Fix misc. warnings from `--document-private-items`
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use crate::ln::features::{InitFeatures, NodeFeatures};
21 use crate::ln::msgs;
22 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
23 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use crate::util::ser::{VecWriter, Writeable, Writer};
25 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use crate::ln::wire;
27 use crate::ln::wire::Encode;
28 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
29 use crate::routing::gossip::{NetworkGraph, P2PGossipSync};
30 use crate::util::atomic_counter::AtomicCounter;
31 use crate::util::crypto::sign;
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
33 use crate::util::logger::Logger;
34
35 use crate::prelude::*;
36 use crate::io;
37 use alloc::collections::LinkedList;
38 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
47 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
48 use bitcoin::hashes::{HashEngine, Hash};
49
50 /// Handler for BOLT1-compliant messages.
51 pub trait CustomMessageHandler: wire::CustomMessageReader {
52         /// Called with the message type that was received and the buffer to be read.
53         /// Can return a `MessageHandlingError` if the message could not be handled.
54         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
55
56         /// Gets the list of pending messages which were generated by the custom message
57         /// handler, clearing the list in the process. The first tuple element must
58         /// correspond to the intended recipients node ids. If no connection to one of the
59         /// specified node does not exist, the message is simply not sent to it.
60         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
61 }
62
63 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
64 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
65 pub struct IgnoringMessageHandler{}
66 impl MessageSendEventsProvider for IgnoringMessageHandler {
67         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
68 }
69 impl RoutingMessageHandler for IgnoringMessageHandler {
70         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
72         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
73         fn get_next_channel_announcement(&self, _starting_point: u64) ->
74                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
75         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
76         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
77         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
78         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
80         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
81         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
82         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
83                 InitFeatures::empty()
84         }
85 }
86 impl OnionMessageProvider for IgnoringMessageHandler {
87         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
88 }
89 impl OnionMessageHandler for IgnoringMessageHandler {
90         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
91         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
92         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
93         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
94         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
95                 InitFeatures::empty()
96         }
97 }
98 impl CustomOnionMessageHandler for IgnoringMessageHandler {
99         type CustomMessage = Infallible;
100         fn handle_custom_message(&self, _msg: Infallible) {
101                 // Since we always return `None` in the read the handle method should never be called.
102                 unreachable!();
103         }
104         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
105                 Ok(None)
106         }
107 }
108
109 impl CustomOnionMessageContents for Infallible {
110         fn tlv_type(&self) -> u64 { unreachable!(); }
111 }
112
113 impl Deref for IgnoringMessageHandler {
114         type Target = IgnoringMessageHandler;
115         fn deref(&self) -> &Self { self }
116 }
117
118 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
119 // method that takes self for it.
120 impl wire::Type for Infallible {
121         fn type_id(&self) -> u16 {
122                 unreachable!();
123         }
124 }
125 impl Writeable for Infallible {
126         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
127                 unreachable!();
128         }
129 }
130
131 impl wire::CustomMessageReader for IgnoringMessageHandler {
132         type CustomMessage = Infallible;
133         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
134                 Ok(None)
135         }
136 }
137
138 impl CustomMessageHandler for IgnoringMessageHandler {
139         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
140                 // Since we always return `None` in the read the handle method should never be called.
141                 unreachable!();
142         }
143
144         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
145 }
146
147 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
148 /// You can provide one of these as the route_handler in a MessageHandler.
149 pub struct ErroringMessageHandler {
150         message_queue: Mutex<Vec<MessageSendEvent>>
151 }
152 impl ErroringMessageHandler {
153         /// Constructs a new ErroringMessageHandler
154         pub fn new() -> Self {
155                 Self { message_queue: Mutex::new(Vec::new()) }
156         }
157         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
158                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
159                         action: msgs::ErrorAction::SendErrorMessage {
160                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
161                         },
162                         node_id: node_id.clone(),
163                 });
164         }
165 }
166 impl MessageSendEventsProvider for ErroringMessageHandler {
167         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
168                 let mut res = Vec::new();
169                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
170                 res
171         }
172 }
173 impl ChannelMessageHandler for ErroringMessageHandler {
174         // Any messages which are related to a specific channel generate an error message to let the
175         // peer know we don't care about channels.
176         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
177                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
178         }
179         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
180                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
181         }
182         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
183                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
184         }
185         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
186                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
187         }
188         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
189                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
190         }
191         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
192                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
193         }
194         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
195                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
196         }
197         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
198                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
199         }
200         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
201                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
202         }
203         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
204                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
205         }
206         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
207                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
208         }
209         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
210                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
211         }
212         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
213                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
214         }
215         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
216                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
217         }
218         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
219                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
220         }
221         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
222                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
223         }
224         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
225         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
226         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
227         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
228         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
229         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
230         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
231                 // Set a number of features which various nodes may require to talk to us. It's totally
232                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
233                 // channels.
234                 let mut features = InitFeatures::empty();
235                 features.set_data_loss_protect_optional();
236                 features.set_upfront_shutdown_script_optional();
237                 features.set_variable_length_onion_optional();
238                 features.set_static_remote_key_optional();
239                 features.set_payment_secret_optional();
240                 features.set_basic_mpp_optional();
241                 features.set_wumbo_optional();
242                 features.set_shutdown_any_segwit_optional();
243                 features.set_channel_type_optional();
244                 features.set_scid_privacy_optional();
245                 features.set_zero_conf_optional();
246                 features
247         }
248 }
249 impl Deref for ErroringMessageHandler {
250         type Target = ErroringMessageHandler;
251         fn deref(&self) -> &Self { self }
252 }
253
254 /// Provides references to trait impls which handle different types of messages.
255 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
256                 CM::Target: ChannelMessageHandler,
257                 RM::Target: RoutingMessageHandler,
258                 OM::Target: OnionMessageHandler,
259 {
260         /// A message handler which handles messages specific to channels. Usually this is just a
261         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
262         ///
263         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
264         pub chan_handler: CM,
265         /// A message handler which handles messages updating our knowledge of the network channel
266         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
267         ///
268         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
269         pub route_handler: RM,
270
271         /// A message handler which handles onion messages. For now, this can only be an
272         /// [`IgnoringMessageHandler`].
273         pub onion_message_handler: OM,
274 }
275
276 /// Provides an object which can be used to send data to and which uniquely identifies a connection
277 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
278 /// implement Hash to meet the PeerManager API.
279 ///
280 /// For efficiency, Clone should be relatively cheap for this type.
281 ///
282 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
283 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
284 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
285 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
286 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
287 /// to simply use another value which is guaranteed to be globally unique instead.
288 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
289         /// Attempts to send some data from the given slice to the peer.
290         ///
291         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
292         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
293         /// called and further write attempts may occur until that time.
294         ///
295         /// If the returned size is smaller than `data.len()`, a
296         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
297         /// written. Additionally, until a `send_data` event completes fully, no further
298         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
299         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
300         /// until then.
301         ///
302         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
303         /// (indicating that read events should be paused to prevent DoS in the send buffer),
304         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
305         /// `resume_read` of false carries no meaning, and should not cause any action.
306         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
307         /// Disconnect the socket pointed to by this SocketDescriptor.
308         ///
309         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
310         /// call (doing so is a noop).
311         fn disconnect_socket(&mut self);
312 }
313
314 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
315 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
316 /// descriptor.
317 #[derive(Clone)]
318 pub struct PeerHandleError {
319         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
320         /// because we required features that our peer was missing, or vice versa).
321         ///
322         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
323         /// any channels with this peer or check for new versions of LDK.
324         ///
325         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
326         pub no_connection_possible: bool,
327 }
328 impl fmt::Debug for PeerHandleError {
329         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
330                 formatter.write_str("Peer Sent Invalid Data")
331         }
332 }
333 impl fmt::Display for PeerHandleError {
334         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
335                 formatter.write_str("Peer Sent Invalid Data")
336         }
337 }
338
339 #[cfg(feature = "std")]
340 impl error::Error for PeerHandleError {
341         fn description(&self) -> &str {
342                 "Peer Sent Invalid Data"
343         }
344 }
345
346 enum InitSyncTracker{
347         NoSyncRequested,
348         ChannelsSyncing(u64),
349         NodesSyncing(PublicKey),
350 }
351
352 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
353 /// forwarding gossip messages to peers altogether.
