node_id(),
2487                                 node_features: nodes[1].node.node_features(),
2488                                 short_channel_id: chan_1_scid,
2489                                 channel_features: nodes[1].node.channel_features(),
2490                                 fee_msat: 100_000,
2491                                 cltv_expiry_delta: 100,
2492                         }, RouteHop {
2493                                 pubkey: nodes[2].node.get_our_node_id(),
2494                                 node_features: nodes[2].node.node_features(),
2495                                 short_channel_id: chan_2_scid,
2496                                 channel_features: nodes[2].node.channel_features(),
2497                                 fee_msat: 100_000_000,
2498                                 cltv_expiry_delta: 100,
2499                         }]
2500                 ],
2501                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2502         };
2503         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2504         let mut second_payment_params = route_params.payment_params.clone();
2505         second_payment_params.previously_failed_channels = vec![chan_2_scid];
2506         // On retry, we'll only be asked for one path (or 100k sats)
2507         route.paths.remove(0);
2508         nodes[0].router.expect_find_route(RouteParameters {
2509                         payment_params: second_payment_params,
2510                         final_value_msat: amt_msat / 2,
2511                 }, Ok(route.clone()));
2512
2513         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2514         let htlc_updates = SendEvent::from_node(&nodes[0]);
2515         check_added_monitors!(nodes[0], 1);
2516         assert_eq!(htlc_updates.msgs.len(), 1);
2517
2518         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2519         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2520         check_added_monitors!(nodes[1], 1);
2521         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2522
2523         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2524         check_added_monitors!(nodes[0], 1);
2525         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2526
2527         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2528         check_added_monitors!(nodes[0], 1);
2529         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2530
2531         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2532         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2533         check_added_monitors!(nodes[1], 1);
2534         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2535
2536         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2537         check_added_monitors!(nodes[1], 1);
2538         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2539
2540         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2541         check_added_monitors!(nodes[0], 1);
2542
2543         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2544         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2545         check_added_monitors!(nodes[0], 1);
2546         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2547
2548         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2549         check_added_monitors!(nodes[1], 1);
2550
2551         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2552         check_added_monitors!(nodes[1], 1);
2553
2554         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2555
2556         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2557         check_added_monitors!(nodes[0], 1);
2558
2559         let mut events = nodes[0].node.get_and_clear_pending_events();
2560         assert_eq!(events.len(), 2);
2561         match events[0] {
2562                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2563                         assert_eq!(payment_hash, ev_payment_hash);
2564                         assert_eq!(payment_failed_permanently, false);
2565                 },
2566                 _ => panic!("Unexpected event"),
2567         }
2568         match events[1] {
2569                 Event::PendingHTLCsForwardable { .. } => {},
2570                 _ => panic!("Unexpected event"),
2571         }
2572
2573         nodes[0].node.process_pending_htlc_forwards();
2574         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2575         check_added_monitors!(nodes[0], 1);
2576
2577         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2578         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2579
2580         expect_pending_htlcs_forwardable!(nodes[1]);
2581         check_added_monitors!(nodes[1], 1);
2582
2583         let bs_forward_update = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
2584         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[0]);
2585         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[1]);
2586         commitment_signed_dance!(nodes[2], nodes[1], &bs_forward_update.commitment_signed, false);
2587
2588         expect_pending_htlcs_forwardable!(nodes[2]);
2589         expect_payment_claimable!(nodes[2], payment_hash, payment_secret, amt_msat);
2590 }
2591
2592 #[test]
2593 #[cfg(feature = "std")]
2594 fn test_threaded_payment_retries() {
2595         // In the first version of the in-`ChannelManager` payment retries, retries weren't limited to
2596         // a single thread and would happily let multiple threads run retries at the same time. Because
2597         // retries are done by first calculating the amount we need to retry, then dropping the
2598         // relevant lock, then actually sending, we would happily let multiple threads retry the same
2599         // amount at the same time, overpaying our original HTLC!
2600         let chanmon_cfgs = create_chanmon_cfgs(4);
2601         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
2602         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
2603         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
2604
2605         // There is one mitigating guardrail when retrying payments - we can never over-pay by more
2606         // than 10% of the original value. Thus, we want all our retries to be below that. In order to
2607         // keep things simple, we route one HTLC for 0.1% of the payment over channel 1 and the rest
2608         // out over channel 3+4. This will let us ignore 99% of the payment value and deal with only
2609         // our channel.
