1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Top level peer message handling and socket handling logic lives here.
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
18 use bitcoin::blockdata::constants::ChainHash;
19 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
21 use crate::sign::{KeysManager, NodeSigner, Recipient};
22 use crate::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
23 use crate::ln::features::{InitFeatures, NodeFeatures};
25 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
26 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
27 use crate::util::ser::{VecWriter, Writeable, Writer};
28 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
30 use crate::ln::wire::{Encode, Type};
31 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, OffersMessage, OffersMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
32 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId, NodeAlias};
33 use crate::util::atomic_counter::AtomicCounter;
34 use crate::util::logger::Logger;
35 use crate::util::string::PrintableString;
37 use crate::prelude::*;
39 use alloc::collections::LinkedList;
40 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
41 use core::sync::atomic::{AtomicBool, AtomicU32, AtomicI32, Ordering};
42 use core::{cmp, hash, fmt, mem};
44 use core::convert::Infallible;
45 #[cfg(feature = "std")] use std::error;
47 use bitcoin::hashes::sha256::Hash as Sha256;
48 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
49 use bitcoin::hashes::{HashEngine, Hash};
51 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
53 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
54 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
55 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
57 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
58 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
59 pub trait CustomMessageHandler: wire::CustomMessageReader {
60 /// Handles the given message sent from `sender_node_id`, possibly producing messages for
61 /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
63 fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
65 /// Returns the list of pending messages that were generated by the handler, clearing the list
66 /// in the process. Each message is paired with the node id of the intended recipient. If no
67 /// connection to the node exists, then the message is simply not sent.
68 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
70 /// Gets the node feature flags which this handler itself supports. All available handlers are
71 /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
72 /// which are broadcasted in our [`NodeAnnouncement`] message.
74 /// [`NodeAnnouncement`]: crate::ln::msgs::NodeAnnouncement
75 fn provided_node_features(&self) -> NodeFeatures;
77 /// Gets the init feature flags which should be sent to the given peer. All available handlers
78 /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
79 /// which are sent in our [`Init`] message.
81 /// [`Init`]: crate::ln::msgs::Init
82 fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
85 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
86 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
87 pub struct IgnoringMessageHandler{}
88 impl MessageSendEventsProvider for IgnoringMessageHandler {
89 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
91 impl RoutingMessageHandler for IgnoringMessageHandler {
92 fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
93 fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
94 fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
95 fn get_next_channel_announcement(&self, _starting_point: u64) ->
96 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
97 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
98 fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
99 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
100 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
101 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
102 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
103 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
104 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
105 InitFeatures::empty()
107 fn processing_queue_high(&self) -> bool { false }
109 impl OnionMessageProvider for IgnoringMessageHandler {
110 fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
112 impl OnionMessageHandler for IgnoringMessageHandler {
113 fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
114 fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
115 fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
116 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
117 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
118 InitFeatures::empty()
121 impl OffersMessageHandler for IgnoringMessageHandler {
122 fn handle_message(&self, _msg: OffersMessage) -> Option<OffersMessage> { None }
124 impl CustomOnionMessageHandler for IgnoringMessageHandler {
125 type CustomMessage = Infallible;
126 fn handle_custom_message(&self, _msg: Infallible) -> Option<Infallible> {
127 // Since we always return `None` in the read the handle method should never be called.
130 fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
135 impl CustomOnionMessageContents for Infallible {
136 fn tlv_type(&self) -> u64 { unreachable!(); }
139 impl Deref for IgnoringMessageHandler {
140 type Target = IgnoringMessageHandler;
141 fn deref(&self) -> &Self { self }
144 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
145 // method that takes self for it.
146 impl wire::Type for Infallible {
147 fn type_id(&self) -> u16 {
151 impl Writeable for Infallible {
152 fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
157 impl wire::CustomMessageReader for IgnoringMessageHandler {
158 type CustomMessage = Infallible;
159 fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
164 impl CustomMessageHandler for IgnoringMessageHandler {
165 fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
166 // Since we always return `None` in the read the handle method should never be called.
170 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
172 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
174 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
175 InitFeatures::empty()
179 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
180 /// You can provide one of these as the route_handler in a MessageHandler.
181 pub struct ErroringMessageHandler {
182 message_queue: Mutex<Vec<MessageSendEvent>>
184 impl ErroringMessageHandler {
185 /// Constructs a new ErroringMessageHandler
186 pub fn new() -> Self {
187 Self { message_queue: Mutex::new(Vec::new()) }
189 fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
190 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
191 action: msgs::ErrorAction::SendErrorMessage {
192 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
194 node_id: node_id.clone(),
198 impl MessageSendEventsProvider for ErroringMessageHandler {
199 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
200 let mut res = Vec::new();
201 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
205 impl ChannelMessageHandler for ErroringMessageHandler {
206 // Any messages which are related to a specific channel generate an error message to let the
207 // peer know we don't care about channels.
208 fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
209 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
211 fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
212 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
214 fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
215 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
217 fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
218 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
220 fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
221 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
223 fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
224 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
226 fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
227 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
229 fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
230 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
232 fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
233 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
235 fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
236 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
238 fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
239 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
241 fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
242 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
244 fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
245 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
247 fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
248 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
250 fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
251 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
253 fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
254 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
256 // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
257 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
258 fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
259 fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
260 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
261 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
262 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
263 // Set a number of features which various nodes may require to talk to us. It's totally
264 // reasonable to indicate we "support" all kinds of channel features...we just reject all
266 let mut features = InitFeatures::empty();
267 features.set_data_loss_protect_optional();
268 features.set_upfront_shutdown_script_optional();
269 features.set_variable_length_onion_optional();
270 features.set_static_remote_key_optional();
271 features.set_payment_secret_optional();
272 features.set_basic_mpp_optional();
273 features.set_wumbo_optional();
274 features.set_shutdown_any_segwit_optional();
275 features.set_channel_type_optional();
276 features.set_scid_privacy_optional();
277 features.set_zero_conf_optional();
281 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
282 // We don't enforce any chains upon peer connection for `ErroringMessageHandler` and leave it up
283 // to users of `ErroringMessageHandler` to make decisions on network compatiblility.
284 // There's not really any way to pull in specific networks here, and hardcoding can cause breakages.
288 fn handle_open_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
289 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
292 fn handle_accept_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
293 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
296 fn handle_tx_add_input(&self, their_node_id: &PublicKey, msg: &msgs::TxAddInput) {
297 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
300 fn handle_tx_add_output(&self, their_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
301 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
304 fn handle_tx_remove_input(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
305 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
308 fn handle_tx_remove_output(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
309 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
312 fn handle_tx_complete(&self, their_node_id: &PublicKey, msg: &msgs::TxComplete) {
313 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
316 fn handle_tx_signatures(&self, their_node_id: &PublicKey, msg: &msgs::TxSignatures) {
317 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
320 fn handle_tx_init_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
321 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
324 fn handle_tx_ack_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
325 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
328 fn handle_tx_abort(&self, their_node_id: &PublicKey, msg: &msgs::TxAbort) {
329 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
333 impl Deref for ErroringMessageHandler {
334 type Target = ErroringMessageHandler;
335 fn deref(&self) -> &Self { self }
338 /// Provides references to trait impls which handle different types of messages.
339 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref, CustomM: Deref> where
340 CM::Target: ChannelMessageHandler,
341 RM::Target: RoutingMessageHandler,
342 OM::Target: OnionMessageHandler,
343 CustomM::Target: CustomMessageHandler,
345 /// A message handler which handles messages specific to channels. Usually this is just a
346 /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
348 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
349 pub chan_handler: CM,
350 /// A message handler which handles messages updating our knowledge of the network channel
351 /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
353 /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
354 pub route_handler: RM,
356 /// A message handler which handles onion messages. This should generally be an
357 /// [`OnionMessenger`], but can also be an [`IgnoringMessageHandler`].
359 /// [`OnionMessenger`]: crate::onion_message::OnionMessenger
360 pub onion_message_handler: OM,
362 /// A message handler which handles custom messages. The only LDK-provided implementation is
363 /// [`IgnoringMessageHandler`].
364 pub custom_message_handler: CustomM,
367 /// Provides an object which can be used to send data to and which uniquely identifies a connection
368 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
369 /// implement Hash to meet the PeerManager API.
371 /// For efficiency, [`Clone`] should be relatively cheap for this type.
373 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
374 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
375 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
376 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
377 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
378 /// to simply use another value which is guaranteed to be globally unique instead.
379 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
380 /// Attempts to send some data from the given slice to the peer.
382 /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
383 /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
384 /// called and further write attempts may occur until that time.
386 /// If the returned size is smaller than `data.len()`, a
387 /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
388 /// written. Additionally, until a `send_data` event completes fully, no further
389 /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
390 /// prevent denial-of-service issues, you should not read or buffer any data from the socket
393 /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
394 /// (indicating that read events should be paused to prevent DoS in the send buffer),
395 /// `resume_read` may be set indicating that read events on this descriptor should resume. A
396 /// `resume_read` of false carries no meaning, and should not cause any action.
397 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
398 /// Disconnect the socket pointed to by this SocketDescriptor.
400 /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
401 /// call (doing so is a noop).
402 fn disconnect_socket(&mut self);
405 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
406 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
409 pub struct PeerHandleError { }
410 impl fmt::Debug for PeerHandleError {
411 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
412 formatter.write_str("Peer Sent Invalid Data")
415 impl fmt::Display for PeerHandleError {
416 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
417 formatter.write_str("Peer Sent Invalid Data")
421 #[cfg(feature = "std")]
422 impl error::Error for PeerHandleError {
423 fn description(&self) -> &str {
424 "Peer Sent Invalid Data"
428 enum InitSyncTracker{
430 ChannelsSyncing(u64),
431 NodesSyncing(NodeId),
434 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
435 /// forwarding gossip messages to peers altogether.
436 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
438 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
439 /// we have fewer than this many messages in the outbound buffer again.
440 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
441 /// refilled as we send bytes.