354 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
355
356 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
357 /// we have fewer than this many messages in the outbound buffer again.
358 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
359 /// refilled as we send bytes.
360 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
361 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
362 /// the peer.
363 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
364
365 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
366 /// the socket receive buffer before receiving the ping.
367 ///
368 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
369 /// including any network delays, outbound traffic, or the same for messages from other peers.
370 ///
371 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
372 /// per connected peer to respond to a ping, as long as they send us at least one message during
373 /// each tick, ensuring we aren't actually just disconnected.
374 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
375 /// peer.
376 ///
377 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
378 /// two connected peers, assuming most LDK-running systems have at least two cores.
379 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
380
381 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
382 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
383 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
384 /// process before the next ping.
385 ///
386 /// Note that we continue responding to other messages even after we've sent this many messages, so
387 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
388 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
389 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
390
391 struct Peer {
392         channel_encryptor: PeerChannelEncryptor,
393         their_node_id: Option<PublicKey>,
394         their_features: Option<InitFeatures>,
395         their_net_address: Option<NetAddress>,
396
397         pending_outbound_buffer: LinkedList<Vec<u8>>,
398         pending_outbound_buffer_first_msg_offset: usize,
399         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
400         /// prioritize channel messages over them.
401         ///
402         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
403         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
404         awaiting_write_event: bool,
405
406         pending_read_buffer: Vec<u8>,
407         pending_read_buffer_pos: usize,
408         pending_read_is_header: bool,
409
410         sync_status: InitSyncTracker,
411
412         msgs_sent_since_pong: usize,
413         awaiting_pong_timer_tick_intervals: i8,
414         received_message_since_timer_tick: bool,
415         sent_gossip_timestamp_filter: bool,
416 }
417
418 impl Peer {
419         /// Returns true if the channel announcements/updates for the given channel should be
420         /// forwarded to this peer.
421         /// If we are sending our routing table to this peer and we have not yet sent channel
422         /// announcements/updates for the given channel_id then we will send it when we get to that
423         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
424         /// sent the old versions, we should send the update, and so return true here.
425         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
426                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
427                         !self.sent_gossip_timestamp_filter {
428                                 return false;
429                         }
430                 match self.sync_status {
431                         InitSyncTracker::NoSyncRequested => true,
432                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
433                         InitSyncTracker::NodesSyncing(_) => true,
434                 }
435         }
436
437         /// Similar to the above, but for node announcements indexed by node_id.
438         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
439                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
440                         !self.sent_gossip_timestamp_filter {
441                                 return false;
442                         }
443                 match self.sync_status {
444                         InitSyncTracker::NoSyncRequested => true,
445                         InitSyncTracker::ChannelsSyncing(_) => false,
446                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
447                 }
448         }
449
450         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
451         /// buffer still has space and we don't need to pause reads to get some writes out.
452         fn should_read(&self) -> bool {
453                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
454         }
455
456         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
457         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
458         fn should_buffer_gossip_backfill(&self) -> bool {
459                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
460                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
461         }
462
463         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
464         /// every time the peer's buffer may have been drained.
465         fn should_buffer_onion_message(&self) -> bool {
466                 self.pending_outbound_buffer.is_empty()
467                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
468         }
469
470         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
471         /// buffer. This is checked every time the peer's buffer may have been drained.
472         fn should_buffer_gossip_broadcast(&self) -> bool {
473                 self.pending_outbound_buffer.is_empty()
474                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
475         }
476
477         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
478         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
479                 let total_outbound_buffered =
480                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
481
482                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
483                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
484         }
485 }
486
487 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
488 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
489 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
490 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
491 /// issues such as overly long function definitions.
492 ///
493 /// (C-not exported) as `Arc`s don't make sense in bindings.
494 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler>;
495
496 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
497 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
498 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
499 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
500 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
501 /// helps with issues such as long function definitions.
502 ///
503 /// (C-not exported) as general type aliases don't make sense in bindings.
504 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>, &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler>;
505
506 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
507 /// socket events into messages which it passes on to its [`MessageHandler`].
508 ///
509 /// Locks are taken internally, so you must never assume that reentrancy from a
510 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
511 ///
512 /// Calls to [`read_event`] will decode relevant messages and pass them to the
513 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
514 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
515 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
516 /// calls only after previous ones have returned.
517 ///
518 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
519 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
520 /// essentially you should default to using a SimpleRefPeerManager, and use a
521 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
522 /// you're using lightning-net-tokio.
523 ///
524 /// [`read_event`]: PeerManager::read_event
525 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> where
526                 CM::Target: ChannelMessageHandler,
527                 RM::Target: RoutingMessageHandler,
528                 OM::Target: OnionMessageHandler,
529                 L::Target: Logger,
530                 CMH::Target: CustomMessageHandler {
531         message_handler: MessageHandler<CM, RM, OM>,
532         /// Connection state for each connected peer - we have an outer read-write lock which is taken
533         /// as read while we're doing processing for a peer and taken write when a peer is being added
534         /// or removed.
535         ///
536         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
537         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
538         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
539         /// the `MessageHandler`s for a given peer is already guaranteed.
540         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
541         /// Only add to this set when noise completes.
542         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
543         /// lock held. Entries may be added with only the `peers` read lock held (though the
544         /// `Descriptor` value must already exist in `peers`).
545         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
546         /// We can only have one thread processing events at once, but we don't usually need the full
547         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
548         /// `process_events`.
549         event_processing_lock: Mutex<()>,
550         /// Because event processing is global and always does all available work before returning,
551         /// there is no reason for us to have many event processors waiting on the lock at once.
552         /// Instead, we limit the total blocked event processors to always exactly one by setting this
553         /// when an event process call is waiting.
554         blocked_event_processors: AtomicBool,
555
556         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
557         /// value increases strictly since we don't assume access to a time source.
558         last_node_announcement_serial: AtomicU32,
559
560         our_node_secret: SecretKey,
561         ephemeral_key_midstate: Sha256Engine,
562         custom_message_handler: CMH,
563
564         peer_counter: AtomicCounter,
565
566         logger: L,
567         secp_ctx: Secp256k1<secp256k1::SignOnly>
568 }
569
570 enum MessageHandlingError {
571         PeerHandleError(PeerHandleError),
572         LightningError(LightningError),
573 }
574
575 impl From<PeerHandleError> for MessageHandlingError {
576         fn from(error: PeerHandleError) -> Self {
577                 MessageHandlingError::PeerHandleError(error)
578         }
579 }
580
581 impl From<LightningError> for MessageHandlingError {
582         fn from(error: LightningError) -> Self {
583                 MessageHandlingError::LightningError(error)
584         }
585 }
586
587 macro_rules! encode_msg {
588         ($msg: expr) => {{
589                 let mut buffer = VecWriter(Vec::new());
590                 wire::write($msg, &mut buffer).unwrap();
591                 buffer.0
592         }}
593 }
594
595 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler> where
596                 CM::Target: ChannelMessageHandler,
597                 OM::Target: OnionMessageHandler,
598                 L::Target: Logger {
599         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
600         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
601         /// ignored.
602         ///
603         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
604         /// cryptographically secure random bytes.
605         ///
606         /// `current_time` is used as an always-increasing counter that survives across restarts and is
607         /// incremented irregularly internally. In general it is best to simply use the current UNIX
608         /// timestamp, however if it is not available a persistent counter that increases once per
609         /// minute should suffice.
610         ///
611         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
612         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
613                 Self::new(MessageHandler {
614                         chan_handler: channel_message_handler,
615                         route_handler: IgnoringMessageHandler{},
616                         onion_message_handler,
617                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
618         }
619 }
620
621 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
622                 RM::Target: RoutingMessageHandler,
623                 L::Target: Logger {
624         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
625         /// handler or onion message handler is used and onion and channel messages will be ignored (or
626         /// generate error messages). Note that some other lightning implementations time-out connections
627         /// after some time if no channel is built with the peer.
