Merge pull request #1203 from lightning-signer/2021-12-value-to-self
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch};
15 use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
16 use chain::transaction::OutPoint;
17 use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure};
18 use ln::features::InitFeatures;
19 use ln::msgs;
20 use ln::msgs::ChannelMessageHandler;
21 use util::events::{ClosureReason, Event, MessageSendEvent, MessageSendEventsProvider};
22 use util::test_utils;
23 use util::errors::APIError;
24 use util::enforcing_trait_impls::EnforcingSigner;
25 use util::ser::{ReadableArgs, Writeable};
26 use io;
27
28 use bitcoin::{Block, BlockHeader, BlockHash};
29
30 use prelude::*;
31
32 use ln::functional_test_utils::*;
33
34 #[test]
35 fn retry_single_path_payment() {
36         let chanmon_cfgs = create_chanmon_cfgs(3);
37         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
38         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
39         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
40
41         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
42         let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
43         // Rebalance to find a route
44         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
45
46         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
47
48         // Rebalance so that the first hop fails.
49         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
50
51         // Make sure the payment fails on the first hop.
52         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
53         check_added_monitors!(nodes[0], 1);
54         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
55         assert_eq!(events.len(), 1);
56         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
57         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
58         check_added_monitors!(nodes[1], 0);
59         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
60         expect_pending_htlcs_forwardable!(nodes[1]);
61         expect_pending_htlcs_forwardable!(&nodes[1]);
62         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
63         assert!(htlc_updates.update_add_htlcs.is_empty());
64         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
65         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
66         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
67         check_added_monitors!(nodes[1], 1);
68         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
69         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
70         expect_payment_failed!(nodes[0], payment_hash, false);
71
72         // Rebalance the channel so the retry succeeds.
73         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
74
75         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
76         connect_blocks(&nodes[0], 2);
77
78         // Retry the payment and make sure it succeeds.
79         nodes[0].node.retry_payment(&route, payment_id).unwrap();
80         check_added_monitors!(nodes[0], 1);
81         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
82         assert_eq!(events.len(), 1);
83         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
84         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
85 }
86
87 #[test]
88 fn mpp_failure() {
89         let chanmon_cfgs = create_chanmon_cfgs(4);
90         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
91         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
92         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
93
94         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
95         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
96         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
97         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
98
99         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
100         let path = route.paths[0].clone();
101         route.paths.push(path);
102         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
103         route.paths[0][0].short_channel_id = chan_1_id;
104         route.paths[0][1].short_channel_id = chan_3_id;
105         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
106         route.paths[1][0].short_channel_id = chan_2_id;
107         route.paths[1][1].short_channel_id = chan_4_id;
108         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
109         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
110 }
111
112 #[test]
113 fn mpp_retry() {
114         let chanmon_cfgs = create_chanmon_cfgs(4);
115         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
116         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
117         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
118
119         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
120         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
121         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
122         let chan_4_id = create_announced_chan_between_nodes(&nodes, 3, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
123         // Rebalance
124         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
125
126         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
127         let path = route.paths[0].clone();
128         route.paths.push(path);
129         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
130         route.paths[0][0].short_channel_id = chan_1_id;
131         route.paths[0][1].short_channel_id = chan_3_id;
132         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
133         route.paths[1][0].short_channel_id = chan_2_id;
134         route.paths[1][1].short_channel_id = chan_4_id;
135
136         // Initiate the MPP payment.
137         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
138         check_added_monitors!(nodes[0], 2); // one monitor per path
139         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
140         assert_eq!(events.len(), 2);
141
142         // Pass half of the payment along the success path.
143         let success_path_msgs = events.remove(0);
144         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
145
146         // Add the HTLC along the first hop.
