1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Top level peer message handling and socket handling logic lives here.
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
20 use ln::features::InitFeatures;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::NetGraphMsgHandler;
34 use alloc::collections::LinkedList;
35 use std::sync::{Arc, Mutex};
36 use core::sync::atomic::{AtomicUsize, Ordering};
37 use core::{cmp, hash, fmt, mem};
41 use bitcoin::hashes::sha256::Hash as Sha256;
42 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
43 use bitcoin::hashes::{HashEngine, Hash};
45 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
46 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
47 pub struct IgnoringMessageHandler{}
48 impl MessageSendEventsProvider for IgnoringMessageHandler {
49 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
51 impl RoutingMessageHandler for IgnoringMessageHandler {
52 fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
53 fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
54 fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
55 fn handle_htlc_fail_channel_update(&self, _update: &msgs::HTLCFailChannelUpdate) {}
56 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
57 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
58 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
59 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
60 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
61 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
62 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
63 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
65 impl Deref for IgnoringMessageHandler {
66 type Target = IgnoringMessageHandler;
67 fn deref(&self) -> &Self { self }
70 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
71 /// You can provide one of these as the route_handler in a MessageHandler.
72 pub struct ErroringMessageHandler {
73 message_queue: Mutex<Vec<MessageSendEvent>>
75 impl ErroringMessageHandler {
76 /// Constructs a new ErroringMessageHandler
77 pub fn new() -> Self {
78 Self { message_queue: Mutex::new(Vec::new()) }
80 fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
81 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
82 action: msgs::ErrorAction::SendErrorMessage {
83 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
85 node_id: node_id.clone(),
89 impl MessageSendEventsProvider for ErroringMessageHandler {
90 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
91 let mut res = Vec::new();
92 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
96 impl ChannelMessageHandler for ErroringMessageHandler {
97 // Any messages which are related to a specific channel generate an error message to let the
98 // peer know we don't care about channels.
99 fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
100 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
102 fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
103 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
105 fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
106 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
108 fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
109 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
111 fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
112 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
114 fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
115 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
117 fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
118 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
120 fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
121 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
123 fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
124 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
126 fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
127 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
129 fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
130 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
132 fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
133 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
135 fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
136 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
138 fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
139 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
141 fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
142 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
144 fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
145 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
147 // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
148 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
149 fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
150 fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
151 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
153 impl Deref for ErroringMessageHandler {
154 type Target = ErroringMessageHandler;
155 fn deref(&self) -> &Self { self }
158 /// Provides references to trait impls which handle different types of messages.
159 pub struct MessageHandler<CM: Deref, RM: Deref> where
160 CM::Target: ChannelMessageHandler,
161 RM::Target: RoutingMessageHandler {
162 /// A message handler which handles messages specific to channels. Usually this is just a
163 /// ChannelManager object or a ErroringMessageHandler.
164 pub chan_handler: CM,
165 /// A message handler which handles messages updating our knowledge of the network channel
166 /// graph. Usually this is just a NetGraphMsgHandlerMonitor object or an IgnoringMessageHandler.
167 pub route_handler: RM,
170 /// Provides an object which can be used to send data to and which uniquely identifies a connection
171 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
172 /// implement Hash to meet the PeerManager API.
174 /// For efficiency, Clone should be relatively cheap for this type.
176 /// You probably want to just extend an int and put a file descriptor in a struct and implement
177 /// send_data. Note that if you are using a higher-level net library that may call close() itself,
178 /// be careful to ensure you don't have races whereby you might register a new connection with an
179 /// fd which is the same as a previous one which has yet to be removed via
180 /// PeerManager::socket_disconnected().
181 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
182 /// Attempts to send some data from the given slice to the peer.
184 /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
185 /// Note that in the disconnected case, socket_disconnected must still fire and further write
186 /// attempts may occur until that time.
188 /// If the returned size is smaller than data.len(), a write_available event must
189 /// trigger the next time more data can be written. Additionally, until the a send_data event
190 /// completes fully, no further read_events should trigger on the same peer!
192 /// If a read_event on this descriptor had previously returned true (indicating that read
193 /// events should be paused to prevent DoS in the send buffer), resume_read may be set
194 /// indicating that read events on this descriptor should resume. A resume_read of false does
195 /// *not* imply that further read events should be paused.
196 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
197 /// Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no
198 /// more calls to write_buffer_space_avail, read_event or socket_disconnected may be made with
199 /// this descriptor. No socket_disconnected call should be generated as a result of this call,
200 /// though races may occur whereby disconnect_socket is called after a call to
201 /// socket_disconnected but prior to socket_disconnected returning.
202 fn disconnect_socket(&mut self);
205 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
206 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
209 pub struct PeerHandleError {
210 /// Used to indicate that we probably can't make any future connections to this peer, implying
211 /// we should go ahead and force-close any channels we have with it.