442 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
443 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
445 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
447 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
448 /// the socket receive buffer before receiving the ping.
450 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
451 /// including any network delays, outbound traffic, or the same for messages from other peers.
453 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
454 /// per connected peer to respond to a ping, as long as they send us at least one message during
455 /// each tick, ensuring we aren't actually just disconnected.
456 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
459 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
460 /// two connected peers, assuming most LDK-running systems have at least two cores.
461 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
463 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
464 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
465 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
466 /// process before the next ping.
468 /// Note that we continue responding to other messages even after we've sent this many messages, so
469 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
470 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
471 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
474 channel_encryptor: PeerChannelEncryptor,
475 /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
476 /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
477 their_node_id: Option<(PublicKey, NodeId)>,
478 /// The features provided in the peer's [`msgs::Init`] message.
480 /// This is set only after we've processed the [`msgs::Init`] message and called relevant
481 /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
482 /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
484 their_features: Option<InitFeatures>,
485 their_net_address: Option<NetAddress>,
487 pending_outbound_buffer: LinkedList<Vec<u8>>,
488 pending_outbound_buffer_first_msg_offset: usize,
489 /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
490 /// prioritize channel messages over them.
492 /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
493 gossip_broadcast_buffer: LinkedList<Vec<u8>>,
494 awaiting_write_event: bool,
496 pending_read_buffer: Vec<u8>,
497 pending_read_buffer_pos: usize,
498 pending_read_is_header: bool,
500 sync_status: InitSyncTracker,
502 msgs_sent_since_pong: usize,
503 awaiting_pong_timer_tick_intervals: i64,
504 received_message_since_timer_tick: bool,
505 sent_gossip_timestamp_filter: bool,
507 /// Indicates we've received a `channel_announcement` since the last time we had
508 /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
509 /// `channel_announcement` at all - we set this unconditionally but unset it every time we
510 /// check if we're gossip-processing-backlogged).
511 received_channel_announce_since_backlogged: bool,
513 inbound_connection: bool,
517 /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
518 /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
520 fn handshake_complete(&self) -> bool {
521 self.their_features.is_some()
524 /// Returns true if the channel announcements/updates for the given channel should be
525 /// forwarded to this peer.
526 /// If we are sending our routing table to this peer and we have not yet sent channel
527 /// announcements/updates for the given channel_id then we will send it when we get to that
528 /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
529 /// sent the old versions, we should send the update, and so return true here.
530 fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
531 if !self.handshake_complete() { return false; }
532 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
533 !self.sent_gossip_timestamp_filter {
536 match self.sync_status {
537 InitSyncTracker::NoSyncRequested => true,
538 InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
539 InitSyncTracker::NodesSyncing(_) => true,
543 /// Similar to the above, but for node announcements indexed by node_id.
544 fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
545 if !self.handshake_complete() { return false; }
546 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
547 !self.sent_gossip_timestamp_filter {
550 match self.sync_status {
551 InitSyncTracker::NoSyncRequested => true,
552 InitSyncTracker::ChannelsSyncing(_) => false,
553 InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
557 /// Returns whether we should be reading bytes from this peer, based on whether its outbound
558 /// buffer still has space and we don't need to pause reads to get some writes out.
559 fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
560 if !gossip_processing_backlogged {
561 self.received_channel_announce_since_backlogged = false;
563 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
564 (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
567 /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
568 /// outbound buffer. This is checked every time the peer's buffer may have been drained.
569 fn should_buffer_gossip_backfill(&self) -> bool {
570 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
571 && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
572 && self.handshake_complete()
575 /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
576 /// every time the peer's buffer may have been drained.
577 fn should_buffer_onion_message(&self) -> bool {
578 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
579 && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
582 /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
583 /// buffer. This is checked every time the peer's buffer may have been drained.
584 fn should_buffer_gossip_broadcast(&self) -> bool {
585 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
586 && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
589 /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
590 fn buffer_full_drop_gossip_broadcast(&self) -> bool {
591 let total_outbound_buffered =
592 self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
594 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
595 self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
598 fn set_their_node_id(&mut self, node_id: PublicKey) {
599 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
603 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
604 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
605 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
606 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
607 /// issues such as overly long function definitions.
609 /// This is not exported to bindings users as `Arc`s don't make sense in bindings.
610 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<
612 Arc<SimpleArcChannelManager<M, T, F, L>>,
613 Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>,
614 Arc<SimpleArcOnionMessenger<L>>,
616 IgnoringMessageHandler,
620 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
621 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
622 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
623 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
624 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
625 /// helps with issues such as long function definitions.
627 /// This is not exported to bindings users as general type aliases don't make sense in bindings.
628 pub type SimpleRefPeerManager<
629 'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, 'n, SD, M, T, F, C, L
632 &'n SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>,
633 &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>,
634 &'i SimpleRefOnionMessenger<'g, 'm, 'n, L>,
636 IgnoringMessageHandler,
641 /// A generic trait which is implemented for all [`PeerManager`]s. This makes bounding functions or
642 /// structs on any [`PeerManager`] much simpler as only this trait is needed as a bound, rather
643 /// than the full set of bounds on [`PeerManager`] itself.
645 /// This is not exported to bindings users as general cover traits aren't useful in other
647 #[allow(missing_docs)]
648 pub trait APeerManager {
649 type Descriptor: SocketDescriptor;
650 type CMT: ChannelMessageHandler + ?Sized;
651 type CM: Deref<Target=Self::CMT>;
652 type RMT: RoutingMessageHandler + ?Sized;
653 type RM: Deref<Target=Self::RMT>;
654 type OMT: OnionMessageHandler + ?Sized;
655 type OM: Deref<Target=Self::OMT>;
656 type LT: Logger + ?Sized;
657 type L: Deref<Target=Self::LT>;
658 type CMHT: CustomMessageHandler + ?Sized;
659 type CMH: Deref<Target=Self::CMHT>;
660 type NST: NodeSigner + ?Sized;
661 type NS: Deref<Target=Self::NST>;
662 /// Gets a reference to the underlying [`PeerManager`].
663 fn as_ref(&self) -> &PeerManager<Self::Descriptor, Self::CM, Self::RM, Self::OM, Self::L, Self::CMH, Self::NS>;
666 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref>
667 APeerManager for PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
668 CM::Target: ChannelMessageHandler,
669 RM::Target: RoutingMessageHandler,
670 OM::Target: OnionMessageHandler,
672 CMH::Target: CustomMessageHandler,
673 NS::Target: NodeSigner,
675 type Descriptor = Descriptor;
676 type CMT = <CM as Deref>::Target;
678 type RMT = <RM as Deref>::Target;
680 type OMT = <OM as Deref>::Target;
682 type LT = <L as Deref>::Target;
684 type CMHT = <CMH as Deref>::Target;
686 type NST = <NS as Deref>::Target;
688 fn as_ref(&self) -> &PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> { self }
691 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
692 /// socket events into messages which it passes on to its [`MessageHandler`].
694 /// Locks are taken internally, so you must never assume that reentrancy from a
695 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
697 /// Calls to [`read_event`] will decode relevant messages and pass them to the
698 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
699 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
700 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
701 /// calls only after previous ones have returned.
703 /// Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
704 /// a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
705 /// essentially you should default to using a [`SimpleRefPeerManager`], and use a
706 /// [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
707 /// you're using lightning-net-tokio.
709 /// [`read_event`]: PeerManager::read_event
710 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
711 CM::Target: ChannelMessageHandler,
712 RM::Target: RoutingMessageHandler,
713 OM::Target: OnionMessageHandler,
715 CMH::Target: CustomMessageHandler,
716 NS::Target: NodeSigner {
717 message_handler: MessageHandler<CM, RM, OM, CMH>,
718 /// Connection state for each connected peer - we have an outer read-write lock which is taken
719 /// as read while we're doing processing for a peer and taken write when a peer is being added
722 /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
723 /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
724 /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
725 /// the `MessageHandler`s for a given peer is already guaranteed.
726 peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
727 /// Only add to this set when noise completes.
728 /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
729 /// lock held. Entries may be added with only the `peers` read lock held (though the
730 /// `Descriptor` value must already exist in `peers`).
731 node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
732 /// We can only have one thread processing events at once, but if a second call to
733 /// `process_events` happens while a first call is in progress, one of the two calls needs to
734 /// start from the top to ensure any new messages are also handled.
736 /// Because the event handler calls into user code which may block, we don't want to block a
737 /// second thread waiting for another thread to handle events which is then blocked on user
738 /// code, so we store an atomic counter here:
739 /// * 0 indicates no event processor is running
740 /// * 1 indicates an event processor is running
741 /// * > 1 indicates an event processor is running but needs to start again from the top once
742 /// it finishes as another thread tried to start processing events but returned early.
743 event_processing_state: AtomicI32,
745 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
746 /// value increases strictly since we don't assume access to a time source.
747 last_node_announcement_serial: AtomicU32,
749 ephemeral_key_midstate: Sha256Engine,
751 peer_counter: AtomicCounter,
753 gossip_processing_backlogged: AtomicBool,
754 gossip_processing_backlog_lifted: AtomicBool,
759 secp_ctx: Secp256k1<secp256k1::SignOnly>
762 enum MessageHandlingError {
763 PeerHandleError(PeerHandleError),
764 LightningError(LightningError),
767 impl From<PeerHandleError> for MessageHandlingError {
768 fn from(error: PeerHandleError) -> Self {
769 MessageHandlingError::PeerHandleError(error)
773 impl From<LightningError> for MessageHandlingError {
774 fn from(error: LightningError) -> Self {
775 MessageHandlingError::LightningError(error)
779 macro_rules! encode_msg {
781 let mut buffer = VecWriter(Vec::new());
782 wire::write($msg, &mut buffer).unwrap();
787 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
788 CM::Target: ChannelMessageHandler,
789 OM::Target: OnionMessageHandler,
791 NS::Target: NodeSigner {
792 /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
793 /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
796 /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
797 /// cryptographically secure random bytes.