628         ///
629         /// `current_time` is used as an always-increasing counter that survives across restarts and is
630         /// incremented irregularly internally. In general it is best to simply use the current UNIX
631         /// timestamp, however if it is not available a persistent counter that increases once per
632         /// minute should suffice.
633         ///
634         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
635         /// cryptographically secure random bytes.
636         ///
637         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
638         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
639                 Self::new(MessageHandler {
640                         chan_handler: ErroringMessageHandler::new(),
641                         route_handler: routing_message_handler,
642                         onion_message_handler: IgnoringMessageHandler{},
643                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
644         }
645 }
646
647 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
648 /// This works around `format!()` taking a reference to each argument, preventing
649 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
650 /// due to lifetime errors.
651 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
652 impl core::fmt::Display for OptionalFromDebugger<'_> {
653         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
654                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
655         }
656 }
657
658 /// A function used to filter out local or private addresses
659 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
660 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
661 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
662         match ip_address{
663                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
664                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
665                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
666                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
667                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
668                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
669                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
670                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
671                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
672                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
673                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
674                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
675                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
676                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
677                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
678                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
679                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
680                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
681                 // For remaining addresses
682                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
683                 Some(..) => ip_address,
684                 None => None,
685         }
686 }
687
688 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH> where
689                 CM::Target: ChannelMessageHandler,
690                 RM::Target: RoutingMessageHandler,
691                 OM::Target: OnionMessageHandler,
692                 L::Target: Logger,
693                 CMH::Target: CustomMessageHandler {
694         /// Constructs a new PeerManager with the given message handlers and node_id secret key
695         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
696         /// cryptographically secure random bytes.
697         ///
698         /// `current_time` is used as an always-increasing counter that survives across restarts and is
699         /// incremented irregularly internally. In general it is best to simply use the current UNIX
700         /// timestamp, however if it is not available a persistent counter that increases once per
701         /// minute should suffice.
702         pub fn new(message_handler: MessageHandler<CM, RM, OM>, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
703                 let mut ephemeral_key_midstate = Sha256::engine();
704                 ephemeral_key_midstate.input(ephemeral_random_data);
705
706                 let mut secp_ctx = Secp256k1::signing_only();
707                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
708                 secp_ctx.seeded_randomize(&ephemeral_hash);
709
710                 PeerManager {
711                         message_handler,
712                         peers: FairRwLock::new(HashMap::new()),
713                         node_id_to_descriptor: Mutex::new(HashMap::new()),
714                         event_processing_lock: Mutex::new(()),
715                         blocked_event_processors: AtomicBool::new(false),
716                         our_node_secret,
717                         ephemeral_key_midstate,
718                         peer_counter: AtomicCounter::new(),
719                         last_node_announcement_serial: AtomicU32::new(current_time),
720                         logger,
721                         custom_message_handler,
722                         secp_ctx,
723                 }
724         }
725
726         /// Get the list of node ids for peers which have completed the initial handshake.
727         ///
728         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
729         /// new_outbound_connection, however entries will only appear once the initial handshake has
730         /// completed and we are sure the remote peer has the private key for the given node_id.
731         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
732                 let peers = self.peers.read().unwrap();
733                 peers.values().filter_map(|peer_mutex| {
734                         let p = peer_mutex.lock().unwrap();
735                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
736                                 return None;
737                         }
738                         p.their_node_id
739                 }).collect()
740         }
741
742         fn get_ephemeral_key(&self) -> SecretKey {
743                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
744                 let counter = self.peer_counter.get_increment();
745                 ephemeral_hash.input(&counter.to_le_bytes());
746                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
747         }
748
749         /// Indicates a new outbound connection has been established to a node with the given node_id
750         /// and an optional remote network address.
751         ///
752         /// The remote network address adds the option to report a remote IP address back to a connecting
753         /// peer using the init message.
754         /// The user should pass the remote network address of the host they are connected to.
755         ///
756         /// If an `Err` is returned here you must disconnect the connection immediately.
757         ///
758         /// Returns a small number of bytes to send to the remote node (currently always 50).
759         ///
760         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
761         /// [`socket_disconnected()`].
762         ///
763         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
764         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
765                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
766                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
767                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
768
769                 let mut peers = self.peers.write().unwrap();
770                 if peers.insert(descriptor, Mutex::new(Peer {
771                         channel_encryptor: peer_encryptor,
772                         their_node_id: None,
773                         their_features: None,
774                         their_net_address: remote_network_address,
775
776                         pending_outbound_buffer: LinkedList::new(),
777                         pending_outbound_buffer_first_msg_offset: 0,
778                         gossip_broadcast_buffer: LinkedList::new(),
779                         awaiting_write_event: false,
780
781                         pending_read_buffer,
782                         pending_read_buffer_pos: 0,
783                         pending_read_is_header: false,
784
785                         sync_status: InitSyncTracker::NoSyncRequested,
786
787                         msgs_sent_since_pong: 0,
788                         awaiting_pong_timer_tick_intervals: 0,
789                         received_message_since_timer_tick: false,
790                         sent_gossip_timestamp_filter: false,
791                 })).is_some() {
792                         panic!("PeerManager driver duplicated descriptors!");
793                 };
794                 Ok(res)
795         }
796
797         /// Indicates a new inbound connection has been established to a node with an optional remote
798         /// network address.
799         ///
800         /// The remote network address adds the option to report a remote IP address back to a connecting
801         /// peer using the init message.
802         /// The user should pass the remote network address of the host they are connected to.
803         ///
804         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
805         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
806         /// the connection immediately.
807         ///
808         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
809         /// [`socket_disconnected()`].
810         ///
811         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
812         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
813                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
814                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
815
816                 let mut peers = self.peers.write().unwrap();
817                 if peers.insert(descriptor, Mutex::new(Peer {
818                         channel_encryptor: peer_encryptor,
819                         their_node_id: None,
820                         their_features: None,
821                         their_net_address: remote_network_address,
822
823                         pending_outbound_buffer: LinkedList::new(),
824                         pending_outbound_buffer_first_msg_offset: 0,
825                         gossip_broadcast_buffer: LinkedList::new(),
826                         awaiting_write_event: false,
827
828                         pending_read_buffer,
829                         pending_read_buffer_pos: 0,
830                         pending_read_is_header: false,
831
832                         sync_status: InitSyncTracker::NoSyncRequested,
833
834                         msgs_sent_since_pong: 0,
835                         awaiting_pong_timer_tick_intervals: 0,
836                         received_message_since_timer_tick: false,
837                         sent_gossip_timestamp_filter: false,
838                 })).is_some() {
839                         panic!("PeerManager driver duplicated descriptors!");
840                 };
841                 Ok(())
842         }
843
844         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
845                 while !peer.awaiting_write_event {
846                         if peer.should_buffer_onion_message() {
847                                 if let Some(peer_node_id) = peer.their_node_id {
848                                         if let Some(next_onion_message) =
849                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
850                                                         self.enqueue_message(peer, &next_onion_message);
851                                         }
852                                 }
853                         }
854                         if peer.should_buffer_gossip_broadcast() {
855                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
856                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
857                                 }
858                         }
859                         if peer.should_buffer_gossip_backfill() {
860                                 match peer.sync_status {
861                                         InitSyncTracker::NoSyncRequested => {},
862                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
863                                                 if let Some((announce, update_a_option, update_b_option)) =
864                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
865                                                 {
866                                                         self.enqueue_message(peer, &announce);
867                                                         if let Some(update_a) = update_a_option {
868                                                                 self.enqueue_message(peer, &update_a);
869                                                         }
870                                                         if let Some(update_b) = update_b_option {
871                                                                 self.enqueue_message(peer, &update_b);
872                                                         }
873                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
874                                                 } else {
875                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
876                                                 }
877                                         },
878                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
879                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
880                                                         self.enqueue_message(peer, &msg);
881                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
882                                                 } else {
883                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
884                                                 }
885                                         },
886                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
887                                         InitSyncTracker::NodesSyncing(key) => {
888                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
889                                                         self.enqueue_message(peer, &msg);
890                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
891                                                 } else {
892                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
893                                                 }
894                                         },
895                                 }
896                         }
897                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
898                                 self.maybe_send_extra_ping(peer);
899                         }
900
901                         let next_buff = match peer.pending_outbound_buffer.front() {
902                                 None => return,
903                                 Some(buff) => buff,
904                         };
905
906                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
907                         let data_sent = descriptor.send_data(pending, peer.should_read());
908                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
909                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
910                                 peer.pending_outbound_buffer_first_msg_offset = 0;
911                                 peer.pending_outbound_buffer.pop_front();
912                         } else {
913                                 peer.awaiting_write_event = true;
914                         }
915                 }
916         }
917
918         /// Indicates that there is room to write data to the given socket descriptor.