212 pub no_connection_possible: bool,
214 impl fmt::Debug for PeerHandleError {
215 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
216 formatter.write_str("Peer Sent Invalid Data")
219 impl fmt::Display for PeerHandleError {
220 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
221 formatter.write_str("Peer Sent Invalid Data")
224 impl error::Error for PeerHandleError {
225 fn description(&self) -> &str {
226 "Peer Sent Invalid Data"
230 enum InitSyncTracker{
232 ChannelsSyncing(u64),
233 NodesSyncing(PublicKey),
237 channel_encryptor: PeerChannelEncryptor,
238 their_node_id: Option<PublicKey>,
239 their_features: Option<InitFeatures>,
241 pending_outbound_buffer: LinkedList<Vec<u8>>,
242 pending_outbound_buffer_first_msg_offset: usize,
243 awaiting_write_event: bool,
245 pending_read_buffer: Vec<u8>,
246 pending_read_buffer_pos: usize,
247 pending_read_is_header: bool,
249 sync_status: InitSyncTracker,
255 /// Returns true if the channel announcements/updates for the given channel should be
256 /// forwarded to this peer.
257 /// If we are sending our routing table to this peer and we have not yet sent channel
258 /// announcements/updates for the given channel_id then we will send it when we get to that
259 /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
260 /// sent the old versions, we should send the update, and so return true here.
261 fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
262 match self.sync_status {
263 InitSyncTracker::NoSyncRequested => true,
264 InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
265 InitSyncTracker::NodesSyncing(_) => true,
269 /// Similar to the above, but for node announcements indexed by node_id.
270 fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
271 match self.sync_status {
272 InitSyncTracker::NoSyncRequested => true,
273 InitSyncTracker::ChannelsSyncing(_) => false,
274 InitSyncTracker::NodesSyncing(pk) => pk < node_id,
279 struct PeerHolder<Descriptor: SocketDescriptor> {
280 peers: HashMap<Descriptor, Peer>,
281 /// Added to by do_read_event for cases where we pushed a message onto the send buffer but
282 /// didn't call do_attempt_write_data to avoid reentrancy. Cleared in process_events()
283 peers_needing_send: HashSet<Descriptor>,
284 /// Only add to this set when noise completes:
285 node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
288 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
289 fn _check_usize_is_32_or_64() {
290 // See below, less than 32 bit pointers may be unsafe here!
291 unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
294 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
295 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
296 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
297 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
298 /// issues such as overly long function definitions.
299 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>>;
301 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
302 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
303 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
304 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
305 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
306 /// helps with issues such as long function definitions.
307 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L>;
309 /// A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket
310 /// events into messages which it passes on to its MessageHandlers.
312 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
313 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
314 /// essentially you should default to using a SimpleRefPeerManager, and use a
315 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
316 /// you're using lightning-net-tokio.
317 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> where
318 CM::Target: ChannelMessageHandler,
319 RM::Target: RoutingMessageHandler,
321 message_handler: MessageHandler<CM, RM>,
322 peers: Mutex<PeerHolder<Descriptor>>,
323 our_node_secret: SecretKey,
324 ephemeral_key_midstate: Sha256Engine,
326 // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
327 // bits we will never realistically count into high:
328 peer_counter_low: AtomicUsize,
329 peer_counter_high: AtomicUsize,
334 enum MessageHandlingError {
335 PeerHandleError(PeerHandleError),
336 LightningError(LightningError),
339 impl From<PeerHandleError> for MessageHandlingError {
340 fn from(error: PeerHandleError) -> Self {
341 MessageHandlingError::PeerHandleError(error)
345 impl From<LightningError> for MessageHandlingError {
346 fn from(error: LightningError) -> Self {
347 MessageHandlingError::LightningError(error)
351 macro_rules! encode_msg {
353 let mut buffer = VecWriter(Vec::new());
354 wire::write($msg, &mut buffer).unwrap();
359 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L> where
360 CM::Target: ChannelMessageHandler,
362 /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
363 /// handler is used and network graph messages are ignored.
365 /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
366 /// cryptographically secure random bytes.
368 /// (C-not exported) as we can't export a PeerManager with a dummy route handler
369 pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
370 Self::new(MessageHandler {
371 chan_handler: channel_message_handler,
372 route_handler: IgnoringMessageHandler{},
373 }, our_node_secret, ephemeral_random_data, logger)
377 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L> where
378 RM::Target: RoutingMessageHandler,
380 /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
381 /// handler is used and messages related to channels will be ignored (or generate error
382 /// messages). Note that some other lightning implementations time-out connections after some
383 /// time if no channel is built with the peer.
385 /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
386 /// cryptographically secure random bytes.
388 /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
389 pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
390 Self::new(MessageHandler {
391 chan_handler: ErroringMessageHandler::new(),
392 route_handler: routing_message_handler,
393 }, our_node_secret, ephemeral_random_data, logger)
397 /// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds.
398 /// PeerIds may repeat, but only after socket_disconnected() has been called.
