120a7535a6ed2551ac63662c03042b36933c2d35
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer, implying
261         /// we should go ahead and force-close any channels we have with it.
262         pub no_connection_possible: bool,
263 }
264 impl fmt::Debug for PeerHandleError {
265         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
266                 formatter.write_str("Peer Sent Invalid Data")
267         }
268 }
269 impl fmt::Display for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274
275 #[cfg(feature = "std")]
276 impl error::Error for PeerHandleError {
277         fn description(&self) -> &str {
278                 "Peer Sent Invalid Data"
279         }
280 }
281
282 enum InitSyncTracker{
283         NoSyncRequested,
284         ChannelsSyncing(u64),
285         NodesSyncing(PublicKey),
286 }
287
288 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
289 /// forwarding gossip messages to peers altogether.
290 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
291
292 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
293 /// we have fewer than this many messages in the outbound buffer again.
294 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
295 /// refilled as we send bytes.
296 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
297 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
298 /// the peer.
299 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
300
301 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
302 /// the socket receive buffer before receiving the ping.
303 ///
304 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
305 /// including any network delays, outbound traffic, or the same for messages from other peers.
306 ///
307 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
308 /// per connected peer to respond to a ping, as long as they send us at least one message during
309 /// each tick, ensuring we aren't actually just disconnected.
310 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
311 /// peer.
312 ///
313 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
314 /// two connected peers, assuming most LDK-running systems have at least two cores.
315 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
316
317 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
318 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
319 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
320 /// process before the next ping.
321 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
322
323 struct Peer {
324         channel_encryptor: PeerChannelEncryptor,
325         their_node_id: Option<PublicKey>,
326         their_features: Option<InitFeatures>,
327         their_net_address: Option<NetAddress>,
328
329         pending_outbound_buffer: LinkedList<Vec<u8>>,
330         pending_outbound_buffer_first_msg_offset: usize,
331         awaiting_write_event: bool,
332
333         pending_read_buffer: Vec<u8>,
334         pending_read_buffer_pos: usize,
335         pending_read_is_header: bool,
336
337         sync_status: InitSyncTracker,
338
339         msgs_sent_since_pong: usize,
340         awaiting_pong_timer_tick_intervals: i8,
341         received_message_since_timer_tick: bool,
342 }
343
344 impl Peer {
345         /// Returns true if the channel announcements/updates for the given channel should be
346         /// forwarded to this peer.
347         /// If we are sending our routing table to this peer and we have not yet sent channel
348         /// announcements/updates for the given channel_id then we will send it when we get to that
349         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
350         /// sent the old versions, we should send the update, and so return true here.
351         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
352                 match self.sync_status {
353                         InitSyncTracker::NoSyncRequested => true,
354                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
355                         InitSyncTracker::NodesSyncing(_) => true,
356                 }
357         }
358
359         /// Similar to the above, but for node announcements indexed by node_id.
360         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
361                 match self.sync_status {
362                         InitSyncTracker::NoSyncRequested => true,
363                         InitSyncTracker::ChannelsSyncing(_) => false,
364                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
365                 }
366         }
367 }
368
369 struct PeerHolder<Descriptor: SocketDescriptor> {
370         peers: HashMap<Descriptor, Peer>,
371         /// Only add to this set when noise completes:
372         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
373 }
374
375 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
376 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
377 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
378 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
379 /// issues such as overly long function definitions.
380 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
381
382 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
383 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
384 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
385 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
386 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
387 /// helps with issues such as long function definitions.
388 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
389
390 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
391 /// socket events into messages which it passes on to its [`MessageHandler`].
392 ///
393 /// Locks are taken internally, so you must never assume that reentrancy from a
394 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
395 ///
396 /// Calls to [`read_event`] will decode relevant messages and pass them to the
397 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
398 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
399 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
400 /// calls only after previous ones have returned.
401 ///
402 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
403 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
404 /// essentially you should default to using a SimpleRefPeerManager, and use a
405 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
406 /// you're using lightning-net-tokio.
407 ///
408 /// [`read_event`]: PeerManager::read_event
409 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
410                 CM::Target: ChannelMessageHandler,
411                 RM::Target: RoutingMessageHandler,
412                 L::Target: Logger,
413                 CMH::Target: CustomMessageHandler {
414         message_handler: MessageHandler<CM, RM>,
415         peers: Mutex<PeerHolder<Descriptor>>,
416         our_node_secret: SecretKey,
417         ephemeral_key_midstate: Sha256Engine,
418         custom_message_handler: CMH,
419
420         peer_counter: AtomicCounter,
421
422         logger: L,
423 }
424
425 enum MessageHandlingError {
426         PeerHandleError(PeerHandleError),
427         LightningError(LightningError),
428 }
429
430 impl From<PeerHandleError> for MessageHandlingError {
431         fn from(error: PeerHandleError) -> Self {
432                 MessageHandlingError::PeerHandleError(error)
433         }
434 }
435
436 impl From<LightningError> for MessageHandlingError {
437         fn from(error: LightningError) -> Self {
438                 MessageHandlingError::LightningError(error)
439         }
440 }
441
442 macro_rules! encode_msg {
443         ($msg: expr) => {{
444                 let mut buffer = VecWriter(Vec::new());
445                 wire::write($msg, &mut buffer).unwrap();
446                 buffer.0
447         }}
448 }
449
450 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
451                 CM::Target: ChannelMessageHandler,
452                 L::Target: Logger {
453         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
454         /// handler is used and network graph messages are ignored.
455         ///
456         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
457         /// cryptographically secure random bytes.
458         ///
459         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
460         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
461                 Self::new(MessageHandler {
462                         chan_handler: channel_message_handler,
463                         route_handler: IgnoringMessageHandler{},
464                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
465         }
466 }
467
468 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
469                 RM::Target: RoutingMessageHandler,
470                 L::Target: Logger {
471         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
472         /// handler is used and messages related to channels will be ignored (or generate error
473         /// messages). Note that some other lightning implementations time-out connections after some
474         /// time if no channel is built with the peer.