919         ///
920         /// May return an Err to indicate that the connection should be closed.
921         ///
922         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
923         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
924         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
925         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
926         /// sufficient!
927         ///
928         /// [`send_data`]: SocketDescriptor::send_data
929         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
930         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
931                 let peers = self.peers.read().unwrap();
932                 match peers.get(descriptor) {
933                         None => {
934                                 // This is most likely a simple race condition where the user found that the socket
935                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
936                                 // this method. Return an error to make sure we get disconnected.
937                                 return Err(PeerHandleError { no_connection_possible: false });
938                         },
939                         Some(peer_mutex) => {
940                                 let mut peer = peer_mutex.lock().unwrap();
941                                 peer.awaiting_write_event = false;
942                                 self.do_attempt_write_data(descriptor, &mut peer);
943                         }
944                 };
945                 Ok(())
946         }
947
948         /// Indicates that data was read from the given socket descriptor.
949         ///
950         /// May return an Err to indicate that the connection should be closed.
951         ///
952         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
953         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
954         /// [`send_data`] calls to handle responses.
955         ///
956         /// If `Ok(true)` is returned, further read_events should not be triggered until a
957         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
958         /// send buffer).
959         ///
960         /// [`send_data`]: SocketDescriptor::send_data
961         /// [`process_events`]: PeerManager::process_events
962         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
963                 match self.do_read_event(peer_descriptor, data) {
964                         Ok(res) => Ok(res),
965                         Err(e) => {
966                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
967                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
968                                 Err(e)
969                         }
970                 }
971         }
972
973         /// Append a message to a peer's pending outbound/write buffer
974         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
975                 if is_gossip_msg(message.type_id()) {
976                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
977                 } else {
978                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
979                 }
980                 peer.msgs_sent_since_pong += 1;
981                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
982         }
983
984         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
985         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
986                 peer.msgs_sent_since_pong += 1;
987                 peer.gossip_broadcast_buffer.push_back(encoded_message);
988         }
989
990         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
991                 let mut pause_read = false;
992                 let peers = self.peers.read().unwrap();
993                 let mut msgs_to_forward = Vec::new();
994                 let mut peer_node_id = None;
995                 match peers.get(peer_descriptor) {
996                         None => {
997                                 // This is most likely a simple race condition where the user read some bytes
998                                 // from the socket, then we told the user to `disconnect_socket()`, then they
999                                 // called this method. Return an error to make sure we get disconnected.
1000                                 return Err(PeerHandleError { no_connection_possible: false });
1001                         },
1002                         Some(peer_mutex) => {
1003                                 let mut read_pos = 0;
1004                                 while read_pos < data.len() {
1005                                         macro_rules! try_potential_handleerror {
1006                                                 ($peer: expr, $thing: expr) => {
1007                                                         match $thing {
1008                                                                 Ok(x) => x,
1009                                                                 Err(e) => {
1010                                                                         match e.action {
1011                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1012                                                                                         //TODO: Try to push msg
1013                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1014                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
1015                                                                                 },
1016                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1017                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1018                                                                                         continue
1019                                                                                 },
1020                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1021                                                                                 msgs::ErrorAction::IgnoreError => {
1022                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1023                                                                                         continue;
1024                                                                                 },
1025                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1026                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1027                                                                                         self.enqueue_message($peer, &msg);
1028                                                                                         continue;
1029                                                                                 },
1030                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1031                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1032                                                                                         self.enqueue_message($peer, &msg);
1033                                                                                         continue;
1034                                                                                 },
1035                                                                         }
1036                                                                 }
1037                                                         }
1038                                                 }
1039                                         }
1040
1041                                         let mut peer_lock = peer_mutex.lock().unwrap();
1042                                         let peer = &mut *peer_lock;
1043                                         let mut msg_to_handle = None;
1044                                         if peer_node_id.is_none() {
1045                                                 peer_node_id = peer.their_node_id.clone();
1046                                         }
1047
1048                                         assert!(peer.pending_read_buffer.len() > 0);
1049                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1050
1051                                         {
1052                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1053                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1054                                                 read_pos += data_to_copy;
1055                                                 peer.pending_read_buffer_pos += data_to_copy;
1056                                         }
1057
1058                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1059                                                 peer.pending_read_buffer_pos = 0;
1060
1061                                                 macro_rules! insert_node_id {
1062                                                         () => {
1063                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
1064                                                                         hash_map::Entry::Occupied(_) => {
1065                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
1066                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1067                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1068                                                                         },
1069                                                                         hash_map::Entry::Vacant(entry) => {
1070                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
1071                                                                                 entry.insert(peer_descriptor.clone())
1072                                                                         },
1073                                                                 };
1074                                                         }
1075                                                 }
1076
1077                                                 let next_step = peer.channel_encryptor.get_noise_step();
1078                                                 match next_step {
1079                                                         NextNoiseStep::ActOne => {
1080                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1081                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1082                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1083                                                                 peer.pending_outbound_buffer.push_back(act_two);
1084                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1085                                                         },
1086                                                         NextNoiseStep::ActTwo => {
1087                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1088                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1089                                                                                 &self.our_node_secret, &self.secp_ctx));
1090                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1091                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1092                                                                 peer.pending_read_is_header = true;
1093
1094                                                                 peer.their_node_id = Some(their_node_id);
1095                                                                 insert_node_id!();
1096                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1097                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1098                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1099                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1100                                                                 self.enqueue_message(peer, &resp);
1101                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1102                                                         },
1103                                                         NextNoiseStep::ActThree => {
1104                                                                 let their_node_id = try_potential_handleerror!(peer,
1105                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1106                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1107                                                                 peer.pending_read_is_header = true;
1108                                                                 peer.their_node_id = Some(their_node_id);
1109                                                                 insert_node_id!();
1110                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1111                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1112                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1113                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1114                                                                 self.enqueue_message(peer, &resp);
1115                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1116                                                         },
1117                                                         NextNoiseStep::NoiseComplete => {
1118                                                                 if peer.pending_read_is_header {
1119                                                                         let msg_len = try_potential_handleerror!(peer,
1120                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1121                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1122                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1123                                                                         if msg_len < 2 { // Need at least the message type tag
1124                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1125                                                                         }
1126                                                                         peer.pending_read_is_header = false;
1127                                                                 } else {
1128                                                                         let msg_data = try_potential_handleerror!(peer,
1129                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1130                                                                         assert!(msg_data.len() >= 2);
1131
1132                                                                         // Reset read buffer
1133                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1134                                                                         peer.pending_read_buffer.resize(18, 0);
1135                                                                         peer.pending_read_is_header = true;
1136
1137                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1138                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1139                                                                         let message = match message_result {
1140                                                                                 Ok(x) => x,
1141                                                                                 Err(e) => {
1142                                                                                         match e {
1143                                                                                                 // Note that to avoid recursion we never call
1144                                                                                                 // `do_attempt_write_data` from here, causing
1145                                                                                                 // the messages enqueued here to not actually
1146                                                                                                 // be sent before the peer is disconnected.
