Delay DelayedPaymentOutput spendable events until the CSV delay
[rust-lightning] / lightning / src / ln / peer_channel_encryptor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 use prelude::*;
11
12 use ln::msgs::LightningError;
13 use ln::msgs;
14
15 use bitcoin::hashes::{Hash, HashEngine, Hmac, HmacEngine};
16 use bitcoin::hashes::sha256::Hash as Sha256;
17
18 use bitcoin::secp256k1::Secp256k1;
19 use bitcoin::secp256k1::key::{PublicKey,SecretKey};
20 use bitcoin::secp256k1::ecdh::SharedSecret;
21 use bitcoin::secp256k1;
22
23 use util::chacha20poly1305rfc::ChaCha20Poly1305RFC;
24 use util::byte_utils;
25 use bitcoin::hashes::hex::ToHex;
26
27 /// Maximum Lightning message data length according to
28 /// [BOLT-8](https://github.com/lightningnetwork/lightning-rfc/blob/v1.0/08-transport.md#lightning-message-specification)
29 /// and [BOLT-1](https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#lightning-message-format):
30 pub const LN_MAX_MSG_LEN: usize = ::core::u16::MAX as usize; // Must be equal to 65535
31
32 // Sha256("Noise_XK_secp256k1_ChaChaPoly_SHA256")
33 const NOISE_CK: [u8; 32] = [0x26, 0x40, 0xf5, 0x2e, 0xeb, 0xcd, 0x9e, 0x88, 0x29, 0x58, 0x95, 0x1c, 0x79, 0x42, 0x50, 0xee, 0xdb, 0x28, 0x00, 0x2c, 0x05, 0xd7, 0xdc, 0x2e, 0xa0, 0xf1, 0x95, 0x40, 0x60, 0x42, 0xca, 0xf1];
34 // Sha256(NOISE_CK || "lightning")
35 const NOISE_H: [u8; 32] = [0xd1, 0xfb, 0xf6, 0xde, 0xe4, 0xf6, 0x86, 0xf1, 0x32, 0xfd, 0x70, 0x2c, 0x4a, 0xbf, 0x8f, 0xba, 0x4b, 0xb4, 0x20, 0xd8, 0x9d, 0x2a, 0x04, 0x8a, 0x3c, 0x4f, 0x4c, 0x09, 0x2e, 0x37, 0xb6, 0x76];
36
37 pub enum NextNoiseStep {
38         ActOne,
39         ActTwo,
40         ActThree,
41         NoiseComplete,
42 }
43
44 #[derive(PartialEq)]
45 enum NoiseStep {
46         PreActOne,
47         PostActOne,
48         PostActTwo,
49         // When done swap noise_state for NoiseState::Finished
50 }
51
52 struct BidirectionalNoiseState {
53         h: [u8; 32],
54         ck: [u8; 32],
55 }
56 enum DirectionalNoiseState {
57         Outbound {
58                 ie: SecretKey,
59         },
60         Inbound {
61                 ie: Option<PublicKey>, // filled in if state >= PostActOne
62                 re: Option<SecretKey>, // filled in if state >= PostActTwo
63                 temp_k2: Option<[u8; 32]>, // filled in if state >= PostActTwo
64         }
65 }
66 enum NoiseState {
67         InProgress {
68                 state: NoiseStep,
69                 directional_state: DirectionalNoiseState,
70                 bidirectional_state: BidirectionalNoiseState,
71         },
72         Finished {
73                 sk: [u8; 32],
74                 sn: u64,
75                 sck: [u8; 32],
76                 rk: [u8; 32],
77                 rn: u64,
78                 rck: [u8; 32],
79         }
80 }
81
82 pub struct PeerChannelEncryptor {
83         secp_ctx: Secp256k1<secp256k1::SignOnly>,
84         their_node_id: Option<PublicKey>, // filled in for outbound, or inbound after noise_state is Finished
85
86         noise_state: NoiseState,
87 }
88
89 impl PeerChannelEncryptor {
90         pub fn new_outbound(their_node_id: PublicKey, ephemeral_key: SecretKey) -> PeerChannelEncryptor {
91                 let secp_ctx = Secp256k1::signing_only();
92
93                 let mut sha = Sha256::engine();
94                 sha.input(&NOISE_H);
95                 sha.input(&their_node_id.serialize()[..]);
96                 let h = Sha256::from_engine(sha).into_inner();
97
98                 PeerChannelEncryptor {
99                         their_node_id: Some(their_node_id),
100                         secp_ctx,
101                         noise_state: NoiseState::InProgress {
102                                 state: NoiseStep::PreActOne,
103                                 directional_state: DirectionalNoiseState::Outbound {
104                                         ie: ephemeral_key,
105                                 },
106                                 bidirectional_state: BidirectionalNoiseState {
107                                         h,
108                                         ck: NOISE_CK,
109                                 },
110                         }
111                 }
112         }
113
114         pub fn new_inbound(our_node_secret: &SecretKey) -> PeerChannelEncryptor {
115                 let secp_ctx = Secp256k1::signing_only();
116
117                 let mut sha = Sha256::engine();
118                 sha.input(&NOISE_H);
119                 let our_node_id = PublicKey::from_secret_key(&secp_ctx, our_node_secret);
120                 sha.input(&our_node_id.serialize()[..]);
121                 let h = Sha256::from_engine(sha).into_inner();
122
123                 PeerChannelEncryptor {
124                         their_node_id: None,
125                         secp_ctx,
126                         noise_state: NoiseState::InProgress {
127                                 state: NoiseStep::PreActOne,
128                                 directional_state: DirectionalNoiseState::Inbound {