475         ///
476         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
477         /// cryptographically secure random bytes.
478         ///
479         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
480         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
481                 Self::new(MessageHandler {
482                         chan_handler: ErroringMessageHandler::new(),
483                         route_handler: routing_message_handler,
484                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
485         }
486 }
487
488 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
489 /// This works around `format!()` taking a reference to each argument, preventing
490 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
491 /// due to lifetime errors.
492 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
493 impl core::fmt::Display for OptionalFromDebugger<'_> {
494         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
495                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
496         }
497 }
498
499 /// A function used to filter out local or private addresses
500 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
501 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
502 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
503         match ip_address{
504                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
505                 Some(NetAddress::IPv4{addr: [0xA, 0x00..=0xFF, _, _], port: _}) => None,
506                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
507                 Some(NetAddress::IPv4{addr: [0x0, 0x0..=0xFF, _, _], port: _}) => None,
508                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
509                 Some(NetAddress::IPv4{addr: [0x64, 0x40..=0x7F, _, _], port: _}) => None,
510                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
511                 Some(NetAddress::IPv4{addr: [0x7F, 0x0..=0xFF, _, _], port: _}) => None,
512                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
513                 Some(NetAddress::IPv4{addr: [0xA9, 0xFE, _, _], port: _}) => None,
514                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
515                 Some(NetAddress::IPv4{addr: [0xAC, 0x10..=0x1F, _, _], port: _}) => None,
516                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
517                 Some(NetAddress::IPv4{addr: [0xC0, 0xA8, _, _], port: _}) => None,
518                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
519                 Some(NetAddress::IPv4{addr: [0xC0, 0x58, 0x63, _], port: _}) => None,
520                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
521                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
522                 // For remaining addresses
523                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
524                 Some(..) => ip_address,
525                 None => None,
526         }
527 }
528
529 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
530                 CM::Target: ChannelMessageHandler,
531                 RM::Target: RoutingMessageHandler,
532                 L::Target: Logger,
533                 CMH::Target: CustomMessageHandler {
534         /// Constructs a new PeerManager with the given message handlers and node_id secret key
535         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
536         /// cryptographically secure random bytes.
537         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
538                 let mut ephemeral_key_midstate = Sha256::engine();
539                 ephemeral_key_midstate.input(ephemeral_random_data);
540
541                 PeerManager {
542                         message_handler,
543                         peers: Mutex::new(PeerHolder {
544                                 peers: HashMap::new(),
545                                 node_id_to_descriptor: HashMap::new()
546                         }),
547                         our_node_secret,
548                         ephemeral_key_midstate,
549                         peer_counter: AtomicCounter::new(),
550                         logger,
551                         custom_message_handler,
552                 }
553         }
554
555         /// Get the list of node ids for peers which have completed the initial handshake.
556         ///
557         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
558         /// new_outbound_connection, however entries will only appear once the initial handshake has
559         /// completed and we are sure the remote peer has the private key for the given node_id.
560         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
561                 let peers = self.peers.lock().unwrap();
562                 peers.peers.values().filter_map(|p| {
563                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
564                                 return None;
565                         }
566                         p.their_node_id
567                 }).collect()
568         }
569
570         fn get_ephemeral_key(&self) -> SecretKey {
571                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
572                 let counter = self.peer_counter.get_increment();
573                 ephemeral_hash.input(&counter.to_le_bytes());
574                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
575         }
576
577         /// Indicates a new outbound connection has been established to a node with the given node_id
578         /// and an optional remote network address.
579         /// The remote network address adds the option to report a remote IP address back to a connecting
580         /// peer using the init message. 
581         /// The user should pass the remote network address to whatever host they are connected to.
582         ///
583         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
584         /// descriptor but must disconnect the connection immediately.
585         ///
586         /// Returns a small number of bytes to send to the remote node (currently always 50).
587         ///
588         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
589         /// [`socket_disconnected()`].
590         ///
591         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
592         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
593                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
594                 let res = peer_encryptor.get_act_one().to_vec();
595                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
596
597                 let mut peers = self.peers.lock().unwrap();
598                 if peers.peers.insert(descriptor, Peer {
599                         channel_encryptor: peer_encryptor,
600                         their_node_id: None,
601                         their_features: None,
602                         their_net_address: remote_network_address,
603
604                         pending_outbound_buffer: LinkedList::new(),
605                         pending_outbound_buffer_first_msg_offset: 0,
606                         awaiting_write_event: false,
607
608                         pending_read_buffer,
609                         pending_read_buffer_pos: 0,
610                         pending_read_is_header: false,
611
612                         sync_status: InitSyncTracker::NoSyncRequested,
613
614                         msgs_sent_since_pong: 0,
615                         awaiting_pong_timer_tick_intervals: 0,
616                         received_message_since_timer_tick: false,
617                 }).is_some() {
618                         panic!("PeerManager driver duplicated descriptors!");
619                 };
620                 Ok(res)
621         }
622
623         /// Indicates a new inbound connection has been established to a node with an optional remote
624         /// network address.
625         ///
626         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
627         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
628         /// call socket_disconnected for the new descriptor but must disconnect the connection
629         /// immediately.
630         ///
631         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
632         /// [`socket_disconnected()`].