399 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> PeerManager<Descriptor, CM, RM, L> where
400 CM::Target: ChannelMessageHandler,
401 RM::Target: RoutingMessageHandler,
403 /// Constructs a new PeerManager with the given message handlers and node_id secret key
404 /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
405 /// cryptographically secure random bytes.
406 pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
407 let mut ephemeral_key_midstate = Sha256::engine();
408 ephemeral_key_midstate.input(ephemeral_random_data);
412 peers: Mutex::new(PeerHolder {
413 peers: HashMap::new(),
414 peers_needing_send: HashSet::new(),
415 node_id_to_descriptor: HashMap::new()
418 ephemeral_key_midstate,
419 peer_counter_low: AtomicUsize::new(0),
420 peer_counter_high: AtomicUsize::new(0),
425 /// Get the list of node ids for peers which have completed the initial handshake.
427 /// For outbound connections, this will be the same as the their_node_id parameter passed in to
428 /// new_outbound_connection, however entries will only appear once the initial handshake has
429 /// completed and we are sure the remote peer has the private key for the given node_id.
430 pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
431 let peers = self.peers.lock().unwrap();
432 peers.peers.values().filter_map(|p| {
433 if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
440 fn get_ephemeral_key(&self) -> SecretKey {
441 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
442 let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
443 let high = if low == 0 {
444 self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
446 self.peer_counter_high.load(Ordering::Acquire)
448 ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
449 ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
450 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
453 /// Indicates a new outbound connection has been established to a node with the given node_id.
454 /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
455 /// descriptor but must disconnect the connection immediately.
457 /// Returns a small number of bytes to send to the remote node (currently always 50).
459 /// Panics if descriptor is duplicative with some other descriptor which has not yet had a
460 /// socket_disconnected().
461 pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
462 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
463 let res = peer_encryptor.get_act_one().to_vec();
464 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
466 let mut peers = self.peers.lock().unwrap();
467 if peers.peers.insert(descriptor, Peer {
468 channel_encryptor: peer_encryptor,
470 their_features: None,
472 pending_outbound_buffer: LinkedList::new(),
473 pending_outbound_buffer_first_msg_offset: 0,
474 awaiting_write_event: false,
477 pending_read_buffer_pos: 0,
478 pending_read_is_header: false,
480 sync_status: InitSyncTracker::NoSyncRequested,
482 awaiting_pong: false,
484 panic!("PeerManager driver duplicated descriptors!");
489 /// Indicates a new inbound connection has been established.
491 /// May refuse the connection by returning an Err, but will never write bytes to the remote end
492 /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
493 /// call socket_disconnected for the new descriptor but must disconnect the connection
496 /// Panics if descriptor is duplicative with some other descriptor which has not yet had
497 /// socket_disconnected called.
498 pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
499 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
500 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
502 let mut peers = self.peers.lock().unwrap();
503 if peers.peers.insert(descriptor, Peer {
504 channel_encryptor: peer_encryptor,
506 their_features: None,
508 pending_outbound_buffer: LinkedList::new(),
509 pending_outbound_buffer_first_msg_offset: 0,
510 awaiting_write_event: false,
513 pending_read_buffer_pos: 0,
514 pending_read_is_header: false,
516 sync_status: InitSyncTracker::NoSyncRequested,
518 awaiting_pong: false,
520 panic!("PeerManager driver duplicated descriptors!");
525 fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
526 macro_rules! encode_and_send_msg {
529 log_trace!(self.logger, "Encoding and sending sync update message of type {} to {}", $msg.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
530 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg)[..]));
534 const MSG_BUFF_SIZE: usize = 10;
535 while !peer.awaiting_write_event {
536 if peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE {
537 match peer.sync_status {
538 InitSyncTracker::NoSyncRequested => {},
539 InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
540 let steps = ((MSG_BUFF_SIZE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
541 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
542 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
543 encode_and_send_msg!(announce);
544 if let &Some(ref update_a) = update_a_option {
545 encode_and_send_msg!(update_a);
547 if let &Some(ref update_b) = update_b_option {
548 encode_and_send_msg!(update_b);
550 peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
552 if all_messages.is_empty() || all_messages.len() != steps as usize {
553 peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
556 InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
557 let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
558 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
559 for msg in all_messages.iter() {
560 encode_and_send_msg!(msg);
561 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
563 if all_messages.is_empty() || all_messages.len() != steps as usize {
564 peer.sync_status = InitSyncTracker::NoSyncRequested;
567 InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
568 InitSyncTracker::NodesSyncing(key) => {
569 let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
570 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
571 for msg in all_messages.iter() {
572 encode_and_send_msg!(msg);
573 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
575 if all_messages.is_empty() || all_messages.len() != steps as usize {
576 peer.sync_status = InitSyncTracker::NoSyncRequested;
583 let next_buff = match peer.pending_outbound_buffer.front() {
588 let should_be_reading = peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE;
589 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
590 let data_sent = descriptor.send_data(pending, should_be_reading);
591 peer.pending_outbound_buffer_first_msg_offset += data_sent;
592 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
594 peer.pending_outbound_buffer_first_msg_offset = 0;
595 peer.pending_outbound_buffer.pop_front();
597 peer.awaiting_write_event = true;
602 /// Indicates that there is room to write data to the given socket descriptor.