2610         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2611         create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 10_000_000, 0);
2612         let chan_3_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 10_000_000, 0).0.contents.short_channel_id;
2613         let chan_4_scid = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 10_000_000, 0).0.contents.short_channel_id;
2614
2615         let amt_msat = 100_000_000;
2616         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2617         #[cfg(feature = "std")]
2618         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2619         #[cfg(not(feature = "std"))]
2620         let payment_expiry_secs = 60 * 60;
2621         let mut invoice_features = InvoiceFeatures::empty();
2622         invoice_features.set_variable_length_onion_required();
2623         invoice_features.set_payment_secret_required();
2624         invoice_features.set_basic_mpp_optional();
2625         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2626                 .with_expiry_time(payment_expiry_secs as u64)
2627                 .with_features(invoice_features);
2628         let mut route_params = RouteParameters {
2629                 payment_params,
2630                 final_value_msat: amt_msat,
2631         };
2632
2633         let mut route = Route {
2634                 paths: vec![
2635                         vec![RouteHop {
2636                                 pubkey: nodes[1].node.get_our_node_id(),
2637                                 node_features: nodes[1].node.node_features(),
2638                                 short_channel_id: chan_1_scid,
2639                                 channel_features: nodes[1].node.channel_features(),
2640                                 fee_msat: 0,
2641                                 cltv_expiry_delta: 100,
2642                         }, RouteHop {
2643                                 pubkey: nodes[3].node.get_our_node_id(),
2644                                 node_features: nodes[2].node.node_features(),
2645                                 short_channel_id: 42, // Set a random SCID which nodes[1] will fail as unknown
2646                                 channel_features: nodes[2].node.channel_features(),
2647                                 fee_msat: amt_msat / 1000,
2648                                 cltv_expiry_delta: 100,
2649                         }],
2650                         vec![RouteHop {
2651                                 pubkey: nodes[2].node.get_our_node_id(),
2652                                 node_features: nodes[2].node.node_features(),
2653                                 short_channel_id: chan_3_scid,
2654                                 channel_features: nodes[2].node.channel_features(),
2655                                 fee_msat: 100_000,
2656                                 cltv_expiry_delta: 100,
2657                         }, RouteHop {
2658                                 pubkey: nodes[3].node.get_our_node_id(),
2659                                 node_features: nodes[3].node.node_features(),
2660                                 short_channel_id: chan_4_scid,
2661                                 channel_features: nodes[3].node.channel_features(),
2662                                 fee_msat: amt_msat - amt_msat / 1000,
2663                                 cltv_expiry_delta: 100,
2664                         }]
2665                 ],
2666                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2667         };
2668         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2669
2670         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(0xdeadbeef)).unwrap();
2671         check_added_monitors!(nodes[0], 2);
2672         let mut send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2673         assert_eq!(send_msg_events.len(), 2);
2674         send_msg_events.retain(|msg|
2675                 if let MessageSendEvent::UpdateHTLCs { node_id, .. } = msg {
2676                         // Drop the commitment update for nodes[2], we can just let that one sit pending
2677                         // forever.
2678                         *node_id == nodes[1].node.get_our_node_id()
2679                 } else { panic!(); }
2680         );
2681
2682         // from here on out, the retry `RouteParameters` amount will be amt/1000
2683         route_params.final_value_msat /= 1000;
2684         route.paths.pop();
2685
2686         let end_time = Instant::now() + Duration::from_secs(1);
2687         macro_rules! thread_body { () => { {
2688                 // We really want std::thread::scope, but its not stable until 1.63. Until then, we get unsafe.
2689                 let node_ref = NodePtr::from_node(&nodes[0]);
2690                 move || {
2691                         let node_a = unsafe { &*node_ref.0 };
2692                         while Instant::now() < end_time {
2693                                 node_a.node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2694                                 // Ignore if we have any pending events, just always pretend we just got a
2695                                 // PendingHTLCsForwardable
2696                                 node_a.node.process_pending_htlc_forwards();
2697                         }
2698                 }
2699         } } }
2700         let mut threads = Vec::new();
2701         for _ in 0..16 { threads.push(std::thread::spawn(thread_body!())); }
2702
2703         // Back in the main thread, poll pending messages and make sure that we never have more than
2704         // one HTLC pending at a time. Note that the commitment_signed_dance will fail horribly if
2705         // there are HTLC messages shoved in while its running. This allows us to test that we never
2706         // generate an additional update_add_htlc until we've fully failed the first.
2707         let mut previously_failed_channels = Vec::new();
2708         loop {
2709                 assert_eq!(send_msg_events.len(), 1);
2710                 let send_event = SendEvent::from_event(send_msg_events.pop().unwrap());
2711                 assert_eq!(send_event.msgs.len(), 1);
2712
2713                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_event.msgs[0]);
2714                 commitment_signed_dance!(nodes[1], nodes[0], send_event.commitment_msg, false, true);
2715
2716                 // Note that we only push one route into `expect_find_route` at a time, because that's all
2717                 // the retries (should) need. If the bug is reintroduced "real" routes may be selected, but
2718                 // we should still ultimately fail for the same reason - because we're trying to send too
2719                 // many HTLCs at once.
