1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 use crate::prelude::*;
12 use crate::sign::{NodeSigner, Recipient};
13 use crate::ln::msgs::LightningError;
17 use bitcoin::hashes::{Hash, HashEngine};
18 use bitcoin::hashes::sha256::Hash as Sha256;
20 use bitcoin::secp256k1::Secp256k1;
21 use bitcoin::secp256k1::{PublicKey,SecretKey};
22 use bitcoin::secp256k1::ecdh::SharedSecret;
23 use bitcoin::secp256k1;
27 use crate::crypto::chacha20poly1305rfc::ChaCha20Poly1305RFC;
28 use crate::crypto::utils::hkdf_extract_expand_twice;
29 use crate::util::ser::VecWriter;
33 /// Maximum Lightning message data length according to
34 /// [BOLT-8](https://github.com/lightning/bolts/blob/v1.0/08-transport.md#lightning-message-specification)
35 /// and [BOLT-1](https://github.com/lightning/bolts/blob/master/01-messaging.md#lightning-message-format):
36 pub const LN_MAX_MSG_LEN: usize = ::core::u16::MAX as usize; // Must be equal to 65535
38 /// The (rough) size buffer to pre-allocate when encoding a message. Messages should reliably be
39 /// smaller than this size by at least 32 bytes or so.
40 pub const MSG_BUF_ALLOC_SIZE: usize = 2048;
42 // Sha256("Noise_XK_secp256k1_ChaChaPoly_SHA256")
43 const NOISE_CK: [u8; 32] = [0x26, 0x40, 0xf5, 0x2e, 0xeb, 0xcd, 0x9e, 0x88, 0x29, 0x58, 0x95, 0x1c, 0x79, 0x42, 0x50, 0xee, 0xdb, 0x28, 0x00, 0x2c, 0x05, 0xd7, 0xdc, 0x2e, 0xa0, 0xf1, 0x95, 0x40, 0x60, 0x42, 0xca, 0xf1];
44 // Sha256(NOISE_CK || "lightning")
45 const NOISE_H: [u8; 32] = [0xd1, 0xfb, 0xf6, 0xde, 0xe4, 0xf6, 0x86, 0xf1, 0x32, 0xfd, 0x70, 0x2c, 0x4a, 0xbf, 0x8f, 0xba, 0x4b, 0xb4, 0x20, 0xd8, 0x9d, 0x2a, 0x04, 0x8a, 0x3c, 0x4f, 0x4c, 0x09, 0x2e, 0x37, 0xb6, 0x76];
47 enum NoiseSecretKey<'a, 'b, NS: Deref> where NS::Target: NodeSigner {
48 InMemory(&'a SecretKey),
52 pub enum NextNoiseStep {
64 // When done swap noise_state for NoiseState::Finished
67 struct BidirectionalNoiseState {
71 enum DirectionalNoiseState {
76 ie: Option<PublicKey>, // filled in if state >= PostActOne
77 re: Option<SecretKey>, // filled in if state >= PostActTwo
78 temp_k2: Option<[u8; 32]>, // filled in if state >= PostActTwo
84 directional_state: DirectionalNoiseState,
85 bidirectional_state: BidirectionalNoiseState,
97 pub struct PeerChannelEncryptor {
98 their_node_id: Option<PublicKey>, // filled in for outbound, or inbound after noise_state is Finished
100 noise_state: NoiseState,
103 impl PeerChannelEncryptor {
104 pub fn new_outbound(their_node_id: PublicKey, ephemeral_key: SecretKey) -> PeerChannelEncryptor {
105 let mut sha = Sha256::engine();
107 sha.input(&their_node_id.serialize()[..]);
108 let h = Sha256::from_engine(sha).to_byte_array();
110 PeerChannelEncryptor {
111 their_node_id: Some(their_node_id),
112 noise_state: NoiseState::InProgress {
113 state: NoiseStep::PreActOne,
114 directional_state: DirectionalNoiseState::Outbound {
117 bidirectional_state: BidirectionalNoiseState {
125 pub fn new_inbound<NS: Deref>(node_signer: &NS) -> PeerChannelEncryptor where NS::Target: NodeSigner {
126 let mut sha = Sha256::engine();
128 let our_node_id = node_signer.get_node_id(Recipient::Node).unwrap();
129 sha.input(&our_node_id.serialize()[..]);
130 let h = Sha256::from_engine(sha).to_byte_array();
132 PeerChannelEncryptor {
134 noise_state: NoiseState::InProgress {
135 state: NoiseStep::PreActOne,
136 directional_state: DirectionalNoiseState::Inbound {
141 bidirectional_state: BidirectionalNoiseState {
150 fn encrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], plaintext: &[u8]) {