604 /// May return an Err to indicate that the connection should be closed.
606 /// Will most likely call send_data on the descriptor passed in (or the descriptor handed into
607 /// new_*\_connection) before returning. Thus, be very careful with reentrancy issues! The
608 /// invariants around calling write_buffer_space_avail in case a write did not fully complete
609 /// must still hold - be ready to call write_buffer_space_avail again if a write call generated
610 /// here isn't sufficient! Panics if the descriptor was not previously registered in a
611 /// new_\*_connection event.
612 pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
613 let mut peers = self.peers.lock().unwrap();
614 match peers.peers.get_mut(descriptor) {
615 None => panic!("Descriptor for write_event is not already known to PeerManager"),
617 peer.awaiting_write_event = false;
618 self.do_attempt_write_data(descriptor, peer);
624 /// Indicates that data was read from the given socket descriptor.
626 /// May return an Err to indicate that the connection should be closed.
628 /// Will *not* call back into send_data on any descriptors to avoid reentrancy complexity.
629 /// Thus, however, you almost certainly want to call process_events() after any read_event to
630 /// generate send_data calls to handle responses.
632 /// If Ok(true) is returned, further read_events should not be triggered until a send_data call
633 /// on this file descriptor has resume_read set (preventing DoS issues in the send buffer).
635 /// Panics if the descriptor was not previously registered in a new_*_connection event.
636 pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
637 match self.do_read_event(peer_descriptor, data) {
640 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
646 /// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly.
647 fn enqueue_message<M: Encode + Writeable>(&self, peers_needing_send: &mut HashSet<Descriptor>, peer: &mut Peer, descriptor: Descriptor, message: &M) {
648 let mut buffer = VecWriter(Vec::new());
649 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
650 let encoded_message = buffer.0;
652 log_trace!(self.logger, "Enqueueing message of type {} to {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
653 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
654 peers_needing_send.insert(descriptor);
657 fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
659 let mut peers_lock = self.peers.lock().unwrap();
660 let peers = &mut *peers_lock;
661 let pause_read = match peers.peers.get_mut(peer_descriptor) {
662 None => panic!("Descriptor for read_event is not already known to PeerManager"),
664 assert!(peer.pending_read_buffer.len() > 0);
665 assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
667 let mut read_pos = 0;
668 while read_pos < data.len() {
670 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
671 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
672 read_pos += data_to_copy;
673 peer.pending_read_buffer_pos += data_to_copy;
676 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
677 peer.pending_read_buffer_pos = 0;
679 macro_rules! try_potential_handleerror {
685 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
686 //TODO: Try to push msg
687 log_trace!(self.logger, "Got Err handling message, disconnecting peer because {}", e.err);
688 return Err(PeerHandleError{ no_connection_possible: false });
690 msgs::ErrorAction::IgnoreError => {
691 log_trace!(self.logger, "Got Err handling message, ignoring because {}", e.err);
694 msgs::ErrorAction::SendErrorMessage { msg } => {
695 log_trace!(self.logger, "Got Err handling message, sending Error message because {}", e.err);
696 self.enqueue_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), &msg);
705 macro_rules! insert_node_id {
707 match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
708 hash_map::Entry::Occupied(_) => {
709 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
710 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
711 return Err(PeerHandleError{ no_connection_possible: false })
713 hash_map::Entry::Vacant(entry) => {
714 log_trace!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
715 entry.insert(peer_descriptor.clone())
721 let next_step = peer.channel_encryptor.get_noise_step();
723 NextNoiseStep::ActOne => {
724 let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
725 peer.pending_outbound_buffer.push_back(act_two);
726 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
728 NextNoiseStep::ActTwo => {
729 let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
730 peer.pending_outbound_buffer.push_back(act_three.to_vec());
731 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
732 peer.pending_read_is_header = true;
734 peer.their_node_id = Some(their_node_id);
736 let features = InitFeatures::known();
737 let resp = msgs::Init { features };
738 self.enqueue_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), &resp);
740 NextNoiseStep::ActThree => {
741 let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
742 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
743 peer.pending_read_is_header = true;
744 peer.their_node_id = Some(their_node_id);
746 let features = InitFeatures::known();
747 let resp = msgs::Init { features };
748 self.enqueue_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), &resp);
750 NextNoiseStep::NoiseComplete => {
751 if peer.pending_read_is_header {
752 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
753 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
754 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
755 if msg_len < 2 { // Need at least the message type tag
756 return Err(PeerHandleError{ no_connection_possible: false });
758 peer.pending_read_is_header = false;
760 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
761 assert!(msg_data.len() >= 2);
764 peer.pending_read_buffer = [0; 18].to_vec();
765 peer.pending_read_is_header = true;
767 let mut reader = ::std::io::Cursor::new(&msg_data[..]);