799 /// `current_time` is used as an always-increasing counter that survives across restarts and is
800 /// incremented irregularly internally. In general it is best to simply use the current UNIX
801 /// timestamp, however if it is not available a persistent counter that increases once per
802 /// minute should suffice.
804 /// This is not exported to bindings users as we can't export a PeerManager with a dummy route handler
805 pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
806 Self::new(MessageHandler {
807 chan_handler: channel_message_handler,
808 route_handler: IgnoringMessageHandler{},
809 onion_message_handler,
810 custom_message_handler: IgnoringMessageHandler{},
811 }, current_time, ephemeral_random_data, logger, node_signer)
815 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
816 RM::Target: RoutingMessageHandler,
818 NS::Target: NodeSigner {
819 /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
820 /// handler or onion message handler is used and onion and channel messages will be ignored (or
821 /// generate error messages). Note that some other lightning implementations time-out connections
822 /// after some time if no channel is built with the peer.
824 /// `current_time` is used as an always-increasing counter that survives across restarts and is
825 /// incremented irregularly internally. In general it is best to simply use the current UNIX
826 /// timestamp, however if it is not available a persistent counter that increases once per
827 /// minute should suffice.
829 /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
830 /// cryptographically secure random bytes.
832 /// This is not exported to bindings users as we can't export a PeerManager with a dummy channel handler
833 pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
834 Self::new(MessageHandler {
835 chan_handler: ErroringMessageHandler::new(),
836 route_handler: routing_message_handler,
837 onion_message_handler: IgnoringMessageHandler{},
838 custom_message_handler: IgnoringMessageHandler{},
839 }, current_time, ephemeral_random_data, logger, node_signer)
843 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
844 /// This works around `format!()` taking a reference to each argument, preventing
845 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
846 /// due to lifetime errors.
847 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
848 impl core::fmt::Display for OptionalFromDebugger<'_> {
849 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
850 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
854 /// A function used to filter out local or private addresses
855 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
856 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
857 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
859 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
860 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
861 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
862 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
863 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
864 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
865 // For IPv4 range 127.0.0.0 - 127.255.255.255 (127/8)
866 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
867 // For IPv4 range 169.254.0.0 - 169.254.255.255 (169.254/16)
868 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
869 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
870 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
871 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
872 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
873 // For IPv4 range 192.88.99.0 - 192.88.99.255 (192.88.99/24)
874 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
875 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
876 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
877 // For remaining addresses
878 Some(NetAddress::IPv6{addr: _, port: _}) => None,
879 Some(..) => ip_address,
884 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
885 CM::Target: ChannelMessageHandler,
886 RM::Target: RoutingMessageHandler,
887 OM::Target: OnionMessageHandler,
889 CMH::Target: CustomMessageHandler,
890 NS::Target: NodeSigner
892 /// Constructs a new `PeerManager` with the given message handlers.
894 /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
895 /// cryptographically secure random bytes.
897 /// `current_time` is used as an always-increasing counter that survives across restarts and is
898 /// incremented irregularly internally. In general it is best to simply use the current UNIX
899 /// timestamp, however if it is not available a persistent counter that increases once per
900 /// minute should suffice.
901 pub fn new(message_handler: MessageHandler<CM, RM, OM, CMH>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
902 let mut ephemeral_key_midstate = Sha256::engine();
903 ephemeral_key_midstate.input(ephemeral_random_data);
905 let mut secp_ctx = Secp256k1::signing_only();
906 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
907 secp_ctx.seeded_randomize(&ephemeral_hash);
911 peers: FairRwLock::new(HashMap::new()),
912 node_id_to_descriptor: Mutex::new(HashMap::new()),
913 event_processing_state: AtomicI32::new(0),
914 ephemeral_key_midstate,
915 peer_counter: AtomicCounter::new(),
916 gossip_processing_backlogged: AtomicBool::new(false),
917 gossip_processing_backlog_lifted: AtomicBool::new(false),
918 last_node_announcement_serial: AtomicU32::new(current_time),
925 /// Get a list of tuples mapping from node id to network addresses for peers which have
926 /// completed the initial handshake.
928 /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
929 /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
930 /// handshake has completed and we are sure the remote peer has the private key for the given
933 /// The returned `Option`s will only be `Some` if an address had been previously given via
934 /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
935 pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<NetAddress>)> {
936 let peers = self.peers.read().unwrap();
937 peers.values().filter_map(|peer_mutex| {
938 let p = peer_mutex.lock().unwrap();
939 if !p.handshake_complete() {
942 Some((p.their_node_id.unwrap().0, p.their_net_address.clone()))
946 fn get_ephemeral_key(&self) -> SecretKey {
947 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
948 let counter = self.peer_counter.get_increment();
949 ephemeral_hash.input(&counter.to_le_bytes());
950 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
953 fn init_features(&self, their_node_id: &PublicKey) -> InitFeatures {
954 self.message_handler.chan_handler.provided_init_features(their_node_id)
955 | self.message_handler.route_handler.provided_init_features(their_node_id)
956 | self.message_handler.onion_message_handler.provided_init_features(their_node_id)
957 | self.message_handler.custom_message_handler.provided_init_features(their_node_id)
960 /// Indicates a new outbound connection has been established to a node with the given `node_id`
961 /// and an optional remote network address.
963 /// The remote network address adds the option to report a remote IP address back to a connecting
964 /// peer using the init message.
965 /// The user should pass the remote network address of the host they are connected to.
967 /// If an `Err` is returned here you must disconnect the connection immediately.
969 /// Returns a small number of bytes to send to the remote node (currently always 50).
971 /// Panics if descriptor is duplicative with some other descriptor which has not yet been
972 /// [`socket_disconnected`].
974 /// [`socket_disconnected`]: PeerManager::socket_disconnected
975 pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
976 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
977 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
978 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
980 let mut peers = self.peers.write().unwrap();
981 match peers.entry(descriptor) {
982 hash_map::Entry::Occupied(_) => {
983 debug_assert!(false, "PeerManager driver duplicated descriptors!");
984 Err(PeerHandleError {})
986 hash_map::Entry::Vacant(e) => {
987 e.insert(Mutex::new(Peer {
988 channel_encryptor: peer_encryptor,
990 their_features: None,
991 their_net_address: remote_network_address,
993 pending_outbound_buffer: LinkedList::new(),
994 pending_outbound_buffer_first_msg_offset: 0,
995 gossip_broadcast_buffer: LinkedList::new(),
996 awaiting_write_event: false,
999 pending_read_buffer_pos: 0,
1000 pending_read_is_header: false,
1002 sync_status: InitSyncTracker::NoSyncRequested,
1004 msgs_sent_since_pong: 0,
1005 awaiting_pong_timer_tick_intervals: 0,
1006 received_message_since_timer_tick: false,
1007 sent_gossip_timestamp_filter: false,
1009 received_channel_announce_since_backlogged: false,
1010 inbound_connection: false,
1017 /// Indicates a new inbound connection has been established to a node with an optional remote
1018 /// network address.
1020 /// The remote network address adds the option to report a remote IP address back to a connecting
1021 /// peer using the init message.
1022 /// The user should pass the remote network address of the host they are connected to.
1024 /// May refuse the connection by returning an Err, but will never write bytes to the remote end
1025 /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
1026 /// the connection immediately.
1028 /// Panics if descriptor is duplicative with some other descriptor which has not yet been
1029 /// [`socket_disconnected`].
1031 /// [`socket_disconnected`]: PeerManager::socket_disconnected
1032 pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
1033 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
1034 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
1036 let mut peers = self.peers.write().unwrap();
1037 match peers.entry(descriptor) {
1038 hash_map::Entry::Occupied(_) => {
1039 debug_assert!(false, "PeerManager driver duplicated descriptors!");
1040 Err(PeerHandleError {})
1042 hash_map::Entry::Vacant(e) => {
1043 e.insert(Mutex::new(Peer {
1044 channel_encryptor: peer_encryptor,
1045 their_node_id: None,
1046 their_features: None,
1047 their_net_address: remote_network_address,
1049 pending_outbound_buffer: LinkedList::new(),
1050 pending_outbound_buffer_first_msg_offset: 0,
1051 gossip_broadcast_buffer: LinkedList::new(),
1052 awaiting_write_event: false,
1054 pending_read_buffer,
1055 pending_read_buffer_pos: 0,
1056 pending_read_is_header: false,
1058 sync_status: InitSyncTracker::NoSyncRequested,
1060 msgs_sent_since_pong: 0,
1061 awaiting_pong_timer_tick_intervals: 0,
1062 received_message_since_timer_tick: false,
1063 sent_gossip_timestamp_filter: false,
1065 received_channel_announce_since_backlogged: false,
1066 inbound_connection: true,
1073 fn peer_should_read(&self, peer: &mut Peer) -> bool {
1074 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
1077 fn update_gossip_backlogged(&self) {
1078 let new_state = self.message_handler.route_handler.processing_queue_high();
1079 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
1080 if prev_state && !new_state {
1081 self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
1085 fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
1086 let mut have_written = false;
1087 while !peer.awaiting_write_event {
1088 if peer.should_buffer_onion_message() {
1089 if let Some((peer_node_id, _)) = peer.their_node_id {
1090 if let Some(next_onion_message) =
1091 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
1092 self.enqueue_message(peer, &next_onion_message);
1096 if peer.should_buffer_gossip_broadcast() {
1097 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
1098 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
1101 if peer.should_buffer_gossip_backfill() {
1102 match peer.sync_status {
1103 InitSyncTracker::NoSyncRequested => {},
1104 InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
1105 if let Some((announce, update_a_option, update_b_option)) =
1106 self.message_handler.route_handler.get_next_channel_announcement(c)
1108 self.enqueue_message(peer, &announce);
1109 if let Some(update_a) = update_a_option {
1110 self.enqueue_message(peer, &update_a);
1112 if let Some(update_b) = update_b_option {
1113 self.enqueue_message(peer, &update_b);
1115 peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
1117 peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
1120 InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
1121 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
1122 self.enqueue_message(peer, &msg);
1123 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1125 peer.sync_status = InitSyncTracker::NoSyncRequested;
1128 InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
1129 InitSyncTracker::NodesSyncing(sync_node_id) => {
1130 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
1131 self.enqueue_message(peer, &msg);
1132 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1134 peer.sync_status = InitSyncTracker::NoSyncRequested;
1139 if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
1140 self.maybe_send_extra_ping(peer);
1143 let should_read = self.peer_should_read(peer);
1144 let next_buff = match peer.pending_outbound_buffer.front() {
1146 if force_one_write && !have_written {
1148 let data_sent = descriptor.send_data(&[], should_read);
1149 debug_assert_eq!(data_sent, 0, "Can't write more than no data");
1157 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
1158 let data_sent = descriptor.send_data(pending, should_read);
1159 have_written = true;
1160 peer.pending_outbound_buffer_first_msg_offset += data_sent;
1161 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
1162 peer.pending_outbound_buffer_first_msg_offset = 0;
1163 peer.pending_outbound_buffer.pop_front();
1165 peer.awaiting_write_event = true;
1170 /// Indicates that there is room to write data to the given socket descriptor.