151 let mut nonce = [0; 12];
152 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
154 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
155 let mut tag = [0; 16];
156 chacha.encrypt(plaintext, &mut res[0..plaintext.len()], &mut tag);
157 res[plaintext.len()..].copy_from_slice(&tag);
161 /// Encrypts the message in res[offset..] in-place and pushes a 16-byte tag onto the end of
163 fn encrypt_in_place_with_ad(res: &mut Vec<u8>, offset: usize, n: u64, key: &[u8; 32], h: &[u8]) {
164 let mut nonce = [0; 12];
165 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
167 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
168 let mut tag = [0; 16];
169 chacha.encrypt_full_message_in_place(&mut res[offset..], &mut tag);
170 res.extend_from_slice(&tag);
173 fn decrypt_in_place_with_ad(inout: &mut [u8], n: u64, key: &[u8; 32], h: &[u8]) -> Result<(), LightningError> {
174 let mut nonce = [0; 12];
175 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
177 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
178 let (inout, tag) = inout.split_at_mut(inout.len() - 16);
179 if chacha.check_decrypt_in_place(inout, tag).is_err() {
180 return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
186 fn decrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], cyphertext: &[u8]) -> Result<(), LightningError> {
187 let mut nonce = [0; 12];
188 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
190 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
191 if chacha.variable_time_decrypt(&cyphertext[0..cyphertext.len() - 16], res, &cyphertext[cyphertext.len() - 16..]).is_err() {
192 return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
198 fn hkdf(state: &mut BidirectionalNoiseState, ss: SharedSecret) -> [u8; 32] {
199 let (t1, t2) = hkdf_extract_expand_twice(&state.ck, ss.as_ref());
205 fn outbound_noise_act<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, state: &mut BidirectionalNoiseState, our_key: &SecretKey, their_key: &PublicKey) -> ([u8; 50], [u8; 32]) {
206 let our_pub = PublicKey::from_secret_key(secp_ctx, &our_key);
208 let mut sha = Sha256::engine();
210 sha.input(&our_pub.serialize()[..]);
211 state.h = Sha256::from_engine(sha).to_byte_array();
213 let ss = SharedSecret::new(&their_key, &our_key);
214 let temp_k = PeerChannelEncryptor::hkdf(state, ss);
216 let mut res = [0; 50];
217 res[1..34].copy_from_slice(&our_pub.serialize()[..]);
218 PeerChannelEncryptor::encrypt_with_ad(&mut res[34..], 0, &temp_k, &state.h, &[0; 0]);
220 let mut sha = Sha256::engine();
222 sha.input(&res[34..]);
223 state.h = Sha256::from_engine(sha).to_byte_array();
229 fn inbound_noise_act<'a, 'b, NS: Deref>(
230 state: &mut BidirectionalNoiseState, act: &[u8], secret_key: NoiseSecretKey<'a, 'b, NS>
231 ) -> Result<(PublicKey, [u8; 32]), LightningError> where NS::Target: NodeSigner {
232 assert_eq!(act.len(), 50);
235 return Err(LightningError{err: format!("Unknown handshake version number {}", act[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
238 let their_pub = match PublicKey::from_slice(&act[1..34]) {
239 Err(_) => return Err(LightningError{err: format!("Invalid public key {}", &act[1..34].as_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
243 let mut sha = Sha256::engine();
245 sha.input(&their_pub.serialize()[..]);
246 state.h = Sha256::from_engine(sha).to_byte_array();
248 let ss = match secret_key {
249 NoiseSecretKey::InMemory(secret_key) => SharedSecret::new(&their_pub, secret_key),
250 NoiseSecretKey::NodeSigner(node_signer) => node_signer