768 let message_result = wire::read(&mut reader);
769 let message = match message_result {
773 msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
774 msgs::DecodeError::UnknownRequiredFeature => {
775 log_debug!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
778 msgs::DecodeError::InvalidValue => {
779 log_debug!(self.logger, "Got an invalid value while deserializing message");
780 return Err(PeerHandleError { no_connection_possible: false });
782 msgs::DecodeError::ShortRead => {
783 log_debug!(self.logger, "Deserialization failed due to shortness of message");
784 return Err(PeerHandleError { no_connection_possible: false });
786 msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
787 msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
788 msgs::DecodeError::UnsupportedCompression => {
789 log_debug!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
796 if let Err(handling_error) = self.handle_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), message){
797 match handling_error {
798 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
799 MessageHandlingError::LightningError(e) => {
800 try_potential_handleerror!(Err(e));
810 peer.pending_outbound_buffer.len() > 10 // pause_read
820 /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
821 fn handle_message(&self, peers_needing_send: &mut HashSet<Descriptor>, peer: &mut Peer, peer_descriptor: Descriptor, message: wire::Message) -> Result<(), MessageHandlingError> {
822 log_trace!(self.logger, "Received message of type {} from {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
824 // Need an Init as first message
825 if let wire::Message::Init(_) = message {
826 } else if peer.their_features.is_none() {
827 log_trace!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
828 return Err(PeerHandleError{ no_connection_possible: false }.into());
832 // Setup and Control messages:
833 wire::Message::Init(msg) => {
834 if msg.features.requires_unknown_bits() {
835 log_info!(self.logger, "Peer features required unknown version bits");
836 return Err(PeerHandleError{ no_connection_possible: true }.into());
838 if peer.their_features.is_some() {
839 return Err(PeerHandleError{ no_connection_possible: false }.into());
843 self.logger, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, gossip_queries: {}, static_remote_key: {}, unknown flags (local and global): {}",
844 if msg.features.supports_data_loss_protect() { "supported" } else { "not supported"},
845 if msg.features.initial_routing_sync() { "requested" } else { "not requested" },
846 if msg.features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
847 if msg.features.supports_gossip_queries() { "supported" } else { "not supported" },
848 if msg.features.supports_static_remote_key() { "supported" } else { "not supported"},
849 if msg.features.supports_unknown_bits() { "present" } else { "none" }
852 if msg.features.initial_routing_sync() {
853 peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
854 peers_needing_send.insert(peer_descriptor.clone());
856 if !msg.features.supports_static_remote_key() {
857 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
858 return Err(PeerHandleError{ no_connection_possible: true }.into());
861 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
863 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
864 peer.their_features = Some(msg.features);
866 wire::Message::Error(msg) => {
867 let mut data_is_printable = true;
868 for b in msg.data.bytes() {
869 if b < 32 || b > 126 {
870 data_is_printable = false;
875 if data_is_printable {
876 log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
878 log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
880 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
881 if msg.channel_id == [0; 32] {
882 return Err(PeerHandleError{ no_connection_possible: true }.into());
886 wire::Message::Ping(msg) => {
887 if msg.ponglen < 65532 {
888 let resp = msgs::Pong { byteslen: msg.ponglen };
889 self.enqueue_message(peers_needing_send, peer, peer_descriptor.clone(), &resp);
892 wire::Message::Pong(_msg) => {
893 peer.awaiting_pong = false;
897 wire::Message::OpenChannel(msg) => {
898 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
900 wire::Message::AcceptChannel(msg) => {
901 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
904 wire::Message::FundingCreated(msg) => {
905 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
907 wire::Message::FundingSigned(msg) => {
908 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
910 wire::Message::FundingLocked(msg) => {
911 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
914 wire::Message::Shutdown(msg) => {
915 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
917 wire::Message::ClosingSigned(msg) => {
918 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
921 // Commitment messages:
922 wire::Message::UpdateAddHTLC(msg) => {
923 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
925 wire::Message::UpdateFulfillHTLC(msg) => {
926 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
928 wire::Message::UpdateFailHTLC(msg) => {
929 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
931 wire::Message::UpdateFailMalformedHTLC(msg) => {
932 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
935 wire::Message::CommitmentSigned(msg) => {
936 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
938 wire::Message::RevokeAndACK(msg) => {
939 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
941 wire::Message::UpdateFee(msg) => {
942 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
944 wire::Message::ChannelReestablish(msg) => {
945 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
949 wire::Message::AnnouncementSignatures(msg) => {
950 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
952 wire::Message::ChannelAnnouncement(msg) => {
953 let should_forward = match self.message_handler.route_handler.handle_channel_announcement(&msg) {
955 Err(e) => { return Err(e.into()); },
959 // TODO: forward msg along to all our other peers!