633         ///
634         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
635         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
636                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
637                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
638
639                 let mut peers = self.peers.lock().unwrap();
640                 if peers.peers.insert(descriptor, Peer {
641                         channel_encryptor: peer_encryptor,
642                         their_node_id: None,
643                         their_features: None,
644                         their_net_address: remote_network_address,
645
646                         pending_outbound_buffer: LinkedList::new(),
647                         pending_outbound_buffer_first_msg_offset: 0,
648                         awaiting_write_event: false,
649
650                         pending_read_buffer,
651                         pending_read_buffer_pos: 0,
652                         pending_read_is_header: false,
653
654                         sync_status: InitSyncTracker::NoSyncRequested,
655
656                         msgs_sent_since_pong: 0,
657                         awaiting_pong_timer_tick_intervals: 0,
658                         received_message_since_timer_tick: false,
659                 }).is_some() {
660                         panic!("PeerManager driver duplicated descriptors!");
661                 };
662                 Ok(())
663         }
664
665         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
666                 while !peer.awaiting_write_event {
667                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
668                                 match peer.sync_status {
669                                         InitSyncTracker::NoSyncRequested => {},
670                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
671                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
672                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
673                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
674                                                         self.enqueue_message(peer, announce);
675                                                         if let &Some(ref update_a) = update_a_option {
676                                                                 self.enqueue_message(peer, update_a);
677                                                         }
678                                                         if let &Some(ref update_b) = update_b_option {
679                                                                 self.enqueue_message(peer, update_b);
680                                                         }
681                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
682                                                 }
683                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
684                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
685                                                 }
686                                         },
687                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
688                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
689                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
690                                                 for msg in all_messages.iter() {
691                                                         self.enqueue_message(peer, msg);
692                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
693                                                 }
694                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
695                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
696                                                 }
697                                         },
698                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
699                                         InitSyncTracker::NodesSyncing(key) => {
700                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
701                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
702                                                 for msg in all_messages.iter() {
703                                                         self.enqueue_message(peer, msg);
704                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
705                                                 }
706                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
707                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
708                                                 }
709                                         },
710                                 }
711                         }
712                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
713                                 self.maybe_send_extra_ping(peer);
714                         }
715
716                         if {
717                                 let next_buff = match peer.pending_outbound_buffer.front() {
718                                         None => return,
719                                         Some(buff) => buff,
720                                 };
721
722                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
723                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
724                                 let data_sent = descriptor.send_data(pending, should_be_reading);
725                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
726                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
727                         } {
728                                 peer.pending_outbound_buffer_first_msg_offset = 0;
729                                 peer.pending_outbound_buffer.pop_front();
730                         } else {
731                                 peer.awaiting_write_event = true;
732                         }
733                 }
734         }
735
736         /// Indicates that there is room to write data to the given socket descriptor.
737         ///
738         /// May return an Err to indicate that the connection should be closed.
739         ///
740         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
741         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
742         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
743         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
744         /// sufficient!
745         ///
746         /// [`send_data`]: SocketDescriptor::send_data
747         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
748         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
749                 let mut peers = self.peers.lock().unwrap();
750                 match peers.peers.get_mut(descriptor) {
751                         None => {
752                                 // This is most likely a simple race condition where the user found that the socket
753                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
754                                 // this method. Return an error to make sure we get disconnected.
755                                 return Err(PeerHandleError { no_connection_possible: false });
756                         },
757                         Some(peer) => {
758                                 peer.awaiting_write_event = false;
759                                 self.do_attempt_write_data(descriptor, peer);
760                         }
761                 };
762                 Ok(())
763         }
764
765         /// Indicates that data was read from the given socket descriptor.
766         ///
767         /// May return an Err to indicate that the connection should be closed.
768         ///
769         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
770         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
771         /// [`send_data`] calls to handle responses.
772         ///
773         /// If `Ok(true)` is returned, further read_events should not be triggered until a
774         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
775         /// send buffer).
776         ///
777         /// [`send_data`]: SocketDescriptor::send_data
778         /// [`process_events`]: PeerManager::process_events
779         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
780                 match self.do_read_event(peer_descriptor, data) {
781                         Ok(res) => Ok(res),
782                         Err(e) => {
783                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
784                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
785                                 Err(e)
786                         }
787                 }
788         }
789
790         /// Append a message to a peer's pending outbound/write buffer
791         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
792                 peer.msgs_sent_since_pong += 1;
793                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
794         }
795
796         /// Append a message to a peer's pending outbound/write buffer
797         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
798                 let mut buffer = VecWriter(Vec::with_capacity(2048));
799                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
800
801                 if is_gossip_msg(message.type_id()) {
802                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
803                 } else {
804                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
805                 }
806                 self.enqueue_encoded_message(peer, &buffer.0);
807         }
808
809         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
810                 let pause_read = {
811                         let mut peers_lock = self.peers.lock().unwrap();
812                         let peers = &mut *peers_lock;
813                         let mut msgs_to_forward = Vec::new();
814                         let mut peer_node_id = None;
815                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
816                                 None => {
817                                         // This is most likely a simple race condition where the user read some bytes
818                                         // from the socket, then we told the user to `disconnect_socket()`, then they
819                                         // called this method. Return an error to make sure we get disconnected.