251 .ecdh(Recipient::Node, &their_pub, None)
252 .map_err(|_| LightningError {
253 err: "Failed to derive shared secret".to_owned(),
254 action: msgs::ErrorAction::DisconnectPeer { msg: None }
257 let temp_k = PeerChannelEncryptor::hkdf(state, ss);
259 let mut dec = [0; 0];
260 PeerChannelEncryptor::decrypt_with_ad(&mut dec, 0, &temp_k, &state.h, &act[34..])?;
262 let mut sha = Sha256::engine();
264 sha.input(&act[34..]);
265 state.h = Sha256::from_engine(sha).to_byte_array();
267 Ok((their_pub, temp_k))
270 pub fn get_act_one<C: secp256k1::Signing>(&mut self, secp_ctx: &Secp256k1<C>) -> [u8; 50] {
271 match self.noise_state {
272 NoiseState::InProgress { ref mut state, ref directional_state, ref mut bidirectional_state } =>
273 match directional_state {
274 &DirectionalNoiseState::Outbound { ref ie } => {
275 if *state != NoiseStep::PreActOne {
276 panic!("Requested act at wrong step");
279 let (res, _) = PeerChannelEncryptor::outbound_noise_act(secp_ctx, bidirectional_state, &ie, &self.their_node_id.unwrap());
280 *state = NoiseStep::PostActOne;
283 _ => panic!("Wrong direction for act"),
285 _ => panic!("Cannot get act one after noise handshake completes"),
289 pub fn process_act_one_with_keys<C: secp256k1::Signing, NS: Deref>(
290 &mut self, act_one: &[u8], node_signer: &NS, our_ephemeral: SecretKey, secp_ctx: &Secp256k1<C>)
291 -> Result<[u8; 50], LightningError> where NS::Target: NodeSigner {
292 assert_eq!(act_one.len(), 50);
294 match self.noise_state {
295 NoiseState::InProgress { ref mut state, ref mut directional_state, ref mut bidirectional_state } =>
296 match directional_state {
297 &mut DirectionalNoiseState::Inbound { ref mut ie, ref mut re, ref mut temp_k2 } => {
298 if *state != NoiseStep::PreActOne {
299 panic!("Requested act at wrong step");
302 let (their_pub, _) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_one, NoiseSecretKey::NodeSigner(node_signer))?;
303 ie.get_or_insert(their_pub);
305 re.get_or_insert(our_ephemeral);
308 PeerChannelEncryptor::outbound_noise_act(secp_ctx, bidirectional_state, &re.unwrap(), &ie.unwrap());
309 *temp_k2 = Some(temp_k);
310 *state = NoiseStep::PostActTwo;
313 _ => panic!("Wrong direction for act"),
315 _ => panic!("Cannot get act one after noise handshake completes"),
319 pub fn process_act_two<NS: Deref>(
320 &mut self, act_two: &[u8], node_signer: &NS)
321 -> Result<([u8; 66], PublicKey), LightningError> where NS::Target: NodeSigner {
322 assert_eq!(act_two.len(), 50);
326 let res: [u8; 66] = match self.noise_state {
327 NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
328 match directional_state {
329 &DirectionalNoiseState::Outbound { ref ie } => {
330 if *state != NoiseStep::PostActOne {
331 panic!("Requested act at wrong step");
334 let (re, temp_k2) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_two, NoiseSecretKey::<NS>::InMemory(&ie))?;
336 let mut res = [0; 66];
337 let our_node_id = node_signer.get_node_id(Recipient::Node).map_err(|_| LightningError {
338 err: "Failed to encrypt message".to_owned(),
339 action: msgs::ErrorAction::DisconnectPeer { msg: None }
342 PeerChannelEncryptor::encrypt_with_ad(&mut res[1..50], 1, &temp_k2, &bidirectional_state.h, &our_node_id.serialize()[..]);
344 let mut sha = Sha256::engine();
345 sha.input(&bidirectional_state.h);
346 sha.input(&res[1..50]);
347 bidirectional_state.h = Sha256::from_engine(sha).to_byte_array();
349 let ss = node_signer.ecdh(Recipient::Node, &re, None).map_err(|_| LightningError {
350 err: "Failed to derive shared secret".to_owned(),