147         let fail_path_msgs_1 = events.remove(0);
148         let (update_add, commitment_signed) = match fail_path_msgs_1 {
149                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
150                         assert_eq!(update_add_htlcs.len(), 1);
151                         assert!(update_fail_htlcs.is_empty());
152                         assert!(update_fulfill_htlcs.is_empty());
153                         assert!(update_fail_malformed_htlcs.is_empty());
154                         assert!(update_fee.is_none());
155                         (update_add_htlcs[0].clone(), commitment_signed.clone())
156                 },
157                 _ => panic!("Unexpected event"),
158         };
159         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
160         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
161
162         // Attempt to forward the payment and complete the 2nd path's failure.
163         expect_pending_htlcs_forwardable!(&nodes[2]);
164         expect_pending_htlcs_forwardable!(&nodes[2]);
165         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
166         assert!(htlc_updates.update_add_htlcs.is_empty());
167         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
168         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
169         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
170         check_added_monitors!(nodes[2], 1);
171         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
172         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
173         expect_payment_failed!(nodes[0], payment_hash, false);
174
175         // Rebalance the channel so the second half of the payment can succeed.
176         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
177
178         // Make sure it errors as expected given a too-large amount.
179         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
180                 assert!(err.contains("over total_payment_amt_msat"));
181         } else { panic!("Unexpected error"); }
182
183         // Make sure it errors as expected given the wrong payment_id.
184         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
185                 assert!(err.contains("not found"));
186         } else { panic!("Unexpected error"); }
187
188         // Retry the second half of the payment and make sure it succeeds.
189         let mut path = route.clone();
190         path.paths.remove(0);
191         nodes[0].node.retry_payment(&path, payment_id).unwrap();
192         check_added_monitors!(nodes[0], 1);
193         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
194         assert_eq!(events.len(), 1);
195         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
196         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
197 }
198
199 #[test]
200 fn retry_expired_payment() {
201         let chanmon_cfgs = create_chanmon_cfgs(3);
202         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
203         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
204         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
205
206         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
207         let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
208         // Rebalance to find a route
209         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
210
211         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
212
213         // Rebalance so that the first hop fails.
214         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
215
216         // Make sure the payment fails on the first hop.
217         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
218         check_added_monitors!(nodes[0], 1);
219         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
220         assert_eq!(events.len(), 1);
221         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
222         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
223         check_added_monitors!(nodes[1], 0);
224         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
225         expect_pending_htlcs_forwardable!(nodes[1]);
226         expect_pending_htlcs_forwardable!(&nodes[1]);
227         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
228         assert!(htlc_updates.update_add_htlcs.is_empty());
229         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
230         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
231         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
232         check_added_monitors!(nodes[1], 1);
233         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
234         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
235         expect_payment_failed!(nodes[0], payment_hash, false);
236
237         // Mine blocks so the payment will have expired.
238         connect_blocks(&nodes[0], 3);
239
240         // Retry the payment and make sure it errors as expected.
241         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
242                 assert!(err.contains("not found"));
243         } else {
244                 panic!("Unexpected error");
245         }
246 }
247
248 #[test]
249 fn no_pending_leak_on_initial_send_failure() {
250         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
251         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
252         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
253         // pending payment forever and never time it out.
254         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
255         // try, and then check that no pending payment is being tracked.
256         let chanmon_cfgs = create_chanmon_cfgs(2);
257         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
258         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
259         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
260
261         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
262
263         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
264
265         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
266         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
267
268         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)),
269                 true, APIError::ChannelUnavailable { ref err },
270                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
271
272         assert!(!nodes[0].node.has_pending_payments());
273 }
274
275 fn do_retry_with_no_persist(confirm_before_reload: bool) {
276         // If we send a pending payment and `send_payment` returns success, we should always either
277         // return a payment failure event or a payment success event, and on failure the payment should
278         // be retryable.
279         //
280         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
281         // always persisted asynchronously), the ChannelManager has to reload some payment data from
282         // ChannelMonitor(s) in some cases. This tests that reloading.
283         //
284         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
285         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
286         // which has separate codepaths for "commitment transaction already confirmed" and not.