962 wire::Message::NodeAnnouncement(msg) => {
963 let should_forward = match self.message_handler.route_handler.handle_node_announcement(&msg) {
965 Err(e) => { return Err(e.into()); },
969 // TODO: forward msg along to all our other peers!
972 wire::Message::ChannelUpdate(msg) => {
973 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
974 let should_forward = match self.message_handler.route_handler.handle_channel_update(&msg) {
976 Err(e) => { return Err(e.into()); },
980 // TODO: forward msg along to all our other peers!
983 wire::Message::QueryShortChannelIds(msg) => {
984 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
986 wire::Message::ReplyShortChannelIdsEnd(msg) => {
987 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
989 wire::Message::QueryChannelRange(msg) => {
990 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
992 wire::Message::ReplyChannelRange(msg) => {
993 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
995 wire::Message::GossipTimestampFilter(_msg) => {
996 // TODO: handle message
1000 wire::Message::Unknown(msg_type) if msg_type.is_even() => {
1001 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", msg_type);
1002 // Fail the channel if message is an even, unknown type as per BOLT #1.
1003 return Err(PeerHandleError{ no_connection_possible: true }.into());
1005 wire::Message::Unknown(msg_type) => {
1006 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", msg_type);
1012 fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message, except_node: Option<&PublicKey>) {
1014 wire::Message::ChannelAnnouncement(ref msg) => {
1015 let encoded_msg = encode_msg!(msg);
1017 for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
1018 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1019 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1022 if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1023 peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1026 if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1029 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1030 peers.peers_needing_send.insert((*descriptor).clone());
1033 wire::Message::NodeAnnouncement(ref msg) => {
1034 let encoded_msg = encode_msg!(msg);
1036 for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
1037 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1038 !peer.should_forward_node_announcement(msg.contents.node_id) {
1041 if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1044 if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1047 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1048 peers.peers_needing_send.insert((*descriptor).clone());
1051 wire::Message::ChannelUpdate(ref msg) => {
1052 let encoded_msg = encode_msg!(msg);
1054 for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
1055 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1056 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1059 if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1062 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1063 peers.peers_needing_send.insert((*descriptor).clone());
1066 _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1070 /// Checks for any events generated by our handlers and processes them. Includes sending most
1071 /// response messages as well as messages generated by calls to handler functions directly (eg
1072 /// functions like ChannelManager::process_pending_htlc_forward or send_payment).
1073 pub fn process_events(&self) {
1075 // TODO: There are some DoS attacks here where you can flood someone's outbound send
1076 // buffer by doing things like announcing channels on another node. We should be willing to
1077 // drop optional-ish messages when send buffers get full!
1079 let mut peers_lock = self.peers.lock().unwrap();
1080 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1081 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1082 let peers = &mut *peers_lock;
1083 for event in events_generated.drain(..) {
1084 macro_rules! get_peer_for_forwarding {
1085 ($node_id: expr) => {
1087 let descriptor = match peers.node_id_to_descriptor.get($node_id) {
1088 Some(descriptor) => descriptor.clone(),
1093 match peers.peers.get_mut(&descriptor) {
1095 if peer.their_features.is_none() {
1100 None => panic!("Inconsistent peers set state!"),
1106 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1107 log_trace!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1108 log_pubkey!(node_id),
1109 log_bytes!(msg.temporary_channel_id));
1110 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1111 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1112 self.do_attempt_write_data(&mut descriptor, peer);
1114 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1115 log_trace!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1116 log_pubkey!(node_id),
1117 log_bytes!(msg.temporary_channel_id));
1118 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1119 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1120 self.do_attempt_write_data(&mut descriptor, peer);
1122 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1123 log_trace!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1124 log_pubkey!(node_id),
1125 log_bytes!(msg.temporary_channel_id),
1126 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1127 // TODO: If the peer is gone we should generate a DiscardFunding event
1128 // indicating to the wallet that they should just throw away this funding transaction
1129 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1130 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1131 self.do_attempt_write_data(&mut descriptor, peer);
1133 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1134 log_trace!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1135 log_pubkey!(node_id),
1136 log_bytes!(msg.channel_id));
1137 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1138 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1139 self.do_attempt_write_data(&mut descriptor, peer);
1141 MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1142 log_trace!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1143 log_pubkey!(node_id),
1144 log_bytes!(msg.channel_id));
1145 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1146 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1147 self.do_attempt_write_data(&mut descriptor, peer);
1149 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1150 log_trace!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1151 log_pubkey!(node_id),
1152 log_bytes!(msg.channel_id));
1153 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1154 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1155 self.do_attempt_write_data(&mut descriptor, peer);
1157 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1158 log_trace!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1159 log_pubkey!(node_id),
1160 update_add_htlcs.len(),
1161 update_fulfill_htlcs.len(),
1162 update_fail_htlcs.len(),
1163 log_bytes!(commitment_signed.channel_id));
1164 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1165 for msg in update_add_htlcs {
1166 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1168 for msg in update_fulfill_htlcs {