351 action: msgs::ErrorAction::DisconnectPeer { msg: None }
353 let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
355 PeerChannelEncryptor::encrypt_with_ad(&mut res[50..], 0, &temp_k, &bidirectional_state.h, &[0; 0]);
356 final_hkdf = hkdf_extract_expand_twice(&bidirectional_state.ck, &[0; 0]);
357 ck = bidirectional_state.ck.clone();
360 _ => panic!("Wrong direction for act"),
362 _ => panic!("Cannot get act one after noise handshake completes"),
365 let (sk, rk) = final_hkdf;
366 self.noise_state = NoiseState::Finished {
375 Ok((res, self.their_node_id.unwrap().clone()))
378 pub fn process_act_three(&mut self, act_three: &[u8]) -> Result<PublicKey, LightningError> {
379 assert_eq!(act_three.len(), 66);
383 match self.noise_state {
384 NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
385 match directional_state {
386 &DirectionalNoiseState::Inbound { ie: _, ref re, ref temp_k2 } => {
387 if *state != NoiseStep::PostActTwo {
388 panic!("Requested act at wrong step");
390 if act_three[0] != 0 {
391 return Err(LightningError{err: format!("Unknown handshake version number {}", act_three[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
394 let mut their_node_id = [0; 33];
395 PeerChannelEncryptor::decrypt_with_ad(&mut their_node_id, 1, &temp_k2.unwrap(), &bidirectional_state.h, &act_three[1..50])?;
396 self.their_node_id = Some(match PublicKey::from_slice(&their_node_id) {
398 Err(_) => return Err(LightningError{err: format!("Bad node_id from peer, {}", &their_node_id.as_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
401 let mut sha = Sha256::engine();
402 sha.input(&bidirectional_state.h);
403 sha.input(&act_three[1..50]);
404 bidirectional_state.h = Sha256::from_engine(sha).to_byte_array();
406 let ss = SharedSecret::new(&self.their_node_id.unwrap(), &re.unwrap());
407 let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
409 PeerChannelEncryptor::decrypt_with_ad(&mut [0; 0], 0, &temp_k, &bidirectional_state.h, &act_three[50..])?;
410 final_hkdf = hkdf_extract_expand_twice(&bidirectional_state.ck, &[0; 0]);
411 ck = bidirectional_state.ck.clone();
413 _ => panic!("Wrong direction for act"),
415 _ => panic!("Cannot get act one after noise handshake completes"),
418 let (rk, sk) = final_hkdf;
419 self.noise_state = NoiseState::Finished {
428 Ok(self.their_node_id.unwrap().clone())
431 /// Builds sendable bytes for a message.
433 /// `msgbuf` must begin with 16 + 2 dummy/0 bytes, which will be filled with the encrypted
434 /// message length and its MAC. It should then be followed by the message bytes themselves
435 /// (including the two byte message type).
437 /// For effeciency, the [`Vec::capacity`] should be at least 16 bytes larger than the
438 /// [`Vec::len`], to avoid reallocating for the message MAC, which will be appended to the vec.
439 fn encrypt_message_with_header_0s(&mut self, msgbuf: &mut Vec<u8>) {
440 let msg_len = msgbuf.len() - 16 - 2;
441 if msg_len > LN_MAX_MSG_LEN {
442 panic!("Attempted to encrypt message longer than 65535 bytes!");
445 match self.noise_state {
446 NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => {
448 let (new_sck, new_sk) = hkdf_extract_expand_twice(sck, sk);
454 Self::encrypt_with_ad(&mut msgbuf[0..16+2], *sn, sk, &[0; 0], &(msg_len as u16).to_be_bytes());
457 Self::encrypt_in_place_with_ad(msgbuf, 16+2, *sn, sk, &[0; 0]);
460 _ => panic!("Tried to encrypt a message prior to noise handshake completion"),
464 /// Encrypts the given pre-serialized message, returning the encrypted version.