1172 /// May return an Err to indicate that the connection should be closed.
1174 /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
1175 /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
1176 /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
1177 /// ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
1180 /// [`send_data`]: SocketDescriptor::send_data
1181 /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1182 pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1183 let peers = self.peers.read().unwrap();
1184 match peers.get(descriptor) {
1186 // This is most likely a simple race condition where the user found that the socket
1187 // was writeable, then we told the user to `disconnect_socket()`, then they called
1188 // this method. Return an error to make sure we get disconnected.
1189 return Err(PeerHandleError { });
1191 Some(peer_mutex) => {
1192 let mut peer = peer_mutex.lock().unwrap();
1193 peer.awaiting_write_event = false;
1194 self.do_attempt_write_data(descriptor, &mut peer, false);
1200 /// Indicates that data was read from the given socket descriptor.
1202 /// May return an Err to indicate that the connection should be closed.
1204 /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1205 /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1206 /// [`send_data`] calls to handle responses.
1208 /// If `Ok(true)` is returned, further read_events should not be triggered until a
1209 /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1212 /// In order to avoid processing too many messages at once per peer, `data` should be on the
1215 /// [`send_data`]: SocketDescriptor::send_data
1216 /// [`process_events`]: PeerManager::process_events
1217 pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1218 match self.do_read_event(peer_descriptor, data) {
1221 log_trace!(self.logger, "Disconnecting peer due to a protocol error (usually a duplicate connection).");
1222 self.disconnect_event_internal(peer_descriptor);
1228 /// Append a message to a peer's pending outbound/write buffer
1229 fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1230 if is_gossip_msg(message.type_id()) {
1231 log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1233 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1235 peer.msgs_sent_since_pong += 1;
1236 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1239 /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1240 fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1241 peer.msgs_sent_since_pong += 1;
1242 peer.gossip_broadcast_buffer.push_back(encoded_message);
1245 fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1246 let mut pause_read = false;
1247 let peers = self.peers.read().unwrap();
1248 let mut msgs_to_forward = Vec::new();
1249 let mut peer_node_id = None;
1250 match peers.get(peer_descriptor) {
1252 // This is most likely a simple race condition where the user read some bytes
1253 // from the socket, then we told the user to `disconnect_socket()`, then they
1254 // called this method. Return an error to make sure we get disconnected.
1255 return Err(PeerHandleError { });
1257 Some(peer_mutex) => {
1258 let mut read_pos = 0;
1259 while read_pos < data.len() {
1260 macro_rules! try_potential_handleerror {
1261 ($peer: expr, $thing: expr) => {
1266 msgs::ErrorAction::DisconnectPeer { .. } => {
1267 // We may have an `ErrorMessage` to send to the peer,
1268 // but writing to the socket while reading can lead to
1269 // re-entrant code and possibly unexpected behavior. The
1270 // message send is optimistic anyway, and in this case
1271 // we immediately disconnect the peer.
1272 log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1273 return Err(PeerHandleError { });
1275 msgs::ErrorAction::DisconnectPeerWithWarning { .. } => {
1276 // We have a `WarningMessage` to send to the peer, but
1277 // writing to the socket while reading can lead to
1278 // re-entrant code and possibly unexpected behavior. The
1279 // message send is optimistic anyway, and in this case
1280 // we immediately disconnect the peer.
1281 log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1282 return Err(PeerHandleError { });
1284 msgs::ErrorAction::IgnoreAndLog(level) => {
1285 log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1288 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1289 msgs::ErrorAction::IgnoreError => {
1290 log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1293 msgs::ErrorAction::SendErrorMessage { msg } => {
1294 log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1295 self.enqueue_message($peer, &msg);
1298 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1299 log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1300 self.enqueue_message($peer, &msg);
1309 let mut peer_lock = peer_mutex.lock().unwrap();
1310 let peer = &mut *peer_lock;
1311 let mut msg_to_handle = None;
1312 if peer_node_id.is_none() {
1313 peer_node_id = peer.their_node_id.clone();
1316 assert!(peer.pending_read_buffer.len() > 0);
1317 assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1320 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1321 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1322 read_pos += data_to_copy;
1323 peer.pending_read_buffer_pos += data_to_copy;
1326 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1327 peer.pending_read_buffer_pos = 0;
1329 macro_rules! insert_node_id {
1331 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1332 hash_map::Entry::Occupied(e) => {
1333 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1334 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1335 // Check that the peers map is consistent with the
1336 // node_id_to_descriptor map, as this has been broken
1338 debug_assert!(peers.get(e.get()).is_some());
1339 return Err(PeerHandleError { })
1341 hash_map::Entry::Vacant(entry) => {
1342 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1343 entry.insert(peer_descriptor.clone())
1349 let next_step = peer.channel_encryptor.get_noise_step();
1351 NextNoiseStep::ActOne => {
1352 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1353 .process_act_one_with_keys(&peer.pending_read_buffer[..],
1354 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1355 peer.pending_outbound_buffer.push_back(act_two);
1356 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1358 NextNoiseStep::ActTwo => {
1359 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1360 peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1361 &self.node_signer));
1362 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1363 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1364 peer.pending_read_is_header = true;
1366 peer.set_their_node_id(their_node_id);
1368 let features = self.init_features(&their_node_id);
1369 let networks = self.message_handler.chan_handler.get_genesis_hashes();
1370 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1371 self.enqueue_message(peer, &resp);
1372 peer.awaiting_pong_timer_tick_intervals = 0;
1374 NextNoiseStep::ActThree => {
1375 let their_node_id = try_potential_handleerror!(peer,
1376 peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1377 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1378 peer.pending_read_is_header = true;
1379 peer.set_their_node_id(their_node_id);
1381 let features = self.init_features(&their_node_id);
1382 let networks = self.message_handler.chan_handler.get_genesis_hashes();
1383 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1384 self.enqueue_message(peer, &resp);
1385 peer.awaiting_pong_timer_tick_intervals = 0;
1387 NextNoiseStep::NoiseComplete => {
1388 if peer.pending_read_is_header {
1389 let msg_len = try_potential_handleerror!(peer,
1390 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1391 if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1392 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1393 if msg_len < 2 { // Need at least the message type tag
1394 return Err(PeerHandleError { });
1396 peer.pending_read_is_header = false;
1398 let msg_data = try_potential_handleerror!(peer,
1399 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1400 assert!(msg_data.len() >= 2);
1402 // Reset read buffer
1403 if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1404 peer.pending_read_buffer.resize(18, 0);
1405 peer.pending_read_is_header = true;
1407 let mut reader = io::Cursor::new(&msg_data[..]);
1408 let message_result = wire::read(&mut reader, &*self.message_handler.custom_message_handler);
1409 let message = match message_result {
1413 // Note that to avoid re-entrancy we never call
1414 // `do_attempt_write_data` from here, causing
1415 // the messages enqueued here to not actually
1416 // be sent before the peer is disconnected.
1417 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1418 log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1421 (msgs::DecodeError::UnsupportedCompression, _) => {
1422 log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1423 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1426 (_, Some(ty)) if is_gossip_msg(ty) => {
1427 log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1428 self.enqueue_message(peer, &msgs::WarningMessage {
1429 channel_id: [0; 32],
1430 data: format!("Unreadable/bogus gossip message of type {}", ty),
1434 (msgs::DecodeError::UnknownRequiredFeature, _) => {
1435 log_debug!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1436 return Err(PeerHandleError { });
1438 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1439 (msgs::DecodeError::InvalidValue, _) => {
1440 log_debug!(self.logger, "Got an invalid value while deserializing message");
1441 return Err(PeerHandleError { });
1443 (msgs::DecodeError::ShortRead, _) => {
1444 log_debug!(self.logger, "Deserialization failed due to shortness of message");
1445 return Err(PeerHandleError { });
1447 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1448 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1453 msg_to_handle = Some(message);
1458 pause_read = !self.peer_should_read(peer);
1460 if let Some(message) = msg_to_handle {
1461 match self.handle_message(&peer_mutex, peer_lock, message) {
1462 Err(handling_error) => match handling_error {
1463 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1464 MessageHandlingError::LightningError(e) => {
1465 try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1469 msgs_to_forward.push(msg);
1478 for msg in msgs_to_forward.drain(..) {
1479 self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1485 /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1486 /// Returns the message back if it needs to be broadcasted to all other peers.
1489 peer_mutex: &Mutex<Peer>,
1490 mut peer_lock: MutexGuard<Peer>,
1491 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1492 ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1493 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1494 peer_lock.received_message_since_timer_tick = true;
1496 // Need an Init as first message
1497 if let wire::Message::Init(msg) = message {
1498 // Check if we have any compatible chains if the `networks` field is specified.
