Merge pull request #2015 from TheBlueMatt/2023-02-no-dumb-redundant-fields
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use crate::chain::channelmonitor::{ANTI_REORG_DELAY, LATENCY_GRACE_PERIOD_BLOCKS};
16 use crate::chain::keysinterface::EntropySource;
17 use crate::chain::transaction::OutPoint;
18 use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS, RecentPaymentDetails};
20 use crate::ln::features::InvoiceFeatures;
21 use crate::ln::msgs;
22 use crate::ln::msgs::ChannelMessageHandler;
23 use crate::ln::outbound_payment::Retry;
24 use crate::routing::gossip::{EffectiveCapacity, RoutingFees};
25 use crate::routing::router::{get_route, PaymentParameters, Route, RouteHint, RouteHintHop, RouteHop, RouteParameters};
26 use crate::routing::scoring::ChannelUsage;
27 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, PathFailure};
28 use crate::util::test_utils;
29 use crate::util::errors::APIError;
30 use crate::util::ser::Writeable;
31
32 use bitcoin::{Block, BlockHeader, TxMerkleNode};
33 use bitcoin::hashes::Hash;
34 use bitcoin::network::constants::Network;
35
36 use crate::prelude::*;
37
38 use crate::ln::functional_test_utils::*;
39 use crate::routing::gossip::NodeId;
40 #[cfg(feature = "std")]
41 use {
42         crate::util::time::tests::SinceEpoch,
43         std::time::{SystemTime, Instant, Duration}
44 };
45
46 #[test]
47 fn mpp_failure() {
48         let chanmon_cfgs = create_chanmon_cfgs(4);
49         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
50         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
51         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
52
53         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
54         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
55         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
56         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
57
58         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
59         let path = route.paths[0].clone();
60         route.paths.push(path);
61         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
62         route.paths[0][0].short_channel_id = chan_1_id;
63         route.paths[0][1].short_channel_id = chan_3_id;
64         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
65         route.paths[1][0].short_channel_id = chan_2_id;
66         route.paths[1][1].short_channel_id = chan_4_id;
67         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
68         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
69 }
70
71 #[test]
72 fn mpp_retry() {
73         let chanmon_cfgs = create_chanmon_cfgs(4);
74         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
75         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
76         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
77
78         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
79         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
80         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
81         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2);
82         // Rebalance
83         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
84
85         let amt_msat = 1_000_000;
86         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], amt_msat);
87         let path = route.paths[0].clone();
88         route.paths.push(path);
89         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
90         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
91         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
92         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
93         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
94         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
95
96         // Initiate the MPP payment.
97         let payment_id = PaymentId(payment_hash.0);
98         let mut route_params = RouteParameters {
99                 payment_params: route.payment_params.clone().unwrap(),
100                 final_value_msat: amt_msat,
101         };
102
103         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
104         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
105         check_added_monitors!(nodes[0], 2); // one monitor per path
106         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
107         assert_eq!(events.len(), 2);
108
109         // Pass half of the payment along the success path.
110         let success_path_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
111         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
112
113         // Add the HTLC along the first hop.
114         let fail_path_msgs_1 = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
115         let (update_add, commitment_signed) = match fail_path_msgs_1 {
116                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
117                         assert_eq!(update_add_htlcs.len(), 1);
118                         assert!(update_fail_htlcs.is_empty());
119                         assert!(update_fulfill_htlcs.is_empty());
120                         assert!(update_fail_malformed_htlcs.is_empty());
121                         assert!(update_fee.is_none());
122                         (update_add_htlcs[0].clone(), commitment_signed.clone())
123                 },
124                 _ => panic!("Unexpected event"),
125         };
126         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
127         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
128
129         // Attempt to forward the payment and complete the 2nd path's failure.
130         expect_pending_htlcs_forwardable!(&nodes[2]);
131         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
132         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
133         assert!(htlc_updates.update_add_htlcs.is_empty());
134         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
135         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
136         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
137         check_added_monitors!(nodes[2], 1);
138         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
139         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
140         let mut events = nodes[0].node.get_and_clear_pending_events();
141         match events[1] {
142                 Event::PendingHTLCsForwardable { .. } => {},
143                 _ => panic!("Unexpected event")
144         }
145         events.remove(1);
146         expect_payment_failed_conditions_event(events, payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
147
148         // Rebalance the channel so the second half of the payment can succeed.
149         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
150
151         // Retry the second half of the payment and make sure it succeeds.
152         route.paths.remove(0);
153         route_params.final_value_msat = 1_000_000;
154         route_params.payment_params.previously_failed_channels.push(chan_4_update.contents.short_channel_id);
155         nodes[0].router.expect_find_route(route_params, Ok(route));
156         nodes[0].node.process_pending_htlc_forwards();
157         check_added_monitors!(nodes[0], 1);
158         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
159         assert_eq!(events.len(), 1);
160         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
161         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
162 }
163
164 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
165         let chanmon_cfgs = create_chanmon_cfgs(4);
166         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
167         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
168         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
169
170         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
171         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
172         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
173         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3);
174
175         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
176         let path = route.paths[0].clone();
177         route.paths.push(path);
178         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
179         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
180         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
181         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
182         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
183         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
184
185         // Initiate the MPP payment.
186         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
187         check_added_monitors!(nodes[0], 2); // one monitor per path
188         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
189         assert_eq!(events.len(), 2);
190
191         // Pass half of the payment along the first path.
192         let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
193         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None);
194
195         if send_partial_mpp {
196                 // Time out the partial MPP
197                 for _ in 0..MPP_TIMEOUT_TICKS {
198                         nodes[3].node.timer_tick_occurred();
199                 }
200
201                 // Failed HTLC from node 3 -> 1
202                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
203                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
204                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
205                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
206                 check_added_monitors!(nodes[3], 1);
207                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
208
209                 // Failed HTLC from node 1 -> 0
210                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
211                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
212                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
213                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
214                 check_added_monitors!(nodes[1], 1);
215                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
216
217                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
218         } else {
219                 // Pass half of the payment along the second path.
220                 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
221                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None);
222
223                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
224                 for _ in 0..MPP_TIMEOUT_TICKS {
225                         nodes[3].node.timer_tick_occurred();
226                 }
227
228                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
229         }
230 }
231
232 #[test]
233 fn mpp_receive_timeout() {
234         do_mpp_receive_timeout(true);
235         do_mpp_receive_timeout(false);
236 }
237
238 #[test]
239 fn no_pending_leak_on_initial_send_failure() {
240         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
241         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
242         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
243         // pending payment forever and never time it out.
244         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
245         // try, and then check that no pending payment is being tracked.
246         let chanmon_cfgs = create_chanmon_cfgs(2);
247         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
248         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
249         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
250
251         create_announced_chan_between_nodes(&nodes, 0, 1);
252
253         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
254
255         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
256         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
257
258         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
259                 true, APIError::ChannelUnavailable { ref err },
260                 assert_eq!(err, "Peer for first hop currently disconnected"));
261
262         assert!(!nodes[0].node.has_pending_payments());
263 }
264
265 fn do_retry_with_no_persist(confirm_before_reload: bool) {
266         // If we send a pending payment and `send_payment` returns success, we should always either
267         // return a payment failure event or a payment success event, and on failure the payment should
268         // be retryable.
269         //
270         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
271         // always persisted asynchronously), the ChannelManager has to reload some payment data from
272         // ChannelMonitor(s) in some cases. This tests that reloading.
273         //
274         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
275         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
276         // which has separate codepaths for "commitment transaction already confirmed" and not.
277         let chanmon_cfgs = create_chanmon_cfgs(3);
278         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
279         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
280         let persister: test_utils::TestPersister;
281         let new_chain_monitor: test_utils::TestChainMonitor;
282         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
283         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
284
285         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
286         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
287
288         // Serialize the ChannelManager prior to sending payments
289         let nodes_0_serialized = nodes[0].node.encode();
290
291         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
292         // out and retry.
293         let amt_msat = 1_000_000;
294         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
295         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
296         let route_params = RouteParameters {
297                 payment_params: route.payment_params.clone().unwrap(),
298                 final_value_msat: amt_msat,
299         };
300         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
301         check_added_monitors!(nodes[0], 1);
302
303         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
304         assert_eq!(events.len(), 1);
305         let payment_event = SendEvent::from_event(events.pop().unwrap());
306         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
307
308         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
309         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
310         // which would prevent retry.
311         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id());
312         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
313
314         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
315         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
316         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
317         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
318
319         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
320
321         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
322         if confirm_before_reload {
323                 mine_transaction(&nodes[0], &as_commitment_tx);
324                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
325         }
326
327         // The ChannelMonitor should always be the latest version, as we're required to persist it
328         // during the `commitment_signed_dance!()`.
329         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
330         reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
331
332         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
333         // force-close the channel.
334         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
335         assert!(nodes[0].node.list_channels().is_empty());
336         assert!(nodes[0].node.has_pending_payments());
337         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
338         assert_eq!(as_broadcasted_txn.len(), 1);
339         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
340
341         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
342         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
343         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
344
345         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
346         // error, as the channel has hit the chain.
347         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
348         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
349         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
350         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
351         assert_eq!(as_err.len(), 1);
352         match as_err[0] {
353                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
354                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
355                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
356                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) });
357                         check_added_monitors!(nodes[1], 1);
358                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
359                 },
360                 _ => panic!("Unexpected event"),
361         }
362         check_closed_broadcast!(nodes[1], false);
363
364         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
365         // we close in a moment.
366         nodes[2].node.claim_funds(payment_preimage_1);
367         check_added_monitors!(nodes[2], 1);
368         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
369
370         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
371         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
372         check_added_monitors!(nodes[1], 1);
373         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
374         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
375
376         if confirm_before_reload {
377                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
378                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
379         }
380
381         // Create a new channel on which to retry the payment before we fail the payment via the
382         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
383         // connecting several blocks while creating the channel (implying time has passed).
384         create_announced_chan_between_nodes(&nodes, 0, 1);
385         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
386
387         mine_transaction(&nodes[1], &as_commitment_tx);
388         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
389         assert_eq!(bs_htlc_claim_txn.len(), 1);
390         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
391
392         if !confirm_before_reload {
393                 mine_transaction(&nodes[0], &as_commitment_tx);
394         }
395         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
396         expect_payment_sent!(nodes[0], payment_preimage_1);
397         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
398         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
399         assert_eq!(as_htlc_timeout_txn.len(), 2);
400         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
401         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
402         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
403         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
404                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
405         } else {
406                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
407         }
408         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
409         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
410
411         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
412         // reloaded) via a route over the new channel, which work without issue and eventually be
413         // received and claimed at the recipient just like any other payment.
414         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
415
416         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
417         // and not the original fee. We also update node[1]'s relevant config as
418         // do_claim_payment_along_route expects us to never overpay.
419         {
420                 let per_peer_state = nodes[1].node.per_peer_state.read().unwrap();
421                 let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id())
422                         .unwrap().lock().unwrap();
423                 let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap();
424                 let mut new_config = channel.config();
425                 new_config.forwarding_fee_base_msat += 100_000;
426                 channel.update_config(&new_config);
427                 new_route.paths[0][0].fee_msat += 100_000;
428         }
429
430         // Force expiration of the channel's previous config.