1147                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1148                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1149                                                                                                         continue;
1150                                                                                                 }
1151                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1152                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1153                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1154                                                                                                         continue;
1155                                                                                                 }
1156                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1157                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1158                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1159                                                                                                                 channel_id: [0; 32],
1160                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1161                                                                                                         });
1162                                                                                                         continue;
1163                                                                                                 }
1164                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1165                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1166                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1167                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1168                                                                                                 }
1169                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1170                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1171                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1172                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1173                                                                                                 }
1174                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1175                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1176                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1177                                                                                                 }
1178                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1179                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1180                                                                                         }
1181                                                                                 }
1182                                                                         };
1183
1184                                                                         msg_to_handle = Some(message);
1185                                                                 }
1186                                                         }
1187                                                 }
1188                                         }
1189                                         pause_read = !peer.should_read();
1190
1191                                         if let Some(message) = msg_to_handle {
1192                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1193                                                         Err(handling_error) => match handling_error {
1194                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1195                                                                 MessageHandlingError::LightningError(e) => {
1196                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1197                                                                 },
1198                                                         },
1199                                                         Ok(Some(msg)) => {
1200                                                                 msgs_to_forward.push(msg);
1201                                                         },
1202                                                         Ok(None) => {},
1203                                                 }
1204                                         }
1205                                 }
1206                         }
1207                 }
1208
1209                 for msg in msgs_to_forward.drain(..) {
1210                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1211                 }
1212
1213                 Ok(pause_read)
1214         }
1215
1216         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1217         /// Returns the message back if it needs to be broadcasted to all other peers.
1218         fn handle_message(
1219                 &self,
1220                 peer_mutex: &Mutex<Peer>,
1221                 mut peer_lock: MutexGuard<Peer>,
1222                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1223         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1224                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1225                 peer_lock.received_message_since_timer_tick = true;
1226
1227                 // Need an Init as first message
1228                 if let wire::Message::Init(msg) = message {
1229                         if msg.features.requires_unknown_bits() {
1230                                 log_debug!(self.logger, "Peer features required unknown version bits");
1231                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1232                         }
1233                         if peer_lock.their_features.is_some() {
1234                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1235                         }
1236
1237                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1238
1239                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1240                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1241                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1242                         }
1243
1244                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg) {
1245                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1246                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1247                         }
1248                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg) {
1249                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1250                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1251                         }
1252                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg) {
1253                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1254                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1255                         }
1256
1257                         peer_lock.their_features = Some(msg.features);
1258                         return Ok(None);
1259                 } else if peer_lock.their_features.is_none() {
1260                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1261                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1262                 }
1263
1264                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1265                         // When supporting gossip messages, start inital gossip sync only after we receive
1266                         // a GossipTimestampFilter
1267                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1268                                 !peer_lock.sent_gossip_timestamp_filter {
1269                                 peer_lock.sent_gossip_timestamp_filter = true;
1270                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1271                         }
1272                         return Ok(None);
1273                 }
1274
1275                 let their_features = peer_lock.their_features.clone();
1276                 mem::drop(peer_lock);
1277
1278                 if is_gossip_msg(message.type_id()) {
1279                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1280                 } else {
1281                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1282                 }
1283
1284                 let mut should_forward = None;
1285
1286                 match message {
1287                         // Setup and Control messages:
1288                         wire::Message::Init(_) => {
1289                                 // Handled above
1290                         },
1291                         wire::Message::GossipTimestampFilter(_) => {
1292                                 // Handled above
1293                         },
1294                         wire::Message::Error(msg) => {
1295                                 let mut data_is_printable = true;
1296                                 for b in msg.data.bytes() {
1297                                         if b < 32 || b > 126 {
1298                                                 data_is_printable = false;
1299                                                 break;
1300                                         }
1301                                 }
1302
1303                                 if data_is_printable {
1304                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1305                                 } else {
1306                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1307                                 }
1308                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1309                                 if msg.channel_id == [0; 32] {
1310                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1311                                 }
1312                         },
1313                         wire::Message::Warning(msg) => {
1314                                 let mut data_is_printable = true;
1315                                 for b in msg.data.bytes() {
1316                                         if b < 32 || b > 126 {
1317                                                 data_is_printable = false;
1318                                                 break;
1319                                         }
1320                                 }
1321
1322                                 if data_is_printable {
1323                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1324                                 } else {
1325                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1326                                 }
1327                         },
1328
1329                         wire::Message::Ping(msg) => {
1330                                 if msg.ponglen < 65532 {
1331                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1332                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1333                                 }
1334                         },
1335                         wire::Message::Pong(_msg) => {
1336                                 let mut peer_lock = peer_mutex.lock().unwrap();
1337                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1338                                 peer_lock.msgs_sent_since_pong = 0;
1339                         },
1340
1341                         // Channel messages:
1342                         wire::Message::OpenChannel(msg) => {
1343                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1344                         },
1345                         wire::Message::AcceptChannel(msg) => {
1346                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1347                         },
1348
1349                         wire::Message::FundingCreated(msg) => {
1350                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1351                         },
1352                         wire::Message::FundingSigned(msg) => {
1353                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1354                         },
1355                         wire::Message::ChannelReady(msg) => {
1356                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1357                         },
1358
1359                         wire::Message::Shutdown(msg) => {
1360                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1361                         },
1362                         wire::Message::ClosingSigned(msg) => {
1363                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1364                         },
1365
1366                         // Commitment messages:
1367                         wire::Message::UpdateAddHTLC(msg) => {
1368                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1369                         },
1370                         wire::Message::UpdateFulfillHTLC(msg) => {
1371                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1372                         },
1373                         wire::Message::UpdateFailHTLC(msg) => {
1374                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1375                         },
1376                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1377                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1378                         },
1379
1380                         wire::Message::CommitmentSigned(msg) => {
1381                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1382                         },
1383                         wire::Message::RevokeAndACK(msg) => {
1384                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1385                         },
1386                         wire::Message::UpdateFee(msg) => {
1387                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1388                         },
1389                         wire::Message::ChannelReestablish(msg) => {
1390                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1391                         },
1392
1393                         // Routing messages:
1394                         wire::Message::AnnouncementSignatures(msg) => {
1395                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1396                         },
1397                         wire::Message::ChannelAnnouncement(msg) => {
1398                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1399                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1400                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1401                                 }
1402                         },
1403                         wire::Message::NodeAnnouncement(msg) => {
1404                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1405                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1406                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1407                                 }
1408                         },
1409                         wire::Message::ChannelUpdate(msg) => {
1410                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1411                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1412                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1413                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1414                                 }
1415                         },
1416                         wire::Message::QueryShortChannelIds(msg) => {
1417                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1418                         },
1419                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1420                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1421                         },
1422                         wire::Message::QueryChannelRange(msg) => {
1423                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1424                         },
1425                         wire::Message::ReplyChannelRange(msg) => {
1426                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1427                         },
1428
1429                         // Onion message:
1430                         wire::Message::OnionMessage(msg) => {
1431                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1432                         },
1433
1434                         // Unknown messages:
1435                         wire::Message::Unknown(type_id) if message.is_even() => {
1436                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1437                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1438                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1439                         },
1440                         wire::Message::Unknown(type_id) => {
1441                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1442                         },
1443                         wire::Message::Custom(custom) => {
1444                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1445                         },
1446                 };
1447                 Ok(should_forward)
1448         }
1449
1450         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1451                 match msg {
1452                         wire::Message::ChannelAnnouncement(ref msg) => {
1453                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1454                                 let encoded_msg = encode_msg!(msg);
1455
1456                                 for (_, peer_mutex) in peers.iter() {
1457                                         let mut peer = peer_mutex.lock().unwrap();
1458                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1459                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1460                                                 continue
1461                                         }
1462                                         if peer.buffer_full_drop_gossip_broadcast() {
1463                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1464                                                 continue;
1465                                         }
1466                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1467                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1468                                                 continue;
1469                                         }
1470                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1471                                                 continue;
1472                                         }
1473                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1474                                 }
1475                         },
1476                         wire::Message::NodeAnnouncement(ref msg) => {
1477                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1478                                 let encoded_msg = encode_msg!(msg);
1479
1480                                 for (_, peer_mutex) in peers.iter() {
1481                                         let mut peer = peer_mutex.lock().unwrap();
1482                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1483                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1484                                                 continue
1485                                         }
1486                                         if peer.buffer_full_drop_gossip_broadcast() {
1487                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1488                                                 continue;
1489                                         }
1490                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1491                                                 continue;
1492                                         }
1493                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1494                                                 continue;
1495                                         }
1496                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1497                                 }
1498                         },
1499                         wire::Message::ChannelUpdate(ref msg) => {
1500                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1501                                 let encoded_msg = encode_msg!(msg);
1502
1503                                 for (_, peer_mutex) in peers.iter() {
1504                                         let mut peer = peer_mutex.lock().unwrap();
1505                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1506                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1507                                                 continue
1508                                         }
1509                                         if peer.buffer_full_drop_gossip_broadcast() {
1510                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1511                                                 continue;
1512                                         }
1513                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1514                                                 continue;
1515                                         }
1516                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1517                                 }
1518                         },
1519                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1520                 }
1521         }
1522
1523         /// Checks for any events generated by our handlers and processes them. Includes sending most
1524         /// response messages as well as messages generated by calls to handler functions directly (eg
1525         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1526         ///
1527         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1528         /// issues!