129                                         ie: None,
130                                         re: None,
131                                         temp_k2: None,
132                                 },
133                                 bidirectional_state: BidirectionalNoiseState {
134                                         h,
135                                         ck: NOISE_CK,
136                                 },
137                         }
138                 }
139         }
140
141         #[inline]
142         fn encrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], plaintext: &[u8]) {
143                 let mut nonce = [0; 12];
144                 nonce[4..].copy_from_slice(&byte_utils::le64_to_array(n));
145
146                 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
147                 let mut tag = [0; 16];
148                 chacha.encrypt(plaintext, &mut res[0..plaintext.len()], &mut tag);
149                 res[plaintext.len()..].copy_from_slice(&tag);
150         }
151
152         #[inline]
153         fn decrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], cyphertext: &[u8]) -> Result<(), LightningError> {
154                 let mut nonce = [0; 12];
155                 nonce[4..].copy_from_slice(&byte_utils::le64_to_array(n));
156
157                 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
158                 if !chacha.decrypt(&cyphertext[0..cyphertext.len() - 16], res, &cyphertext[cyphertext.len() - 16..]) {
159                         return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
160                 }
161                 Ok(())
162         }
163
164         fn hkdf_extract_expand(salt: &[u8], ikm: &[u8]) -> ([u8; 32], [u8; 32]) {
165                 let mut hmac = HmacEngine::<Sha256>::new(salt);
166                 hmac.input(ikm);
167                 let prk = Hmac::from_engine(hmac).into_inner();
168                 let mut hmac = HmacEngine::<Sha256>::new(&prk[..]);
169                 hmac.input(&[1; 1]);
170                 let t1 = Hmac::from_engine(hmac).into_inner();
171                 let mut hmac = HmacEngine::<Sha256>::new(&prk[..]);
172                 hmac.input(&t1);
173                 hmac.input(&[2; 1]);
174                 (t1, Hmac::from_engine(hmac).into_inner())
175         }
176
177         #[inline]
178         fn hkdf(state: &mut BidirectionalNoiseState, ss: SharedSecret) -> [u8; 32] {
179                 let (t1, t2) = Self::hkdf_extract_expand(&state.ck, &ss[..]);
180                 state.ck = t1;
181                 t2
182         }
183
184         #[inline]
185         fn outbound_noise_act<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, state: &mut BidirectionalNoiseState, our_key: &SecretKey, their_key: &PublicKey) -> ([u8; 50], [u8; 32]) {
186                 let our_pub = PublicKey::from_secret_key(secp_ctx, &our_key);
187
188                 let mut sha = Sha256::engine();
189                 sha.input(&state.h);
190                 sha.input(&our_pub.serialize()[..]);
191                 state.h = Sha256::from_engine(sha).into_inner();
192
193                 let ss = SharedSecret::new(&their_key, &our_key);
194                 let temp_k = PeerChannelEncryptor::hkdf(state, ss);
195
196                 let mut res = [0; 50];
197                 res[1..34].copy_from_slice(&our_pub.serialize()[..]);
198                 PeerChannelEncryptor::encrypt_with_ad(&mut res[34..], 0, &temp_k, &state.h, &[0; 0]);
199
200                 let mut sha = Sha256::engine();
201                 sha.input(&state.h);
202                 sha.input(&res[34..]);
203                 state.h = Sha256::from_engine(sha).into_inner();
204
205                 (res, temp_k)
206         }
207
208         #[inline]
209         fn inbound_noise_act(state: &mut BidirectionalNoiseState, act: &[u8], our_key: &SecretKey) -> Result<(PublicKey, [u8; 32]), LightningError> {
210                 assert_eq!(act.len(), 50);
211
212                 if act[0] != 0 {
213                         return Err(LightningError{err: format!("Unknown handshake version number {}", act[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
214                 }
215
216                 let their_pub = match PublicKey::from_slice(&act[1..34]) {
217                         Err(_) => return Err(LightningError{err: format!("Invalid public key {}", &act[1..34].to_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
218                         Ok(key) => key,
219                 };
220
221                 let mut sha = Sha256::engine();
222                 sha.input(&state.h);
223                 sha.input(&their_pub.serialize()[..]);
224                 state.h = Sha256::from_engine(sha).into_inner();
225
226                 let ss = SharedSecret::new(&their_pub, &our_key);
227                 let temp_k = PeerChannelEncryptor::hkdf(state, ss);
228
229                 let mut dec = [0; 0];
230                 PeerChannelEncryptor::decrypt_with_ad(&mut dec, 0, &temp_k, &state.h, &act[34..])?;
231