1499 if let Some(networks) = &msg.networks {
1500 if let Some(our_chains) = self.message_handler.chan_handler.get_genesis_hashes() {
1501 let mut have_compatible_chains = false;
1502 'our_chains: for our_chain in our_chains.iter() {
1503 for their_chain in networks {
1504 if our_chain == their_chain {
1505 have_compatible_chains = true;
1510 if !have_compatible_chains {
1511 log_debug!(self.logger, "Peer does not support any of our supported chains");
1512 return Err(PeerHandleError { }.into());
1517 let our_features = self.init_features(&their_node_id);
1518 if msg.features.requires_unknown_bits_from(&our_features) {
1519 log_debug!(self.logger, "Peer requires features unknown to us");
1520 return Err(PeerHandleError { }.into());
1523 if our_features.requires_unknown_bits_from(&msg.features) {
1524 log_debug!(self.logger, "We require features unknown to our peer");
1525 return Err(PeerHandleError { }.into());
1528 if peer_lock.their_features.is_some() {
1529 return Err(PeerHandleError { }.into());
1532 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1534 // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1535 if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1536 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1539 if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1540 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1541 return Err(PeerHandleError { }.into());
1543 if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1544 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1545 return Err(PeerHandleError { }.into());
1547 if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1548 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1549 return Err(PeerHandleError { }.into());
1552 peer_lock.their_features = Some(msg.features);
1554 } else if peer_lock.their_features.is_none() {
1555 log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1556 return Err(PeerHandleError { }.into());
1559 if let wire::Message::GossipTimestampFilter(_msg) = message {
1560 // When supporting gossip messages, start inital gossip sync only after we receive
1561 // a GossipTimestampFilter
1562 if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1563 !peer_lock.sent_gossip_timestamp_filter {
1564 peer_lock.sent_gossip_timestamp_filter = true;
1565 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1570 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1571 peer_lock.received_channel_announce_since_backlogged = true;
1574 mem::drop(peer_lock);
1576 if is_gossip_msg(message.type_id()) {
1577 log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1579 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1582 let mut should_forward = None;
1585 // Setup and Control messages:
1586 wire::Message::Init(_) => {
1589 wire::Message::GossipTimestampFilter(_) => {
1592 wire::Message::Error(msg) => {
1593 log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1594 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1595 if msg.channel_id == [0; 32] {
1596 return Err(PeerHandleError { }.into());
1599 wire::Message::Warning(msg) => {
1600 log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1603 wire::Message::Ping(msg) => {
1604 if msg.ponglen < 65532 {
1605 let resp = msgs::Pong { byteslen: msg.ponglen };
1606 self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1609 wire::Message::Pong(_msg) => {
1610 let mut peer_lock = peer_mutex.lock().unwrap();
1611 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1612 peer_lock.msgs_sent_since_pong = 0;
1615 // Channel messages:
1616 wire::Message::OpenChannel(msg) => {
1617 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1619 wire::Message::OpenChannelV2(msg) => {
1620 self.message_handler.chan_handler.handle_open_channel_v2(&their_node_id, &msg);
1622 wire::Message::AcceptChannel(msg) => {
1623 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1625 wire::Message::AcceptChannelV2(msg) => {
1626 self.message_handler.chan_handler.handle_accept_channel_v2(&their_node_id, &msg);
1629 wire::Message::FundingCreated(msg) => {
1630 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1632 wire::Message::FundingSigned(msg) => {
1633 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1635 wire::Message::ChannelReady(msg) => {
1636 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1639 // Interactive transaction construction messages:
1640 wire::Message::TxAddInput(msg) => {
1641 self.message_handler.chan_handler.handle_tx_add_input(&their_node_id, &msg);
1643 wire::Message::TxAddOutput(msg) => {
1644 self.message_handler.chan_handler.handle_tx_add_output(&their_node_id, &msg);
1646 wire::Message::TxRemoveInput(msg) => {
1647 self.message_handler.chan_handler.handle_tx_remove_input(&their_node_id, &msg);
1649 wire::Message::TxRemoveOutput(msg) => {
1650 self.message_handler.chan_handler.handle_tx_remove_output(&their_node_id, &msg);
1652 wire::Message::TxComplete(msg) => {
1653 self.message_handler.chan_handler.handle_tx_complete(&their_node_id, &msg);
1655 wire::Message::TxSignatures(msg) => {
1656 self.message_handler.chan_handler.handle_tx_signatures(&their_node_id, &msg);
1658 wire::Message::TxInitRbf(msg) => {
1659 self.message_handler.chan_handler.handle_tx_init_rbf(&their_node_id, &msg);
1661 wire::Message::TxAckRbf(msg) => {
1662 self.message_handler.chan_handler.handle_tx_ack_rbf(&their_node_id, &msg);
1664 wire::Message::TxAbort(msg) => {
1665 self.message_handler.chan_handler.handle_tx_abort(&their_node_id, &msg);
1668 wire::Message::Shutdown(msg) => {
1669 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1671 wire::Message::ClosingSigned(msg) => {
1672 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1675 // Commitment messages:
1676 wire::Message::UpdateAddHTLC(msg) => {
1677 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1679 wire::Message::UpdateFulfillHTLC(msg) => {
1680 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1682 wire::Message::UpdateFailHTLC(msg) => {
1683 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1685 wire::Message::UpdateFailMalformedHTLC(msg) => {
1686 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1689 wire::Message::CommitmentSigned(msg) => {
1690 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1692 wire::Message::RevokeAndACK(msg) => {
1693 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1695 wire::Message::UpdateFee(msg) => {
1696 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1698 wire::Message::ChannelReestablish(msg) => {
1699 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1702 // Routing messages:
1703 wire::Message::AnnouncementSignatures(msg) => {
1704 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1706 wire::Message::ChannelAnnouncement(msg) => {
1707 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1708 .map_err(|e| -> MessageHandlingError { e.into() })? {
1709 should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1711 self.update_gossip_backlogged();
1713 wire::Message::NodeAnnouncement(msg) => {
1714 if self.message_handler.route_handler.handle_node_announcement(&msg)
1715 .map_err(|e| -> MessageHandlingError { e.into() })? {
1716 should_forward = Some(wire::Message::NodeAnnouncement(msg));
1718 self.update_gossip_backlogged();
1720 wire::Message::ChannelUpdate(msg) => {
1721 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1722 if self.message_handler.route_handler.handle_channel_update(&msg)
1723 .map_err(|e| -> MessageHandlingError { e.into() })? {
1724 should_forward = Some(wire::Message::ChannelUpdate(msg));
1726 self.update_gossip_backlogged();
1728 wire::Message::QueryShortChannelIds(msg) => {
1729 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1731 wire::Message::ReplyShortChannelIdsEnd(msg) => {
1732 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1734 wire::Message::QueryChannelRange(msg) => {
1735 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1737 wire::Message::ReplyChannelRange(msg) => {
1738 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1742 wire::Message::OnionMessage(msg) => {
1743 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1746 // Unknown messages:
1747 wire::Message::Unknown(type_id) if message.is_even() => {
1748 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1749 return Err(PeerHandleError { }.into());
1751 wire::Message::Unknown(type_id) => {
1752 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1754 wire::Message::Custom(custom) => {
1755 self.message_handler.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1761 fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1763 wire::Message::ChannelAnnouncement(ref msg) => {
1764 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1765 let encoded_msg = encode_msg!(msg);
1767 for (_, peer_mutex) in peers.iter() {
1768 let mut peer = peer_mutex.lock().unwrap();
1769 if !peer.handshake_complete() ||
1770 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1773 debug_assert!(peer.their_node_id.is_some());
1774 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1775 if peer.buffer_full_drop_gossip_broadcast() {
1776 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1779 if let Some((_, their_node_id)) = peer.their_node_id {
1780 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1784 if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1787 self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1790 wire::Message::NodeAnnouncement(ref msg) => {
1791 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1792 let encoded_msg = encode_msg!(msg);
1794 for (_, peer_mutex) in peers.iter() {
1795 let mut peer = peer_mutex.lock().unwrap();
1796 if !peer.handshake_complete() ||
1797 !peer.should_forward_node_announcement(msg.contents.node_id) {
1800 debug_assert!(peer.their_node_id.is_some());
1801 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1802 if peer.buffer_full_drop_gossip_broadcast() {
1803 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1806 if let Some((_, their_node_id)) = peer.their_node_id {
1807 if their_node_id == msg.contents.node_id {
1811 if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1814 self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1817 wire::Message::ChannelUpdate(ref msg) => {
1818 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1819 let encoded_msg = encode_msg!(msg);
1821 for (_, peer_mutex) in peers.iter() {
1822 let mut peer = peer_mutex.lock().unwrap();
1823 if !peer.handshake_complete() ||
1824 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1827 debug_assert!(peer.their_node_id.is_some());
1828 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1829 if peer.buffer_full_drop_gossip_broadcast() {
1830 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1833 if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1836 self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1839 _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1843 /// Checks for any events generated by our handlers and processes them. Includes sending most
1844 /// response messages as well as messages generated by calls to handler functions directly (eg
1845 /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1847 /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1850 /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1851 /// or one of the other clients provided in our language bindings.
1853 /// Note that if there are any other calls to this function waiting on lock(s) this may return
1854 /// without doing any work. All available events that need handling will be handled before the
1855 /// other calls return.
1857 /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1858 /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1859 /// [`send_data`]: SocketDescriptor::send_data
1860 pub fn process_events(&self) {
1861 if self.event_processing_state.fetch_add(1, Ordering::AcqRel) > 0 {
1862 // If we're not the first event processor to get here, just return early, the increment
1863 // we just did will be treated as "go around again" at the end.
1868 self.update_gossip_backlogged();
1869 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1871 let mut peers_to_disconnect = HashMap::new();
1872 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1873 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1876 // TODO: There are some DoS attacks here where you can flood someone's outbound send
1877 // buffer by doing things like announcing channels on another node. We should be willing to
1878 // drop optional-ish messages when send buffers get full!
1880 let peers_lock = self.peers.read().unwrap();
1881 let peers = &*peers_lock;
1882 macro_rules! get_peer_for_forwarding {
1883 ($node_id: expr) => {
1885 if peers_to_disconnect.get($node_id).is_some() {
1886 // If we've "disconnected" this peer, do not send to it.