820                                         return Err(PeerHandleError { no_connection_possible: false });
821                                 },
822                                 Some(peer) => {
823                                         assert!(peer.pending_read_buffer.len() > 0);
824                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
825
826                                         let mut read_pos = 0;
827                                         while read_pos < data.len() {
828                                                 {
829                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
830                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
831                                                         read_pos += data_to_copy;
832                                                         peer.pending_read_buffer_pos += data_to_copy;
833                                                 }
834
835                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
836                                                         peer.pending_read_buffer_pos = 0;
837
838                                                         macro_rules! try_potential_handleerror {
839                                                                 ($thing: expr) => {
840                                                                         match $thing {
841                                                                                 Ok(x) => x,
842                                                                                 Err(e) => {
843                                                                                         match e.action {
844                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
845                                                                                                         //TODO: Try to push msg
846                                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
847                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
848                                                                                                 },
849                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
850                                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
851                                                                                                         continue
852                                                                                                 },
853                                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
854                                                                                                 msgs::ErrorAction::IgnoreError => {
855                                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
856                                                                                                         continue;
857                                                                                                 },
858                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
859                                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
860                                                                                                         self.enqueue_message(peer, &msg);
861                                                                                                         continue;
862                                                                                                 },
863                                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
864                                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
865                                                                                                         self.enqueue_message(peer, &msg);
866                                                                                                         continue;
867                                                                                                 },
868                                                                                         }
869                                                                                 }
870                                                                         }
871                                                                 }
872                                                         }
873
874                                                         macro_rules! insert_node_id {
875                                                                 () => {
876                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
877                                                                                 hash_map::Entry::Occupied(_) => {
878                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
879                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
880                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
881                                                                                 },
882                                                                                 hash_map::Entry::Vacant(entry) => {
883                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
884                                                                                         entry.insert(peer_descriptor.clone())
885                                                                                 },
886                                                                         };
887                                                                 }
888                                                         }
889
890                                                         let next_step = peer.channel_encryptor.get_noise_step();
891                                                         match next_step {
892                                                                 NextNoiseStep::ActOne => {
893                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
894                                                                         peer.pending_outbound_buffer.push_back(act_two);
895                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
896                                                                 },
897                                                                 NextNoiseStep::ActTwo => {
898                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
899                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
900                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
901                                                                         peer.pending_read_is_header = true;
902
903                                                                         peer.their_node_id = Some(their_node_id);
904                                                                         insert_node_id!();
905                                                                         let features = InitFeatures::known();
906                                                                         let resp = msgs::Init { features, remote_network_address:  filter_addresses(peer.their_net_address.clone())};
907                                                                         self.enqueue_message(peer, &resp);
908                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
909                                                                 },
910                                                                 NextNoiseStep::ActThree => {
911                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
912                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
913                                                                         peer.pending_read_is_header = true;
914                                                                         peer.their_node_id = Some(their_node_id);
915                                                                         insert_node_id!();
916                                                                         let features = InitFeatures::known();
917                                                                         let resp = msgs::Init { features, remote_network_address:  filter_addresses(peer.their_net_address.clone())};
918                                                                         self.enqueue_message(peer, &resp);
919                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
920                                                                 },
921                                                                 NextNoiseStep::NoiseComplete => {
922                                                                         if peer.pending_read_is_header {
923                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
924                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
925                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
926                                                                                 if msg_len < 2 { // Need at least the message type tag
927                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
928                                                                                 }
929                                                                                 peer.pending_read_is_header = false;
930                                                                         } else {
931                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
932                                                                                 assert!(msg_data.len() >= 2);
933
934                                                                                 // Reset read buffer
935                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
936                                                                                 peer.pending_read_is_header = true;
937
938                                                                                 let mut reader = io::Cursor::new(&msg_data[..]);
939                                                                                 let message_result = wire::read(&mut reader, &*self.custom_message_handler);
940                                                                                 let message = match message_result {
941                                                                                         Ok(x) => x,
942                                                                                         Err(e) => {
943                                                                                                 match e {
944                                                                                                         // Note that to avoid recursion we never call
945                                                                                                         // `do_attempt_write_data` from here, causing
946                                                                                                         // the messages enqueued here to not actually
947                                                                                                         // be sent before the peer is disconnected.
948                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
949                                                                                                                 log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
950                                                                                                                 continue;
951                                                                                                         }
952                                                                                                         (msgs::DecodeError::UnsupportedCompression, _) => {
953                                                                                                                 log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
954                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
955                                                                                                                 continue;
956                                                                                                         }
957                                                                                                         (_, Some(ty)) if is_gossip_msg(ty) => {
958                                                                                                                 log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
959                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
960                                                                                                                 continue;
961                                                                                                         }
962                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, ty) => {
963                                                                                                                 log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
964                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
965                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
966                                                                                                         }
967                                                                                                         (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
968                                                                                                         (msgs::DecodeError::InvalidValue, _) => {
969                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
970                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
971                                                                                                         }
972                                                                                                         (msgs::DecodeError::ShortRead, _) => {
973                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
974                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
975                                                                                                         }
976                                                                                                         (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
977                                                                                                         (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
978                                                                                                 }
979                                                                                         }
980                                                                                 };
981
982                                                                                 match self.handle_message(peer, message) {
983                                                                                         Err(handling_error) => match handling_error {
984                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
985                                                                                                 MessageHandlingError::LightningError(e) => {
986                                                                                                         try_potential_handleerror!(Err(e));
987                                                                                                 },
988                                                                                         },
989                                                                                         Ok(Some(msg)) => {
990                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
991                                                                                                 msgs_to_forward.push(msg);
992                                                                                         },
993                                                                                         Ok(None) => {},
994                                                                                 }
995                                                                         }
996                                                                 }
997                                                         }
998                                                 }
999                                         }
1000
1001                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
1002                                 }
1003                         };
1004
1005                         for msg in msgs_to_forward.drain(..) {
1006                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
1007                         }
1008
1009                         pause_read
1010                 };
1011
1012                 Ok(pause_read)
1013         }
1014
1015         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1016         /// Returns the message back if it needs to be broadcasted to all other peers.