232                 let mut sha = Sha256::engine();
233                 sha.input(&state.h);
234                 sha.input(&act[34..]);
235                 state.h = Sha256::from_engine(sha).into_inner();
236
237                 Ok((their_pub, temp_k))
238         }
239
240         pub fn get_act_one(&mut self) -> [u8; 50] {
241                 match self.noise_state {
242                         NoiseState::InProgress { ref mut state, ref directional_state, ref mut bidirectional_state } =>
243                                 match directional_state {
244                                         &DirectionalNoiseState::Outbound { ref ie } => {
245                                                 if *state != NoiseStep::PreActOne {
246                                                         panic!("Requested act at wrong step");
247                                                 }
248
249                                                 let (res, _) = PeerChannelEncryptor::outbound_noise_act(&self.secp_ctx, bidirectional_state, &ie, &self.their_node_id.unwrap());
250                                                 *state = NoiseStep::PostActOne;
251                                                 res
252                                         },
253                                         _ => panic!("Wrong direction for act"),
254                                 },
255                         _ => panic!("Cannot get act one after noise handshake completes"),
256                 }
257         }
258
259         pub fn process_act_one_with_keys(&mut self, act_one: &[u8], our_node_secret: &SecretKey, our_ephemeral: SecretKey) -> Result<[u8; 50], LightningError> {
260                 assert_eq!(act_one.len(), 50);
261
262                 match self.noise_state {
263                         NoiseState::InProgress { ref mut state, ref mut directional_state, ref mut bidirectional_state } =>
264                                 match directional_state {
265                                         &mut DirectionalNoiseState::Inbound { ref mut ie, ref mut re, ref mut temp_k2 } => {
266                                                 if *state != NoiseStep::PreActOne {
267                                                         panic!("Requested act at wrong step");
268                                                 }
269
270                                                 let (their_pub, _) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_one, &our_node_secret)?;
271                                                 ie.get_or_insert(their_pub);
272
273                                                 re.get_or_insert(our_ephemeral);
274
275                                                 let (res, temp_k) = PeerChannelEncryptor::outbound_noise_act(&self.secp_ctx, bidirectional_state, &re.unwrap(), &ie.unwrap());
276                                                 *temp_k2 = Some(temp_k);
277                                                 *state = NoiseStep::PostActTwo;
278                                                 Ok(res)
279                                         },
280                                         _ => panic!("Wrong direction for act"),
281                                 },
282                         _ => panic!("Cannot get act one after noise handshake completes"),
283                 }
284         }
285
286         pub fn process_act_two(&mut self, act_two: &[u8], our_node_secret: &SecretKey) -> Result<([u8; 66], PublicKey), LightningError> {
287                 assert_eq!(act_two.len(), 50);
288
289                 let final_hkdf;
290                 let ck;
291                 let res: [u8; 66] = match self.noise_state {
292                         NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
293                                 match directional_state {
294                                         &DirectionalNoiseState::Outbound { ref ie } => {
295                                                 if *state != NoiseStep::PostActOne {
296                                                         panic!("Requested act at wrong step");
297                                                 }
298
299                                                 let (re, temp_k2) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_two, &ie)?;
300
301                                                 let mut res = [0; 66];
302                                                 let our_node_id = PublicKey::from_secret_key(&self.secp_ctx, &our_node_secret);
303
304                                                 PeerChannelEncryptor::encrypt_with_ad(&mut res[1..50], 1, &temp_k2, &bidirectional_state.h, &our_node_id.serialize()[..]);
305
306                                                 let mut sha = Sha256::engine();
307                                                 sha.input(&bidirectional_state.h);
308                                                 sha.input(&res[1..50]);
309                                                 bidirectional_state.h = Sha256::from_engine(sha).into_inner();
