Encrypt+MAC most P2P messages in-place
[rust-lightning] / lightning / src / ln / peer_channel_encryptor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 use prelude::*;
11
12 use ln::msgs::LightningError;
13 use ln::msgs;
14 use ln::wire;
15
16 use bitcoin::hashes::{Hash, HashEngine};
17 use bitcoin::hashes::sha256::Hash as Sha256;
18
19 use bitcoin::secp256k1::Secp256k1;
20 use bitcoin::secp256k1::{PublicKey,SecretKey};
21 use bitcoin::secp256k1::ecdh::SharedSecret;
22 use bitcoin::secp256k1;
23
24 use util::chacha20poly1305rfc::ChaCha20Poly1305RFC;
25 use util::crypto::hkdf_extract_expand_twice;
26 use util::ser::VecWriter;
27 use bitcoin::hashes::hex::ToHex;
28
29 /// Maximum Lightning message data length according to
30 /// [BOLT-8](https://github.com/lightning/bolts/blob/v1.0/08-transport.md#lightning-message-specification)
31 /// and [BOLT-1](https://github.com/lightning/bolts/blob/master/01-messaging.md#lightning-message-format):
32 pub const LN_MAX_MSG_LEN: usize = ::core::u16::MAX as usize; // Must be equal to 65535
33
34 // Sha256("Noise_XK_secp256k1_ChaChaPoly_SHA256")
35 const NOISE_CK: [u8; 32] = [0x26, 0x40, 0xf5, 0x2e, 0xeb, 0xcd, 0x9e, 0x88, 0x29, 0x58, 0x95, 0x1c, 0x79, 0x42, 0x50, 0xee, 0xdb, 0x28, 0x00, 0x2c, 0x05, 0xd7, 0xdc, 0x2e, 0xa0, 0xf1, 0x95, 0x40, 0x60, 0x42, 0xca, 0xf1];
36 // Sha256(NOISE_CK || "lightning")
37 const NOISE_H: [u8; 32] = [0xd1, 0xfb, 0xf6, 0xde, 0xe4, 0xf6, 0x86, 0xf1, 0x32, 0xfd, 0x70, 0x2c, 0x4a, 0xbf, 0x8f, 0xba, 0x4b, 0xb4, 0x20, 0xd8, 0x9d, 0x2a, 0x04, 0x8a, 0x3c, 0x4f, 0x4c, 0x09, 0x2e, 0x37, 0xb6, 0x76];
38
39 pub enum NextNoiseStep {
40         ActOne,
41         ActTwo,
42         ActThree,
43         NoiseComplete,
44 }
45
46 #[derive(PartialEq)]
47 enum NoiseStep {
48         PreActOne,
49         PostActOne,
50         PostActTwo,
51         // When done swap noise_state for NoiseState::Finished
52 }
53
54 struct BidirectionalNoiseState {
55         h: [u8; 32],
56         ck: [u8; 32],
57 }
58 enum DirectionalNoiseState {
59         Outbound {
60                 ie: SecretKey,
61         },
62         Inbound {
63                 ie: Option<PublicKey>, // filled in if state >= PostActOne
64                 re: Option<SecretKey>, // filled in if state >= PostActTwo
65                 temp_k2: Option<[u8; 32]>, // filled in if state >= PostActTwo
66         }
67 }
68 enum NoiseState {
69         InProgress {
70                 state: NoiseStep,
71                 directional_state: DirectionalNoiseState,
72                 bidirectional_state: BidirectionalNoiseState,
73         },
74         Finished {
75                 sk: [u8; 32],
76                 sn: u64,
77                 sck: [u8; 32],
78                 rk: [u8; 32],
79                 rn: u64,
80                 rck: [u8; 32],
81         }
82 }
83
84 pub struct PeerChannelEncryptor {
85         their_node_id: Option<PublicKey>, // filled in for outbound, or inbound after noise_state is Finished
86
87         noise_state: NoiseState,
88 }
89
90 impl PeerChannelEncryptor {
91         pub fn new_outbound(their_node_id: PublicKey, ephemeral_key: SecretKey) -> PeerChannelEncryptor {
92                 let mut sha = Sha256::engine();
93                 sha.input(&NOISE_H);
94                 sha.input(&their_node_id.serialize()[..]);
95                 let h = Sha256::from_engine(sha).into_inner();
96
97                 PeerChannelEncryptor {
98                         their_node_id: Some(their_node_id),
99                         noise_state: NoiseState::InProgress {
100                                 state: NoiseStep::PreActOne,
101                                 directional_state: DirectionalNoiseState::Outbound {
102                                         ie: ephemeral_key,
103                                 },
104                                 bidirectional_state: BidirectionalNoiseState {
105                                         h,
106                                         ck: NOISE_CK,
107                                 },
108                         }
109                 }
110         }
111
112         pub fn new_inbound<C: secp256k1::Signing>(our_node_secret: &SecretKey, secp_ctx: &Secp256k1<C>) -> PeerChannelEncryptor {
113                 let mut sha = Sha256::engine();
114                 sha.input(&NOISE_H);
115                 let our_node_id = PublicKey::from_secret_key(&secp_ctx, our_node_secret);
116                 sha.input(&our_node_id.serialize()[..]);
117                 let h = Sha256::from_engine(sha).into_inner();
118
119                 PeerChannelEncryptor {
120                         their_node_id: None,
121                         noise_state: NoiseState::InProgress {
122                                 state: NoiseStep::PreActOne,