431         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
432                 nodes[1].node.timer_tick_occurred();
433         }
434
435         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
436         nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
437         check_added_monitors!(nodes[0], 1);
438         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
439         assert_eq!(events.len(), 1);
440         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
441         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
442         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
443 }
444
445 #[test]
446 fn retry_with_no_persist() {
447         do_retry_with_no_persist(true);
448         do_retry_with_no_persist(false);
449 }
450
451 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
452         // Test that an off-chain completed payment is not retryable on restart. This was previously
453         // broken for dust payments, but we test for both dust and non-dust payments.
454         //
455         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
456         // output at all.
457         let chanmon_cfgs = create_chanmon_cfgs(3);
458         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
459
460         let mut manually_accept_config = test_default_channel_config();
461         manually_accept_config.manually_accept_inbound_channels = true;
462
463         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
464
465         let first_persister: test_utils::TestPersister;
466         let first_new_chain_monitor: test_utils::TestChainMonitor;
467         let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
468         let second_persister: test_utils::TestPersister;
469         let second_new_chain_monitor: test_utils::TestChainMonitor;
470         let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
471         let third_persister: test_utils::TestPersister;
472         let third_new_chain_monitor: test_utils::TestChainMonitor;
473         let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
474
475         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
476
477         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
478         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
479         confirm_transaction(&nodes[0], &funding_tx);
480         confirm_transaction(&nodes[1], &funding_tx);
481         // Ignore the announcement_signatures messages
482         nodes[0].node.get_and_clear_pending_msg_events();
483         nodes[1].node.get_and_clear_pending_msg_events();
484         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
485
486         // Serialize the ChannelManager prior to sending payments
487         let mut nodes_0_serialized = nodes[0].node.encode();
488
489         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
490         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
491
492         // The ChannelMonitor should always be the latest version, as we're required to persist it
493         // during the `commitment_signed_dance!()`.
494         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
495
496         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
497         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
498
499         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
500         // force-close the channel.
501         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
502         assert!(nodes[0].node.list_channels().is_empty());
503         assert!(nodes[0].node.has_pending_payments());
504         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
505
506         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
507         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
508
509         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
510         // error, as the channel has hit the chain.
511         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
512         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
513         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
514         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
515         assert_eq!(as_err.len(), 1);
516         let bs_commitment_tx;
517         match as_err[0] {
518                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
519                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
520                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
521                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) });
522                         check_added_monitors!(nodes[1], 1);
523                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
524                 },
525                 _ => panic!("Unexpected event"),
526         }
527         check_closed_broadcast!(nodes[1], false);
528
529         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
530         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
531         // incoming HTLCs with the same payment hash later.
532         nodes[2].node.fail_htlc_backwards(&payment_hash);
533         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
534         check_added_monitors!(nodes[2], 1);
535
536         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
537         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
538         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
539         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
540                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
541
542         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
543         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
544         // after the commitment transaction, so always connect the commitment transaction.
545         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
546         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
547         if !use_dust {
548                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
549                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
550                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
551                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
552                 assert_eq!(as_htlc_timeout.len(), 1);
553
554                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
555                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
556                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
557                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
558         }
559
560         // Create a new channel on which to retry the payment before we fail the payment via the
561         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
562         // connecting several blocks while creating the channel (implying time has passed).
563         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
564         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
565         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
566
567         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
568         // confirming, we will fail as it's considered still-pending...
569         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
570         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
571                 Err(PaymentSendFailure::DuplicatePayment) => {},
572                 _ => panic!("Unexpected error")
573         }
574         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
575
576         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
577         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
578         // (which should also still work).
579         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
580         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
581         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
582
583         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
584         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
585         nodes_0_serialized = nodes[0].node.encode();
586
587         // After the payment failed, we're free to send it again.
588         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id).is_ok());
589         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
590
591         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
592         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
593
594         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
595
596         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
597         // the payment is not (spuriously) listed as still pending.
598         assert!(nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id).is_ok());
599         check_added_monitors!(nodes[0], 1);
600         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
601         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
602
603         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
604                 Err(PaymentSendFailure::DuplicatePayment) => {},
605                 _ => panic!("Unexpected error")
606         }
607         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
608
609         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
610         let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
611         nodes_0_serialized = nodes[0].node.encode();
612
613         // Check that after reload we can send the payment again (though we shouldn't, since it was
614         // claimed previously).
615         reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
616         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
617
618         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
619
620         match nodes[0].node.send_payment(&new_route, payment_hash, &Some(payment_secret), payment_id) {
621                 Err(PaymentSendFailure::DuplicatePayment) => {},
622                 _ => panic!("Unexpected error")
623         }
624         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
625 }
626
627 #[test]
628 fn test_completed_payment_not_retryable_on_reload() {
629         do_test_completed_payment_not_retryable_on_reload(true);
630         do_test_completed_payment_not_retryable_on_reload(false);
631 }
632
633
634 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
635         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
636         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
637         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
638         // the ChannelMonitor tells it to.
639         //
640         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
641         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
642         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
643         let chanmon_cfgs = create_chanmon_cfgs(2);
644         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
645         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
646         let persister: test_utils::TestPersister;
647         let new_chain_monitor: test_utils::TestChainMonitor;
648         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
649         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
650
651         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
652
653         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
654         // nodes[0].
655         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
656         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
657         check_closed_broadcast!(nodes[0], true);
658         check_added_monitors!(nodes[0], 1);
659         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
660
661         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
662         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
663
664         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
665         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
666         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
667         assert_eq!(node_txn.len(), 3);
668         assert_eq!(node_txn[0], node_txn[1]);
669         check_spends!(node_txn[1], funding_tx);
670         check_spends!(node_txn[2], node_txn[1]);
671         let timeout_txn = vec![node_txn[2].clone()];
672
673         nodes[1].node.claim_funds(payment_preimage);
674         check_added_monitors!(nodes[1], 1);
675         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
676
677         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
678         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
679         check_closed_broadcast!(nodes[1], true);
680         check_added_monitors!(nodes[1], 1);
681         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
682         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
683         assert_eq!(claim_txn.len(), 1);
684         check_spends!(claim_txn[0], node_txn[1]);
685
686         header.prev_blockhash = nodes[0].best_block_hash();
687         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
688
689         if confirm_commitment_tx {
690                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
691         }
692
693         header.prev_blockhash = nodes[0].best_block_hash();
694         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
695
696         if payment_timeout {
697                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
698                 connect_block(&nodes[0], &claim_block);
699                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
700         }
701
702         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
703         // returning InProgress. This should cause the claim event to never make its way to the
704         // ChannelManager.
705         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
706         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
707
708         if payment_timeout {
709                 connect_blocks(&nodes[0], 1);
710         } else {
711                 connect_block(&nodes[0], &claim_block);
712         }
713
714         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
715         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
716                 .get_mut(&funding_txo).unwrap().drain().collect();
717         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
718         // If we're testing connection idempotency we may get substantially more.
719         assert!(mon_updates.len() >= 1);
720         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
721         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
722
723         // If we persist the ChannelManager here, we should get the PaymentSent event after
724         // deserialization.
725         let mut chan_manager_serialized = Vec::new();
726         if !persist_manager_post_event {
727                 chan_manager_serialized = nodes[0].node.encode();
728         }
729
730         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
731         // payment sent event.
732         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
733         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
734         for update in mon_updates {
735                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
736         }
737         if payment_timeout {
738                 expect_payment_failed!(nodes[0], payment_hash, false);
739         } else {
740                 expect_payment_sent!(nodes[0], payment_preimage);
741         }
742
743         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
744         // twice.
745         if persist_manager_post_event {
746                 chan_manager_serialized = nodes[0].node.encode();
747         }
748
749         // Now reload nodes[0]...
750         reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
751
752         if persist_manager_post_event {
753                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
754         } else if payment_timeout {
755                 expect_payment_failed!(nodes[0], payment_hash, false);
756         } else {
757                 expect_payment_sent!(nodes[0], payment_preimage);
758         }
759
760         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
761         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
762         // payment events should kick in, leaving us with no pending events here.
763         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
764         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
765         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
766 }
767
768 #[test]
769 fn test_dup_htlc_onchain_fails_on_reload() {
770         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
771         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
772         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
773         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
774         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
775         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
776 }
777
778 #[test]
779 fn test_fulfill_restart_failure() {
780         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
781         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
782         // again, or fail it, giving us free money.
783         //
784         // Of course probably they won't fail it and give us free money, but because we have code to
785         // handle it, we should test the logic for it anyway. We do that here.
786         let chanmon_cfgs = create_chanmon_cfgs(2);
787         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
788         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
789         let persister: test_utils::TestPersister;
790         let new_chain_monitor: test_utils::TestChainMonitor;
791         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
792         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
793
794         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
795         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
796
797         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
798         // pre-fulfill, which we do by serializing it here.
799         let chan_manager_serialized = nodes[1].node.encode();
800         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
801
802         nodes[1].node.claim_funds(payment_preimage);
803         check_added_monitors!(nodes[1], 1);
804         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
805
806         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
807         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
808         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
809
810         // Now reload nodes[1]...
811         reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
812
813         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
814         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
815
816         nodes[1].node.fail_htlc_backwards(&payment_hash);
817         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
818         check_added_monitors!(nodes[1], 1);
819         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
820         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
821         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
822         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
823         // it had already considered the payment fulfilled, and now they just got free money.