2720                 let mut new_route_params = route_params.clone();
2721                 previously_failed_channels.push(route.paths[0][1].short_channel_id);
2722                 new_route_params.payment_params.previously_failed_channels = previously_failed_channels.clone();
2723                 route.paths[0][1].short_channel_id += 1;
2724                 nodes[0].router.expect_find_route(new_route_params, Ok(route.clone()));
2725
2726                 let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2727                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]);
2728                 // The "normal" commitment_signed_dance delivers the final RAA and then calls
2729                 // `check_added_monitors` to ensure only the one RAA-generated monitor update was created.
2730                 // This races with our other threads which may generate an add-HTLCs commitment update via
2731                 // `process_pending_htlc_forwards`. Instead, we defer the monitor update check until after
2732                 // *we've* called `process_pending_htlc_forwards` when its guaranteed to have two updates.
2733                 let last_raa = commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true, false, true);
2734                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &last_raa);
2735
2736                 let cur_time = Instant::now();
2737                 if cur_time > end_time {
2738                         for thread in threads.drain(..) { thread.join().unwrap(); }
2739                 }
2740
2741                 // Make sure we have some events to handle when we go around...
2742                 nodes[0].node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2743                 nodes[0].node.process_pending_htlc_forwards();
2744                 send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2745                 check_added_monitors!(nodes[0], 2);
2746
2747                 if cur_time > end_time {
2748                         break;
2749                 }
2750         }
2751 }
2752
2753 fn do_no_missing_sent_on_midpoint_reload(persist_manager_with_payment: bool) {
2754         // Test that if we reload in the middle of an HTLC claim commitment signed dance we'll still
2755         // receive the PaymentSent event even if the ChannelManager had no idea about the payment when
2756         // it was last persisted.
2757         let chanmon_cfgs = create_chanmon_cfgs(2);
2758         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2759         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2760         let (persister_a, persister_b, persister_c);
2761         let (chain_monitor_a, chain_monitor_b, chain_monitor_c);
2762         let (nodes_0_deserialized, nodes_0_deserialized_b, nodes_0_deserialized_c);
2763         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2764
2765         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
2766
2767         let mut nodes_0_serialized = Vec::new();
2768         if !persist_manager_with_payment {
2769                 nodes_0_serialized = nodes[0].node.encode();
2770         }
2771
2772         let (our_payment_preimage, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
2773
2774         if persist_manager_with_payment {
2775                 nodes_0_serialized = nodes[0].node.encode();
2776         }
2777
2778         nodes[1].node.claim_funds(our_payment_preimage);
2779         check_added_monitors!(nodes[1], 1);
2780         expect_payment_claimed!(nodes[1], our_payment_hash, 1_000_000);
2781
2782         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2783         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
2784         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
2785         check_added_monitors!(nodes[0], 1);
2786
2787         // The ChannelMonitor should always be the latest version, as we're required to persist it
2788         // during the commitment signed handling.
2789         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2790         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister_a, chain_monitor_a, nodes_0_deserialized);
2791
2792         let events = nodes[0].node.get_and_clear_pending_events();
2793         assert_eq!(events.len(), 2);
2794         if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[0] {} else { panic!(); }
2795         if let Event::PaymentSent { payment_preimage, .. } = events[1] { assert_eq!(payment_preimage, our_payment_preimage); } else { panic!(); }
2796         // Note that we don't get a PaymentPathSuccessful here as we leave the HTLC pending to avoid
2797         // the double-claim that would otherwise appear at the end of this test.
2798         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
2799         assert_eq!(as_broadcasted_txn.len(), 1);
2800
2801         // Ensure that, even after some time, if we restart we still include *something* in the current
2802         // `ChannelManager` which prevents a `PaymentFailed` when we restart even if pending resolved
2803         // payments have since been timed out thanks to `IDEMPOTENCY_TIMEOUT_TICKS`.
2804         // A naive implementation of the fix here would wipe the pending payments set, causing a
2805         // failure event when we restart.
2806         for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
2807
2808         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2809         reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_b, chain_monitor_b, nodes_0_deserialized_b);
2810         let events = nodes[0].node.get_and_clear_pending_events();
2811         assert!(events.is_empty());
2812
2813         // Ensure that we don't generate any further events even after the channel-closing commitment
2814         // transaction is confirmed on-chain.
2815         confirm_transaction(&nodes[0], &as_broadcasted_txn[0]);
2816         for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
2817
2818         let events = nodes[0].node.get_and_clear_pending_events();
2819         assert!(events.is_empty());
2820
2821         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
2822         reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_c, chain_monitor_c, nodes_0_deserialized_c);
2823         let events = nodes[0].node.get_and_clear_pending_events();
2824         assert!(events.is_empty());
2825 }
2826
2827 #[test]
2828 fn no_missing_sent_on_midpoint_reload() {
2829         do_no_missing_sent_on_midpoint_reload(false);
2830         do_no_missing_sent_on_midpoint_reload(true);
2831 }