1889 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1890 match descriptor_opt {
1891 Some(descriptor) => match peers.get(&descriptor) {
1892 Some(peer_mutex) => {
1893 let peer_lock = peer_mutex.lock().unwrap();
1894 if !peer_lock.handshake_complete() {
1900 debug_assert!(false, "Inconsistent peers set state!");
1911 for event in events_generated.drain(..) {
1913 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1914 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1915 log_pubkey!(node_id),
1916 log_bytes!(msg.temporary_channel_id));
1917 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1919 MessageSendEvent::SendAcceptChannelV2 { ref node_id, ref msg } => {
1920 log_debug!(self.logger, "Handling SendAcceptChannelV2 event in peer_handler for node {} for channel {}",
1921 log_pubkey!(node_id),
1922 log_bytes!(msg.temporary_channel_id));
1923 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1925 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1926 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1927 log_pubkey!(node_id),
1928 log_bytes!(msg.temporary_channel_id));
1929 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1931 MessageSendEvent::SendOpenChannelV2 { ref node_id, ref msg } => {
1932 log_debug!(self.logger, "Handling SendOpenChannelV2 event in peer_handler for node {} for channel {}",
1933 log_pubkey!(node_id),
1934 log_bytes!(msg.temporary_channel_id));
1935 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1937 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1938 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1939 log_pubkey!(node_id),
1940 log_bytes!(msg.temporary_channel_id),
1941 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1942 // TODO: If the peer is gone we should generate a DiscardFunding event
1943 // indicating to the wallet that they should just throw away this funding transaction
1944 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1946 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1947 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1948 log_pubkey!(node_id),
1949 log_bytes!(msg.channel_id));
1950 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1952 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1953 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1954 log_pubkey!(node_id),
1955 log_bytes!(msg.channel_id));
1956 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1958 MessageSendEvent::SendTxAddInput { ref node_id, ref msg } => {
1959 log_debug!(self.logger, "Handling SendTxAddInput event in peer_handler for node {} for channel {}",
1960 log_pubkey!(node_id),
1961 log_bytes!(msg.channel_id));
1962 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1964 MessageSendEvent::SendTxAddOutput { ref node_id, ref msg } => {
1965 log_debug!(self.logger, "Handling SendTxAddOutput event in peer_handler for node {} for channel {}",
1966 log_pubkey!(node_id),
1967 log_bytes!(msg.channel_id));
1968 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1970 MessageSendEvent::SendTxRemoveInput { ref node_id, ref msg } => {
1971 log_debug!(self.logger, "Handling SendTxRemoveInput event in peer_handler for node {} for channel {}",
1972 log_pubkey!(node_id),
1973 log_bytes!(msg.channel_id));
1974 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1976 MessageSendEvent::SendTxRemoveOutput { ref node_id, ref msg } => {
1977 log_debug!(self.logger, "Handling SendTxRemoveOutput event in peer_handler for node {} for channel {}",
1978 log_pubkey!(node_id),
1979 log_bytes!(msg.channel_id));
1980 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1982 MessageSendEvent::SendTxComplete { ref node_id, ref msg } => {
1983 log_debug!(self.logger, "Handling SendTxComplete event in peer_handler for node {} for channel {}",
1984 log_pubkey!(node_id),
1985 log_bytes!(msg.channel_id));
1986 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1988 MessageSendEvent::SendTxSignatures { ref node_id, ref msg } => {
1989 log_debug!(self.logger, "Handling SendTxSignatures event in peer_handler for node {} for channel {}",
1990 log_pubkey!(node_id),
1991 log_bytes!(msg.channel_id));
1992 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1994 MessageSendEvent::SendTxInitRbf { ref node_id, ref msg } => {
1995 log_debug!(self.logger, "Handling SendTxInitRbf event in peer_handler for node {} for channel {}",
1996 log_pubkey!(node_id),
1997 log_bytes!(msg.channel_id));
1998 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2000 MessageSendEvent::SendTxAckRbf { ref node_id, ref msg } => {
2001 log_debug!(self.logger, "Handling SendTxAckRbf event in peer_handler for node {} for channel {}",
2002 log_pubkey!(node_id),
2003 log_bytes!(msg.channel_id));
2004 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2006 MessageSendEvent::SendTxAbort { ref node_id, ref msg } => {
2007 log_debug!(self.logger, "Handling SendTxAbort event in peer_handler for node {} for channel {}",
2008 log_pubkey!(node_id),
2009 log_bytes!(msg.channel_id));
2010 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2012 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
2013 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
2014 log_pubkey!(node_id),
2015 log_bytes!(msg.channel_id));
2016 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2018 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
2019 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
2020 log_pubkey!(node_id),
2021 update_add_htlcs.len(),
2022 update_fulfill_htlcs.len(),
2023 update_fail_htlcs.len(),
2024 log_bytes!(commitment_signed.channel_id));
2025 let mut peer = get_peer_for_forwarding!(node_id);
2026 for msg in update_add_htlcs {
2027 self.enqueue_message(&mut *peer, msg);
2029 for msg in update_fulfill_htlcs {
2030 self.enqueue_message(&mut *peer, msg);
2032 for msg in update_fail_htlcs {
2033 self.enqueue_message(&mut *peer, msg);
2035 for msg in update_fail_malformed_htlcs {
2036 self.enqueue_message(&mut *peer, msg);
2038 if let &Some(ref msg) = update_fee {
2039 self.enqueue_message(&mut *peer, msg);
2041 self.enqueue_message(&mut *peer, commitment_signed);
2043 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
2044 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
2045 log_pubkey!(node_id),
2046 log_bytes!(msg.channel_id));
2047 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2049 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
2050 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
2051 log_pubkey!(node_id),
2052 log_bytes!(msg.channel_id));
2053 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2055 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
2056 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
2057 log_pubkey!(node_id),
2058 log_bytes!(msg.channel_id));
2059 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2061 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
2062 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
2063 log_pubkey!(node_id),
2064 log_bytes!(msg.channel_id));
2065 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2067 MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
2068 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
2069 log_pubkey!(node_id),
2070 msg.contents.short_channel_id);
2071 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2072 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
2074 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
2075 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2076 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
2077 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2078 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
2081 if let Some(msg) = update_msg {
2082 match self.message_handler.route_handler.handle_channel_update(&msg) {
2083 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2084 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2089 MessageSendEvent::BroadcastChannelUpdate { msg } => {
2090 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2091 match self.message_handler.route_handler.handle_channel_update(&msg) {
2092 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2093 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2097 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
2098 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
2099 match self.message_handler.route_handler.handle_node_announcement(&msg) {
2100 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2101 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
2105 MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
2106 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
2107 log_pubkey!(node_id), msg.contents.short_channel_id);
2108 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2110 MessageSendEvent::HandleError { node_id, action } => {
2112 msgs::ErrorAction::DisconnectPeer { msg } => {
2113 if let Some(msg) = msg.as_ref() {
2114 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2115 log_pubkey!(node_id), msg.data);
2117 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {}",
2118 log_pubkey!(node_id));
2120 // We do not have the peers write lock, so we just store that we're
2121 // about to disconenct the peer and do it after we finish
2122 // processing most messages.
2123 let msg = msg.map(|msg| wire::Message::<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>::Error(msg));
2124 peers_to_disconnect.insert(node_id, msg);
2126 msgs::ErrorAction::DisconnectPeerWithWarning { msg } => {
2127 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2128 log_pubkey!(node_id), msg.data);
2129 // We do not have the peers write lock, so we just store that we're
2130 // about to disconenct the peer and do it after we finish
2131 // processing most messages.
2132 peers_to_disconnect.insert(node_id, Some(wire::Message::Warning(msg)));
2134 msgs::ErrorAction::IgnoreAndLog(level) => {
2135 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2137 msgs::ErrorAction::IgnoreDuplicateGossip => {},
2138 msgs::ErrorAction::IgnoreError => {
2139 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2141 msgs::ErrorAction::SendErrorMessage { ref msg } => {
2142 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
2143 log_pubkey!(node_id),
2145 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2147 msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
2148 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
2149 log_pubkey!(node_id),
2151 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2155 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
2156 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2158 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
2159 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2161 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
2162 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
2163 log_pubkey!(node_id),
2164 msg.short_channel_ids.len(),
2166 msg.number_of_blocks,
2168 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2170 MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
2171 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2176 for (node_id, msg) in self.message_handler.custom_message_handler.get_and_clear_pending_msg() {
2177 if peers_to_disconnect.get(&node_id).is_some() { continue; }
2178 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
2181 for (descriptor, peer_mutex) in peers.iter() {
2182 let mut peer = peer_mutex.lock().unwrap();
2183 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2184 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
2187 if !peers_to_disconnect.is_empty() {
2188 let mut peers_lock = self.peers.write().unwrap();
2189 let peers = &mut *peers_lock;
2190 for (node_id, msg) in peers_to_disconnect.drain() {
2191 // Note that since we are holding the peers *write* lock we can
2192 // remove from node_id_to_descriptor immediately (as no other
2193 // thread can be holding the peer lock if we have the global write
2196 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2197 if let Some(mut descriptor) = descriptor_opt {
2198 if let Some(peer_mutex) = peers.remove(&descriptor) {
2199 let mut peer = peer_mutex.lock().unwrap();
2200 if let Some(msg) = msg {
2201 self.enqueue_message(&mut *peer, &msg);
2202 // This isn't guaranteed to work, but if there is enough free
2203 // room in the send buffer, put the error message there...
2204 self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
2206 self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
2207 } else { debug_assert!(false, "Missing connection for peer"); }
2212 if self.event_processing_state.fetch_sub(1, Ordering::AcqRel) != 1 {
2213 // If another thread incremented the state while we were running we should go
2214 // around again, but only once.
2215 self.event_processing_state.store(1, Ordering::Release);
2222 /// Indicates that the given socket descriptor's connection is now closed.