824         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
825 }
826
827 #[test]
828 fn get_ldk_payment_preimage() {
829         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
830         let chanmon_cfgs = create_chanmon_cfgs(2);
831         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
832         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
833         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
834         create_announced_chan_between_nodes(&nodes, 0, 1);
835
836         let amt_msat = 60_000;
837         let expiry_secs = 60 * 60;
838         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs, None).unwrap();
839
840         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
841                 .with_features(nodes[1].node.invoice_features());
842         let scorer = test_utils::TestScorer::new();
843         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
844         let random_seed_bytes = keys_manager.get_secure_random_bytes();
845         let route = get_route(
846                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
847                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
848                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
849         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
850         check_added_monitors!(nodes[0], 1);
851
852         // Make sure to use `get_payment_preimage`
853         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
854         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
855         assert_eq!(events.len(), 1);
856         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
857         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
858 }
859
860 #[test]
861 fn sent_probe_is_probe_of_sending_node() {
862         let chanmon_cfgs = create_chanmon_cfgs(3);
863         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
864         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
865         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
866
867         create_announced_chan_between_nodes(&nodes, 0, 1);
868         create_announced_chan_between_nodes(&nodes, 1, 2);
869
870         // First check we refuse to build a single-hop probe
871         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
872         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
873
874         // Then build an actual two-hop probing path
875         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
876
877         match nodes[0].node.send_probe(route.paths[0].clone()) {
878                 Ok((payment_hash, payment_id)) => {
879                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
880                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
881                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
882                 },
883                 _ => panic!(),
884         }
885
886         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
887         check_added_monitors!(nodes[0], 1);
888 }
889
890 #[test]
891 fn successful_probe_yields_event() {
892         let chanmon_cfgs = create_chanmon_cfgs(3);
893         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
894         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
895         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
896
897         create_announced_chan_between_nodes(&nodes, 0, 1);
898         create_announced_chan_between_nodes(&nodes, 1, 2);
899
900         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
901
902         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
903
904         // node[0] -- update_add_htlcs -> node[1]
905         check_added_monitors!(nodes[0], 1);
906         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
907         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
908         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
909         check_added_monitors!(nodes[1], 0);
910         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
911         expect_pending_htlcs_forwardable!(nodes[1]);
912
913         // node[1] -- update_add_htlcs -> node[2]
914         check_added_monitors!(nodes[1], 1);
915         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
916         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
917         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
918         check_added_monitors!(nodes[2], 0);
919         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
920
921         // node[1] <- update_fail_htlcs -- node[2]
922         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
923         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
924         check_added_monitors!(nodes[1], 0);
925         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
926
927         // node[0] <- update_fail_htlcs -- node[1]
928         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
929         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
930         check_added_monitors!(nodes[0], 0);
931         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
932
933         let mut events = nodes[0].node.get_and_clear_pending_events();
934         assert_eq!(events.len(), 1);
935         match events.drain(..).next().unwrap() {
936                 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
937                         assert_eq!(payment_id, ev_pid);
938                         assert_eq!(payment_hash, ev_ph);
939                 },
940                 _ => panic!(),
941         };
942         assert!(!nodes[0].node.has_pending_payments());
943 }
944
945 #[test]
946 fn failed_probe_yields_event() {
947         let chanmon_cfgs = create_chanmon_cfgs(3);
948         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
949         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
950         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
951
952         create_announced_chan_between_nodes(&nodes, 0, 1);
953         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000);
954
955         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
956
957         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
958
959         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
960
961         // node[0] -- update_add_htlcs -> node[1]
962         check_added_monitors!(nodes[0], 1);
963         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
964         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
965         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
966         check_added_monitors!(nodes[1], 0);
967         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
968         expect_pending_htlcs_forwardable!(nodes[1]);
969
970         // node[0] <- update_fail_htlcs -- node[1]
971         check_added_monitors!(nodes[1], 1);
972         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
973         // Skip the PendingHTLCsForwardable event
974         let _events = nodes[1].node.get_and_clear_pending_events();
975         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
976         check_added_monitors!(nodes[0], 0);
977         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
978
979         let mut events = nodes[0].node.get_and_clear_pending_events();
980         assert_eq!(events.len(), 1);
981         match events.drain(..).next().unwrap() {
982                 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
983                         assert_eq!(payment_id, ev_pid);
984                         assert_eq!(payment_hash, ev_ph);
985                 },
986                 _ => panic!(),
987         };
988         assert!(!nodes[0].node.has_pending_payments());
989 }
990
991 #[test]
992 fn onchain_failed_probe_yields_event() {
993         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
994         // event.
995         let chanmon_cfgs = create_chanmon_cfgs(3);
996         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
997         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
998         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
999
1000         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1001         create_announced_chan_between_nodes(&nodes, 1, 2);
1002
1003         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
1004
1005         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1006         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1007         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1008
1009         // node[0] -- update_add_htlcs -> node[1]
1010         check_added_monitors!(nodes[0], 1);
1011         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1012         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1013         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1014         check_added_monitors!(nodes[1], 0);
1015         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1016         expect_pending_htlcs_forwardable!(nodes[1]);
1017
1018         check_added_monitors!(nodes[1], 1);
1019         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1020
1021         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1022         // Node A, which after 6 confirmations should result in a probe failure event.
1023         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1024         confirm_transaction(&nodes[0], &bs_txn[0]);
1025         check_closed_broadcast!(&nodes[0], true);
1026         check_added_monitors!(nodes[0], 1);
1027
1028         let mut events = nodes[0].node.get_and_clear_pending_events();
1029         assert_eq!(events.len(), 2);
1030         let mut found_probe_failed = false;
1031         for event in events.drain(..) {
1032                 match event {
1033                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1034                                 assert_eq!(payment_id, ev_pid);
1035                                 assert_eq!(payment_hash, ev_ph);
1036                                 found_probe_failed = true;
1037                         },
1038                         Event::ChannelClosed { .. } => {},
1039                         _ => panic!(),
1040                 }
1041         }
1042         assert!(found_probe_failed);
1043         assert!(!nodes[0].node.has_pending_payments());
1044 }
1045
1046 #[test]
1047 fn claimed_send_payment_idempotent() {
1048         // Tests that `send_payment` (and friends) are (reasonably) idempotent.
1049         let chanmon_cfgs = create_chanmon_cfgs(2);
1050         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1051         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1052         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1053
1054         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1055
1056         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1057         let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1058
1059         macro_rules! check_send_rejected {
1060                 () => {
1061                         // If we try to resend a new payment with a different payment_hash but with the same
1062                         // payment_id, it should be rejected.
1063                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1064                         match send_result {
1065                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1066                                 _ => panic!("Unexpected send result: {:?}", send_result),
1067                         }
1068
1069                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1070                         // also be rejected.
1071                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1072                         match send_result {
1073                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1074                                 _ => panic!("Unexpected send result: {:?}", send_result),
1075                         }
1076                 }
1077         }
1078
1079         check_send_rejected!();
1080
1081         // Claim the payment backwards, but note that the PaymentSent event is still pending and has
1082         // not been seen by the user. At this point, from the user perspective nothing has changed, so
1083         // we must remain just as idempotent as we were before.
1084         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
1085
1086         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1087                 nodes[0].node.timer_tick_occurred();
1088         }
1089
1090         check_send_rejected!();
1091
1092         // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
1093         // `send_payment`, and our idempotency guarantees are off - they should have atomically marked
1094         // the payment complete. However, they could have called `send_payment` while the event was
1095         // being processed, leading to a race in our idempotency guarantees. Thus, even immediately
1096         // after the event is handled a duplicate payment should sitll be rejected.
1097         expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
1098         check_send_rejected!();
1099
1100         // If relatively little time has passed, a duplicate payment should still fail.
1101         nodes[0].node.timer_tick_occurred();
1102         check_send_rejected!();
1103
1104         // However, after some time has passed (at least more than the one timer tick above), a
1105         // duplicate payment should go through, as ChannelManager should no longer have any remaining
1106         // references to the old payment data.
1107         for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
1108                 nodes[0].node.timer_tick_occurred();
1109         }
1110
1111         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1112         check_added_monitors!(nodes[0], 1);
1113         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1114         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1115 }
1116
1117 #[test]
1118 fn abandoned_send_payment_idempotent() {
1119         // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
1120         // abandon_payment.
1121         let chanmon_cfgs = create_chanmon_cfgs(2);
1122         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1123         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1124         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1125
1126         create_announced_chan_between_nodes(&nodes, 0, 1).2;
1127
1128         let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1129         let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
1130
1131         macro_rules! check_send_rejected {
1132                 () => {
1133                         // If we try to resend a new payment with a different payment_hash but with the same
1134                         // payment_id, it should be rejected.
1135                         let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id);
1136                         match send_result {
1137                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1138                                 _ => panic!("Unexpected send result: {:?}", send_result),
1139                         }
1140
1141                         // Further, if we try to send a spontaneous payment with the same payment_id it should
1142                         // also be rejected.
1143                         let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id);
1144                         match send_result {
1145                                 Err(PaymentSendFailure::DuplicatePayment) => {},
1146                                 _ => panic!("Unexpected send result: {:?}", send_result),
1147                         }
1148                 }
1149         }
1150
1151         check_send_rejected!();
1152
1153         nodes[1].node.fail_htlc_backwards(&first_payment_hash);
1154         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
1155
1156         // Until we abandon the payment upon path failure, no matter how many timer ticks pass, we still cannot reuse the
1157         // PaymentId.
1158         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1159                 nodes[0].node.timer_tick_occurred();
1160         }
1161         check_send_rejected!();
1162
1163         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash);
1164
1165         // However, we can reuse the PaymentId immediately after we `abandon_payment` upon passing the
1166         // failed payment back.
1167         nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap();
1168         check_added_monitors!(nodes[0], 1);
1169         pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
1170         claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
1171 }
1172
1173 #[derive(PartialEq)]
1174 enum InterceptTest {
1175         Forward,
1176         Fail,
1177         Timeout,
1178 }
1179
1180 #[test]
1181 fn test_trivial_inflight_htlc_tracking(){
1182         // In this test, we test three scenarios:
1183         // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
1184         // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
1185         // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
1186         let chanmon_cfgs = create_chanmon_cfgs(3);
1187         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1188         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1189         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1190
1191         let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
1192         let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
1193
1194         // Send and claim the payment. Inflight HTLCs should be empty.
1195         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 500000);
1196         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1197         check_added_monitors!(nodes[0], 1);
1198         pass_along_route(&nodes[0], &[&vec!(&nodes[1], &nodes[2])[..]], 500000, payment_hash, payment_secret);
1199         claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], payment_preimage);
1200         {
1201                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1202
1203                 let mut node_0_per_peer_lock;
1204                 let mut node_0_peer_state_lock;
1205                 let mut node_1_per_peer_lock;
1206                 let mut node_1_peer_state_lock;
1207                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1208                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1209
1210                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1211                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1212                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1213                         channel_1.get_short_channel_id().unwrap()
1214                 );
1215                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1216                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1217                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1218                         channel_2.get_short_channel_id().unwrap()
1219                 );
1220
1221                 assert_eq!(chan_1_used_liquidity, None);
1222                 assert_eq!(chan_2_used_liquidity, None);
1223         }
1224         let pending_payments = nodes[0].node.list_recent_payments();
1225         assert_eq!(pending_payments.len(), 1);
1226         assert_eq!(pending_payments[0], RecentPaymentDetails::Fulfilled { payment_hash: Some(payment_hash) });
1227
1228         // Remove fulfilled payment
1229         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1230                 nodes[0].node.timer_tick_occurred();
1231         }
1232
1233         // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
1234         let (payment_preimage, payment_hash,  _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000);
1235         {
1236                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1237
1238                 let mut node_0_per_peer_lock;
1239                 let mut node_0_peer_state_lock;
1240                 let mut node_1_per_peer_lock;
1241                 let mut node_1_peer_state_lock;
1242                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1243                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1244
1245                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1246                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1247                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1248                         channel_1.get_short_channel_id().unwrap()
1249                 );
1250                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1251                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1252                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1253                         channel_2.get_short_channel_id().unwrap()
1254                 );
1255
1256                 // First hop accounts for expected 1000 msat fee
1257                 assert_eq!(chan_1_used_liquidity, Some(501000));
1258                 assert_eq!(chan_2_used_liquidity, Some(500000));
1259         }
1260         let pending_payments = nodes[0].node.list_recent_payments();
1261         assert_eq!(pending_payments.len(), 1);
1262         assert_eq!(pending_payments[0], RecentPaymentDetails::Pending { payment_hash, total_msat: 500000 });
1263
1264         // Now, let's claim the payment. This should result in the used liquidity to return `None`.