123                                 directional_state: DirectionalNoiseState::Inbound {
124                                         ie: None,
125                                         re: None,
126                                         temp_k2: None,
127                                 },
128                                 bidirectional_state: BidirectionalNoiseState {
129                                         h,
130                                         ck: NOISE_CK,
131                                 },
132                         }
133                 }
134         }
135
136         #[inline]
137         fn encrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], plaintext: &[u8]) {
138                 let mut nonce = [0; 12];
139                 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
140
141                 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
142                 let mut tag = [0; 16];
143                 chacha.encrypt(plaintext, &mut res[0..plaintext.len()], &mut tag);
144                 res[plaintext.len()..].copy_from_slice(&tag);
145         }
146
147         #[inline]
148         /// Encrypts the message in res[offset..] in-place and pushes a 16-byte tag onto the end of
149         /// res.
150         fn encrypt_in_place_with_ad(res: &mut Vec<u8>, offset: usize, n: u64, key: &[u8; 32], h: &[u8]) {
151                 let mut nonce = [0; 12];
152                 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
153
154                 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
155                 let mut tag = [0; 16];
156                 chacha.encrypt_full_message_in_place(&mut res[offset..], &mut tag);
157                 res.extend_from_slice(&tag);
158         }
159
160         #[inline]
161         fn decrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], cyphertext: &[u8]) -> Result<(), LightningError> {
162                 let mut nonce = [0; 12];
163                 nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
164
165                 let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
166                 if !chacha.decrypt(&cyphertext[0..cyphertext.len() - 16], res, &cyphertext[cyphertext.len() - 16..]) {
167                         return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
168                 }
169                 Ok(())
170         }
171
172         #[inline]
173         fn hkdf(state: &mut BidirectionalNoiseState, ss: SharedSecret) -> [u8; 32] {
174                 let (t1, t2) = hkdf_extract_expand_twice(&state.ck, ss.as_ref());
175                 state.ck = t1;
176                 t2
177         }
178
179         #[inline]
180         fn outbound_noise_act<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, state: &mut BidirectionalNoiseState, our_key: &SecretKey, their_key: &PublicKey) -> ([u8; 50], [u8; 32]) {
181                 let our_pub = PublicKey::from_secret_key(secp_ctx, &our_key);
182
183                 let mut sha = Sha256::engine();
184                 sha.input(&state.h);
185                 sha.input(&our_pub.serialize()[..]);
186                 state.h = Sha256::from_engine(sha).into_inner();
187
188                 let ss = SharedSecret::new(&their_key, &our_key);
189                 let temp_k = PeerChannelEncryptor::hkdf(state, ss);
190
191                 let mut res = [0; 50];
192                 res[1..34].copy_from_slice(&our_pub.serialize()[..]);
193                 PeerChannelEncryptor::encrypt_with_ad(&mut res[34..], 0, &temp_k, &state.h, &[0; 0]);
194
195                 let mut sha = Sha256::engine();
196                 sha.input(&state.h);
197                 sha.input(&res[34..]);
198                 state.h = Sha256::from_engine(sha).into_inner();
199
200                 (res, temp_k)
201         }
202
203         #[inline]
204         fn inbound_noise_act(state: &mut BidirectionalNoiseState, act: &[u8], our_key: &SecretKey) -> Result<(PublicKey, [u8; 32]), LightningError> {
205                 assert_eq!(act.len(), 50);
206
207                 if act[0] != 0 {
208                         return Err(LightningError{err: format!("Unknown handshake version number {}", act[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
209                 }
210
211                 let their_pub = match PublicKey::from_slice(&act[1..34]) {
212                         Err(_) => return Err(LightningError{err: format!("Invalid public key {}", &act[1..34].to_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
213                         Ok(key) => key,
214                 };
215
216                 let mut sha = Sha256::engine();
217                 sha.input(&state.h);
218                 sha.input(&their_pub.serialize()[..]);