1017         fn handle_message(
1018                 &self,
1019                 peer: &mut Peer,
1020                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1021         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1022                 if is_gossip_msg(message.type_id()) {
1023                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1024                 } else {
1025                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1026                 }
1027
1028                 peer.received_message_since_timer_tick = true;
1029
1030                 // Need an Init as first message
1031                 if let wire::Message::Init(_) = message {
1032                 } else if peer.their_features.is_none() {
1033                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
1034                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1035                 }
1036
1037                 let mut should_forward = None;
1038
1039                 match message {
1040                         // Setup and Control messages:
1041                         wire::Message::Init(msg) => {
1042                                 if msg.features.requires_unknown_bits() {
1043                                         log_debug!(self.logger, "Peer features required unknown version bits");
1044                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1045                                 }
1046                                 if peer.their_features.is_some() {
1047                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1048                                 }
1049
1050                                 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);
1051
1052                                 if msg.features.initial_routing_sync() {
1053                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
1054                                 }
1055                                 if !msg.features.supports_static_remote_key() {
1056                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
1057                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1058                                 }
1059
1060                                 self.message_handler.route_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1061
1062                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1063                                 peer.their_features = Some(msg.features);
1064                         },
1065                         wire::Message::Error(msg) => {
1066                                 let mut data_is_printable = true;
1067                                 for b in msg.data.bytes() {
1068                                         if b < 32 || b > 126 {
1069                                                 data_is_printable = false;
1070                                                 break;
1071                                         }
1072                                 }
1073
1074                                 if data_is_printable {
1075                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1076                                 } else {
1077                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1078                                 }
1079                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1080                                 if msg.channel_id == [0; 32] {
1081                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1082                                 }
1083                         },
1084                         wire::Message::Warning(msg) => {
1085                                 let mut data_is_printable = true;
1086                                 for b in msg.data.bytes() {
1087                                         if b < 32 || b > 126 {
1088                                                 data_is_printable = false;
1089                                                 break;
1090                                         }
1091                                 }
1092
1093                                 if data_is_printable {
1094                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1095                                 } else {
1096                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1097                                 }
1098                         },
1099
1100                         wire::Message::Ping(msg) => {
1101                                 if msg.ponglen < 65532 {
1102                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1103                                         self.enqueue_message(peer, &resp);
1104                                 }
1105                         },
1106                         wire::Message::Pong(_msg) => {
1107                                 peer.awaiting_pong_timer_tick_intervals = 0;
1108                                 peer.msgs_sent_since_pong = 0;
1109                         },
1110
1111                         // Channel messages:
1112                         wire::Message::OpenChannel(msg) => {
1113                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1114                         },
1115                         wire::Message::AcceptChannel(msg) => {
1116                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1117                         },
1118
1119                         wire::Message::FundingCreated(msg) => {
1120                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1121                         },
1122                         wire::Message::FundingSigned(msg) => {
1123                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1124                         },
1125                         wire::Message::FundingLocked(msg) => {
1126                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1127                         },
1128
1129                         wire::Message::Shutdown(msg) => {
1130                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1131                         },
1132                         wire::Message::ClosingSigned(msg) => {
1133                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1134                         },
1135
1136                         // Commitment messages:
1137                         wire::Message::UpdateAddHTLC(msg) => {
1138                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1139                         },
1140                         wire::Message::UpdateFulfillHTLC(msg) => {
1141                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1142                         },
1143                         wire::Message::UpdateFailHTLC(msg) => {
1144                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1145                         },
1146                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1147                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1148                         },
1149
1150                         wire::Message::CommitmentSigned(msg) => {
1151                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1152                         },
1153                         wire::Message::RevokeAndACK(msg) => {
1154                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1155                         },
1156                         wire::Message::UpdateFee(msg) => {
1157                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1158                         },
1159                         wire::Message::ChannelReestablish(msg) => {
1160                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1161                         },
1162
1163                         // Routing messages:
1164                         wire::Message::AnnouncementSignatures(msg) => {
1165                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1166                         },
1167                         wire::Message::ChannelAnnouncement(msg) => {
1168                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1169                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1170                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1171                                 }
1172                         },
1173                         wire::Message::NodeAnnouncement(msg) => {
1174                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1175                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1176                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1177                                 }
1178                         },
1179                         wire::Message::ChannelUpdate(msg) => {
1180                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1181                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1182                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1183                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1184                                 }
1185                         },
1186                         wire::Message::QueryShortChannelIds(msg) => {
1187                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1188                         },
1189                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1190                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1191                         },
1192                         wire::Message::QueryChannelRange(msg) => {
1193                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1194                         },
1195                         wire::Message::ReplyChannelRange(msg) => {
1196                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1197                         },
1198                         wire::Message::GossipTimestampFilter(_msg) => {
1199                                 // TODO: handle message
1200                         },
1201
1202                         // Unknown messages:
1203                         wire::Message::Unknown(type_id) if message.is_even() => {
1204                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1205                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1206                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1207                         },
1208                         wire::Message::Unknown(type_id) => {
1209                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1210                         },
1211                         wire::Message::Custom(custom) => {
1212                                 self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
1213                         },
1214                 };
1215                 Ok(should_forward)
1216         }
1217
1218         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1219                 match msg {
1220                         wire::Message::ChannelAnnouncement(ref msg) => {
1221                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1222                                 let encoded_msg = encode_msg!(msg);
1223
1224                                 for (_, peer) in peers.peers.iter_mut() {
1225                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1226                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1227                                                 continue
1228                                         }
1229                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1230                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1231                                         {
1232                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1233                                                 continue;
1234                                         }
1235                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1236                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1237                                                 continue;
1238                                         }
1239                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1240                                                 continue;
1241                                         }
1242                                         self.enqueue_encoded_message(peer, &encoded_msg);
1243                                 }
1244                         },
1245                         wire::Message::NodeAnnouncement(ref msg) => {
1246                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1247                                 let encoded_msg = encode_msg!(msg);
1248
1249                                 for (_, peer) in peers.peers.iter_mut() {
1250                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1251                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1252                                                 continue
1253                                         }
1254                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1255                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1256                                         {
1257                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1258                                                 continue;
1259                                         }
1260                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1261                                                 continue;
1262                                         }
1263                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1264                                                 continue;
1265                                         }
1266                                         self.enqueue_encoded_message(peer, &encoded_msg);
1267                                 }
1268                         },
1269                         wire::Message::ChannelUpdate(ref msg) => {
1270                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1271                                 let encoded_msg = encode_msg!(msg);
1272
1273                                 for (_, peer) in peers.peers.iter_mut() {
1274                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1275                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1276                                                 continue
1277                                         }
1278                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1279                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1280                                         {
1281                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1282                                                 continue;
1283                                         }
1284                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1285                                                 continue;
1286                                         }
1287                                         self.enqueue_encoded_message(peer, &encoded_msg);
1288                                 }
1289                         },
1290                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1291                 }
1292         }
1293
1294         /// Checks for any events generated by our handlers and processes them. Includes sending most
1295         /// response messages as well as messages generated by calls to handler functions directly (eg
1296         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1297         ///
1298         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1299         /// issues!
1300         ///
1301         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1302         /// or one of the other clients provided in our language bindings.
1303         ///
1304         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1305         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1306         /// [`send_data`]: SocketDescriptor::send_data
1307         pub fn process_events(&self) {
1308                 {
1309                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1310                         // buffer by doing things like announcing channels on another node. We should be willing to
1311                         // drop optional-ish messages when send buffers get full!