1265         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
1266
1267         // Remove fulfilled payment
1268         for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
1269                 nodes[0].node.timer_tick_occurred();
1270         }
1271
1272         {
1273                 let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1274
1275                 let mut node_0_per_peer_lock;
1276                 let mut node_0_peer_state_lock;
1277                 let mut node_1_per_peer_lock;
1278                 let mut node_1_peer_state_lock;
1279                 let channel_1 =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
1280                 let channel_2 =  get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
1281
1282                 let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
1283                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1284                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1285                         channel_1.get_short_channel_id().unwrap()
1286                 );
1287                 let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
1288                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
1289                         &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
1290                         channel_2.get_short_channel_id().unwrap()
1291                 );
1292
1293                 assert_eq!(chan_1_used_liquidity, None);
1294                 assert_eq!(chan_2_used_liquidity, None);
1295         }
1296
1297         let pending_payments = nodes[0].node.list_recent_payments();
1298         assert_eq!(pending_payments.len(), 0);
1299 }
1300
1301 #[test]
1302 fn test_holding_cell_inflight_htlcs() {
1303         let chanmon_cfgs = create_chanmon_cfgs(2);
1304         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1305         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1306         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1307         let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1308
1309         let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
1310         let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
1311
1312         // Queue up two payments - one will be delivered right away, one immediately goes into the
1313         // holding cell as nodes[0] is AwaitingRAA.
1314         {
1315                 nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
1316                 check_added_monitors!(nodes[0], 1);
1317                 nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
1318                 check_added_monitors!(nodes[0], 0);
1319         }
1320
1321         let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
1322
1323         {
1324                 let mut node_0_per_peer_lock;
1325                 let mut node_0_peer_state_lock;
1326                 let channel =  get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id);
1327
1328                 let used_liquidity = inflight_htlcs.used_liquidity_msat(
1329                         &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
1330                         &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
1331                         channel.get_short_channel_id().unwrap()
1332                 );
1333
1334                 assert_eq!(used_liquidity, Some(2000000));
1335         }
1336
1337         // Clear pending events so test doesn't throw a "Had excess message on node..." error
1338         nodes[0].node.get_and_clear_pending_msg_events();
1339 }
1340
1341 #[test]
1342 fn intercepted_payment() {
1343         // Test that detecting an intercept scid on payment forward will signal LDK to generate an
1344         // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
1345         // payment or (b) fail the payment.
1346         do_test_intercepted_payment(InterceptTest::Forward);
1347         do_test_intercepted_payment(InterceptTest::Fail);
1348         // Make sure that intercepted payments will be automatically failed back if too many blocks pass.
1349         do_test_intercepted_payment(InterceptTest::Timeout);
1350 }
1351
1352 fn do_test_intercepted_payment(test: InterceptTest) {
1353         let chanmon_cfgs = create_chanmon_cfgs(3);
1354         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1355
1356         let mut zero_conf_chan_config = test_default_channel_config();
1357         zero_conf_chan_config.manually_accept_inbound_channels = true;
1358         let mut intercept_forwards_config = test_default_channel_config();
1359         intercept_forwards_config.accept_intercept_htlcs = true;
1360         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
1361
1362         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1363         let scorer = test_utils::TestScorer::new();
1364         let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
1365
1366         let _ = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1367
1368         let amt_msat = 100_000;
1369         let intercept_scid = nodes[1].node.get_intercept_scid();
1370         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1371                 .with_route_hints(vec![
1372                         RouteHint(vec![RouteHintHop {
1373                                 src_node_id: nodes[1].node.get_our_node_id(),
1374                                 short_channel_id: intercept_scid,
1375                                 fees: RoutingFees {
1376                                         base_msat: 1000,
1377                                         proportional_millionths: 0,
1378                                 },
1379                                 cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
1380                                 htlc_minimum_msat: None,
1381                                 htlc_maximum_msat: None,
1382                         }])
1383                 ])
1384                 .with_features(nodes[2].node.invoice_features());
1385         let route_params = RouteParameters {
1386                 payment_params,
1387                 final_value_msat: amt_msat,
1388         };
1389         let route = get_route(
1390                 &nodes[0].node.get_our_node_id(), &route_params.payment_params,
1391                 &nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
1392                 route_params.payment_params.final_cltv_expiry_delta, nodes[0].logger, &scorer,
1393                 &random_seed_bytes,
1394         ).unwrap();
1395
1396         let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60, None).unwrap();
1397         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
1398         let payment_event = {
1399                 {
1400                         let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
1401                         assert_eq!(added_monitors.len(), 1);
1402                         added_monitors.clear();
1403                 }
1404                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1405                 assert_eq!(events.len(), 1);
1406                 SendEvent::from_event(events.remove(0))
1407         };
1408         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1409         commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
1410
1411         // Check that we generate the PaymentIntercepted event when an intercept forward is detected.
1412         let events = nodes[1].node.get_and_clear_pending_events();
1413         assert_eq!(events.len(), 1);
1414         let (intercept_id, expected_outbound_amount_msat) = match events[0] {
1415                 crate::util::events::Event::HTLCIntercepted {
1416                         intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
1417                 } => {
1418                         assert_eq!(pmt_hash, payment_hash);
1419                         assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
1420                         assert_eq!(short_channel_id, intercept_scid);
1421                         (intercept_id, expected_outbound_amount_msat)
1422                 },
1423                 _ => panic!()
1424         };
1425
1426         // Check for unknown channel id error.
1427         let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1428         assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable  { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) });
1429
1430         if test == InterceptTest::Fail {
1431                 // Ensure we can fail the intercepted payment back.
1432                 nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
1433                 expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
1434                 nodes[1].node.process_pending_htlc_forwards();
1435                 let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1436                 check_added_monitors!(&nodes[1], 1);
1437                 assert!(update_fail.update_fail_htlcs.len() == 1);
1438                 let fail_msg = update_fail.update_fail_htlcs[0].clone();
1439                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1440                 commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
1441
1442                 // Ensure the payment fails with the expected error.
1443                 let fail_conditions = PaymentFailedConditions::new()
1444                         .blamed_scid(intercept_scid)
1445                         .blamed_chan_closed(true)
1446                         .expected_htlc_error_data(0x4000 | 10, &[]);
1447                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
1448         } else if test == InterceptTest::Forward {
1449                 // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
1450                 let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
1451                 let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1452                 assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
1453                 assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
1454
1455                 // Open the just-in-time channel so the payment can then be forwarded.
1456                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1457
1458                 // Finally, forward the intercepted payment through and claim it.
1459                 nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
1460                 expect_pending_htlcs_forwardable!(nodes[1]);
1461
1462                 let payment_event = {
1463                         {
1464                                 let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
1465                                 assert_eq!(added_monitors.len(), 1);
1466                                 added_monitors.clear();
1467                         }
1468                         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
1469                         assert_eq!(events.len(), 1);
1470                         SendEvent::from_event(events.remove(0))
1471                 };
1472                 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
1473                 commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
1474                 expect_pending_htlcs_forwardable!(nodes[2]);
1475
1476                 let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1477                 expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
1478                 do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
1479                 let events = nodes[0].node.get_and_clear_pending_events();
1480                 assert_eq!(events.len(), 2);
1481                 match events[0] {
1482                         Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
1483                                 assert_eq!(payment_preimage, *ev_preimage);
1484                                 assert_eq!(payment_hash, *ev_hash);
1485                                 assert_eq!(fee_paid_msat, &Some(1000));
1486                         },
1487                         _ => panic!("Unexpected event")
1488                 }
1489                 match events[1] {
1490                         Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
1491                                 assert_eq!(hash, Some(payment_hash));
1492                         },
1493                         _ => panic!("Unexpected event")
1494                 }
1495         } else if test == InterceptTest::Timeout {
1496                 let mut block = Block {
1497                         header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
1498                         txdata: vec![],
1499                 };
1500                 connect_block(&nodes[0], &block);
1501                 connect_block(&nodes[1], &block);
1502                 for _ in 0..TEST_FINAL_CLTV {
1503                         block.header.prev_blockhash = block.block_hash();
1504                         connect_block(&nodes[0], &block);
1505                         connect_block(&nodes[1], &block);
1506                 }
1507                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
1508                 check_added_monitors!(nodes[1], 1);
1509                 let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1510                 assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
1511                 assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
1512                 assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
1513                 assert!(htlc_timeout_updates.update_fee.is_none());
1514
1515                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
1516                 commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
1517                 expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
1518
1519                 // Check for unknown intercept id error.
1520                 let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
1521                 let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
1522                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1523                 let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
1524                 assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
1525         }
1526 }
1527
1528 #[derive(PartialEq)]
1529 enum AutoRetry {
1530         Success,
1531         Spontaneous,
1532         FailAttempts,
1533         FailTimeout,
1534         FailOnRestart,
1535         FailOnRetry,
1536 }
1537
1538 #[test]
1539 fn automatic_retries() {
1540         do_automatic_retries(AutoRetry::Success);
1541         do_automatic_retries(AutoRetry::Spontaneous);
1542         do_automatic_retries(AutoRetry::FailAttempts);
1543         do_automatic_retries(AutoRetry::FailTimeout);
1544         do_automatic_retries(AutoRetry::FailOnRestart);
1545         do_automatic_retries(AutoRetry::FailOnRetry);
1546 }
1547 fn do_automatic_retries(test: AutoRetry) {
1548         // Test basic automatic payment retries in ChannelManager. See individual `test` variant comments
1549         // below.
1550         let chanmon_cfgs = create_chanmon_cfgs(3);
1551         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1552         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1553
1554         let persister;
1555         let new_chain_monitor;
1556         let node_0_deserialized;
1557
1558         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1559         let channel_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1560         let channel_id_2 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1561
1562         // Marshall data to send the payment
1563         #[cfg(feature = "std")]
1564         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1565         #[cfg(not(feature = "std"))]
1566         let payment_expiry_secs = 60 * 60;
1567         let amt_msat = 1000;
1568         let mut invoice_features = InvoiceFeatures::empty();
1569         invoice_features.set_variable_length_onion_required();
1570         invoice_features.set_payment_secret_required();
1571         invoice_features.set_basic_mpp_optional();
1572         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
1573                 .with_expiry_time(payment_expiry_secs as u64)
1574                 .with_features(invoice_features);
1575         let route_params = RouteParameters {
1576                 payment_params,
1577                 final_value_msat: amt_msat,
1578         };
1579         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
1580
1581         macro_rules! pass_failed_attempt_with_retry_along_path {
1582                 ($failing_channel_id: expr, $expect_pending_htlcs_forwardable: expr) => {
1583                         // Send a payment attempt that fails due to lack of liquidity on the second hop
1584                         check_added_monitors!(nodes[0], 1);
1585                         let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1586                         let mut update_add = update_0.update_add_htlcs[0].clone();
1587                         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
1588                         commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
1589                         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1590                         nodes[1].node.process_pending_htlc_forwards();
1591                         expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1],
1592                                 vec![HTLCDestination::NextHopChannel {
1593                                         node_id: Some(nodes[2].node.get_our_node_id()),
1594                                         channel_id: $failing_channel_id,
1595                                 }]);
1596                         nodes[1].node.process_pending_htlc_forwards();
1597                         let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1598                         check_added_monitors!(&nodes[1], 1);
1599                         assert!(update_1.update_fail_htlcs.len() == 1);
1600                         let fail_msg = update_1.update_fail_htlcs[0].clone();
1601                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
1602                         commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
1603
1604                         // Ensure the attempt fails and a new PendingHTLCsForwardable event is generated for the retry
1605                         let mut events = nodes[0].node.get_and_clear_pending_events();
1606                         assert_eq!(events.len(), 2);
1607                         match events[0] {
1608                                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
1609                                         assert_eq!(payment_hash, ev_payment_hash);
1610                                         assert_eq!(payment_failed_permanently, false);
1611                                 },
1612                                 _ => panic!("Unexpected event"),
1613                         }
1614                         if $expect_pending_htlcs_forwardable {
1615                                 match events[1] {
1616                                         Event::PendingHTLCsForwardable { .. } => {},
1617                                         _ => panic!("Unexpected event"),
1618                                 }
1619                         } else {
1620                                 match events[1] {
1621                                         Event::PaymentFailed { payment_hash: ev_payment_hash, .. } => {
1622                                                 assert_eq!(payment_hash, ev_payment_hash);
1623                                         },
1624                                         _ => panic!("Unexpected event"),
1625                                 }
1626                         }
1627                 }
1628         }
1629
1630         if test == AutoRetry::Success {
1631                 // Test that we can succeed on the first retry.