219                 state.h = Sha256::from_engine(sha).into_inner();
220
221                 let ss = SharedSecret::new(&their_pub, &our_key);
222                 let temp_k = PeerChannelEncryptor::hkdf(state, ss);
223
224                 let mut dec = [0; 0];
225                 PeerChannelEncryptor::decrypt_with_ad(&mut dec, 0, &temp_k, &state.h, &act[34..])?;
226
227                 let mut sha = Sha256::engine();
228                 sha.input(&state.h);
229                 sha.input(&act[34..]);
230                 state.h = Sha256::from_engine(sha).into_inner();
231
232                 Ok((their_pub, temp_k))
233         }
234
235         pub fn get_act_one<C: secp256k1::Signing>(&mut self, secp_ctx: &Secp256k1<C>) -> [u8; 50] {
236                 match self.noise_state {
237                         NoiseState::InProgress { ref mut state, ref directional_state, ref mut bidirectional_state } =>
238                                 match directional_state {
239                                         &DirectionalNoiseState::Outbound { ref ie } => {
240                                                 if *state != NoiseStep::PreActOne {
241                                                         panic!("Requested act at wrong step");
242                                                 }
243
244                                                 let (res, _) = PeerChannelEncryptor::outbound_noise_act(secp_ctx, bidirectional_state, &ie, &self.their_node_id.unwrap());
245                                                 *state = NoiseStep::PostActOne;
246                                                 res
247                                         },
248                                         _ => panic!("Wrong direction for act"),
249                                 },
250                         _ => panic!("Cannot get act one after noise handshake completes"),
251                 }
252         }
253
254         pub fn process_act_one_with_keys<C: secp256k1::Signing>(
255                 &mut self, act_one: &[u8], our_node_secret: &SecretKey, our_ephemeral: SecretKey, secp_ctx: &Secp256k1<C>)
256         -> Result<[u8; 50], LightningError> {
257                 assert_eq!(act_one.len(), 50);
258
259                 match self.noise_state {
260                         NoiseState::InProgress { ref mut state, ref mut directional_state, ref mut bidirectional_state } =>
261                                 match directional_state {
262                                         &mut DirectionalNoiseState::Inbound { ref mut ie, ref mut re, ref mut temp_k2 } => {
263                                                 if *state != NoiseStep::PreActOne {
264                                                         panic!("Requested act at wrong step");
265                                                 }
266
267                                                 let (their_pub, _) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_one, &our_node_secret)?;
268                                                 ie.get_or_insert(their_pub);
269
270                                                 re.get_or_insert(our_ephemeral);
271
272                                                 let (res, temp_k) =
273                                                         PeerChannelEncryptor::outbound_noise_act(secp_ctx, bidirectional_state, &re.unwrap(), &ie.unwrap());
274                                                 *temp_k2 = Some(temp_k);
275                                                 *state = NoiseStep::PostActTwo;
276                                                 Ok(res)
277                                         },
278                                         _ => panic!("Wrong direction for act"),
279                                 },
280                         _ => panic!("Cannot get act one after noise handshake completes"),
281                 }
282         }
283
284         pub fn process_act_two<C: secp256k1::Signing>(
285                 &mut self, act_two: &[u8], our_node_secret: &SecretKey, secp_ctx: &Secp256k1<C>)
286         -> Result<([u8; 66], PublicKey), LightningError> {
287                 assert_eq!(act_two.len(), 50);
288
289                 let final_hkdf;
290                 let ck;
291                 let res: [u8; 66] = match self.noise_state {
292                         NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
293                                 match directional_state {
294                                         &DirectionalNoiseState::Outbound { ref ie } => {
295                                                 if *state != NoiseStep::PostActOne {
296                                                         panic!("Requested act at wrong step");