1312
1313                         let mut peers_lock = self.peers.lock().unwrap();
1314                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1315                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1316                         let peers = &mut *peers_lock;
1317                         macro_rules! get_peer_for_forwarding {
1318                                 ($node_id: expr) => {
1319                                         {
1320                                                 match peers.node_id_to_descriptor.get($node_id) {
1321                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1322                                                                 Some(peer) => {
1323                                                                         if peer.their_features.is_none() {
1324                                                                                 continue;
1325                                                                         }
1326                                                                         peer
1327                                                                 },
1328                                                                 None => panic!("Inconsistent peers set state!"),
1329                                                         },
1330                                                         None => {
1331                                                                 continue;
1332                                                         },
1333                                                 }
1334                                         }
1335                                 }
1336                         }
1337                         for event in events_generated.drain(..) {
1338                                 match event {
1339                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1340                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1341                                                                 log_pubkey!(node_id),
1342                                                                 log_bytes!(msg.temporary_channel_id));
1343                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1344                                         },
1345                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1346                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1347                                                                 log_pubkey!(node_id),
1348                                                                 log_bytes!(msg.temporary_channel_id));
1349                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1350                                         },
1351                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1352                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1353                                                                 log_pubkey!(node_id),
1354                                                                 log_bytes!(msg.temporary_channel_id),
1355                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1356                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1357                                                 // indicating to the wallet that they should just throw away this funding transaction
1358                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1359                                         },
1360                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1361                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1362                                                                 log_pubkey!(node_id),
1363                                                                 log_bytes!(msg.channel_id));
1364                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1365                                         },
1366                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1367                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1368                                                                 log_pubkey!(node_id),
1369                                                                 log_bytes!(msg.channel_id));
1370                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1371                                         },
1372                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1373                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1374                                                                 log_pubkey!(node_id),
1375                                                                 log_bytes!(msg.channel_id));
1376                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1377                                         },
1378                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1379                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1380                                                                 log_pubkey!(node_id),
1381                                                                 update_add_htlcs.len(),
1382                                                                 update_fulfill_htlcs.len(),
1383                                                                 update_fail_htlcs.len(),
1384                                                                 log_bytes!(commitment_signed.channel_id));
1385                                                 let peer = get_peer_for_forwarding!(node_id);
1386                                                 for msg in update_add_htlcs {
1387                                                         self.enqueue_message(peer, msg);
1388                                                 }
1389                                                 for msg in update_fulfill_htlcs {
1390                                                         self.enqueue_message(peer, msg);
1391                                                 }
1392                                                 for msg in update_fail_htlcs {
1393                                                         self.enqueue_message(peer, msg);
1394                                                 }
1395                                                 for msg in update_fail_malformed_htlcs {
1396                                                         self.enqueue_message(peer, msg);
1397                                                 }
1398                                                 if let &Some(ref msg) = update_fee {
1399                                                         self.enqueue_message(peer, msg);
1400                                                 }
1401                                                 self.enqueue_message(peer, commitment_signed);
1402                                         },
1403                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1404                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1405                                                                 log_pubkey!(node_id),
1406                                                                 log_bytes!(msg.channel_id));
1407                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1408                                         },
1409                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1410                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1411                                                                 log_pubkey!(node_id),
1412                                                                 log_bytes!(msg.channel_id));
1413                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1414                                         },
1415                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1416                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1417                                                                 log_pubkey!(node_id),
1418                                                                 log_bytes!(msg.channel_id));
1419                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1420                                         },
1421                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1422                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1423                                                                 log_pubkey!(node_id),
1424                                                                 log_bytes!(msg.channel_id));
1425                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1426                                         },
1427                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1428                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1429                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1430                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1431                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1432                                                         _ => {},
1433                                                 }
1434                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1435                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1436                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1437                                                         _ => {},
1438                                                 }
1439                                         },
1440                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1441                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1442                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1443                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1444                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1445                                                         _ => {},
1446                                                 }
1447                                         },
1448                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1449                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1450                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1451                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1452                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1453                                                         _ => {},
1454                                                 }
1455                                         },
1456                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1457                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1458                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1459                                                 let peer = get_peer_for_forwarding!(node_id);
1460                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1461                                         },
1462                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1463                                                 match *action {
1464                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1465                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1466                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1467                                                                                 if let Some(ref msg) = *msg {
1468                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1469                                                                                                         log_pubkey!(node_id),
1470                                                                                                         msg.data);
1471                                                                                         self.enqueue_message(&mut peer, msg);
1472                                                                                         // This isn't guaranteed to work, but if there is enough free
1473                                                                                         // room in the send buffer, put the error message there...
1474                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1475                                                                                 } else {
1476                                                                                         log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1477                                                                                 }
1478                                                                         }
1479                                                                         descriptor.disconnect_socket();
1480                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1481                                                                 }
1482                                                         },
1483                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1484                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1485                                                         },
1486                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1487                                                         msgs::ErrorAction::IgnoreError => {
1488                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1489                                                         },
1490                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1491                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1492                                                                                 log_pubkey!(node_id),
1493                                                                                 msg.data);
1494                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1495                                                         },
1496                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1497                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1498                                                                                 log_pubkey!(node_id),
1499                                                                                 msg.data);
1500                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1501                                                         },
1502                                                 }
1503                                         },
1504                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1505                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1506                                         },
1507                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1508                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1509                                         }
1510                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1511                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1512                                                         log_pubkey!(node_id),
1513                                                         msg.short_channel_ids.len(),
1514                                                         msg.first_blocknum,
1515                                                         msg.number_of_blocks,
1516                                                         msg.sync_complete);
1517                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1518                                         }
1519                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1520                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1521                                         }
1522                                 }
1523                         }
1524
1525                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1526                                 self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
1527                         }
1528
1529                         for (descriptor, peer) in peers.peers.iter_mut() {
1530                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1531                         }
1532                 }
1533         }
1534
1535         /// Indicates that the given socket descriptor's connection is now closed.