1632                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1633                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1634
1635                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1636                 // attempt, since the initial second hop channel will be excluded from pathfinding
1637                 create_announced_chan_between_nodes(&nodes, 1, 2);
1638
1639                 // We retry payments in `process_pending_htlc_forwards`
1640                 nodes[0].node.process_pending_htlc_forwards();
1641                 check_added_monitors!(nodes[0], 1);
1642                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1643                 assert_eq!(msg_events.len(), 1);
1644                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, Some(payment_secret), msg_events.pop().unwrap(), true, None);
1645                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1646         } else if test == AutoRetry::Spontaneous {
1647                 nodes[0].node.send_spontaneous_payment_with_retry(Some(payment_preimage), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1648                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1649
1650                 // Open a new channel with liquidity on the second hop so we can find a route for the retry
1651                 // attempt, since the initial second hop channel will be excluded from pathfinding
1652                 create_announced_chan_between_nodes(&nodes, 1, 2);
1653
1654                 // We retry payments in `process_pending_htlc_forwards`
1655                 nodes[0].node.process_pending_htlc_forwards();
1656                 check_added_monitors!(nodes[0], 1);
1657                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1658                 assert_eq!(msg_events.len(), 1);
1659                 pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, None, msg_events.pop().unwrap(), true, Some(payment_preimage));
1660                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
1661         } else if test == AutoRetry::FailAttempts {
1662                 // Ensure ChannelManager will not retry a payment if it has run out of payment attempts.
1663                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1664                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1665
1666                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1667                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1668                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1669
1670                 // We retry payments in `process_pending_htlc_forwards`
1671                 nodes[0].node.process_pending_htlc_forwards();
1672                 pass_failed_attempt_with_retry_along_path!(channel_id_3, false);
1673
1674                 // Ensure we won't retry a second time.
1675                 nodes[0].node.process_pending_htlc_forwards();
1676                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1677                 assert_eq!(msg_events.len(), 0);
1678         } else if test == AutoRetry::FailTimeout {
1679                 #[cfg(not(feature = "no-std"))] {
1680                         // Ensure ChannelManager will not retry a payment if it times out due to Retry::Timeout.
1681                         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Timeout(Duration::from_secs(60))).unwrap();
1682                         pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1683
1684                         // Advance the time so the second attempt fails due to timeout.
1685                         SinceEpoch::advance(Duration::from_secs(61));
1686
1687                         // Make sure we don't retry again.
1688                         nodes[0].node.process_pending_htlc_forwards();
1689                         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1690                         assert_eq!(msg_events.len(), 0);
1691
1692                         let mut events = nodes[0].node.get_and_clear_pending_events();
1693                         assert_eq!(events.len(), 1);
1694                         match events[0] {
1695                                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1696                                         assert_eq!(payment_hash, *ev_payment_hash);
1697                                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1698                                 },
1699                                 _ => panic!("Unexpected event"),
1700                         }
1701                 }
1702         } else if test == AutoRetry::FailOnRestart {
1703                 // Ensure ChannelManager will not retry a payment after restart, even if there were retry
1704                 // attempts remaining prior to restart.
1705                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(2)).unwrap();
1706                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1707
1708                 // Open a new channel with no liquidity on the second hop so we can find a (bad) route for
1709                 // the retry attempt, since the initial second hop channel will be excluded from pathfinding
1710                 let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
1711
1712                 // Ensure the first retry attempt fails, with 1 retry attempt remaining
1713                 nodes[0].node.process_pending_htlc_forwards();
1714                 pass_failed_attempt_with_retry_along_path!(channel_id_3, true);
1715
1716                 // Restart the node and ensure that ChannelManager does not use its remaining retry attempt
1717                 let node_encoded = nodes[0].node.encode();
1718                 let chan_1_monitor_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1719                 reload_node!(nodes[0], node_encoded, &[&chan_1_monitor_serialized], persister, new_chain_monitor, node_0_deserialized);
1720
1721                 let mut events = nodes[0].node.get_and_clear_pending_events();
1722                 expect_pending_htlcs_forwardable_from_events!(nodes[0], events, true);
1723                 // Make sure we don't retry again.
1724                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1725                 assert_eq!(msg_events.len(), 0);
1726
1727                 let mut events = nodes[0].node.get_and_clear_pending_events();
1728                 assert_eq!(events.len(), 1);
1729                 match events[0] {
1730                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1731                                 assert_eq!(payment_hash, *ev_payment_hash);
1732                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1733                         },
1734                         _ => panic!("Unexpected event"),
1735                 }
1736         } else if test == AutoRetry::FailOnRetry {
1737                 nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
1738                 pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
1739
1740                 // We retry payments in `process_pending_htlc_forwards`. Since our channel closed, we should
1741                 // fail to find a route.
1742                 nodes[0].node.process_pending_htlc_forwards();
1743                 let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1744                 assert_eq!(msg_events.len(), 0);
1745
1746                 let mut events = nodes[0].node.get_and_clear_pending_events();
1747                 assert_eq!(events.len(), 1);
1748                 match events[0] {
1749                         Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
1750                                 assert_eq!(payment_hash, *ev_payment_hash);
1751                                 assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
1752                         },
1753                         _ => panic!("Unexpected event"),
1754                 }
1755         }
1756 }
1757
1758 #[test]
1759 fn auto_retry_partial_failure() {
1760         // Test that we'll retry appropriately on send partial failure and retry partial failure.
1761         let chanmon_cfgs = create_chanmon_cfgs(2);
1762         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1763         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1764         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1765
1766         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1767         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1768         let chan_3_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1769
1770         // Marshall data to send the payment
1771         let amt_msat = 20_000;
1772         let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1773         #[cfg(feature = "std")]
1774         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1775         #[cfg(not(feature = "std"))]
1776         let payment_expiry_secs = 60 * 60;
1777         let mut invoice_features = InvoiceFeatures::empty();
1778         invoice_features.set_variable_length_onion_required();
1779         invoice_features.set_payment_secret_required();
1780         invoice_features.set_basic_mpp_optional();
1781         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1782                 .with_expiry_time(payment_expiry_secs as u64)
1783                 .with_features(invoice_features);
1784         let route_params = RouteParameters {
1785                 payment_params,
1786                 final_value_msat: amt_msat,
1787         };
1788
1789         // Ensure the first monitor update (for the initial send path1 over chan_1) succeeds, but the
1790         // second (for the initial send path2 over chan_2) fails.
1791         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1792         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1793         // Ensure third monitor update (for the retry1's path1 over chan_1) succeeds, but the fourth (for
1794         // the retry1's path2 over chan_3) fails, and monitor updates succeed after that.
1795         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1796         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1797         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1798
1799         // Configure the initial send, retry1 and retry2's paths.
1800         let send_route = Route {
1801                 paths: vec![
1802                         vec![RouteHop {
1803                                 pubkey: nodes[1].node.get_our_node_id(),
1804                                 node_features: nodes[1].node.node_features(),
1805                                 short_channel_id: chan_1_id,
1806                                 channel_features: nodes[1].node.channel_features(),
1807                                 fee_msat: amt_msat / 2,
1808                                 cltv_expiry_delta: 100,
1809                         }],
1810                         vec![RouteHop {
1811                                 pubkey: nodes[1].node.get_our_node_id(),
1812                                 node_features: nodes[1].node.node_features(),
1813                                 short_channel_id: chan_2_id,
1814                                 channel_features: nodes[1].node.channel_features(),
1815                                 fee_msat: amt_msat / 2,
1816                                 cltv_expiry_delta: 100,
1817                         }],
1818                 ],
1819                 payment_params: Some(route_params.payment_params.clone()),
1820         };
1821         let retry_1_route = Route {
1822                 paths: vec![
1823                         vec![RouteHop {
1824                                 pubkey: nodes[1].node.get_our_node_id(),
1825                                 node_features: nodes[1].node.node_features(),
1826                                 short_channel_id: chan_1_id,
1827                                 channel_features: nodes[1].node.channel_features(),
1828                                 fee_msat: amt_msat / 4,
1829                                 cltv_expiry_delta: 100,
1830                         }],
1831                         vec![RouteHop {
1832                                 pubkey: nodes[1].node.get_our_node_id(),
1833                                 node_features: nodes[1].node.node_features(),
1834                                 short_channel_id: chan_3_id,
1835                                 channel_features: nodes[1].node.channel_features(),
1836                                 fee_msat: amt_msat / 4,
1837                                 cltv_expiry_delta: 100,
1838                         }],
1839                 ],
1840                 payment_params: Some(route_params.payment_params.clone()),
1841         };
1842         let retry_2_route = Route {
1843                 paths: vec![
1844                         vec![RouteHop {
1845                                 pubkey: nodes[1].node.get_our_node_id(),
1846                                 node_features: nodes[1].node.node_features(),
1847                                 short_channel_id: chan_1_id,
1848                                 channel_features: nodes[1].node.channel_features(),
1849                                 fee_msat: amt_msat / 4,
1850                                 cltv_expiry_delta: 100,
1851                         }],
1852                 ],
1853                 payment_params: Some(route_params.payment_params.clone()),
1854         };
1855         nodes[0].router.expect_find_route(route_params.clone(), Ok(send_route));
1856         let mut payment_params = route_params.payment_params.clone();
1857         payment_params.previously_failed_channels.push(chan_2_id);
1858         nodes[0].router.expect_find_route(RouteParameters {
1859                         payment_params, final_value_msat: amt_msat / 2,
1860                 }, Ok(retry_1_route));
1861         let mut payment_params = route_params.payment_params.clone();
1862         payment_params.previously_failed_channels.push(chan_3_id);
1863         nodes[0].router.expect_find_route(RouteParameters {
1864                         payment_params, final_value_msat: amt_msat / 4,
1865                 }, Ok(retry_2_route));
1866
1867         // Send a payment that will partially fail on send, then partially fail on retry, then succeed.