297                                                 }
298
299                                                 let (re, temp_k2) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_two, &ie)?;
300
301                                                 let mut res = [0; 66];
302                                                 let our_node_id = PublicKey::from_secret_key(secp_ctx, &our_node_secret);
303
304                                                 PeerChannelEncryptor::encrypt_with_ad(&mut res[1..50], 1, &temp_k2, &bidirectional_state.h, &our_node_id.serialize()[..]);
305
306                                                 let mut sha = Sha256::engine();
307                                                 sha.input(&bidirectional_state.h);
308                                                 sha.input(&res[1..50]);
309                                                 bidirectional_state.h = Sha256::from_engine(sha).into_inner();
310
311                                                 let ss = SharedSecret::new(&re, our_node_secret);
312                                                 let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
313
314                                                 PeerChannelEncryptor::encrypt_with_ad(&mut res[50..], 0, &temp_k, &bidirectional_state.h, &[0; 0]);
315                                                 final_hkdf = hkdf_extract_expand_twice(&bidirectional_state.ck, &[0; 0]);
316                                                 ck = bidirectional_state.ck.clone();
317                                                 res
318                                         },
319                                         _ => panic!("Wrong direction for act"),
320                                 },
321                         _ => panic!("Cannot get act one after noise handshake completes"),
322                 };
323
324                 let (sk, rk) = final_hkdf;
325                 self.noise_state = NoiseState::Finished {
326                         sk,
327                         sn: 0,
328                         sck: ck.clone(),
329                         rk,
330                         rn: 0,
331                         rck: ck,
332                 };
333
334                 Ok((res, self.their_node_id.unwrap().clone()))
335         }
336
337         pub fn process_act_three(&mut self, act_three: &[u8]) -> Result<PublicKey, LightningError> {
338                 assert_eq!(act_three.len(), 66);
339
340                 let final_hkdf;
341                 let ck;
342                 match self.noise_state {
343                         NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
344                                 match directional_state {
345                                         &DirectionalNoiseState::Inbound { ie: _, ref re, ref temp_k2 } => {
346                                                 if *state != NoiseStep::PostActTwo {
347                                                         panic!("Requested act at wrong step");
348                                                 }
349                                                 if act_three[0] != 0 {
350                                                         return Err(LightningError{err: format!("Unknown handshake version number {}", act_three[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
351                                                 }
352
353                                                 let mut their_node_id = [0; 33];
354                                                 PeerChannelEncryptor::decrypt_with_ad(&mut their_node_id, 1, &temp_k2.unwrap(), &bidirectional_state.h, &act_three[1..50])?;
355                                                 self.their_node_id = Some(match PublicKey::from_slice(&their_node_id) {
356                                                         Ok(key) => key,
357                                                         Err(_) => return Err(LightningError{err: format!("Bad node_id from peer, {}", &their_node_id.to_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
358                                                 });
359
360                                                 let mut sha = Sha256::engine();
361                                                 sha.input(&bidirectional_state.h);
362                                                 sha.input(&act_three[1..50]);
363                                                 bidirectional_state.h = Sha256::from_engine(sha).into_inner();
364
365                                                 let ss = SharedSecret::new(&self.their_node_id.unwrap(), &re.unwrap());
366                                                 let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