310
311                                                 let ss = SharedSecret::new(&re, our_node_secret);
312                                                 let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
313
314                                                 PeerChannelEncryptor::encrypt_with_ad(&mut res[50..], 0, &temp_k, &bidirectional_state.h, &[0; 0]);
315                                                 final_hkdf = Self::hkdf_extract_expand(&bidirectional_state.ck, &[0; 0]);
316                                                 ck = bidirectional_state.ck.clone();
317                                                 res
318                                         },
319                                         _ => panic!("Wrong direction for act"),
320                                 },
321                         _ => panic!("Cannot get act one after noise handshake completes"),
322                 };
323
324                 let (sk, rk) = final_hkdf;
325                 self.noise_state = NoiseState::Finished {
326                         sk,
327                         sn: 0,
328                         sck: ck.clone(),
329                         rk,
330                         rn: 0,
331                         rck: ck,
332                 };
333
334                 Ok((res, self.their_node_id.unwrap().clone()))
335         }
336
337         pub fn process_act_three(&mut self, act_three: &[u8]) -> Result<PublicKey, LightningError> {
338                 assert_eq!(act_three.len(), 66);
339
340                 let final_hkdf;
341                 let ck;
342                 match self.noise_state {
343                         NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
344                                 match directional_state {
345                                         &DirectionalNoiseState::Inbound { ie: _, ref re, ref temp_k2 } => {
346                                                 if *state != NoiseStep::PostActTwo {
347                                                         panic!("Requested act at wrong step");
348                                                 }
349                                                 if act_three[0] != 0 {
350                                                         return Err(LightningError{err: format!("Unknown handshake version number {}", act_three[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
351                                                 }
352
353                                                 let mut their_node_id = [0; 33];
354                                                 PeerChannelEncryptor::decrypt_with_ad(&mut their_node_id, 1, &temp_k2.unwrap(), &bidirectional_state.h, &act_three[1..50])?;
355                                                 self.their_node_id = Some(match PublicKey::from_slice(&their_node_id) {
356                                                         Ok(key) => key,
357                                                         Err(_) => return Err(LightningError{err: format!("Bad node_id from peer, {}", &their_node_id.to_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
358                                                 });
359
360                                                 let mut sha = Sha256::engine();
361                                                 sha.input(&bidirectional_state.h);
362                                                 sha.input(&act_three[1..50]);
363                                                 bidirectional_state.h = Sha256::from_engine(sha).into_inner();
364
365                                                 let ss = SharedSecret::new(&self.their_node_id.unwrap(), &re.unwrap());
366                                                 let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
367
368                                                 PeerChannelEncryptor::decrypt_with_ad(&mut [0; 0], 0, &temp_k, &bidirectional_state.h, &act_three[50..])?;
369                                                 final_hkdf = Self::hkdf_extract_expand(&bidirectional_state.ck, &[0; 0]);
370                                                 ck = bidirectional_state.ck.clone();
371                                         },
372                                         _ => panic!("Wrong direction for act"),
373                                 },
374                         _ => panic!("Cannot get act one after noise handshake completes"),
375                 }
376
377                 let (rk, sk) = final_hkdf;
378                 self.noise_state = NoiseState::Finished {
379                         sk,
380                         sn: 0,
381                         sck: ck.clone(),
382                         rk,
383                         rn: 0,
384                         rck: ck,
385                 };
386
387                 Ok(self.their_node_id.unwrap().clone())
388         }
389
390         /// Encrypts the given message, returning the encrypted version
391         /// panics if msg.len() > 65535 or Noise handshake has not finished.