1868         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(3)).unwrap();
1869         let closed_chan_events = nodes[0].node.get_and_clear_pending_events();
1870         assert_eq!(closed_chan_events.len(), 4);
1871         match closed_chan_events[0] {
1872                 Event::ChannelClosed { .. } => {},
1873                 _ => panic!("Unexpected event"),
1874         }
1875         match closed_chan_events[1] {
1876                 Event::PaymentPathFailed { .. } => {},
1877                 _ => panic!("Unexpected event"),
1878         }
1879         match closed_chan_events[2] {
1880                 Event::ChannelClosed { .. } => {},
1881                 _ => panic!("Unexpected event"),
1882         }
1883         match closed_chan_events[3] {
1884                 Event::PaymentPathFailed { .. } => {},
1885                 _ => panic!("Unexpected event"),
1886         }
1887
1888         // Pass the first part of the payment along the path.
1889         check_added_monitors!(nodes[0], 5); // three outbound channel updates succeeded, two permanently failed
1890         let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
1891
1892         // First message is the first update_add, remaining messages are broadcasting channel updates and
1893         // errors for the permfailed channels
1894         assert_eq!(msg_events.len(), 5);
1895         let mut payment_event = SendEvent::from_event(msg_events.remove(0));
1896
1897         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
1898         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg);
1899         check_added_monitors!(nodes[1], 1);
1900         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1901
1902         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
1903         check_added_monitors!(nodes[0], 1);
1904         let as_second_htlc_updates = SendEvent::from_node(&nodes[0]);
1905
1906         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
1907         check_added_monitors!(nodes[0], 1);
1908         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1909
1910         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
1911         check_added_monitors!(nodes[1], 1);
1912
1913         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[0]);
1914         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[1]);
1915         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.commitment_msg);
1916         check_added_monitors!(nodes[1], 1);
1917         let (bs_second_raa, bs_second_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1918
1919         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1920         check_added_monitors!(nodes[0], 1);
1921
1922         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_cs);
1923         check_added_monitors!(nodes[0], 1);
1924         let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
1925
1926         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
1927         check_added_monitors!(nodes[1], 1);
1928
1929         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
1930         nodes[1].node.process_pending_htlc_forwards();
1931         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, amt_msat);
1932         nodes[1].node.claim_funds(payment_preimage);
1933         expect_payment_claimed!(nodes[1], payment_hash, amt_msat);
1934         let bs_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1935         assert_eq!(bs_claim_update.update_fulfill_htlcs.len(), 1);
1936
1937         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_claim_update.update_fulfill_htlcs[0]);
1938         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_claim_update.commitment_signed);
1939         check_added_monitors!(nodes[0], 1);
1940         let (as_third_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1941
1942         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
1943         check_added_monitors!(nodes[1], 4);
1944         let bs_second_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1945
1946         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
1947         check_added_monitors!(nodes[1], 1);
1948         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1949
1950         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
1951         check_added_monitors!(nodes[0], 1);
1952
1953         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[0]);
1954         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[1]);
1955         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.commitment_signed);
1956         check_added_monitors!(nodes[0], 1);
1957         let (as_fourth_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1958
1959         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_fourth_raa);
1960         check_added_monitors!(nodes[1], 1);
1961
1962         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
1963         check_added_monitors!(nodes[1], 1);
1964         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1965
1966         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1967         check_added_monitors!(nodes[0], 1);
1968         expect_payment_sent!(nodes[0], payment_preimage);
1969 }
1970
1971 #[test]
1972 fn auto_retry_zero_attempts_send_error() {
1973         let chanmon_cfgs = create_chanmon_cfgs(2);
1974         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1975         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1976         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1977
1978         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1979         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
1980
1981         // Marshall data to send the payment
1982         let amt_msat = 20_000;
1983         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
1984         #[cfg(feature = "std")]
1985         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
1986         #[cfg(not(feature = "std"))]
1987         let payment_expiry_secs = 60 * 60;
1988         let mut invoice_features = InvoiceFeatures::empty();
1989         invoice_features.set_variable_length_onion_required();
1990         invoice_features.set_payment_secret_required();
1991         invoice_features.set_basic_mpp_optional();
1992         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
1993                 .with_expiry_time(payment_expiry_secs as u64)
1994                 .with_features(invoice_features);
1995         let route_params = RouteParameters {
1996                 payment_params,
1997                 final_value_msat: amt_msat,
1998         };
1999
2000         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
2001         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(0)).unwrap();
2002         assert_eq!(nodes[0].node.get_and_clear_pending_msg_events().len(), 2); // channel close messages
2003         let events = nodes[0].node.get_and_clear_pending_events();
2004         assert_eq!(events.len(), 3);
2005         if let Event::ChannelClosed { .. } = events[0] { } else { panic!(); }
2006         if let Event::PaymentPathFailed { .. } = events[1] { } else { panic!(); }
2007         if let Event::PaymentFailed { .. } = events[2] { } else { panic!(); }
2008         check_added_monitors!(nodes[0], 2);
2009 }
2010
2011 #[test]
2012 fn fails_paying_after_rejected_by_payee() {
2013         let chanmon_cfgs = create_chanmon_cfgs(2);
2014         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2015         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
2016         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2017
2018         create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
2019
2020         // Marshall data to send the payment
2021         let amt_msat = 20_000;
2022         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2023         #[cfg(feature = "std")]
2024         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2025         #[cfg(not(feature = "std"))]
2026         let payment_expiry_secs = 60 * 60;
2027         let mut invoice_features = InvoiceFeatures::empty();
2028         invoice_features.set_variable_length_onion_required();
2029         invoice_features.set_payment_secret_required();
2030         invoice_features.set_basic_mpp_optional();
2031         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2032                 .with_expiry_time(payment_expiry_secs as u64)
2033                 .with_features(invoice_features);
2034         let route_params = RouteParameters {
2035                 payment_params,
2036                 final_value_msat: amt_msat,
2037         };
2038
2039         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2040         check_added_monitors!(nodes[0], 1);
2041         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
2042         assert_eq!(events.len(), 1);
2043         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
2044         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
2045         check_added_monitors!(nodes[1], 0);
2046         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
2047         expect_pending_htlcs_forwardable!(nodes[1]);
2048         expect_payment_claimable!(&nodes[1], payment_hash, payment_secret, amt_msat);
2049
2050         nodes[1].node.fail_htlc_backwards(&payment_hash);
2051         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash }]);
2052         pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, payment_hash);
2053 }
2054
2055 #[test]
2056 fn retry_multi_path_single_failed_payment() {
2057         // Tests that we can/will retry after a single path of an MPP payment failed immediately
2058         let chanmon_cfgs = create_chanmon_cfgs(2);
2059         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2060         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2061         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2062
2063         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2064         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2065
2066         let amt_msat = 100_010_000;
2067
2068         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2069         #[cfg(feature = "std")]
2070         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2071         #[cfg(not(feature = "std"))]
2072         let payment_expiry_secs = 60 * 60;
2073         let mut invoice_features = InvoiceFeatures::empty();
2074         invoice_features.set_variable_length_onion_required();
2075         invoice_features.set_payment_secret_required();
2076         invoice_features.set_basic_mpp_optional();
2077         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2078                 .with_expiry_time(payment_expiry_secs as u64)
2079                 .with_features(invoice_features);
2080         let route_params = RouteParameters {
2081                 payment_params: payment_params.clone(),
2082                 final_value_msat: amt_msat,
2083         };
2084
2085         let chans = nodes[0].node.list_usable_channels();
2086         let mut route = Route {
2087                 paths: vec![
2088                         vec![RouteHop {
2089                                 pubkey: nodes[1].node.get_our_node_id(),
2090                                 node_features: nodes[1].node.node_features(),
2091                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2092                                 channel_features: nodes[1].node.channel_features(),
2093                                 fee_msat: 10_000,
2094                                 cltv_expiry_delta: 100,
2095                         }],
2096                         vec![RouteHop {
2097                                 pubkey: nodes[1].node.get_our_node_id(),
2098                                 node_features: nodes[1].node.node_features(),
2099                                 short_channel_id: chans[1].short_channel_id.unwrap(),
2100                                 channel_features: nodes[1].node.channel_features(),
2101                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2102                                 cltv_expiry_delta: 100,
2103                         }],
2104                 ],
2105                 payment_params: Some(payment_params),
2106         };
2107         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2108         // On retry, split the payment across both channels.
2109         route.paths[0][0].fee_msat = 50_000_001;
2110         route.paths[1][0].fee_msat = 50_000_000;
2111         let mut pay_params = route.payment_params.clone().unwrap();
2112         pay_params.previously_failed_channels.push(chans[1].short_channel_id.unwrap());
2113         nodes[0].router.expect_find_route(RouteParameters {
2114                         payment_params: pay_params,
2115                         // Note that the second request here requests the amount we originally failed to send,
2116                         // not the amount remaining on the full payment, which should be changed.
2117                         final_value_msat: 100_000_001,
2118                 }, Ok(route.clone()));
2119
2120         {
2121                 let scorer = chanmon_cfgs[0].scorer.lock().unwrap();
2122                 // The initial send attempt, 2 paths
2123                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 10_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2124                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 100_000_001, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2125                 // The retry, 2 paths. Ensure that the in-flight HTLC amount is factored in.
2126                 scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_001, inflight_htlc_msat: 10_000, effective_capacity: EffectiveCapacity::Unknown });
2127                 scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
2128         }
2129
2130         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2131         let events = nodes[0].node.get_and_clear_pending_events();
2132         assert_eq!(events.len(), 1);
2133         match events[0] {
2134                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2135                         failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2136                         short_channel_id: Some(expected_scid), .. } =>
2137                 {
2138                         assert_eq!(payment_hash, ev_payment_hash);
2139                         assert_eq!(expected_scid, route.paths[1][0].short_channel_id);
2140                         assert!(err_msg.contains("max HTLC"));
2141                 },
2142                 _ => panic!("Unexpected event"),
2143         }
2144         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2145         assert_eq!(htlc_msgs.len(), 2);
2146         check_added_monitors!(nodes[0], 2);
2147 }
2148
2149 #[test]
2150 fn immediate_retry_on_failure() {
2151         // Tests that we can/will retry immediately after a failure
2152         let chanmon_cfgs = create_chanmon_cfgs(2);
2153         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
2154         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
2155         let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
2156
2157         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2158         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
2159
2160         let amt_msat = 100_000_001;
2161         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2162         #[cfg(feature = "std")]
2163         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2164         #[cfg(not(feature = "std"))]
2165         let payment_expiry_secs = 60 * 60;
2166         let mut invoice_features = InvoiceFeatures::empty();
2167         invoice_features.set_variable_length_onion_required();
2168         invoice_features.set_payment_secret_required();
2169         invoice_features.set_basic_mpp_optional();
2170         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2171                 .with_expiry_time(payment_expiry_secs as u64)
2172                 .with_features(invoice_features);
2173         let route_params = RouteParameters {
2174                 payment_params,
2175                 final_value_msat: amt_msat,
2176         };
2177
2178         let chans = nodes[0].node.list_usable_channels();
2179         let mut route = Route {
2180                 paths: vec![
2181                         vec![RouteHop {
2182                                 pubkey: nodes[1].node.get_our_node_id(),
2183                                 node_features: nodes[1].node.node_features(),
2184                                 short_channel_id: chans[0].short_channel_id.unwrap(),
2185                                 channel_features: nodes[1].node.channel_features(),
2186                                 fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
2187                                 cltv_expiry_delta: 100,
2188                         }],
2189                 ],
2190                 payment_params: Some(PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)),
2191         };
2192         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2193         // On retry, split the payment across both channels.