367
368                                                 PeerChannelEncryptor::decrypt_with_ad(&mut [0; 0], 0, &temp_k, &bidirectional_state.h, &act_three[50..])?;
369                                                 final_hkdf = hkdf_extract_expand_twice(&bidirectional_state.ck, &[0; 0]);
370                                                 ck = bidirectional_state.ck.clone();
371                                         },
372                                         _ => panic!("Wrong direction for act"),
373                                 },
374                         _ => panic!("Cannot get act one after noise handshake completes"),
375                 }
376
377                 let (rk, sk) = final_hkdf;
378                 self.noise_state = NoiseState::Finished {
379                         sk,
380                         sn: 0,
381                         sck: ck.clone(),
382                         rk,
383                         rn: 0,
384                         rck: ck,
385                 };
386
387                 Ok(self.their_node_id.unwrap().clone())
388         }
389
390         /// Encrypts the given pre-serialized message, returning the encrypted version.
391         /// panics if msg.len() > 65535 or Noise handshake has not finished.
392         pub fn encrypt_buffer(&mut self, msg: &[u8]) -> Vec<u8> {
393                 if msg.len() > LN_MAX_MSG_LEN {
394                         panic!("Attempted to encrypt message longer than 65535 bytes!");
395                 }
396
397                 let mut res = Vec::with_capacity(msg.len() + 16*2 + 2);
398                 res.resize(msg.len() + 16*2 + 2, 0);
399
400                 match self.noise_state {
401                         NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => {
402                                 if *sn >= 1000 {
403                                         let (new_sck, new_sk) = hkdf_extract_expand_twice(sck, sk);
404                                         *sck = new_sck;
405                                         *sk = new_sk;
406                                         *sn = 0;
407                                 }
408
409                                 Self::encrypt_with_ad(&mut res[0..16+2], *sn, sk, &[0; 0], &(msg.len() as u16).to_be_bytes());
410                                 *sn += 1;
411
412                                 Self::encrypt_with_ad(&mut res[16+2..], *sn, sk, &[0; 0], msg);
413                                 *sn += 1;
414                         },
415                         _ => panic!("Tried to encrypt a message prior to noise handshake completion"),
416                 }
417
418                 res
419         }
420
421         /// Encrypts the given message, returning the encrypted version.
422         /// panics if the length of `message`, once encoded, is greater than 65535 or if the Noise
423         /// handshake has not finished.
424         pub fn encrypt_message<M: wire::Type>(&mut self, message: &M) -> Vec<u8> {
425                 // Allocate a buffer with 2KB, fitting most common messages. Reserve the first 16+2 bytes
426                 // for the 2-byte message type prefix and its MAC.
427                 let mut res = VecWriter(Vec::with_capacity(2048));
428                 res.0.resize(16 + 2, 0);
429                 wire::write(message, &mut res).expect("In-memory messages must never fail to serialize");
430
431                 let msg_len = res.0.len() - 16 - 2;
432                 if msg_len > LN_MAX_MSG_LEN {
433                         panic!("Attempted to encrypt message longer than 65535 bytes!");
434                 }
435
436                 match self.noise_state {
437                         NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => {
438                                 if *sn >= 1000 {
439                                         let (new_sck, new_sk) = hkdf_extract_expand_twice(sck, sk);
440                                         *sck = new_sck;
441                                         *sk = new_sk;
442                                         *sn = 0;
443                                 }
444
445                                 Self::encrypt_with_ad(&mut res.0[0..16+2], *sn, sk, &[0; 0], &(msg_len as u16).to_be_bytes());
446                                 *sn += 1;
447
448                                 Self::encrypt_in_place_with_ad(&mut res.0, 16+2, *sn, sk, &[0; 0]);
449                                 *sn += 1;
450                         },
451                         _ => panic!("Tried to encrypt a message prior to noise handshake completion"),
452                 }
453
454                 res.0
455         }
456
457         /// Decrypts a message length header from the remote peer.