287         let chanmon_cfgs = create_chanmon_cfgs(3);
288         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
289         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
290         let persister: test_utils::TestPersister;
291         let new_chain_monitor: test_utils::TestChainMonitor;
292         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
293         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
294
295         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
296         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
297
298         // Serialize the ChannelManager prior to sending payments
299         let nodes_0_serialized = nodes[0].node.encode();
300
301         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
302         // out and retry.
303         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
304         let (payment_preimage_1, _, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
305         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
306         check_added_monitors!(nodes[0], 1);
307
308         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
309         assert_eq!(events.len(), 1);
310         let payment_event = SendEvent::from_event(events.pop().unwrap());
311         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
312
313         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
314         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
315         // which would prevent retry.
316         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
317         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
318
319         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
320         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
321         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
322         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
323
324         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
325
326         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
327         if confirm_before_reload {
328                 mine_transaction(&nodes[0], &as_commitment_tx);
329                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
330         }
331
332         // The ChannelMonitor should always be the latest version, as we're required to persist it
333         // during the `commitment_signed_dance!()`.
334         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
335         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
336
337         persister = test_utils::TestPersister::new();
338         let keys_manager = &chanmon_cfgs[0].keys_manager;
339         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
340         nodes[0].chain_monitor = &new_chain_monitor;
341         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
342         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
343                 &mut chan_0_monitor_read, keys_manager).unwrap();
344         assert!(chan_0_monitor_read.is_empty());
345
346         let mut nodes_0_read = &nodes_0_serialized[..];
347         let (_, nodes_0_deserialized_tmp) = {
348                 let mut channel_monitors = HashMap::new();
349                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
350                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
351                         default_config: test_default_channel_config(),
352                         keys_manager,
353                         fee_estimator: node_cfgs[0].fee_estimator,
354                         chain_monitor: nodes[0].chain_monitor,
355                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
356                         logger: nodes[0].logger,
357                         channel_monitors,
358                 }).unwrap()
359         };
360         nodes_0_deserialized = nodes_0_deserialized_tmp;
361         assert!(nodes_0_read.is_empty());
362
363         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
364         nodes[0].node = &nodes_0_deserialized;
365         check_added_monitors!(nodes[0], 1);
366
367         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
368         // force-close the channel.
369         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
370         assert!(nodes[0].node.list_channels().is_empty());
371         assert!(nodes[0].node.has_pending_payments());
372         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
373         assert_eq!(as_broadcasted_txn.len(), 1);
374         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
375
376         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
377         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
378         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
379
380         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
381         // error, as the channel has hit the chain.
382         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
383         let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
384         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
385         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
386         assert_eq!(as_err.len(), 1);
387         match as_err[0] {
388                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
389                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
390                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
391                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
392                         check_added_monitors!(nodes[1], 1);
393                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
394                 },
395                 _ => panic!("Unexpected event"),
396         }
397         check_closed_broadcast!(nodes[1], false);
398
399         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
400         // we close in a moment.
401         nodes[2].node.claim_funds(payment_preimage_1);
402         check_added_monitors!(nodes[2], 1);
403         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
404         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
405         check_added_monitors!(nodes[1], 1);
406         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
407
408         if confirm_before_reload {
409                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
410                 nodes[0].node.best_block_updated(&best_block.0, best_block.1);
411         }
412
413         // Create a new channel on which to retry the payment before we fail the payment via the
414         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
415         // connecting several blocks while creating the channel (implying time has passed).
416         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
417         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
418
419         mine_transaction(&nodes[1], &as_commitment_tx);
420         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
421         assert_eq!(bs_htlc_claim_txn.len(), 1);
422         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
423         expect_payment_forwarded!(nodes[1], None, false);
424
425         mine_transaction(&nodes[0], &as_commitment_tx);
426         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
427         expect_payment_sent!(nodes[0], payment_preimage_1);
428         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
429         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
430         check_spends!(as_htlc_timeout_txn[2], funding_tx);
431         check_spends!(as_htlc_timeout_txn[0], as_commitment_tx);
432         check_spends!(as_htlc_timeout_txn[1], as_commitment_tx);
433         assert_eq!(as_htlc_timeout_txn.len(), 3);
434         if as_htlc_timeout_txn[0].input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
435                 confirm_transaction(&nodes[0], &as_htlc_timeout_txn[1]);
436         } else {
437                 confirm_transaction(&nodes[0], &as_htlc_timeout_txn[0]);
438         }
439         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
440         expect_payment_failed!(nodes[0], payment_hash, false);
441
442         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
443         // reloaded) via a route over the new channel, which work without issue and eventually be
444         // received and claimed at the recipient just like any other payment.