465 /// panics if msg.len() > 65535 or Noise handshake has not finished.
466 pub fn encrypt_buffer(&mut self, mut msg: MessageBuf) -> Vec<u8> {
467 self.encrypt_message_with_header_0s(&mut msg.0);
471 /// Encrypts the given message, returning the encrypted version.
472 /// panics if the length of `message`, once encoded, is greater than 65535 or if the Noise
473 /// handshake has not finished.
474 pub fn encrypt_message<M: wire::Type>(&mut self, message: &M) -> Vec<u8> {
475 // Allocate a buffer with 2KB, fitting most common messages. Reserve the first 16+2 bytes
476 // for the 2-byte message type prefix and its MAC.
477 let mut res = VecWriter(Vec::with_capacity(MSG_BUF_ALLOC_SIZE));
478 res.0.resize(16 + 2, 0);
479 wire::write(message, &mut res).expect("In-memory messages must never fail to serialize");
481 self.encrypt_message_with_header_0s(&mut res.0);
485 /// Decrypts a message length header from the remote peer.
486 /// panics if noise handshake has not yet finished or msg.len() != 18
487 pub fn decrypt_length_header(&mut self, msg: &[u8]) -> Result<u16, LightningError> {
488 assert_eq!(msg.len(), 16+2);
490 match self.noise_state {
491 NoiseState::Finished { sk: _, sn: _, sck: _, ref mut rk, ref mut rn, ref mut rck } => {
493 let (new_rck, new_rk) = hkdf_extract_expand_twice(rck, rk);
499 let mut res = [0; 2];
500 Self::decrypt_with_ad(&mut res, *rn, rk, &[0; 0], msg)?;
502 Ok(u16::from_be_bytes(res))
504 _ => panic!("Tried to decrypt a message prior to noise handshake completion"),
508 /// Decrypts the given message up to msg.len() - 16. Bytes after msg.len() - 16 will be left
509 /// undefined (as they contain the Poly1305 tag bytes).
511 /// panics if msg.len() > 65535 + 16
512 pub fn decrypt_message(&mut self, msg: &mut [u8]) -> Result<(), LightningError> {
513 if msg.len() > LN_MAX_MSG_LEN + 16 {
514 panic!("Attempted to decrypt message longer than 65535 + 16 bytes!");
517 match self.noise_state {
518 NoiseState::Finished { sk: _, sn: _, sck: _, ref rk, ref mut rn, rck: _ } => {
519 Self::decrypt_in_place_with_ad(&mut msg[..], *rn, rk, &[0; 0])?;
523 _ => panic!("Tried to decrypt a message prior to noise handshake completion"),
527 pub fn get_noise_step(&self) -> NextNoiseStep {
528 match self.noise_state {
529 NoiseState::InProgress {ref state, ..} => {
531 &NoiseStep::PreActOne => NextNoiseStep::ActOne,
532 &NoiseStep::PostActOne => NextNoiseStep::ActTwo,
533 &NoiseStep::PostActTwo => NextNoiseStep::ActThree,
536 NoiseState::Finished {..} => NextNoiseStep::NoiseComplete,
540 pub fn is_ready_for_encryption(&self) -> bool {
541 match self.noise_state {
542 NoiseState::InProgress {..} => { false },
543 NoiseState::Finished {..} => { true }
548 /// A buffer which stores an encoded message (including the two message-type bytes) with some
549 /// padding to allow for future encryption/MACing.
550 pub struct MessageBuf(Vec<u8>);
552 /// Creates a new buffer from an encoded message (i.e. the two message-type bytes followed by
553 /// the message contents).
555 /// Panics if the message is longer than 2^16.