2223 pub fn socket_disconnected(&self, descriptor: &Descriptor) {
2224 self.disconnect_event_internal(descriptor);
2227 fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
2228 if !peer.handshake_complete() {
2229 log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
2230 descriptor.disconnect_socket();
2234 debug_assert!(peer.their_node_id.is_some());
2235 if let Some((node_id, _)) = peer.their_node_id {
2236 log_trace!(self.logger, "Disconnecting peer with id {} due to {}", node_id, reason);
2237 self.message_handler.chan_handler.peer_disconnected(&node_id);
2238 self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2240 descriptor.disconnect_socket();
2243 fn disconnect_event_internal(&self, descriptor: &Descriptor) {
2244 let mut peers = self.peers.write().unwrap();
2245 let peer_option = peers.remove(descriptor);
2248 // This is most likely a simple race condition where the user found that the socket
2249 // was disconnected, then we told the user to `disconnect_socket()`, then they
2250 // called this method. Either way we're disconnected, return.
2252 Some(peer_lock) => {
2253 let peer = peer_lock.lock().unwrap();
2254 if let Some((node_id, _)) = peer.their_node_id {
2255 log_trace!(self.logger, "Handling disconnection of peer {}", log_pubkey!(node_id));
2256 let removed = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2257 debug_assert!(removed.is_some(), "descriptor maps should be consistent");
2258 if !peer.handshake_complete() { return; }
2259 self.message_handler.chan_handler.peer_disconnected(&node_id);
2260 self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2266 /// Disconnect a peer given its node id.
2268 /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
2269 /// peer. Thus, be very careful about reentrancy issues.
2271 /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
2272 pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
2273 let mut peers_lock = self.peers.write().unwrap();
2274 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
2275 let peer_opt = peers_lock.remove(&descriptor);
2276 if let Some(peer_mutex) = peer_opt {
2277 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
2278 } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
2282 /// Disconnects all currently-connected peers. This is useful on platforms where there may be
2283 /// an indication that TCP sockets have stalled even if we weren't around to time them out
2284 /// using regular ping/pongs.
2285 pub fn disconnect_all_peers(&self) {
2286 let mut peers_lock = self.peers.write().unwrap();
2287 self.node_id_to_descriptor.lock().unwrap().clear();
2288 let peers = &mut *peers_lock;
2289 for (descriptor, peer_mutex) in peers.drain() {
2290 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
2294 /// This is called when we're blocked on sending additional gossip messages until we receive a
2295 /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
2296 /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
2297 fn maybe_send_extra_ping(&self, peer: &mut Peer) {
2298 if peer.awaiting_pong_timer_tick_intervals == 0 {
2299 peer.awaiting_pong_timer_tick_intervals = -1;
2300 let ping = msgs::Ping {
2304 self.enqueue_message(peer, &ping);
2308 /// Send pings to each peer and disconnect those which did not respond to the last round of
2311 /// This may be called on any timescale you want, however, roughly once every ten seconds is
2312 /// preferred. The call rate determines both how often we send a ping to our peers and how much
2313 /// time they have to respond before we disconnect them.
2315 /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2318 /// [`send_data`]: SocketDescriptor::send_data
2319 pub fn timer_tick_occurred(&self) {
2320 let mut descriptors_needing_disconnect = Vec::new();
2322 let peers_lock = self.peers.read().unwrap();
2324 self.update_gossip_backlogged();
2325 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2327 for (descriptor, peer_mutex) in peers_lock.iter() {
2328 let mut peer = peer_mutex.lock().unwrap();
2329 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2331 if !peer.handshake_complete() {
2332 // The peer needs to complete its handshake before we can exchange messages. We
2333 // give peers one timer tick to complete handshake, reusing
2334 // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2335 // for handshake completion.
2336 if peer.awaiting_pong_timer_tick_intervals != 0 {
2337 descriptors_needing_disconnect.push(descriptor.clone());
2339 peer.awaiting_pong_timer_tick_intervals = 1;
2343 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2344 debug_assert!(peer.their_node_id.is_some());
2346 loop { // Used as a `goto` to skip writing a Ping message.
2347 if peer.awaiting_pong_timer_tick_intervals == -1 {
2348 // Magic value set in `maybe_send_extra_ping`.
2349 peer.awaiting_pong_timer_tick_intervals = 1;
2350 peer.received_message_since_timer_tick = false;
2354 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2355 || peer.awaiting_pong_timer_tick_intervals as u64 >
2356 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2358 descriptors_needing_disconnect.push(descriptor.clone());
2361 peer.received_message_since_timer_tick = false;
2363 if peer.awaiting_pong_timer_tick_intervals > 0 {
2364 peer.awaiting_pong_timer_tick_intervals += 1;
2368 peer.awaiting_pong_timer_tick_intervals = 1;
2369 let ping = msgs::Ping {
2373 self.enqueue_message(&mut *peer, &ping);
2376 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2380 if !descriptors_needing_disconnect.is_empty() {
2382 let mut peers_lock = self.peers.write().unwrap();
2383 for descriptor in descriptors_needing_disconnect {
2384 if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2385 let peer = peer_mutex.lock().unwrap();
2386 if let Some((node_id, _)) = peer.their_node_id {
2387 self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2389 self.do_disconnect(descriptor, &*peer, "ping/handshake timeout");
2397 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2398 // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2399 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2401 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2404 // ...by failing to compile if the number of addresses that would be half of a message is
2405 // smaller than 100:
2406 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2408 /// Generates a signed node_announcement from the given arguments, sending it to all connected
2409 /// peers. Note that peers will likely ignore this message unless we have at least one public
2410 /// channel which has at least six confirmations on-chain.
2412 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2413 /// node to humans. They carry no in-protocol meaning.
2415 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2416 /// accepts incoming connections. These will be included in the node_announcement, publicly
2417 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2418 /// addresses should likely contain only Tor Onion addresses.
2420 /// Panics if `addresses` is absurdly large (more than 100).
2422 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2423 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2424 if addresses.len() > 100 {
2425 panic!("More than half the message size was taken up by public addresses!");
2428 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2429 // addresses be sorted for future compatibility.
2430 addresses.sort_by_key(|addr| addr.get_id());
2432 let features = self.message_handler.chan_handler.provided_node_features()
2433 | self.message_handler.route_handler.provided_node_features()
2434 | self.message_handler.onion_message_handler.provided_node_features()
2435 | self.message_handler.custom_message_handler.provided_node_features();
2436 let announcement = msgs::UnsignedNodeAnnouncement {
2438 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2439 node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2441 alias: NodeAlias(alias),
2443 excess_address_data: Vec::new(),
2444 excess_data: Vec::new(),
2446 let node_announce_sig = match self.node_signer.sign_gossip_message(
2447 msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2451 log_error!(self.logger, "Failed to generate signature for node_announcement");
2456 let msg = msgs::NodeAnnouncement {
2457 signature: node_announce_sig,
2458 contents: announcement
2461 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2462 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2463 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2467 fn is_gossip_msg(type_id: u16) -> bool {
2469 msgs::ChannelAnnouncement::TYPE |
2470 msgs::ChannelUpdate::TYPE |
2471 msgs::NodeAnnouncement::TYPE |
2472 msgs::QueryChannelRange::TYPE |
2473 msgs::ReplyChannelRange::TYPE |
2474 msgs::QueryShortChannelIds::TYPE |
2475 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2482 use crate::sign::{NodeSigner, Recipient};
2485 use crate::ln::features::{InitFeatures, NodeFeatures};
2486 use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2487 use crate::ln::peer_handler::{CustomMessageHandler, PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2488 use crate::ln::{msgs, wire};
2489 use crate::ln::msgs::{LightningError, NetAddress};
2490 use crate::util::test_utils;
2492 use bitcoin::Network;
2493 use bitcoin::blockdata::constants::ChainHash;
2494 use bitcoin::secp256k1::{PublicKey, SecretKey};
2496 use crate::prelude::*;
2497 use crate::sync::{Arc, Mutex};
2498 use core::convert::Infallible;
2499 use core::sync::atomic::{AtomicBool, Ordering};
2502 struct FileDescriptor {
2504 outbound_data: Arc<Mutex<Vec<u8>>>,
2505 disconnect: Arc<AtomicBool>,
2507 impl PartialEq for FileDescriptor {
2508 fn eq(&self, other: &Self) -> bool {
2512 impl Eq for FileDescriptor { }
2513 impl core::hash::Hash for FileDescriptor {
2514 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2515 self.fd.hash(hasher)
2519 impl SocketDescriptor for FileDescriptor {
2520 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2521 self.outbound_data.lock().unwrap().extend_from_slice(data);
2525 fn disconnect_socket(&mut self) { self.disconnect.store(true, Ordering::Release); }
2528 struct PeerManagerCfg {
2529 chan_handler: test_utils::TestChannelMessageHandler,
2530 routing_handler: test_utils::TestRoutingMessageHandler,
2531 custom_handler: TestCustomMessageHandler,
2532 logger: test_utils::TestLogger,
2533 node_signer: test_utils::TestNodeSigner,
2536 struct TestCustomMessageHandler {
2537 features: InitFeatures,
2540 impl wire::CustomMessageReader for TestCustomMessageHandler {
2541 type CustomMessage = Infallible;
2542 fn read<R: io::Read>(&self, _: u16, _: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
2547 impl CustomMessageHandler for TestCustomMessageHandler {
2548 fn handle_custom_message(&self, _: Infallible, _: &PublicKey) -> Result<(), LightningError> {
2552 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
2554 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
2556 fn provided_init_features(&self, _: &PublicKey) -> InitFeatures {
2557 self.features.clone()
2561 fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2562 let mut cfgs = Vec::new();
2563 for i in 0..peer_count {
2564 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2566 let mut feature_bits = vec![0u8; 33];
2567 feature_bits[32] = 0b00000001;
2568 InitFeatures::from_le_bytes(feature_bits)
2572 chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2573 logger: test_utils::TestLogger::new(),
2574 routing_handler: test_utils::TestRoutingMessageHandler::new(),
2575 custom_handler: TestCustomMessageHandler { features },
2576 node_signer: test_utils::TestNodeSigner::new(node_secret),
2584 fn create_feature_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2585 let mut cfgs = Vec::new();
2586 for i in 0..peer_count {
2587 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2589 let mut feature_bits = vec![0u8; 33 + i + 1];
2590 feature_bits[33 + i] = 0b00000001;
2591 InitFeatures::from_le_bytes(feature_bits)
2595 chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2596 logger: test_utils::TestLogger::new(),
2597 routing_handler: test_utils::TestRoutingMessageHandler::new(),
2598 custom_handler: TestCustomMessageHandler { features },
2599 node_signer: test_utils::TestNodeSigner::new(node_secret),
2607 fn create_chain_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2608 let mut cfgs = Vec::new();
2609 for i in 0..peer_count {
2610 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2611 let features = InitFeatures::from_le_bytes(vec![0u8; 33]);
2612 let network = ChainHash::from(&[i as u8; 32][..]);
2615 chan_handler: test_utils::TestChannelMessageHandler::new(network),
2616 logger: test_utils::TestLogger::new(),
2617 routing_handler: test_utils::TestRoutingMessageHandler::new(),
2618 custom_handler: TestCustomMessageHandler { features },
2619 node_signer: test_utils::TestNodeSigner::new(node_secret),
2627 fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>> {
2628 let mut peers = Vec::new();
2629 for i in 0..peer_count {
2630 let ephemeral_bytes = [i as u8; 32];
2631 let msg_handler = MessageHandler {
2632 chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler,
2633 onion_message_handler: IgnoringMessageHandler {}, custom_message_handler: &cfgs[i].custom_handler
2635 let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, &cfgs[i].node_signer);
2642 fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2643 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2644 let mut fd_a = FileDescriptor {
2645 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2646 disconnect: Arc::new(AtomicBool::new(false)),
2648 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2649 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2650 let mut fd_b = FileDescriptor {
2651 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2652 disconnect: Arc::new(AtomicBool::new(false)),
2654 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2655 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2656 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2657 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2658 peer_a.process_events();
2660 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2661 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2663 peer_b.process_events();
2664 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2665 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2667 peer_a.process_events();
2668 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2669 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2671 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2672 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2674 (fd_a.clone(), fd_b.clone())
2678 #[cfg(feature = "std")]
2679 fn fuzz_threaded_connections() {
2680 // Spawn two threads which repeatedly connect two peers together, leading to "got second
2681 // connection with peer" disconnections and rapid reconnect. This previously found an issue
2682 // with our internal map consistency, and is a generally good smoke test of disconnection.