445         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
446
447         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
448         // and not the original fee. We also update node[1]'s relevant config as
449         // do_claim_payment_along_route expects us to never overpay.
450         nodes[1].node.channel_state.lock().unwrap().by_id.get_mut(&chan_id_2).unwrap().config.forwarding_fee_base_msat += 100_000;
451         new_route.paths[0][0].fee_msat += 100_000;
452
453         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
454         nodes[0].node.retry_payment(&new_route, payment_id).unwrap();
455         check_added_monitors!(nodes[0], 1);
456         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
457         assert_eq!(events.len(), 1);
458         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
459         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
460         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
461 }
462
463 #[test]
464 fn retry_with_no_persist() {
465         do_retry_with_no_persist(true);
466         do_retry_with_no_persist(false);
467 }
468
469 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
470         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
471         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
472         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
473         // the ChannelMonitor tells it to.
474         //
475         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
476         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
477         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
478         let chanmon_cfgs = create_chanmon_cfgs(2);
479         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
480         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
481         let persister: test_utils::TestPersister;
482         let new_chain_monitor: test_utils::TestChainMonitor;
483         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
484         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
485
486         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
487
488         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
489         // nodes[0].
490         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
491         nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
492         check_closed_broadcast!(nodes[0], true);
493         check_added_monitors!(nodes[0], 1);
494         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
495
496         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
497         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
498
499         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
500         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
501         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
502         assert_eq!(node_txn.len(), 3);
503         assert_eq!(node_txn[0], node_txn[1]);
504         check_spends!(node_txn[1], funding_tx);
505         check_spends!(node_txn[2], node_txn[1]);
506         let timeout_txn = vec![node_txn[2].clone()];
507
508         assert!(nodes[1].node.claim_funds(payment_preimage));
509         check_added_monitors!(nodes[1], 1);
510
511         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
512         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
513         check_closed_broadcast!(nodes[1], true);
514         check_added_monitors!(nodes[1], 1);
515         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
516         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
517
518         header.prev_blockhash = nodes[0].best_block_hash();
519         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
520
521         if confirm_commitment_tx {
522                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
523         }
524
525         header.prev_blockhash = nodes[0].best_block_hash();
526         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { claim_txn } };
527
528         if payment_timeout {
529                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
530                 connect_block(&nodes[0], &claim_block);
531                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
532         }
533
534         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
535         // returning TemporaryFailure. This should cause the claim event to never make its way to the
536         // ChannelManager.
537         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
538         chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
539
540         if payment_timeout {
541                 connect_blocks(&nodes[0], 1);
542         } else {
543                 connect_block(&nodes[0], &claim_block);
544         }
545
546         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
547         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
548                 .get_mut(&funding_txo).unwrap().drain().collect();
549         assert_eq!(mon_updates.len(), 1);
550         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
551         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
552
553         // If we persist the ChannelManager here, we should get the PaymentSent event after
554         // deserialization.
555         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
556         if !persist_manager_post_event {
557                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
558         }
559
560         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
561         // payment sent event.
562         chanmon_cfgs[0].persister.set_update_ret(Ok(()));
563         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
564         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
565         nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
566         if payment_timeout {
567                 expect_payment_failed!(nodes[0], payment_hash, true);
568         } else {
569                 expect_payment_sent!(nodes[0], payment_preimage);
570         }
571
572         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
573         // twice.