2194         route.paths.push(route.paths[0].clone());
2195         route.paths[0][0].short_channel_id = chans[1].short_channel_id.unwrap();
2196         route.paths[0][0].fee_msat = 50_000_000;
2197         route.paths[1][0].fee_msat = 50_000_001;
2198         let mut pay_params = route_params.payment_params.clone();
2199         pay_params.previously_failed_channels.push(chans[0].short_channel_id.unwrap());
2200         nodes[0].router.expect_find_route(RouteParameters {
2201                         payment_params: pay_params, final_value_msat: amt_msat,
2202                 }, Ok(route.clone()));
2203
2204         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2205         let events = nodes[0].node.get_and_clear_pending_events();
2206         assert_eq!(events.len(), 1);
2207         match events[0] {
2208                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
2209                         failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
2210                         short_channel_id: Some(expected_scid), .. } =>
2211                 {
2212                         assert_eq!(payment_hash, ev_payment_hash);
2213                         assert_eq!(expected_scid, route.paths[1][0].short_channel_id);
2214                         assert!(err_msg.contains("max HTLC"));
2215                 },
2216                 _ => panic!("Unexpected event"),
2217         }
2218         let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
2219         assert_eq!(htlc_msgs.len(), 2);
2220         check_added_monitors!(nodes[0], 2);
2221 }
2222
2223 #[test]
2224 fn no_extra_retries_on_back_to_back_fail() {
2225         // In a previous release, we had a race where we may exceed the payment retry count if we
2226         // get two failures in a row with the second indicating that all paths had failed (this field,
2227         // `all_paths_failed`, has since been removed).
2228         // Generally, when we give up trying to retry a payment, we don't know for sure what the
2229         // current state of the ChannelManager event queue is. Specifically, we cannot be sure that
2230         // there are not multiple additional `PaymentPathFailed` or even `PaymentSent` events
2231         // pending which we will see later. Thus, when we previously removed the retry tracking map
2232         // entry after a `all_paths_failed` `PaymentPathFailed` event, we may have dropped the
2233         // retry entry even though more events for the same payment were still pending. This led to
2234         // us retrying a payment again even though we'd already given up on it.
2235         //
2236         // We now have a separate event - `PaymentFailed` which indicates no HTLCs remain and which
2237         // is used to remove the payment retry counter entries instead. This tests for the specific
2238         // excess-retry case while also testing `PaymentFailed` generation.
2239
2240         let chanmon_cfgs = create_chanmon_cfgs(3);
2241         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2242         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2243         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2244
2245         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2246         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2247
2248         let amt_msat = 200_000_000;
2249         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
2250         #[cfg(feature = "std")]
2251         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2252         #[cfg(not(feature = "std"))]
2253         let payment_expiry_secs = 60 * 60;
2254         let mut invoice_features = InvoiceFeatures::empty();
2255         invoice_features.set_variable_length_onion_required();
2256         invoice_features.set_payment_secret_required();
2257         invoice_features.set_basic_mpp_optional();
2258         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2259                 .with_expiry_time(payment_expiry_secs as u64)
2260                 .with_features(invoice_features);
2261         let route_params = RouteParameters {
2262                 payment_params,
2263                 final_value_msat: amt_msat,
2264         };
2265
2266         let mut route = Route {
2267                 paths: vec![
2268                         vec![RouteHop {
2269                                 pubkey: nodes[1].node.get_our_node_id(),
2270                                 node_features: nodes[1].node.node_features(),
2271                                 short_channel_id: chan_1_scid,
2272                                 channel_features: nodes[1].node.channel_features(),
2273                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2274                                 cltv_expiry_delta: 100,
2275                         }, RouteHop {
2276                                 pubkey: nodes[2].node.get_our_node_id(),
2277                                 node_features: nodes[2].node.node_features(),
2278                                 short_channel_id: chan_2_scid,
2279                                 channel_features: nodes[2].node.channel_features(),
2280                                 fee_msat: 100_000_000,
2281                                 cltv_expiry_delta: 100,
2282                         }],
2283                         vec![RouteHop {
2284                                 pubkey: nodes[1].node.get_our_node_id(),
2285                                 node_features: nodes[1].node.node_features(),
2286                                 short_channel_id: chan_1_scid,
2287                                 channel_features: nodes[1].node.channel_features(),
2288                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2289                                 cltv_expiry_delta: 100,
2290                         }, RouteHop {
2291                                 pubkey: nodes[2].node.get_our_node_id(),
2292                                 node_features: nodes[2].node.node_features(),
2293                                 short_channel_id: chan_2_scid,
2294                                 channel_features: nodes[2].node.channel_features(),
2295                                 fee_msat: 100_000_000,
2296                                 cltv_expiry_delta: 100,
2297                         }]
2298                 ],
2299                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2300         };
2301         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2302         let mut second_payment_params = route_params.payment_params.clone();
2303         second_payment_params.previously_failed_channels = vec![chan_2_scid, chan_2_scid];
2304         // On retry, we'll only return one path
2305         route.paths.remove(1);
2306         route.paths[0][1].fee_msat = amt_msat;
2307         nodes[0].router.expect_find_route(RouteParameters {
2308                         payment_params: second_payment_params,
2309                         final_value_msat: amt_msat,
2310                 }, Ok(route.clone()));
2311
2312         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2313         let htlc_updates = SendEvent::from_node(&nodes[0]);
2314         check_added_monitors!(nodes[0], 1);
2315         assert_eq!(htlc_updates.msgs.len(), 1);
2316
2317         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2318         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2319         check_added_monitors!(nodes[1], 1);
2320         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2321
2322         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2323         check_added_monitors!(nodes[0], 1);
2324         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2325
2326         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2327         check_added_monitors!(nodes[0], 1);
2328         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2329
2330         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2331         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2332         check_added_monitors!(nodes[1], 1);
2333         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2334
2335         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2336         check_added_monitors!(nodes[1], 1);
2337         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2338
2339         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2340         check_added_monitors!(nodes[0], 1);
2341
2342         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2343         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2344         check_added_monitors!(nodes[0], 1);
2345         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2346
2347         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2348         check_added_monitors!(nodes[1], 1);
2349         let bs_second_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2350
2351         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2352         check_added_monitors!(nodes[1], 1);
2353         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2354
2355         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.update_fail_htlcs[0]);
2356         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.commitment_signed);
2357         check_added_monitors!(nodes[0], 1);
2358
2359         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2360         check_added_monitors!(nodes[0], 1);
2361         let (as_third_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2362
2363         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
2364         check_added_monitors!(nodes[1], 1);
2365         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
2366         check_added_monitors!(nodes[1], 1);
2367         let bs_fourth_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2368
2369         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_fourth_raa);
2370         check_added_monitors!(nodes[0], 1);
2371
2372         // At this point A has sent two HTLCs which both failed due to lack of fee. It now has two
2373         // pending `PaymentPathFailed` events, one with `all_paths_failed` unset, and the second
2374         // with it set.
2375         //
2376         // Previously, we retried payments in an event consumer, which would retry each
2377         // `PaymentPathFailed` individually. In that setup, we had retried the payment in response to
2378         // the first `PaymentPathFailed`, then seen the second `PaymentPathFailed` with
2379         // `all_paths_failed` set and assumed the payment was completely failed. We ultimately fixed it
2380         // by adding the `PaymentFailed` event.
2381         //
2382         // Because we now retry payments as a batch, we simply return a single-path route in the
2383         // second, batched, request, have that fail, ensure the payment was abandoned.
2384         let mut events = nodes[0].node.get_and_clear_pending_events();
2385         assert_eq!(events.len(), 3);
2386         match events[0] {
2387                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2388                         assert_eq!(payment_hash, ev_payment_hash);
2389                         assert_eq!(payment_failed_permanently, false);
2390                 },
2391                 _ => panic!("Unexpected event"),
2392         }
2393         match events[1] {
2394                 Event::PendingHTLCsForwardable { .. } => {},
2395                 _ => panic!("Unexpected event"),
2396         }
2397         match events[2] {
2398                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2399                         assert_eq!(payment_hash, ev_payment_hash);
2400                         assert_eq!(payment_failed_permanently, false);
2401                 },
2402                 _ => panic!("Unexpected event"),
2403         }
2404
2405         nodes[0].node.process_pending_htlc_forwards();
2406         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2407         check_added_monitors!(nodes[0], 1);
2408
2409         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2410         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2411         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2412         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2413         commitment_signed_dance!(nodes[0], nodes[1], &bs_fail_update.commitment_signed, false, true);
2414
2415         let mut events = nodes[0].node.get_and_clear_pending_events();
2416         assert_eq!(events.len(), 2);
2417         match events[0] {
2418                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2419                         assert_eq!(payment_hash, ev_payment_hash);
2420                         assert_eq!(payment_failed_permanently, false);
2421                 },
2422                 _ => panic!("Unexpected event"),
2423         }
2424         match events[1] {
2425                 Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id } => {
2426                         assert_eq!(payment_hash, *ev_payment_hash);
2427                         assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
2428                 },
2429                 _ => panic!("Unexpected event"),
2430         }
2431 }
2432
2433 #[test]
2434 fn test_simple_partial_retry() {
2435         // In the first version of the in-`ChannelManager` payment retries, retries were sent for the
2436         // full amount of the payment, rather than only the missing amount. Here we simply test for
2437         // this by sending a payment with two parts, failing one, and retrying the second. Note that
2438         // `TestRouter` will check that the `RouteParameters` (which contain the amount) matches the
2439         // request.