1536         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1537                 self.disconnect_event_internal(descriptor, false);
1538         }
1539
1540         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1541                 let mut peers = self.peers.lock().unwrap();
1542                 let peer_option = peers.peers.remove(descriptor);
1543                 match peer_option {
1544                         None => {
1545                                 // This is most likely a simple race condition where the user found that the socket
1546                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1547                                 // called this method. Either way we're disconnected, return.
1548                         },
1549                         Some(peer) => {
1550                                 match peer.their_node_id {
1551                                         Some(node_id) => {
1552                                                 log_trace!(self.logger,
1553                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1554                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1555                                                 peers.node_id_to_descriptor.remove(&node_id);
1556                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1557                                         },
1558                                         None => {}
1559                                 }
1560                         }
1561                 };
1562         }
1563
1564         /// Disconnect a peer given its node id.
1565         ///
1566         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1567         /// force-closing any channels we have with it.
1568         ///
1569         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1570         /// peer. Thus, be very careful about reentrancy issues.
1571         ///
1572         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1573         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1574                 let mut peers_lock = self.peers.lock().unwrap();
1575                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1576                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1577                         peers_lock.peers.remove(&descriptor);
1578                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1579                         descriptor.disconnect_socket();
1580                 }
1581         }
1582
1583         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1584         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1585         /// using regular ping/pongs.
1586         pub fn disconnect_all_peers(&self) {
1587                 let mut peers_lock = self.peers.lock().unwrap();
1588                 let peers = &mut *peers_lock;
1589                 for (mut descriptor, peer) in peers.peers.drain() {
1590                         if let Some(node_id) = peer.their_node_id {
1591                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1592                                 peers.node_id_to_descriptor.remove(&node_id);
1593                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1594                         }
1595                         descriptor.disconnect_socket();
1596                 }
1597                 debug_assert!(peers.node_id_to_descriptor.is_empty());
1598         }
1599
1600         /// This is called when we're blocked on sending additional gossip messages until we receive a
1601         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1602         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1603         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1604                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1605                         peer.awaiting_pong_timer_tick_intervals = -1;
1606                         let ping = msgs::Ping {
1607                                 ponglen: 0,
1608                                 byteslen: 64,
1609                         };
1610                         self.enqueue_message(peer, &ping);
1611                 }
1612         }
1613
1614         /// Send pings to each peer and disconnect those which did not respond to the last round of
1615         /// pings.
1616         ///
1617         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1618         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1619         /// time they have to respond before we disconnect them.
1620         ///
1621         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1622         /// issues!
1623         ///
1624         /// [`send_data`]: SocketDescriptor::send_data
1625         pub fn timer_tick_occurred(&self) {
1626                 let mut peers_lock = self.peers.lock().unwrap();
1627                 {
1628                         let peers = &mut *peers_lock;
1629                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1630                         let peers = &mut peers.peers;
1631                         let mut descriptors_needing_disconnect = Vec::new();
1632                         let peer_count = peers.len();
1633
1634                         peers.retain(|descriptor, peer| {
1635                                 let mut do_disconnect_peer = false;
1636                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1637                                         // The peer needs to complete its handshake before we can exchange messages. We
1638                                         // give peers one timer tick to complete handshake, reusing
1639                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1640                                         // for handshake completion.
1641                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1642                                                 do_disconnect_peer = true;
1643                                         } else {
1644                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1645                                                 return true;
1646                                         }
1647                                 }
1648
1649                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1650                                         // Magic value set in `maybe_send_extra_ping`.
1651                                         peer.awaiting_pong_timer_tick_intervals = 1;
1652                                         peer.received_message_since_timer_tick = false;
1653                                         return true;
1654                                 }
1655
1656                                 if do_disconnect_peer
1657                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1658                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1659                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1660                                 {
1661                                         descriptors_needing_disconnect.push(descriptor.clone());
1662                                         match peer.their_node_id {
1663                                                 Some(node_id) => {
1664                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1665                                                         node_id_to_descriptor.remove(&node_id);
1666                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1667                                                 }
1668                                                 None => {},
1669                                         }
1670                                         return false;
1671                                 }
1672                                 peer.received_message_since_timer_tick = false;
1673
1674                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1675                                         peer.awaiting_pong_timer_tick_intervals += 1;
1676                                         return true;
1677                                 }
1678
1679                                 peer.awaiting_pong_timer_tick_intervals = 1;
1680                                 let ping = msgs::Ping {
1681                                         ponglen: 0,
1682                                         byteslen: 64,
1683                                 };
1684                                 self.enqueue_message(peer, &ping);
1685                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1686
1687                                 true
1688                         });
1689
1690                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1691                                 descriptor.disconnect_socket();
1692                         }
1693                 }
1694         }
1695 }
1696
1697 fn is_gossip_msg(type_id: u16) -> bool {
1698         match type_id {
1699                 msgs::ChannelAnnouncement::TYPE |
1700                 msgs::ChannelUpdate::TYPE |
1701                 msgs::NodeAnnouncement::TYPE => true,
1702                 _ => false
1703         }
1704 }
1705
1706 #[cfg(test)]
1707 mod tests {
1708         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1709         use ln::msgs;
1710         use ln::msgs::NetAddress;
1711         use util::events;
1712         use util::test_utils;
1713
1714         use bitcoin::secp256k1::Secp256k1;
1715         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1716
1717         use prelude::*;
1718         use sync::{Arc, Mutex};
1719         use core::sync::atomic::Ordering;
1720
1721         #[derive(Clone)]
1722         struct FileDescriptor {
1723                 fd: u16,
1724                 outbound_data: Arc<Mutex<Vec<u8>>>,
1725         }
1726         impl PartialEq for FileDescriptor {
1727                 fn eq(&self, other: &Self) -> bool {
1728                         self.fd == other.fd
1729                 }
1730         }
1731         impl Eq for FileDescriptor { }
1732         impl core::hash::Hash for FileDescriptor {
1733                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1734                         self.fd.hash(hasher)
1735                 }
1736         }
1737
1738         impl SocketDescriptor for FileDescriptor {
1739                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1740                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1741                         data.len()
1742                 }
1743
1744                 fn disconnect_socket(&mut self) {}
1745         }
1746
1747         struct PeerManagerCfg {
1748                 chan_handler: test_utils::TestChannelMessageHandler,
1749                 routing_handler: test_utils::TestRoutingMessageHandler,
1750                 logger: test_utils::TestLogger,
1751         }
1752
1753         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1754                 let mut cfgs = Vec::new();
1755                 for _ in 0..peer_count {
1756                         cfgs.push(
1757                                 PeerManagerCfg{
1758                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1759                                         logger: test_utils::TestLogger::new(),
1760                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1761                                 }
1762                         );
1763                 }
1764
1765                 cfgs
1766         }
1767
1768         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1769                 let mut peers = Vec::new();
1770                 for i in 0..peer_count {
1771                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1772                         let ephemeral_bytes = [i as u8; 32];
1773                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1774                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1775                         peers.push(peer);
1776                 }
1777
1778                 peers
1779         }
1780
1781         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1782                 let secp_ctx = Secp256k1::new();