574         if persist_manager_post_event {
575                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
576         }
577
578         // Now reload nodes[0]...
579         persister = test_utils::TestPersister::new();
580         let keys_manager = &chanmon_cfgs[0].keys_manager;
581         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
582         nodes[0].chain_monitor = &new_chain_monitor;
583         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
584         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
585                 &mut chan_0_monitor_read, keys_manager).unwrap();
586         assert!(chan_0_monitor_read.is_empty());
587
588         let (_, nodes_0_deserialized_tmp) = {
589                 let mut channel_monitors = HashMap::new();
590                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
591                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
592                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
593                                 default_config: Default::default(),
594                                 keys_manager,
595                                 fee_estimator: node_cfgs[0].fee_estimator,
596                                 chain_monitor: nodes[0].chain_monitor,
597                                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
598                                 logger: nodes[0].logger,
599                                 channel_monitors,
600                         }).unwrap()
601         };
602         nodes_0_deserialized = nodes_0_deserialized_tmp;
603
604         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
605         check_added_monitors!(nodes[0], 1);
606         nodes[0].node = &nodes_0_deserialized;
607
608         if persist_manager_post_event {
609                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
610         } else if payment_timeout {
611                 expect_payment_failed!(nodes[0], payment_hash, true);
612         } else {
613                 expect_payment_sent!(nodes[0], payment_preimage);
614         }
615
616         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
617         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
618         // payment events should kick in, leaving us with no pending events here.
619         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
620         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
621         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
622 }
623
624 #[test]
625 fn test_dup_htlc_onchain_fails_on_reload() {
626         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
627         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
628         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
629         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
630         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
631         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
632 }
633
634 #[test]
635 fn test_fulfill_restart_failure() {
636         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
637         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
638         // again, or fail it, giving us free money.
639         //
640         // Of course probably they won't fail it and give us free money, but because we have code to
641         // handle it, we should test the logic for it anyway. We do that here.
642         let chanmon_cfgs = create_chanmon_cfgs(2);
643         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
644         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
645         let persister: test_utils::TestPersister;
646         let new_chain_monitor: test_utils::TestChainMonitor;
647         let nodes_1_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
648         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
649
650         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2;
651         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
652
653         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
654         // pre-fulfill, which we do by serializing it here.
655         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
656         nodes[1].node.write(&mut chan_manager_serialized).unwrap();
657         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
658         get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
659
660         nodes[1].node.claim_funds(payment_preimage);
661         check_added_monitors!(nodes[1], 1);
662         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
663         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
664         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
665
666         // Now reload nodes[1]...
667         persister = test_utils::TestPersister::new();
668         let keys_manager = &chanmon_cfgs[1].keys_manager;
669         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager);
670         nodes[1].chain_monitor = &new_chain_monitor;
671         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
672         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
673                 &mut chan_0_monitor_read, keys_manager).unwrap();
674         assert!(chan_0_monitor_read.is_empty());
675
676         let (_, nodes_1_deserialized_tmp) = {
677                 let mut channel_monitors = HashMap::new();
678                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
679                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
680                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
681                                 default_config: Default::default(),
682                                 keys_manager,
683                                 fee_estimator: node_cfgs[1].fee_estimator,
684                                 chain_monitor: nodes[1].chain_monitor,
685                                 tx_broadcaster: nodes[1].tx_broadcaster.clone(),
686                                 logger: nodes[1].logger,
687                                 channel_monitors,
688                         }).unwrap()
689         };
690         nodes_1_deserialized = nodes_1_deserialized_tmp;
691
692         assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
693         check_added_monitors!(nodes[1], 1);
694         nodes[1].node = &nodes_1_deserialized;
695
696         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
697         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
698
699         nodes[1].node.fail_htlc_backwards(&payment_hash);
700         expect_pending_htlcs_forwardable!(nodes[1]);
701         check_added_monitors!(nodes[1], 1);
702         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
703         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
704         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
705         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
706         // it had already considered the payment fulfilled, and now they just got free money.
707         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
708 }