392         pub fn encrypt_message(&mut self, msg: &[u8]) -> Vec<u8> {
393                 if msg.len() > LN_MAX_MSG_LEN {
394                         panic!("Attempted to encrypt message longer than 65535 bytes!");
395                 }
396
397                 let mut res = Vec::with_capacity(msg.len() + 16*2 + 2);
398                 res.resize(msg.len() + 16*2 + 2, 0);
399
400                 match self.noise_state {
401                         NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => {
402                                 if *sn >= 1000 {
403                                         let (new_sck, new_sk) = Self::hkdf_extract_expand(sck, sk);
404                                         *sck = new_sck;
405                                         *sk = new_sk;
406                                         *sn = 0;
407                                 }
408
409                                 Self::encrypt_with_ad(&mut res[0..16+2], *sn, sk, &[0; 0], &byte_utils::be16_to_array(msg.len() as u16));
410                                 *sn += 1;
411
412                                 Self::encrypt_with_ad(&mut res[16+2..], *sn, sk, &[0; 0], msg);
413                                 *sn += 1;
414                         },
415                         _ => panic!("Tried to encrypt a message prior to noise handshake completion"),
416                 }
417
418                 res
419         }
420
421         /// Decrypts a message length header from the remote peer.
422         /// panics if noise handshake has not yet finished or msg.len() != 18
423         pub fn decrypt_length_header(&mut self, msg: &[u8]) -> Result<u16, LightningError> {
424                 assert_eq!(msg.len(), 16+2);
425
426                 match self.noise_state {
427                         NoiseState::Finished { sk: _, sn: _, sck: _, ref mut rk, ref mut rn, ref mut rck } => {
428                                 if *rn >= 1000 {
429                                         let (new_rck, new_rk) = Self::hkdf_extract_expand(rck, rk);
430                                         *rck = new_rck;
431                                         *rk = new_rk;
432                                         *rn = 0;
433                                 }
434
435                                 let mut res = [0; 2];
436                                 Self::decrypt_with_ad(&mut res, *rn, rk, &[0; 0], msg)?;
437                                 *rn += 1;
438                                 Ok(byte_utils::slice_to_be16(&res))
439                         },
440                         _ => panic!("Tried to decrypt a message prior to noise handshake completion"),
441                 }
442         }
443
444         /// Decrypts the given message.