458         /// panics if noise handshake has not yet finished or msg.len() != 18
459         pub fn decrypt_length_header(&mut self, msg: &[u8]) -> Result<u16, LightningError> {
460                 assert_eq!(msg.len(), 16+2);
461
462                 match self.noise_state {
463                         NoiseState::Finished { sk: _, sn: _, sck: _, ref mut rk, ref mut rn, ref mut rck } => {
464                                 if *rn >= 1000 {
465                                         let (new_rck, new_rk) = hkdf_extract_expand_twice(rck, rk);
466                                         *rck = new_rck;
467                                         *rk = new_rk;
468                                         *rn = 0;
469                                 }
470
471                                 let mut res = [0; 2];
472                                 Self::decrypt_with_ad(&mut res, *rn, rk, &[0; 0], msg)?;
473                                 *rn += 1;
474                                 Ok(u16::from_be_bytes(res))
475                         },
476                         _ => panic!("Tried to decrypt a message prior to noise handshake completion"),
477                 }
478         }
479
480         /// Decrypts the given message.
481         /// panics if msg.len() > 65535 + 16
482         pub fn decrypt_message(&mut self, msg: &[u8]) -> Result<Vec<u8>, LightningError> {
483                 if msg.len() > LN_MAX_MSG_LEN + 16 {
484                         panic!("Attempted to decrypt message longer than 65535 + 16 bytes!");
485                 }
486
487                 match self.noise_state {
488                         NoiseState::Finished { sk: _, sn: _, sck: _, ref rk, ref mut rn, rck: _ } => {
489                                 let mut res = Vec::with_capacity(msg.len() - 16);
490                                 res.resize(msg.len() - 16, 0);
491                                 Self::decrypt_with_ad(&mut res[..], *rn, rk, &[0; 0], msg)?;
492                                 *rn += 1;
493
494                                 Ok(res)
495                         },
496                         _ => panic!("Tried to decrypt a message prior to noise handshake completion"),
497                 }
498         }
499
500         pub fn get_noise_step(&self) -> NextNoiseStep {
501                 match self.noise_state {
502                         NoiseState::InProgress {ref state, ..} => {
503                                 match state {
504                                         &NoiseStep::PreActOne => NextNoiseStep::ActOne,
505                                         &NoiseStep::PostActOne => NextNoiseStep::ActTwo,
506                                         &NoiseStep::PostActTwo => NextNoiseStep::ActThree,
507                                 }
508                         },
509                         NoiseState::Finished {..} => NextNoiseStep::NoiseComplete,
510                 }
511         }
512
513         pub fn is_ready_for_encryption(&self) -> bool {
514                 match self.noise_state {
515                         NoiseState::InProgress {..} => { false },
516                         NoiseState::Finished {..} => { true }
517                 }
518         }
519 }
520
521 #[cfg(test)]
522 mod tests {
523         use super::LN_MAX_MSG_LEN;
524
525         use bitcoin::secp256k1::{PublicKey,SecretKey};
526         use bitcoin::secp256k1::Secp256k1;
527
528         use hex;
529
530         use ln::peer_channel_encryptor::{PeerChannelEncryptor,NoiseState};
531
532         fn get_outbound_peer_for_initiator_test_vectors() -> PeerChannelEncryptor {
533                 let their_node_id = PublicKey::from_slice(&hex::decode("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7").unwrap()[..]).unwrap();
534                 let secp_ctx = Secp256k1::signing_only();
535
536                 let mut outbound_peer = PeerChannelEncryptor::new_outbound(their_node_id, SecretKey::from_slice(&hex::decode("1212121212121212121212121212121212121212121212121212121212121212").unwrap()[..]).unwrap());
537                 assert_eq!(outbound_peer.get_act_one(&secp_ctx)[..], hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap()[..]);
538                 outbound_peer
539         }
540
541         fn get_inbound_peer_for_test_vectors() -> PeerChannelEncryptor {
542                 // transport-responder successful handshake
543                 let our_node_id = SecretKey::from_slice(&hex::decode("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
544                 let our_ephemeral = SecretKey::from_slice(&hex::decode("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
545                 let secp_ctx = Secp256k1::signing_only();
546
547                 let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
548
549                 let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
550                 assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
551
552                 let act_three = hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
553                 // test vector doesn't specify the initiator static key, but it's the same as the one
554                 // from transport-initiator successful handshake
555                 assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], hex::decode("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]);
556
557                 match inbound_peer.noise_state {
558                         NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
559                                 assert_eq!(sk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
560                                 assert_eq!(sn, 0);
561                                 assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
562                                 assert_eq!(rk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
563                                 assert_eq!(rn, 0);