1169 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1171 for msg in update_fail_htlcs {
1172 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1174 for msg in update_fail_malformed_htlcs {
1175 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1177 if let &Some(ref msg) = update_fee {
1178 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1180 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_signed)));
1181 self.do_attempt_write_data(&mut descriptor, peer);
1183 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1184 log_trace!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1185 log_pubkey!(node_id),
1186 log_bytes!(msg.channel_id));
1187 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1188 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1189 self.do_attempt_write_data(&mut descriptor, peer);
1191 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1192 log_trace!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1193 log_pubkey!(node_id),
1194 log_bytes!(msg.channel_id));
1195 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1196 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1197 self.do_attempt_write_data(&mut descriptor, peer);
1199 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1200 log_trace!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1201 log_pubkey!(node_id),
1202 log_bytes!(msg.channel_id));
1203 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1204 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1205 self.do_attempt_write_data(&mut descriptor, peer);
1207 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1208 log_trace!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1209 log_pubkey!(node_id),
1210 log_bytes!(msg.channel_id));
1211 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1212 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1213 self.do_attempt_write_data(&mut descriptor, peer);
1215 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1216 log_trace!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1217 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1218 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1219 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1222 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1223 log_trace!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1224 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1225 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1228 MessageSendEvent::BroadcastChannelUpdate { msg } => {
1229 log_trace!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1230 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1231 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1234 MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
1235 self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
1237 MessageSendEvent::HandleError { ref node_id, ref action } => {
1239 msgs::ErrorAction::DisconnectPeer { ref msg } => {
1240 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1241 peers.peers_needing_send.remove(&descriptor);
1242 if let Some(mut peer) = peers.peers.remove(&descriptor) {
1243 if let Some(ref msg) = *msg {
1244 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1245 log_pubkey!(node_id),
1247 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1248 // This isn't guaranteed to work, but if there is enough free
1249 // room in the send buffer, put the error message there...
1250 self.do_attempt_write_data(&mut descriptor, &mut peer);
1252 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1255 descriptor.disconnect_socket();
1256 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1259 msgs::ErrorAction::IgnoreError => {},
1260 msgs::ErrorAction::SendErrorMessage { ref msg } => {
1261 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1262 log_pubkey!(node_id),
1264 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1265 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1266 self.do_attempt_write_data(&mut descriptor, peer);
1270 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1271 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1272 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1273 self.do_attempt_write_data(&mut descriptor, peer);
1275 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1276 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1277 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1278 self.do_attempt_write_data(&mut descriptor, peer);
1280 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1281 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1282 log_pubkey!(node_id),
1283 msg.short_channel_ids.len(),
1285 msg.number_of_blocks,
1287 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id);
1288 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1289 self.do_attempt_write_data(&mut descriptor, peer);
1294 for mut descriptor in peers.peers_needing_send.drain() {
1295 match peers.peers.get_mut(&descriptor) {
1296 Some(peer) => self.do_attempt_write_data(&mut descriptor, peer),
1297 None => panic!("Inconsistent peers set state!"),
1303 /// Indicates that the given socket descriptor's connection is now closed.
1305 /// This must only be called if the socket has been disconnected by the peer or your own
1306 /// decision to disconnect it and must NOT be called in any case where other parts of this
1307 /// library (eg PeerHandleError, explicit disconnect_socket calls) instruct you to disconnect
1310 /// Panics if the descriptor was not previously registered in a successful new_*_connection event.
1311 pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1312 self.disconnect_event_internal(descriptor, false);
1315 fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1316 let mut peers = self.peers.lock().unwrap();
1317 peers.peers_needing_send.remove(descriptor);
1318 let peer_option = peers.peers.remove(descriptor);
1320 None => panic!("Descriptor for disconnect_event is not already known to PeerManager"),
1322 match peer.their_node_id {
1324 peers.node_id_to_descriptor.remove(&node_id);
1325 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1333 /// Disconnect a peer given its node id.
1335 /// Set no_connection_possible to true to prevent any further connection with this peer,
1336 /// force-closing any channels we have with it.
1338 /// If a peer is connected, this will call `disconnect_socket` on the descriptor for the peer,
1339 /// so be careful about reentrancy issues.
1340 pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1341 let mut peers_lock = self.peers.lock().unwrap();
1342 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1343 log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1344 peers_lock.peers.remove(&descriptor);
1345 peers_lock.peers_needing_send.remove(&descriptor);
1346 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1347 descriptor.disconnect_socket();
1351 /// This function should be called roughly once every 30 seconds.
1352 /// It will send pings to each peer and disconnect those which did not respond to the last round of pings.
1354 /// Will most likely call send_data on all of the registered descriptors, thus, be very careful with reentrancy issues!