2440         let chanmon_cfgs = create_chanmon_cfgs(3);
2441         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
2442         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
2443         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
2444
2445         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2446         let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
2447
2448         let amt_msat = 200_000_000;
2449         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2450         #[cfg(feature = "std")]
2451         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2452         #[cfg(not(feature = "std"))]
2453         let payment_expiry_secs = 60 * 60;
2454         let mut invoice_features = InvoiceFeatures::empty();
2455         invoice_features.set_variable_length_onion_required();
2456         invoice_features.set_payment_secret_required();
2457         invoice_features.set_basic_mpp_optional();
2458         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2459                 .with_expiry_time(payment_expiry_secs as u64)
2460                 .with_features(invoice_features);
2461         let route_params = RouteParameters {
2462                 payment_params,
2463                 final_value_msat: amt_msat,
2464         };
2465
2466         let mut route = Route {
2467                 paths: vec![
2468                         vec![RouteHop {
2469                                 pubkey: nodes[1].node.get_our_node_id(),
2470                                 node_features: nodes[1].node.node_features(),
2471                                 short_channel_id: chan_1_scid,
2472                                 channel_features: nodes[1].node.channel_features(),
2473                                 fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
2474                                 cltv_expiry_delta: 100,
2475                         }, RouteHop {
2476                                 pubkey: nodes[2].node.get_our_node_id(),
2477                                 node_features: nodes[2].node.node_features(),
2478                                 short_channel_id: chan_2_scid,
2479                                 channel_features: nodes[2].node.channel_features(),
2480                                 fee_msat: 100_000_000,
2481                                 cltv_expiry_delta: 100,
2482                         }],
2483                         vec![RouteHop {
2484                                 pubkey: nodes[1].node.get_our_node_id(),
2485                                 node_features: nodes[1].node.node_features(),
2486                                 short_channel_id: chan_1_scid,
2487                                 channel_features: nodes[1].node.channel_features(),
2488                                 fee_msat: 100_000,
2489                                 cltv_expiry_delta: 100,
2490                         }, RouteHop {
2491                                 pubkey: nodes[2].node.get_our_node_id(),
2492                                 node_features: nodes[2].node.node_features(),
2493                                 short_channel_id: chan_2_scid,
2494                                 channel_features: nodes[2].node.channel_features(),
2495                                 fee_msat: 100_000_000,
2496                                 cltv_expiry_delta: 100,
2497                         }]
2498                 ],
2499                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2500         };
2501         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2502         let mut second_payment_params = route_params.payment_params.clone();
2503         second_payment_params.previously_failed_channels = vec![chan_2_scid];
2504         // On retry, we'll only be asked for one path (or 100k sats)
2505         route.paths.remove(0);
2506         nodes[0].router.expect_find_route(RouteParameters {
2507                         payment_params: second_payment_params,
2508                         final_value_msat: amt_msat / 2,
2509                 }, Ok(route.clone()));
2510
2511         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
2512         let htlc_updates = SendEvent::from_node(&nodes[0]);
2513         check_added_monitors!(nodes[0], 1);
2514         assert_eq!(htlc_updates.msgs.len(), 1);
2515
2516         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
2517         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
2518         check_added_monitors!(nodes[1], 1);
2519         let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2520
2521         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
2522         check_added_monitors!(nodes[0], 1);
2523         let second_htlc_updates = SendEvent::from_node(&nodes[0]);
2524
2525         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
2526         check_added_monitors!(nodes[0], 1);
2527         let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
2528
2529         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
2530         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
2531         check_added_monitors!(nodes[1], 1);
2532         let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2533
2534         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
2535         check_added_monitors!(nodes[1], 1);
2536         let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2537
2538         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
2539         check_added_monitors!(nodes[0], 1);
2540
2541         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
2542         nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
2543         check_added_monitors!(nodes[0], 1);
2544         let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
2545
2546         nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
2547         check_added_monitors!(nodes[1], 1);
2548
2549         nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
2550         check_added_monitors!(nodes[1], 1);
2551
2552         let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
2553
2554         nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
2555         check_added_monitors!(nodes[0], 1);
2556
2557         let mut events = nodes[0].node.get_and_clear_pending_events();
2558         assert_eq!(events.len(), 2);
2559         match events[0] {
2560                 Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, ..  } => {
2561                         assert_eq!(payment_hash, ev_payment_hash);
2562                         assert_eq!(payment_failed_permanently, false);
2563                 },
2564                 _ => panic!("Unexpected event"),
2565         }
2566         match events[1] {
2567                 Event::PendingHTLCsForwardable { .. } => {},
2568                 _ => panic!("Unexpected event"),
2569         }
2570
2571         nodes[0].node.process_pending_htlc_forwards();
2572         let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
2573         check_added_monitors!(nodes[0], 1);
2574
2575         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
2576         commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
2577
2578         expect_pending_htlcs_forwardable!(nodes[1]);
2579         check_added_monitors!(nodes[1], 1);
2580
2581         let bs_forward_update = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
2582         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[0]);
2583         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[1]);
2584         commitment_signed_dance!(nodes[2], nodes[1], &bs_forward_update.commitment_signed, false);
2585
2586         expect_pending_htlcs_forwardable!(nodes[2]);
2587         expect_payment_claimable!(nodes[2], payment_hash, payment_secret, amt_msat);
2588 }
2589
2590 #[test]
2591 #[cfg(feature = "std")]
2592 fn test_threaded_payment_retries() {
2593         // In the first version of the in-`ChannelManager` payment retries, retries weren't limited to
2594         // a single thread and would happily let multiple threads run retries at the same time. Because
2595         // retries are done by first calculating the amount we need to retry, then dropping the
2596         // relevant lock, then actually sending, we would happily let multiple threads retry the same
2597         // amount at the same time, overpaying our original HTLC!
2598         let chanmon_cfgs = create_chanmon_cfgs(4);
2599         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
2600         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
2601         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
2602
2603         // There is one mitigating guardrail when retrying payments - we can never over-pay by more
2604         // than 10% of the original value. Thus, we want all our retries to be below that. In order to
2605         // keep things simple, we route one HTLC for 0.1% of the payment over channel 1 and the rest
2606         // out over channel 3+4. This will let us ignore 99% of the payment value and deal with only
2607         // our channel.
2608         let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
2609         create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 10_000_000, 0);
2610         let chan_3_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 10_000_000, 0).0.contents.short_channel_id;
2611         let chan_4_scid = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 10_000_000, 0).0.contents.short_channel_id;
2612
2613         let amt_msat = 100_000_000;
2614         let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
2615         #[cfg(feature = "std")]
2616         let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
2617         #[cfg(not(feature = "std"))]
2618         let payment_expiry_secs = 60 * 60;
2619         let mut invoice_features = InvoiceFeatures::empty();
2620         invoice_features.set_variable_length_onion_required();
2621         invoice_features.set_payment_secret_required();
2622         invoice_features.set_basic_mpp_optional();
2623         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
2624                 .with_expiry_time(payment_expiry_secs as u64)
2625                 .with_features(invoice_features);
2626         let mut route_params = RouteParameters {
2627                 payment_params,
2628                 final_value_msat: amt_msat,
2629         };
2630
2631         let mut route = Route {
2632                 paths: vec![
2633                         vec![RouteHop {
2634                                 pubkey: nodes[1].node.get_our_node_id(),
2635                                 node_features: nodes[1].node.node_features(),
2636                                 short_channel_id: chan_1_scid,
2637                                 channel_features: nodes[1].node.channel_features(),
2638                                 fee_msat: 0,
2639                                 cltv_expiry_delta: 100,
2640                         }, RouteHop {
2641                                 pubkey: nodes[3].node.get_our_node_id(),
2642                                 node_features: nodes[2].node.node_features(),
2643                                 short_channel_id: 42, // Set a random SCID which nodes[1] will fail as unknown
2644                                 channel_features: nodes[2].node.channel_features(),
2645                                 fee_msat: amt_msat / 1000,
2646                                 cltv_expiry_delta: 100,
2647                         }],
2648                         vec![RouteHop {
2649                                 pubkey: nodes[2].node.get_our_node_id(),
2650                                 node_features: nodes[2].node.node_features(),
2651                                 short_channel_id: chan_3_scid,
2652                                 channel_features: nodes[2].node.channel_features(),
2653                                 fee_msat: 100_000,
2654                                 cltv_expiry_delta: 100,
2655                         }, RouteHop {
2656                                 pubkey: nodes[3].node.get_our_node_id(),
2657                                 node_features: nodes[3].node.node_features(),
2658                                 short_channel_id: chan_4_scid,
2659                                 channel_features: nodes[3].node.channel_features(),
2660                                 fee_msat: amt_msat - amt_msat / 1000,
2661                                 cltv_expiry_delta: 100,
2662                         }]
2663                 ],
2664                 payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
2665         };
2666         nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
2667
2668         nodes[0].node.send_payment_with_retry(payment_hash, &Some(payment_secret), PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(0xdeadbeef)).unwrap();
2669         check_added_monitors!(nodes[0], 2);
2670         let mut send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2671         assert_eq!(send_msg_events.len(), 2);
2672         send_msg_events.retain(|msg|
2673                 if let MessageSendEvent::UpdateHTLCs { node_id, .. } = msg {
2674                         // Drop the commitment update for nodes[2], we can just let that one sit pending
2675                         // forever.
2676                         *node_id == nodes[1].node.get_our_node_id()
2677                 } else { panic!(); }
2678         );
2679
2680         // from here on out, the retry `RouteParameters` amount will be amt/1000
2681         route_params.final_value_msat /= 1000;
2682         route.paths.pop();
2683
2684         let end_time = Instant::now() + Duration::from_secs(1);
2685         macro_rules! thread_body { () => { {
2686                 // We really want std::thread::scope, but its not stable until 1.63. Until then, we get unsafe.
2687                 let node_ref = NodePtr::from_node(&nodes[0]);
2688                 move || {
2689                         let node_a = unsafe { &*node_ref.0 };
2690                         while Instant::now() < end_time {
2691                                 node_a.node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2692                                 // Ignore if we have any pending events, just always pretend we just got a
2693                                 // PendingHTLCsForwardable
2694                                 node_a.node.process_pending_htlc_forwards();
2695                         }
2696                 }
2697         } } }
2698         let mut threads = Vec::new();
2699         for _ in 0..16 { threads.push(std::thread::spawn(thread_body!())); }
2700
2701         // Back in the main thread, poll pending messages and make sure that we never have more than
2702         // one HTLC pending at a time. Note that the commitment_signed_dance will fail horribly if
2703         // there are HTLC messages shoved in while its running. This allows us to test that we never
2704         // generate an additional update_add_htlc until we've fully failed the first.
2705         let mut previously_failed_channels = Vec::new();
2706         loop {
2707                 assert_eq!(send_msg_events.len(), 1);
2708                 let send_event = SendEvent::from_event(send_msg_events.pop().unwrap());
2709                 assert_eq!(send_event.msgs.len(), 1);
2710
2711                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_event.msgs[0]);
2712                 commitment_signed_dance!(nodes[1], nodes[0], send_event.commitment_msg, false, true);
2713
2714                 // Note that we only push one route into `expect_find_route` at a time, because that's all
2715                 // the retries (should) need. If the bug is reintroduced "real" routes may be selected, but
2716                 // we should still ultimately fail for the same reason - because we're trying to send too
2717                 // many HTLCs at once.
2718                 let mut new_route_params = route_params.clone();
2719                 previously_failed_channels.push(route.paths[0][1].short_channel_id);
2720                 new_route_params.payment_params.previously_failed_channels = previously_failed_channels.clone();
2721                 route.paths[0][1].short_channel_id += 1;
2722                 nodes[0].router.expect_find_route(new_route_params, Ok(route.clone()));
2723
2724                 let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
2725                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]);
2726                 // The "normal" commitment_signed_dance delivers the final RAA and then calls
2727                 // `check_added_monitors` to ensure only the one RAA-generated monitor update was created.
2728                 // This races with our other threads which may generate an add-HTLCs commitment update via
2729                 // `process_pending_htlc_forwards`. Instead, we defer the monitor update check until after
2730                 // *we've* called `process_pending_htlc_forwards` when its guaranteed to have two updates.
2731                 let last_raa = commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true, false, true);
2732                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &last_raa);
2733
2734                 let cur_time = Instant::now();
2735                 if cur_time > end_time {
2736                         for thread in threads.drain(..) { thread.join().unwrap(); }
2737                 }
2738
2739                 // Make sure we have some events to handle when we go around...
2740                 nodes[0].node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
2741                 nodes[0].node.process_pending_htlc_forwards();
2742                 send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
2743                 check_added_monitors!(nodes[0], 2);
2744
2745                 if cur_time > end_time {
2746                         break;
2747                 }
2748         }
2749 }