564                                 assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
565                         },
566                         _ => panic!()
567                 }
568
569                 inbound_peer
570         }
571
572         #[test]
573         fn noise_initiator_test_vectors() {
574                 let our_node_id = SecretKey::from_slice(&hex::decode("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
575                 let secp_ctx = Secp256k1::signing_only();
576
577                 {
578                         // transport-initiator successful handshake
579                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
580
581                         let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
582                         assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id, &secp_ctx).unwrap().0[..], hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
583
584                         match outbound_peer.noise_state {
585                                 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
586                                         assert_eq!(sk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
587                                         assert_eq!(sn, 0);
588                                         assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
589                                         assert_eq!(rk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
590                                         assert_eq!(rn, 0);
591                                         assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
592                                 },
593                                 _ => panic!()
594                         }
595                 }
596                 {
597                         // transport-initiator act2 short read test
598                         // Can't actually test this cause process_act_two requires you pass the right length!
599                 }
600                 {
601                         // transport-initiator act2 bad version test
602                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
603
604                         let act_two = hex::decode("0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
605                         assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id, &secp_ctx).is_err());
606                 }
607
608                 {
609                         // transport-initiator act2 bad key serialization test
610                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
611
612                         let act_two = hex::decode("0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
613                         assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id, &secp_ctx).is_err());
614                 }
615
616                 {
617                         // transport-initiator act2 bad MAC test
618                         let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
619
620                         let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af").unwrap().to_vec();
621                         assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id, &secp_ctx).is_err());
622                 }
623         }
624
625         #[test]
626         fn noise_responder_test_vectors() {
627                 let our_node_id = SecretKey::from_slice(&hex::decode("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
628                 let our_ephemeral = SecretKey::from_slice(&hex::decode("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
629                 let secp_ctx = Secp256k1::signing_only();
630
631                 {
632                         let _ = get_inbound_peer_for_test_vectors();
633                 }
634                 {
635                         // transport-responder act1 short read test
636                         // Can't actually test this cause process_act_one requires you pass the right length!
637                 }
638                 {
639                         // transport-responder act1 bad version test
640                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
641
642                         let act_one = hex::decode("01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
643                         assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).is_err());
644                 }
645                 {
646                         // transport-responder act1 bad key serialization test
647                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
648
649                         let act_one =hex::decode("00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
650                         assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).is_err());
651                 }
652                 {
653                         // transport-responder act1 bad MAC test
654                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
655
656                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b").unwrap().to_vec();
657                         assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).is_err());
658                 }
659                 {
660                         // transport-responder act3 bad version test
661                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
662
663                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
664                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
665
666                         let act_three = hex::decode("01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
667                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
668                 }
669                 {
670                         // transport-responder act3 short read test
671                         // Can't actually test this cause process_act_three requires you pass the right length!