1529         ///
1530         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1531         /// or one of the other clients provided in our language bindings.
1532         ///
1533         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1534         /// without doing any work. All available events that need handling will be handled before the
1535         /// other calls return.
1536         ///
1537         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1538         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1539         /// [`send_data`]: SocketDescriptor::send_data
1540         pub fn process_events(&self) {
1541                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1542                 if _single_processor_lock.is_err() {
1543                         // While we could wake the older sleeper here with a CV and make more even waiting
1544                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1545                         // count" goal.
1546                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1547                                 Err(val) => {
1548                                         debug_assert!(val, "compare_exchange failed spuriously?");
1549                                         return;
1550                                 },
1551                                 Ok(val) => {
1552                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1553                                         // We're the only waiter, as the running process_events may have emptied the
1554                                         // pending events "long" ago and there are new events for us to process, wait until
1555                                         // its done and process any leftover events before returning.
1556                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1557                                         self.blocked_event_processors.store(false, Ordering::Release);
1558                                 }
1559                         }
1560                 }
1561
1562                 let mut peers_to_disconnect = HashMap::new();
1563                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1564                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1565
1566                 {
1567                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1568                         // buffer by doing things like announcing channels on another node. We should be willing to
1569                         // drop optional-ish messages when send buffers get full!
1570
1571                         let peers_lock = self.peers.read().unwrap();
1572                         let peers = &*peers_lock;
1573                         macro_rules! get_peer_for_forwarding {
1574                                 ($node_id: expr) => {
1575                                         {
1576                                                 if peers_to_disconnect.get($node_id).is_some() {
1577                                                         // If we've "disconnected" this peer, do not send to it.
1578                                                         continue;
1579                                                 }
1580                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1581                                                 match descriptor_opt {
1582                                                         Some(descriptor) => match peers.get(&descriptor) {
1583                                                                 Some(peer_mutex) => {
1584                                                                         let peer_lock = peer_mutex.lock().unwrap();
1585                                                                         if peer_lock.their_features.is_none() {
1586                                                                                 continue;
1587                                                                         }
1588                                                                         peer_lock
1589                                                                 },
1590                                                                 None => {
1591                                                                         debug_assert!(false, "Inconsistent peers set state!");
1592                                                                         continue;
1593                                                                 }
1594                                                         },
1595                                                         None => {
1596                                                                 continue;
1597                                                         },
1598                                                 }
1599                                         }
1600                                 }
1601                         }
1602                         for event in events_generated.drain(..) {
1603                                 match event {
1604                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1605                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1606                                                                 log_pubkey!(node_id),
1607                                                                 log_bytes!(msg.temporary_channel_id));
1608                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1609                                         },
1610                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1611                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1612                                                                 log_pubkey!(node_id),
1613                                                                 log_bytes!(msg.temporary_channel_id));
1614                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1615                                         },
1616                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1617                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1618                                                                 log_pubkey!(node_id),
1619                                                                 log_bytes!(msg.temporary_channel_id),
1620                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1621                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1622                                                 // indicating to the wallet that they should just throw away this funding transaction
1623                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1624                                         },
1625                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1626                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1627                                                                 log_pubkey!(node_id),
1628                                                                 log_bytes!(msg.channel_id));
1629                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1630                                         },
1631                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1632                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1633                                                                 log_pubkey!(node_id),
1634                                                                 log_bytes!(msg.channel_id));
1635                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1636                                         },
1637                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1638                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1639                                                                 log_pubkey!(node_id),
1640                                                                 log_bytes!(msg.channel_id));
1641                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1642                                         },
1643                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1644                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1645                                                                 log_pubkey!(node_id),
1646                                                                 update_add_htlcs.len(),
1647                                                                 update_fulfill_htlcs.len(),
1648                                                                 update_fail_htlcs.len(),
1649                                                                 log_bytes!(commitment_signed.channel_id));
1650                                                 let mut peer = get_peer_for_forwarding!(node_id);
1651                                                 for msg in update_add_htlcs {
1652                                                         self.enqueue_message(&mut *peer, msg);
1653                                                 }
1654                                                 for msg in update_fulfill_htlcs {
1655                                                         self.enqueue_message(&mut *peer, msg);
1656                                                 }
1657                                                 for msg in update_fail_htlcs {
1658                                                         self.enqueue_message(&mut *peer, msg);
1659                                                 }
1660                                                 for msg in update_fail_malformed_htlcs {
1661                                                         self.enqueue_message(&mut *peer, msg);
1662                                                 }
1663                                                 if let &Some(ref msg) = update_fee {
1664                                                         self.enqueue_message(&mut *peer, msg);
1665                                                 }
1666                                                 self.enqueue_message(&mut *peer, commitment_signed);
1667                                         },
1668                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1669                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1670                                                                 log_pubkey!(node_id),
1671                                                                 log_bytes!(msg.channel_id));
1672                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1673                                         },
1674                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1675                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1676                                                                 log_pubkey!(node_id),
1677                                                                 log_bytes!(msg.channel_id));
1678                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1679                                         },
1680                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1681                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1682                                                                 log_pubkey!(node_id),
1683                                                                 log_bytes!(msg.channel_id));
1684                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1685                                         },
1686                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1687                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1688                                                                 log_pubkey!(node_id),
1689                                                                 log_bytes!(msg.channel_id));
1690                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1691                                         },
1692                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1693                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1694                                                                 log_pubkey!(node_id),
1695                                                                 msg.contents.short_channel_id);
1696                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1697                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1698                                         },
1699                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1700                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1701                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1702                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1703                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1704                                                         _ => {},
1705                                                 }
1706                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1707                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1708                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1709                                                         _ => {},
1710                                                 }
1711                                         },
1712                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1713                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1714                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1715                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1716                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1717                                                         _ => {},
1718                                                 }
1719                                         },
1720                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1721                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1722                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1723                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1724                                         },
1725                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1726                                                 match *action {
1727                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1728                                                                 // We do not have the peers write lock, so we just store that we're
1729                                                                 // about to disconenct the peer and do it after we finish
1730                                                                 // processing most messages.
1731                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1732                                                         },
1733                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1734                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1735                                                         },
1736                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1737                                                         msgs::ErrorAction::IgnoreError => {
1738                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1739                                                         },
1740                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1741                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1742                                                                                 log_pubkey!(node_id),
1743                                                                                 msg.data);
1744                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1745                                                         },
1746                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1747                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1748                                                                                 log_pubkey!(node_id),
1749                                                                                 msg.data);
1750                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1751                                                         },
1752                                                 }
1753                                         },
1754                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1755                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1756                                         },
1757                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1758                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1759                                         }
1760                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1761                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1762                                                         log_pubkey!(node_id),
1763                                                         msg.short_channel_ids.len(),
1764                                                         msg.first_blocknum,
1765                                                         msg.number_of_blocks,
1766                                                         msg.sync_complete);
1767                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1768                                         }
1769                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1770                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1771                                         }
1772                                 }
1773                         }
1774
1775                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1776                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1777                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1778                         }
1779
1780                         for (descriptor, peer_mutex) in peers.iter() {
1781                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1782                         }
1783                 }
1784                 if !peers_to_disconnect.is_empty() {
1785                         let mut peers_lock = self.peers.write().unwrap();
1786                         let peers = &mut *peers_lock;
1787                         for (node_id, msg) in peers_to_disconnect.drain() {
1788                                 // Note that since we are holding the peers *write* lock we can
1789                                 // remove from node_id_to_descriptor immediately (as no other
1790                                 // thread can be holding the peer lock if we have the global write
1791                                 // lock).