556 pub fn from_encoded(encoded_msg: &[u8]) -> Self {
557 if encoded_msg.len() > LN_MAX_MSG_LEN {
558 panic!("Attempted to encrypt message longer than 65535 bytes!");
560 // In addition to the message (continaing the two message type bytes), we also have to add
561 // the message length header (and its MAC) and the message MAC.
562 let mut res = Vec::with_capacity(encoded_msg.len() + 16*2 + 2);
563 res.resize(encoded_msg.len() + 16 + 2, 0);
564 res[16 + 2..].copy_from_slice(&encoded_msg);
571 use super::{MessageBuf, LN_MAX_MSG_LEN};
573 use bitcoin::hashes::hex::FromHex;
574 use bitcoin::secp256k1::{PublicKey, SecretKey};
575 use bitcoin::secp256k1::Secp256k1;
577 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NoiseState};
578 use crate::util::test_utils::TestNodeSigner;
580 fn get_outbound_peer_for_initiator_test_vectors() -> PeerChannelEncryptor {
581 let their_node_id = PublicKey::from_slice(&<Vec<u8>>::from_hex("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7").unwrap()[..]).unwrap();
582 let secp_ctx = Secp256k1::signing_only();
584 let mut outbound_peer = PeerChannelEncryptor::new_outbound(their_node_id, SecretKey::from_slice(&<Vec<u8>>::from_hex("1212121212121212121212121212121212121212121212121212121212121212").unwrap()[..]).unwrap());
585 assert_eq!(outbound_peer.get_act_one(&secp_ctx)[..], <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap()[..]);
589 fn get_inbound_peer_for_test_vectors() -> PeerChannelEncryptor {
590 // transport-responder successful handshake
591 let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
592 let our_ephemeral = SecretKey::from_slice(&<Vec<u8>>::from_hex("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
593 let secp_ctx = Secp256k1::new();
594 let node_signer = TestNodeSigner::new(our_node_id);
596 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
598 let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
599 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
601 let act_three = <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
602 // test vector doesn't specify the initiator static key, but it's the same as the one
603 // from transport-initiator successful handshake
604 assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], <Vec<u8>>::from_hex("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]);
606 match inbound_peer.noise_state {
607 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
608 assert_eq!(sk, <Vec<u8>>::from_hex("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
610 assert_eq!(sck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
611 assert_eq!(rk, <Vec<u8>>::from_hex("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
613 assert_eq!(rck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
622 fn noise_initiator_test_vectors() {
623 let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
624 let node_signer = TestNodeSigner::new(our_node_id);
627 // transport-initiator successful handshake
628 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
630 let act_two = <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
631 assert_eq!(outbound_peer.process_act_two(&act_two[..], &&node_signer).unwrap().0[..], <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
633 match outbound_peer.noise_state {
634 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
635 assert_eq!(sk, <Vec<u8>>::from_hex("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
637 assert_eq!(sck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
638 assert_eq!(rk, <Vec<u8>>::from_hex("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
640 assert_eq!(rck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
646 // transport-initiator act2 short read test
647 // Can't actually test this cause process_act_two requires you pass the right length!
650 // transport-initiator act2 bad version test
651 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
653 let act_two = <Vec<u8>>::from_hex("0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
654 assert!(outbound_peer.process_act_two(&act_two[..], &&node_signer).is_err());
658 // transport-initiator act2 bad key serialization test
659 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
661 let act_two = <Vec<u8>>::from_hex("0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
662 assert!(outbound_peer.process_act_two(&act_two[..], &&node_signer).is_err());
666 // transport-initiator act2 bad MAC test
667 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
669 let act_two = <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af").unwrap().to_vec();
670 assert!(outbound_peer.process_act_two(&act_two[..], &&node_signer).is_err());
675 fn noise_responder_test_vectors() {
676 let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
677 let our_ephemeral = SecretKey::from_slice(&<Vec<u8>>::from_hex("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
678 let secp_ctx = Secp256k1::new();
679 let node_signer = TestNodeSigner::new(our_node_id);
682 let _ = get_inbound_peer_for_test_vectors();
685 // transport-responder act1 short read test
686 // Can't actually test this cause process_act_one requires you pass the right length!