672                 }
673                 {
674                         // transport-responder act3 bad MAC for ciphertext test
675                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
676
677                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
678                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
679
680                         let act_three = hex::decode("00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
681                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
682                 }
683                 {
684                         // transport-responder act3 bad rs test
685                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
686
687                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
688                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
689
690                         let act_three = hex::decode("00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c").unwrap().to_vec();
691                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
692                 }
693                 {
694                         // transport-responder act3 bad MAC test
695                         let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id, &secp_ctx);
696
697                         let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
698                         assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone(), &secp_ctx).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
699
700                         let act_three = hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb").unwrap().to_vec();
701                         assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
702                 }
703         }
704
705
706         #[test]
707         fn message_encryption_decryption_test_vectors() {
708                 // We use the same keys as the initiator and responder test vectors, so we copy those tests
709                 // here and use them to encrypt.
710                 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
711                 let secp_ctx = Secp256k1::signing_only();
712
713                 {
714                         let our_node_id = SecretKey::from_slice(&hex::decode("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
715
716                         let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
717                         assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id, &secp_ctx).unwrap().0[..], hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
718
719                         match outbound_peer.noise_state {
720                                 NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
721                                         assert_eq!(sk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
722                                         assert_eq!(sn, 0);
723                                         assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
724                                         assert_eq!(rk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
725                                         assert_eq!(rn, 0);
726                                         assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
727                                 },
728                                 _ => panic!()
729                         }
730                 }
731
732                 let mut inbound_peer = get_inbound_peer_for_test_vectors();
733
734                 for i in 0..1005 {
735                         let msg = [0x68, 0x65, 0x6c, 0x6c, 0x6f];
736                         let res = outbound_peer.encrypt_buffer(&msg);
737                         assert_eq!(res.len(), 5 + 2*16 + 2);
738
739                         let len_header = res[0..2+16].to_vec();
740                         assert_eq!(inbound_peer.decrypt_length_header(&len_header[..]).unwrap() as usize, msg.len());
741                         assert_eq!(inbound_peer.decrypt_message(&res[2+16..]).unwrap()[..], msg[..]);
742
743                         if i == 0 {
744                                 assert_eq!(res, hex::decode("cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95").unwrap());
745                         } else if i == 1 {
746                                 assert_eq!(res, hex::decode("72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1").unwrap());
747                         } else if i == 500 {
748                                 assert_eq!(res, hex::decode("178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8").unwrap());
749                         } else if i == 501 {
750                                 assert_eq!(res, hex::decode("1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd").unwrap());
751                         } else if i == 1000 {
752                                 assert_eq!(res, hex::decode("4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09").unwrap());
753                         } else if i == 1001 {
754                                 assert_eq!(res, hex::decode("2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36").unwrap());
755                         }
756                 }
757         }
758
759         #[test]
760         fn max_msg_len_limit_value() {
761                 assert_eq!(LN_MAX_MSG_LEN, 65535);
762                 assert_eq!(LN_MAX_MSG_LEN, ::core::u16::MAX as usize);
763         }
764
765         #[test]
766         #[should_panic(expected = "Attempted to encrypt message longer than 65535 bytes!")]
767         fn max_message_len_encryption() {
768                 let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
769                 let msg = [4u8; LN_MAX_MSG_LEN + 1];
770                 outbound_peer.encrypt_buffer(&msg);
771         }
772
773         #[test]
774         #[should_panic(expected = "Attempted to decrypt message longer than 65535 + 16 bytes!")]
775         fn max_message_len_decryption() {
776                 let mut inbound_peer = get_inbound_peer_for_test_vectors();
777
778                 // MSG should not exceed LN_MAX_MSG_LEN + 16
779                 let msg = [4u8; LN_MAX_MSG_LEN + 17];
780                 inbound_peer.decrypt_message(&msg).unwrap();
781         }
782 }