1792
1793                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1794                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1795                                                 if let Some(msg) = msg {
1796                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1797                                                                         log_pubkey!(node_id),
1798                                                                         msg.data);
1799                                                         let mut peer = peer_mutex.lock().unwrap();
1800                                                         self.enqueue_message(&mut *peer, &msg);
1801                                                         // This isn't guaranteed to work, but if there is enough free
1802                                                         // room in the send buffer, put the error message there...
1803                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1804                                                 } else {
1805                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1806                                                 }
1807                                         }
1808                                         descriptor.disconnect_socket();
1809                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1810                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1811                                 }
1812                         }
1813                 }
1814         }
1815
1816         /// Indicates that the given socket descriptor's connection is now closed.
1817         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1818                 self.disconnect_event_internal(descriptor, false);
1819         }
1820
1821         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1822                 let mut peers = self.peers.write().unwrap();
1823                 let peer_option = peers.remove(descriptor);
1824                 match peer_option {
1825                         None => {
1826                                 // This is most likely a simple race condition where the user found that the socket
1827                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1828                                 // called this method. Either way we're disconnected, return.
1829                         },
1830                         Some(peer_lock) => {
1831                                 let peer = peer_lock.lock().unwrap();
1832                                 if let Some(node_id) = peer.their_node_id {
1833                                         log_trace!(self.logger,
1834                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1835                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1836                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1837                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1838                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1839                                 }
1840                         }
1841                 };
1842         }
1843
1844         /// Disconnect a peer given its node id.
1845         ///
1846         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1847         /// force-closing any channels we have with it.
1848         ///
1849         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1850         /// peer. Thus, be very careful about reentrancy issues.
1851         ///
1852         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1853         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1854                 let mut peers_lock = self.peers.write().unwrap();
1855                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1856                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1857                         peers_lock.remove(&descriptor);
1858                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1859                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1860                         descriptor.disconnect_socket();
1861                 }
1862         }
1863
1864         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1865         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1866         /// using regular ping/pongs.
1867         pub fn disconnect_all_peers(&self) {
1868                 let mut peers_lock = self.peers.write().unwrap();
1869                 self.node_id_to_descriptor.lock().unwrap().clear();
1870                 let peers = &mut *peers_lock;
1871                 for (mut descriptor, peer) in peers.drain() {
1872                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1873                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1874                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1875                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1876                         }
1877                         descriptor.disconnect_socket();
1878                 }
1879         }
1880
1881         /// This is called when we're blocked on sending additional gossip messages until we receive a
1882         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1883         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1884         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1885                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1886                         peer.awaiting_pong_timer_tick_intervals = -1;
1887                         let ping = msgs::Ping {
1888                                 ponglen: 0,
1889                                 byteslen: 64,
1890                         };
1891                         self.enqueue_message(peer, &ping);
1892                 }
1893         }
1894
1895         /// Send pings to each peer and disconnect those which did not respond to the last round of
1896         /// pings.
1897         ///
1898         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1899         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1900         /// time they have to respond before we disconnect them.
1901         ///
1902         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1903         /// issues!
1904         ///
1905         /// [`send_data`]: SocketDescriptor::send_data
1906         pub fn timer_tick_occurred(&self) {
1907                 let mut descriptors_needing_disconnect = Vec::new();
1908                 {
1909                         let peers_lock = self.peers.read().unwrap();
1910
1911                         for (descriptor, peer_mutex) in peers_lock.iter() {
1912                                 let mut peer = peer_mutex.lock().unwrap();
1913                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1914                                         // The peer needs to complete its handshake before we can exchange messages. We
1915                                         // give peers one timer tick to complete handshake, reusing
1916                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1917                                         // for handshake completion.
1918                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1919                                                 descriptors_needing_disconnect.push(descriptor.clone());
1920                                         } else {
1921                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1922                                         }
1923                                         continue;
1924                                 }
1925
1926                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1927                                         // Magic value set in `maybe_send_extra_ping`.
1928                                         peer.awaiting_pong_timer_tick_intervals = 1;
1929                                         peer.received_message_since_timer_tick = false;
1930                                         continue;
1931                                 }
1932
1933                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1934                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1935                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1936                                 {
1937                                         descriptors_needing_disconnect.push(descriptor.clone());
1938                                         continue;
1939                                 }
1940                                 peer.received_message_since_timer_tick = false;
1941
1942                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1943                                         peer.awaiting_pong_timer_tick_intervals += 1;
1944                                         continue;
1945                                 }
1946
1947                                 peer.awaiting_pong_timer_tick_intervals = 1;
1948                                 let ping = msgs::Ping {
1949                                         ponglen: 0,
1950                                         byteslen: 64,
1951                                 };
1952                                 self.enqueue_message(&mut *peer, &ping);
1953                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1954                         }
1955                 }
1956
1957                 if !descriptors_needing_disconnect.is_empty() {
1958                         {
1959                                 let mut peers_lock = self.peers.write().unwrap();
1960                                 for descriptor in descriptors_needing_disconnect.iter() {
1961                                         if let Some(peer) = peers_lock.remove(descriptor) {
1962                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1963                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1964                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1965                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1966                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1967                                                 }
1968                                         }
1969                                 }
1970                         }
1971
1972                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1973                                 descriptor.disconnect_socket();
1974                         }
1975                 }
1976         }
1977
1978         #[allow(dead_code)]
1979         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1980         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
1981         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1982         // message...
1983         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1984         #[deny(const_err)]
1985         #[allow(dead_code)]
1986         // ...by failing to compile if the number of addresses that would be half of a message is
1987         // smaller than 100:
1988         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
1989
1990         /// Generates a signed node_announcement from the given arguments, sending it to all connected
1991         /// peers. Note that peers will likely ignore this message unless we have at least one public
1992         /// channel which has at least six confirmations on-chain.
1993         ///
1994         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1995         /// node to humans. They carry no in-protocol meaning.
1996         ///
1997         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
1998         /// accepts incoming connections. These will be included in the node_announcement, publicly
1999         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2000         /// addresses should likely contain only Tor Onion addresses.
2001         ///
2002         /// Panics if `addresses` is absurdly large (more than 100).
2003         ///
2004         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2005         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2006                 if addresses.len() > 100 {
2007                         panic!("More than half the message size was taken up by public addresses!");
2008                 }
2009
2010                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2011                 // addresses be sorted for future compatibility.