445         /// panics if msg.len() > 65535 + 16
446         pub fn decrypt_message(&mut self, msg: &[u8]) -> Result<Vec<u8>, LightningError> {
447                 if msg.len() > LN_MAX_MSG_LEN + 16 {
448                         panic!("Attempted to decrypt message longer than 65535 + 16 bytes!");
449                 }
450
451                 match self.noise_state {
452                         NoiseState::Finished { sk: _, sn: _, sck: _, ref rk, ref mut rn, rck: _ } => {
453                                 let mut res = Vec::with_capacity(msg.len() - 16);
454                                 res.resize(msg.len() - 16, 0);
455                                 Self::decrypt_with_ad(&mut res[..], *rn, rk, &[0; 0], msg)?;
456                                 *rn += 1;
457
458                                 Ok(res)
459                         },
460                         _ => panic!("Tried to decrypt a message prior to noise handshake completion"),
461                 }
462         }
463
464         pub fn get_noise_step(&self) -> NextNoiseStep {
465                 match self.noise_state {
466                         NoiseState::InProgress {ref state, ..} => {
467                                 match state {
468                                         &NoiseStep::PreActOne => NextNoiseStep::ActOne,
469                                         &NoiseStep::PostActOne => NextNoiseStep::ActTwo,
470                                         &NoiseStep::PostActTwo => NextNoiseStep::ActThree,
471                                 }
472                         },
473                         NoiseState::Finished {..} => NextNoiseStep::NoiseComplete,
474                 }
475         }
476
477         pub fn is_ready_for_encryption(&self) -> bool {
478                 match self.noise_state {
479                         NoiseState::InProgress {..} => { false },
480                         NoiseState::Finished {..} => { true }
481                 }
482         }
483 }
484
485 #[cfg(test)]
486 mod tests {
487         use super::LN_MAX_MSG_LEN;
488
489         use bitcoin::secp256k1::key::{PublicKey,SecretKey};
490
491         use hex;
492
493         use ln::peer_channel_encryptor::{PeerChannelEncryptor,NoiseState};
494
495         fn get_outbound_peer_for_initiator_test_vectors() -> PeerChannelEncryptor {
496                 let their_node_id = PublicKey::from_slice(&hex::decode("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7").unwrap()[..]).unwrap();
497
498                 let mut outbound_peer = PeerChannelEncryptor::new_outbound(their_node_id, SecretKey::from_slice(&hex::decode("1212121212121212121212121212121212121212121212121212121212121212").unwrap()[..]).unwrap());
499                 assert_eq!(outbound_peer.get_act_one()[..], hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap()[..]);
500                 outbound_peer
501         }
502
503         fn get_inbound_peer_for_test_vectors() -> PeerChannelEncryptor {
504                 // transport-responder successful handshake
505                 let our_node_id = SecretKey::from_slice(&hex::decode("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
506                 let our_ephemeral = SecretKey::from_slice(&hex::decode("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
507
508                 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
509
510                 let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
511                 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
512
513                 let act_three = hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
514                 // test vector doesn't specify the initiator static key, but it's the same as the one
515                 // from transport-initiator successful handshake
516                 assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], hex::decode("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]);
517
518                 match inbound_peer.noise_state {
519                         NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
520                                 assert_eq!(sk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
521                                 assert_eq!(sn, 0);
522                                 assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
523                                 assert_eq!(rk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
524                                 assert_eq!(rn, 0);
525                                 assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
526                         },
527                         _ => panic!()
528                 }
529
530                 inbound_peer
531         }
532
533         #[test]
534         fn noise_initiator_test_vectors() {
535                 let our_node_id = SecretKey::from_slice(&hex::decode("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
536
537                 {
538                         // transport-initiator successful handshake
539                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
540
541                         let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
542                         assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id).unwrap().0[..], hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
543
544                         match outbound_peer.noise_state {
545                                 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
546                                         assert_eq!(sk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
547                                         assert_eq!(sn, 0);
548                                         assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
549                                         assert_eq!(rk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
550                                         assert_eq!(rn, 0);
551                                         assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
552                                 },
553                                 _ => panic!()
554                         }
555                 }
556                 {
557                         // transport-initiator act2 short read test
558                         // Can't actually test this cause process_act_two requires you pass the right length!
559                 }
560                 {
561                         // transport-initiator act2 bad version test
562                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
563
564                         let act_two = hex::decode("0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
565                         assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err());
566                 }
567
568                 {
569                         // transport-initiator act2 bad key serialization test
570                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
571
572                         let act_two = hex::decode("0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
573                         assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err());
574                 }
575
576                 {
577                         // transport-initiator act2 bad MAC test
578                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
579
580                         let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af").unwrap().to_vec();
581                         assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err());
582                 }
583         }
584
585         #[test]
586         fn noise_responder_test_vectors() {
587                 let our_node_id = SecretKey::from_slice(&hex::decode("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
588                 let our_ephemeral = SecretKey::from_slice(&hex::decode("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
589
590                 {
591                         let _ = get_inbound_peer_for_test_vectors();
592                 }
593                 {
594                         // transport-responder act1 short read test
595                         // Can't actually test this cause process_act_one requires you pass the right length!