689 // transport-responder act1 bad version test
690 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
692 let act_one = <Vec<u8>>::from_hex("01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
693 assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).is_err());
696 // transport-responder act1 bad key serialization test
697 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
699 let act_one =<Vec<u8>>::from_hex("00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
700 assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).is_err());
703 // transport-responder act1 bad MAC test
704 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
706 let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b").unwrap().to_vec();
707 assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).is_err());
710 // transport-responder act3 bad version test
711 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
713 let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
714 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
716 let act_three = <Vec<u8>>::from_hex("01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
717 assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
720 // transport-responder act3 short read test
721 // Can't actually test this cause process_act_three requires you pass the right length!
724 // transport-responder act3 bad MAC for ciphertext test
725 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
727 let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
728 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
730 let act_three = <Vec<u8>>::from_hex("00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
731 assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
734 // transport-responder act3 bad rs test
735 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
737 let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
738 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
740 let act_three = <Vec<u8>>::from_hex("00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c").unwrap().to_vec();
741 assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
744 // transport-responder act3 bad MAC test
745 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
747 let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
748 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
750 let act_three = <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb").unwrap().to_vec();
751 assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
757 fn message_encryption_decryption_test_vectors() {
758 // We use the same keys as the initiator and responder test vectors, so we copy those tests
759 // here and use them to encrypt.
760 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
763 let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
764 let node_signer = TestNodeSigner::new(our_node_id);
766 let act_two = <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
767 assert_eq!(outbound_peer.process_act_two(&act_two[..], &&node_signer).unwrap().0[..], <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
769 match outbound_peer.noise_state {
770 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
771 assert_eq!(sk, <Vec<u8>>::from_hex("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
773 assert_eq!(sck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
774 assert_eq!(rk, <Vec<u8>>::from_hex("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
776 assert_eq!(rck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
782 let mut inbound_peer = get_inbound_peer_for_test_vectors();
785 let msg = [0x68, 0x65, 0x6c, 0x6c, 0x6f];
786 let mut res = outbound_peer.encrypt_buffer(MessageBuf::from_encoded(&msg));
787 assert_eq!(res.len(), 5 + 2*16 + 2);
789 let len_header = res[0..2+16].to_vec();
790 assert_eq!(inbound_peer.decrypt_length_header(&len_header[..]).unwrap() as usize, msg.len());
793 assert_eq!(res, <Vec<u8>>::from_hex("cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95").unwrap());
795 assert_eq!(res, <Vec<u8>>::from_hex("72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1").unwrap());
797 assert_eq!(res, <Vec<u8>>::from_hex("178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8").unwrap());
799 assert_eq!(res, <Vec<u8>>::from_hex("1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd").unwrap());
800 } else if i == 1000 {
801 assert_eq!(res, <Vec<u8>>::from_hex("4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09").unwrap());
802 } else if i == 1001 {
803 assert_eq!(res, <Vec<u8>>::from_hex("2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36").unwrap());
806 inbound_peer.decrypt_message(&mut res[2+16..]).unwrap();
807 assert_eq!(res[2 + 16..res.len() - 16], msg[..]);
812 fn max_msg_len_limit_value() {
813 assert_eq!(LN_MAX_MSG_LEN, 65535);
814 assert_eq!(LN_MAX_MSG_LEN, ::core::u16::MAX as usize);
818 #[should_panic(expected = "Attempted to encrypt message longer than 65535 bytes!")]
819 fn max_message_len_encryption() {
820 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
821 let msg = [4u8; LN_MAX_MSG_LEN + 1];
822 outbound_peer.encrypt_buffer(MessageBuf::from_encoded(&msg));
826 #[should_panic(expected = "Attempted to decrypt message longer than 65535 + 16 bytes!")]
827 fn max_message_len_decryption() {
828 let mut inbound_peer = get_inbound_peer_for_test_vectors();
830 // MSG should not exceed LN_MAX_MSG_LEN + 16
831 let mut msg = [4u8; LN_MAX_MSG_LEN + 17];
832 inbound_peer.decrypt_message(&mut msg).unwrap();