2012                 addresses.sort_by_key(|addr| addr.get_id());
2013
2014                 let features = self.message_handler.chan_handler.provided_node_features()
2015                         .or(self.message_handler.route_handler.provided_node_features())
2016                         .or(self.message_handler.onion_message_handler.provided_node_features());
2017                 let announcement = msgs::UnsignedNodeAnnouncement {
2018                         features,
2019                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2020                         node_id: PublicKey::from_secret_key(&self.secp_ctx, &self.our_node_secret),
2021                         rgb, alias, addresses,
2022                         excess_address_data: Vec::new(),
2023                         excess_data: Vec::new(),
2024                 };
2025                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2026                 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_node_secret);
2027
2028                 let msg = msgs::NodeAnnouncement {
2029                         signature: node_announce_sig,
2030                         contents: announcement
2031                 };
2032
2033                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2034                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2035                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2036         }
2037 }
2038
2039 fn is_gossip_msg(type_id: u16) -> bool {
2040         match type_id {
2041                 msgs::ChannelAnnouncement::TYPE |
2042                 msgs::ChannelUpdate::TYPE |
2043                 msgs::NodeAnnouncement::TYPE |
2044                 msgs::QueryChannelRange::TYPE |
2045                 msgs::ReplyChannelRange::TYPE |
2046                 msgs::QueryShortChannelIds::TYPE |
2047                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2048                 _ => false
2049         }
2050 }
2051
2052 #[cfg(test)]
2053 mod tests {
2054         use crate::ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2055         use crate::ln::{msgs, wire};
2056         use crate::ln::msgs::NetAddress;
2057         use crate::util::events;
2058         use crate::util::test_utils;
2059
2060         use bitcoin::secp256k1::Secp256k1;
2061         use bitcoin::secp256k1::{SecretKey, PublicKey};
2062
2063         use crate::prelude::*;
2064         use crate::sync::{Arc, Mutex};
2065         use core::sync::atomic::Ordering;
2066
2067         #[derive(Clone)]
2068         struct FileDescriptor {
2069                 fd: u16,
2070                 outbound_data: Arc<Mutex<Vec<u8>>>,
2071         }
2072         impl PartialEq for FileDescriptor {
2073                 fn eq(&self, other: &Self) -> bool {
2074                         self.fd == other.fd
2075                 }
2076         }
2077         impl Eq for FileDescriptor { }
2078         impl core::hash::Hash for FileDescriptor {
2079                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2080                         self.fd.hash(hasher)
2081                 }
2082         }
2083
2084         impl SocketDescriptor for FileDescriptor {
2085                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2086                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2087                         data.len()
2088                 }
2089
2090                 fn disconnect_socket(&mut self) {}
2091         }
2092
2093         struct PeerManagerCfg {
2094                 chan_handler: test_utils::TestChannelMessageHandler,
2095                 routing_handler: test_utils::TestRoutingMessageHandler,
2096                 logger: test_utils::TestLogger,
2097         }
2098
2099         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2100                 let mut cfgs = Vec::new();
2101                 for _ in 0..peer_count {
2102                         cfgs.push(
2103                                 PeerManagerCfg{
2104                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2105                                         logger: test_utils::TestLogger::new(),
2106                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2107                                 }
2108                         );
2109                 }
2110
2111                 cfgs
2112         }
2113
2114         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
2115                 let mut peers = Vec::new();
2116                 for i in 0..peer_count {
2117                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2118                         let ephemeral_bytes = [i as u8; 32];
2119                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2120                         let peer = PeerManager::new(msg_handler, node_secret, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
2121                         peers.push(peer);
2122                 }
2123
2124                 peers
2125         }
2126
2127         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
2128                 let secp_ctx = Secp256k1::new();
2129                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
2130                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2131                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2132                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2133                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2134                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2135                 peer_a.process_events();
2136
2137                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2138                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2139
2140                 peer_b.process_events();
2141                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2142                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2143
2144                 peer_a.process_events();
2145                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2146                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2147
2148                 (fd_a.clone(), fd_b.clone())
2149         }
2150
2151         #[test]
2152         fn test_disconnect_peer() {
2153                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2154                 // push a DisconnectPeer event to remove the node flagged by id
2155                 let cfgs = create_peermgr_cfgs(2);
2156                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2157                 let mut peers = create_network(2, &cfgs);
2158                 establish_connection(&peers[0], &peers[1]);
2159                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2160
2161                 let secp_ctx = Secp256k1::new();
2162                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2163
2164                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2165                         node_id: their_id,
2166                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2167                 });
2168                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2169                 peers[0].message_handler.chan_handler = &chan_handler;
2170
2171                 peers[0].process_events();
2172                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2173         }
2174
2175         #[test]
2176         fn test_send_simple_msg() {
2177                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2178                 // push a message from one peer to another.
2179                 let cfgs = create_peermgr_cfgs(2);
2180                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2181                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2182                 let mut peers = create_network(2, &cfgs);
2183                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2184                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2185
2186                 let secp_ctx = Secp256k1::new();
2187                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2188
2189                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2190                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2191                         node_id: their_id, msg: msg.clone()
2192                 });
2193                 peers[0].message_handler.chan_handler = &a_chan_handler;
2194
2195                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2196                 peers[1].message_handler.chan_handler = &b_chan_handler;
2197
2198                 peers[0].process_events();
2199
2200                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2201                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2202         }
2203
2204         #[test]
2205         fn test_disconnect_all_peer() {
2206                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2207                 // then calls disconnect_all_peers
2208                 let cfgs = create_peermgr_cfgs(2);
2209                 let peers = create_network(2, &cfgs);
2210                 establish_connection(&peers[0], &peers[1]);
2211                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2212
2213                 peers[0].disconnect_all_peers();
2214                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2215         }
2216
2217         #[test]
2218         fn test_timer_tick_occurred() {
2219                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2220                 let cfgs = create_peermgr_cfgs(2);
2221                 let peers = create_network(2, &cfgs);
2222                 establish_connection(&peers[0], &peers[1]);
2223                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2224
2225                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2226                 peers[0].timer_tick_occurred();
2227                 peers[0].process_events();
2228                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2229
2230                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2231                 peers[0].timer_tick_occurred();
2232                 peers[0].process_events();
2233                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2234         }
2235
2236         #[test]
2237         fn test_do_attempt_write_data() {
2238                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2239                 let cfgs = create_peermgr_cfgs(2);
2240                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2241                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2242                 let peers = create_network(2, &cfgs);
2243
2244                 // By calling establish_connect, we trigger do_attempt_write_data between
2245                 // the peers. Previously this function would mistakenly enter an infinite loop
2246                 // when there were more channel messages available than could fit into a peer's
2247                 // buffer. This issue would now be detected by this test (because we use custom
2248                 // RoutingMessageHandlers that intentionally return more channel messages
2249                 // than can fit into a peer's buffer).
2250                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2251
2252                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2253                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2254                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2255                         peers[1].process_events();
2256                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2257                         assert!(!a_read_data.is_empty());
2258
2259                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2260                         peers[0].process_events();
2261
2262                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2263                         assert!(!b_read_data.is_empty());
2264                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2265
2266                         peers[0].process_events();
2267                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2268                 }
2269
2270                 // Check that each peer has received the expected number of channel updates and channel
2271                 // announcements.
2272                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2273                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2274                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2275                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2276         }
2277
2278         #[test]
2279         fn test_handshake_timeout() {
2280                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2281                 // tick.
2282                 let cfgs = create_peermgr_cfgs(2);
2283                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2284                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2285                 let peers = create_network(2, &cfgs);
2286
2287                 let secp_ctx = Secp256k1::new();
2288                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2289                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2290                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2291                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2292                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2293
2294                 // If we get a single timer tick before completion, that's fine
2295                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2296                 peers[0].timer_tick_occurred();
2297                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2298
2299                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2300                 peers[0].process_events();
2301                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2302                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2303                 peers[1].process_events();
2304
2305                 // ...but if we get a second timer tick, we should disconnect the peer
2306                 peers[0].timer_tick_occurred();
2307                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2308
2309                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2310                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2311         }
2312
2313         #[test]
2314         fn test_filter_addresses(){
2315                 // Tests the filter_addresses function.
2316
2317                 // For (10/8)
2318                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2319                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2320                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2321                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2322                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2323                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2324
2325                 // For (0/8)
2326                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2327                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2328                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2329                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2330                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2331                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2332
2333                 // For (100.64/10)
2334                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2335                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2336                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2337                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2338                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2339                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2340
2341                 // For (127/8)
2342                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2343                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2344                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2345                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2346                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2347                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2348
2349                 // For (169.254/16)
2350                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2351                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2352                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2353                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2354                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2355                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2356
2357                 // For (172.16/12)
2358                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2359                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2360                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2361                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2362                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2363                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2364
2365                 // For (192.168/16)
2366                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2367                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2368                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2369                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2370                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2371                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2372
2373                 // For (192.88.99/24)
2374                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2375                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2376                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2377                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2378                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2379                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2380
2381                 // For other IPv4 addresses
2382                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2383                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2384                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2385                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2386                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2387                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2388
2389                 // For (2000::/3)
2390                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2391                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2392                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2393                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2394                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2395                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2396
2397                 // For other IPv6 addresses
2398                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2399                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2400                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2401                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2402                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2403                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2404
2405                 // For (None)
2406                 assert_eq!(filter_addresses(None), None);
2407         }
2408 }