596                 }
597                 {
598                         // transport-responder act1 bad version test
599                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
600
601                         let act_one = hex::decode("01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
602                         assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err());
603                 }
604                 {
605                         // transport-responder act1 bad key serialization test
606                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
607
608                         let act_one =hex::decode("00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
609                         assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err());
610                 }
611                 {
612                         // transport-responder act1 bad MAC test
613                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
614
615                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b").unwrap().to_vec();
616                         assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err());
617                 }
618                 {
619                         // transport-responder act3 bad version test
620                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
621
622                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
623                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
624
625                         let act_three = hex::decode("01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
626                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
627                 }
628                 {
629                         // transport-responder act3 short read test
630                         // Can't actually test this cause process_act_three requires you pass the right length!
631                 }
632                 {
633                         // transport-responder act3 bad MAC for ciphertext test
634                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
635
636                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
637                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
638
639                         let act_three = hex::decode("00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
640                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
641                 }
642                 {
643                         // transport-responder act3 bad rs test
644                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
645
646                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
647                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
648
649                         let act_three = hex::decode("00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c").unwrap().to_vec();
650                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
651                 }
652                 {
653                         // transport-responder act3 bad MAC test
654                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);
655
656                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
657                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
658
659                         let act_three = hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb").unwrap().to_vec();
660                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
661                 }
662         }
663
664
665         #[test]
666         fn message_encryption_decryption_test_vectors() {
667                 // We use the same keys as the initiator and responder test vectors, so we copy those tests
668                 // here and use them to encrypt.
669                 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
670
671                 {
672                         let our_node_id = SecretKey::from_slice(&hex::decode("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
673
674                         let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
675                         assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id).unwrap().0[..], hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
676
677                         match outbound_peer.noise_state {
678                                 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
679                                         assert_eq!(sk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
680                                         assert_eq!(sn, 0);
681                                         assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
682                                         assert_eq!(rk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
683                                         assert_eq!(rn, 0);
684                                         assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
685                                 },
686                                 _ => panic!()
687                         }
688                 }
689
690                 let mut inbound_peer = get_inbound_peer_for_test_vectors();
691
692                 for i in 0..1005 {
693                         let msg = [0x68, 0x65, 0x6c, 0x6c, 0x6f];
694                         let res = outbound_peer.encrypt_message(&msg);
695                         assert_eq!(res.len(), 5 + 2*16 + 2);
696
697                         let len_header = res[0..2+16].to_vec();
698                         assert_eq!(inbound_peer.decrypt_length_header(&len_header[..]).unwrap() as usize, msg.len());
699                         assert_eq!(inbound_peer.decrypt_message(&res[2+16..]).unwrap()[..], msg[..]);
700
701                         if i == 0 {
702                                 assert_eq!(res, hex::decode("cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95").unwrap());
703                         } else if i == 1 {
704                                 assert_eq!(res, hex::decode("72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1").unwrap());
705                         } else if i == 500 {
706                                 assert_eq!(res, hex::decode("178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8").unwrap());
707                         } else if i == 501 {
708                                 assert_eq!(res, hex::decode("1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd").unwrap());
709                         } else if i == 1000 {
710                                 assert_eq!(res, hex::decode("4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09").unwrap());
711                         } else if i == 1001 {
712                                 assert_eq!(res, hex::decode("2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36").unwrap());
713                         }
714                 }
715         }
716
717         #[test]
718         fn max_msg_len_limit_value() {
719                 assert_eq!(LN_MAX_MSG_LEN, 65535);
720                 assert_eq!(LN_MAX_MSG_LEN, ::core::u16::MAX as usize);
721         }
722
723         #[test]
724         #[should_panic(expected = "Attempted to encrypt message longer than 65535 bytes!")]
725         fn max_message_len_encryption() {
726                 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
727                 let msg = [4u8; LN_MAX_MSG_LEN + 1];
728                 outbound_peer.encrypt_message(&msg);
729         }
730
731         #[test]
732         #[should_panic(expected = "Attempted to decrypt message longer than 65535 + 16 bytes!")]
733         fn max_message_len_decryption() {
734                 let mut inbound_peer = get_inbound_peer_for_test_vectors();
735
736                 // MSG should not exceed LN_MAX_MSG_LEN + 16
737                 let msg = [4u8; LN_MAX_MSG_LEN + 17];
738                 inbound_peer.decrypt_message(&msg).unwrap();
739         }
740 }