1783                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1784                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1785                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1786                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1787                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1788                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1789                 peer_a.process_events();
1790                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1791                 peer_b.process_events();
1792                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1793                 (fd_a.clone(), fd_b.clone())
1794         }
1795
1796         #[test]
1797         fn test_disconnect_peer() {
1798                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1799                 // push a DisconnectPeer event to remove the node flagged by id
1800                 let cfgs = create_peermgr_cfgs(2);
1801                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1802                 let mut peers = create_network(2, &cfgs);
1803                 establish_connection(&peers[0], &peers[1]);
1804                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1805
1806                 let secp_ctx = Secp256k1::new();
1807                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1808
1809                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1810                         node_id: their_id,
1811                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1812                 });
1813                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1814                 peers[0].message_handler.chan_handler = &chan_handler;
1815
1816                 peers[0].process_events();
1817                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1818         }
1819
1820         #[test]
1821         fn test_timer_tick_occurred() {
1822                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1823                 let cfgs = create_peermgr_cfgs(2);
1824                 let peers = create_network(2, &cfgs);
1825                 establish_connection(&peers[0], &peers[1]);
1826                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1827
1828                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1829                 peers[0].timer_tick_occurred();
1830                 peers[0].process_events();
1831                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1832
1833                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1834                 peers[0].timer_tick_occurred();
1835                 peers[0].process_events();
1836                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1837         }
1838
1839         #[test]
1840         fn test_do_attempt_write_data() {
1841                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1842                 let cfgs = create_peermgr_cfgs(2);
1843                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1844                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1845                 let peers = create_network(2, &cfgs);
1846
1847                 // By calling establish_connect, we trigger do_attempt_write_data between
1848                 // the peers. Previously this function would mistakenly enter an infinite loop
1849                 // when there were more channel messages available than could fit into a peer's
1850                 // buffer. This issue would now be detected by this test (because we use custom
1851                 // RoutingMessageHandlers that intentionally return more channel messages
1852                 // than can fit into a peer's buffer).
1853                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1854
1855                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1856                 // due to the max-messagse-before-ping limits this may take a few iterations to complete.
1857                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1858                         peers[0].process_events();
1859                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1860                         assert!(!b_read_data.is_empty());
1861
1862                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1863                         peers[1].process_events();
1864
1865                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1866                         assert!(!a_read_data.is_empty());
1867                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1868
1869                         peers[1].process_events();
1870                         assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages");
1871                 }
1872
1873                 // Check that each peer has received the expected number of channel updates and channel
1874                 // announcements.
1875                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1876                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1877                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1878                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1879         }
1880
1881         #[test]
1882         fn test_handshake_timeout() {
1883                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1884                 // tick.
1885                 let cfgs = create_peermgr_cfgs(2);
1886                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1887                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1888                 let peers = create_network(2, &cfgs);
1889
1890                 let secp_ctx = Secp256k1::new();
1891                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1892                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1893                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1894                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1895                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
1896
1897                 // If we get a single timer tick before completion, that's fine
1898                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1899                 peers[0].timer_tick_occurred();
1900                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1901
1902                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1903                 peers[0].process_events();
1904                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1905                 peers[1].process_events();
1906
1907                 // ...but if we get a second timer tick, we should disconnect the peer
1908                 peers[0].timer_tick_occurred();
1909                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1910
1911                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1912         }
1913
1914         #[test]
1915         fn test_filter_addresses(){
1916                 // Tests the filter_addresses function.
1917
1918                 // For (10/8)
1919                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
1920                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1921                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
1922                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1923                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
1924                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1925
1926                 // For (0/8)
1927                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
1928                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1929                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
1930                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1931                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
1932                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1933
1934                 // For (100.64/10)
1935                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
1936                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1937                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
1938                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1939                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
1940                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1941
1942                 // For (127/8)
1943                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
1944                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1945                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
1946                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1947                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
1948                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1949
1950                 // For (169.254/16)
1951                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
1952                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1953                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
1954                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1955                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
1956                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1957
1958                 // For (172.16/12)
1959                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
1960                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1961                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
1962                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1963                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
1964                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1965
1966                 // For (192.168/16)
1967                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
1968                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1969                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
1970                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1971                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
1972                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1973
1974                 // For (192.88.99/24)
1975                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
1976                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1977                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
1978                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1979                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
1980                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1981
1982                 // For other IPv4 addresses
1983                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
1984                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1985                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
1986                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1987                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
1988                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1989
1990                 // For (2000::/3)
1991                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
1992                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1993                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
1994                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1995                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
1996                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1997
1998                 // For other IPv6 addresses
1999                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2000                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2001                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2002                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2003                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2004                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2005
2006                 // For (None)
2007                 assert_eq!(filter_addresses(None), None);
2008         }
2009 }