1355 pub fn timer_tick_occurred(&self) {
1356 let mut peers_lock = self.peers.lock().unwrap();
1358 let peers = &mut *peers_lock;
1359 let peers_needing_send = &mut peers.peers_needing_send;
1360 let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1361 let peers = &mut peers.peers;
1362 let mut descriptors_needing_disconnect = Vec::new();
1364 peers.retain(|descriptor, peer| {
1365 if peer.awaiting_pong {
1366 peers_needing_send.remove(descriptor);
1367 descriptors_needing_disconnect.push(descriptor.clone());
1368 match peer.their_node_id {
1370 log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1371 node_id_to_descriptor.remove(&node_id);
1372 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1375 // This can't actually happen as we should have hit
1376 // is_ready_for_encryption() previously on this same peer.
1383 if !peer.channel_encryptor.is_ready_for_encryption() {
1384 // The peer needs to complete its handshake before we can exchange messages
1388 let ping = msgs::Ping {
1392 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(&ping)));
1394 let mut descriptor_clone = descriptor.clone();
1395 self.do_attempt_write_data(&mut descriptor_clone, peer);
1397 peer.awaiting_pong = true;
1401 for mut descriptor in descriptors_needing_disconnect.drain(..) {
1402 descriptor.disconnect_socket();
1410 use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
1413 use util::test_utils;
1415 use bitcoin::secp256k1::Secp256k1;
1416 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1419 use std::sync::{Arc, Mutex};
1420 use core::sync::atomic::Ordering;
1423 struct FileDescriptor {
1425 outbound_data: Arc<Mutex<Vec<u8>>>,
1427 impl PartialEq for FileDescriptor {
1428 fn eq(&self, other: &Self) -> bool {
1432 impl Eq for FileDescriptor { }
1433 impl core::hash::Hash for FileDescriptor {
1434 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1435 self.fd.hash(hasher)
1439 impl SocketDescriptor for FileDescriptor {
1440 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1441 self.outbound_data.lock().unwrap().extend_from_slice(data);
1445 fn disconnect_socket(&mut self) {}
1448 struct PeerManagerCfg {
1449 chan_handler: test_utils::TestChannelMessageHandler,
1450 routing_handler: test_utils::TestRoutingMessageHandler,
1451 logger: test_utils::TestLogger,
1454 fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1455 let mut cfgs = Vec::new();
1456 for _ in 0..peer_count {
1459 chan_handler: test_utils::TestChannelMessageHandler::new(),
1460 logger: test_utils::TestLogger::new(),
1461 routing_handler: test_utils::TestRoutingMessageHandler::new(),
1469 fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>> {
1470 let mut peers = Vec::new();
1471 for i in 0..peer_count {
1472 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1473 let ephemeral_bytes = [i as u8; 32];
1474 let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1475 let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger);
1482 fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>) -> (FileDescriptor, FileDescriptor) {
1483 let secp_ctx = Secp256k1::new();
1484 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1485 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1486 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1487 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1488 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1489 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1490 peer_a.process_events();
1491 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1492 peer_b.process_events();
1493 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1494 (fd_a.clone(), fd_b.clone())
1498 fn test_disconnect_peer() {
1499 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1500 // push a DisconnectPeer event to remove the node flagged by id
1501 let cfgs = create_peermgr_cfgs(2);
1502 let chan_handler = test_utils::TestChannelMessageHandler::new();
1503 let mut peers = create_network(2, &cfgs);
1504 establish_connection(&peers[0], &peers[1]);
1505 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1507 let secp_ctx = Secp256k1::new();
1508 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1510 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1512 action: msgs::ErrorAction::DisconnectPeer { msg: None },
1514 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1515 peers[0].message_handler.chan_handler = &chan_handler;
1517 peers[0].process_events();
1518 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1522 fn test_timer_tick_occurred() {
1523 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1524 let cfgs = create_peermgr_cfgs(2);
1525 let peers = create_network(2, &cfgs);
1526 establish_connection(&peers[0], &peers[1]);
1527 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1529 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1530 peers[0].timer_tick_occurred();
1531 peers[0].process_events();
1532 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1534 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1535 peers[0].timer_tick_occurred();
1536 peers[0].process_events();
1537 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1541 fn test_do_attempt_write_data() {
1542 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1543 let cfgs = create_peermgr_cfgs(2);
1544 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1545 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1546 let peers = create_network(2, &cfgs);
1548 // By calling establish_connect, we trigger do_attempt_write_data between
1549 // the peers. Previously this function would mistakenly enter an infinite loop
1550 // when there were more channel messages available than could fit into a peer's
1551 // buffer. This issue would now be detected by this test (because we use custom
1552 // RoutingMessageHandlers that intentionally return more channel messages
1553 // than can fit into a peer's buffer).
1554 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1556 // Make each peer to read the messages that the other peer just wrote to them.
1557 peers[0].process_events();
1558 peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap();
1559 peers[1].process_events();
1560 peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap();
1562 // Check that each peer has received the expected number of channel updates and channel
1564 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1565 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1566 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1567 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);