2683 let cfgs = Arc::new(create_peermgr_cfgs(2));
2684 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
2685 let peers = Arc::new(create_network(2, unsafe { &*(&*cfgs as *const _) as &'static _ }));
2687 let start_time = std::time::Instant::now();
2688 macro_rules! spawn_thread { ($id: expr) => { {
2689 let peers = Arc::clone(&peers);
2690 let cfgs = Arc::clone(&cfgs);
2691 std::thread::spawn(move || {
2693 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2694 let id_a = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2695 let mut fd_a = FileDescriptor {
2696 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2697 disconnect: Arc::new(AtomicBool::new(false)),
2699 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2700 let mut fd_b = FileDescriptor {
2701 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2702 disconnect: Arc::new(AtomicBool::new(false)),
2704 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2705 let initial_data = peers[1].new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2706 peers[0].new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2707 if peers[0].read_event(&mut fd_a, &initial_data).is_err() { break; }
2709 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2710 peers[0].process_events();
2711 if fd_a.disconnect.load(Ordering::Acquire) { break; }
2712 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2713 if peers[1].read_event(&mut fd_b, &a_data).is_err() { break; }
2715 peers[1].process_events();
2716 if fd_b.disconnect.load(Ordering::Acquire) { break; }
2717 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2718 if peers[0].read_event(&mut fd_a, &b_data).is_err() { break; }
2720 cfgs[0].chan_handler.pending_events.lock().unwrap()
2721 .push(crate::events::MessageSendEvent::SendShutdown {
2722 node_id: peers[1].node_signer.get_node_id(Recipient::Node).unwrap(),
2723 msg: msgs::Shutdown {
2724 channel_id: [0; 32],
2725 scriptpubkey: bitcoin::Script::new(),
2728 cfgs[1].chan_handler.pending_events.lock().unwrap()
2729 .push(crate::events::MessageSendEvent::SendShutdown {
2730 node_id: peers[0].node_signer.get_node_id(Recipient::Node).unwrap(),
2731 msg: msgs::Shutdown {
2732 channel_id: [0; 32],
2733 scriptpubkey: bitcoin::Script::new(),
2738 peers[0].timer_tick_occurred();
2739 peers[1].timer_tick_occurred();
2743 peers[0].socket_disconnected(&fd_a);
2744 peers[1].socket_disconnected(&fd_b);
2746 std::thread::sleep(std::time::Duration::from_micros(1));
2750 let thrd_a = spawn_thread!(1);
2751 let thrd_b = spawn_thread!(2);
2753 thrd_a.join().unwrap();
2754 thrd_b.join().unwrap();
2758 fn test_feature_incompatible_peers() {
2759 let cfgs = create_peermgr_cfgs(2);
2760 let incompatible_cfgs = create_feature_incompatible_peermgr_cfgs(2);
2762 let peers = create_network(2, &cfgs);
2763 let incompatible_peers = create_network(2, &incompatible_cfgs);
2764 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2765 for (peer_a, peer_b) in peer_pairs.iter() {
2766 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2767 let mut fd_a = FileDescriptor {
2768 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2769 disconnect: Arc::new(AtomicBool::new(false)),
2771 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2772 let mut fd_b = FileDescriptor {
2773 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2774 disconnect: Arc::new(AtomicBool::new(false)),
2776 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2777 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2778 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2779 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2780 peer_a.process_events();
2782 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2783 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2785 peer_b.process_events();
2786 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2788 // Should fail because of unknown required features
2789 assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2794 fn test_chain_incompatible_peers() {
2795 let cfgs = create_peermgr_cfgs(2);
2796 let incompatible_cfgs = create_chain_incompatible_peermgr_cfgs(2);
2798 let peers = create_network(2, &cfgs);
2799 let incompatible_peers = create_network(2, &incompatible_cfgs);
2800 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2801 for (peer_a, peer_b) in peer_pairs.iter() {
2802 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2803 let mut fd_a = FileDescriptor {
2804 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2805 disconnect: Arc::new(AtomicBool::new(false)),
2807 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2808 let mut fd_b = FileDescriptor {
2809 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2810 disconnect: Arc::new(AtomicBool::new(false)),
2812 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2813 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2814 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2815 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2816 peer_a.process_events();
2818 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2819 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2821 peer_b.process_events();
2822 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2824 // Should fail because of incompatible chains
2825 assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2830 fn test_disconnect_peer() {
2831 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2832 // push a DisconnectPeer event to remove the node flagged by id
2833 let cfgs = create_peermgr_cfgs(2);
2834 let peers = create_network(2, &cfgs);
2835 establish_connection(&peers[0], &peers[1]);
2836 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2838 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2839 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2841 action: msgs::ErrorAction::DisconnectPeer { msg: None },
2844 peers[0].process_events();
2845 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2849 fn test_send_simple_msg() {
2850 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2851 // push a message from one peer to another.
2852 let cfgs = create_peermgr_cfgs(2);
2853 let a_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2854 let b_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2855 let mut peers = create_network(2, &cfgs);
2856 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2857 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2859 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2861 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2862 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2863 node_id: their_id, msg: msg.clone()
2865 peers[0].message_handler.chan_handler = &a_chan_handler;
2867 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2868 peers[1].message_handler.chan_handler = &b_chan_handler;
2870 peers[0].process_events();
2872 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2873 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2877 fn test_non_init_first_msg() {
2878 // Simple test of the first message received over a connection being something other than
2879 // Init. This results in an immediate disconnection, which previously included a spurious
2880 // peer_disconnected event handed to event handlers (which would panic in
2881 // `TestChannelMessageHandler` here).
2882 let cfgs = create_peermgr_cfgs(2);
2883 let peers = create_network(2, &cfgs);
2885 let mut fd_dup = FileDescriptor {
2886 fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2887 disconnect: Arc::new(AtomicBool::new(false)),
2889 let addr_dup = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1003};
2890 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2891 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2893 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2894 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2895 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2896 peers[0].process_events();
2898 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2899 let (act_three, _) =
2900 dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
2901 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
2903 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
2904 let msg_bytes = dup_encryptor.encrypt_message(¬_init_msg);
2905 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
2909 fn test_disconnect_all_peer() {
2910 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2911 // then calls disconnect_all_peers
2912 let cfgs = create_peermgr_cfgs(2);
2913 let peers = create_network(2, &cfgs);
2914 establish_connection(&peers[0], &peers[1]);
2915 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2917 peers[0].disconnect_all_peers();
2918 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2922 fn test_timer_tick_occurred() {
2923 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2924 let cfgs = create_peermgr_cfgs(2);
2925 let peers = create_network(2, &cfgs);
2926 establish_connection(&peers[0], &peers[1]);
2927 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2929 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2930 peers[0].timer_tick_occurred();
2931 peers[0].process_events();
2932 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2934 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2935 peers[0].timer_tick_occurred();
2936 peers[0].process_events();
2937 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2941 fn test_do_attempt_write_data() {
2942 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2943 let cfgs = create_peermgr_cfgs(2);
2944 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2945 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2946 let peers = create_network(2, &cfgs);
2948 // By calling establish_connect, we trigger do_attempt_write_data between
2949 // the peers. Previously this function would mistakenly enter an infinite loop
2950 // when there were more channel messages available than could fit into a peer's
2951 // buffer. This issue would now be detected by this test (because we use custom
2952 // RoutingMessageHandlers that intentionally return more channel messages
2953 // than can fit into a peer's buffer).
2954 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2956 // Make each peer to read the messages that the other peer just wrote to them. Note that
2957 // due to the max-message-before-ping limits this may take a few iterations to complete.
2958 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2959 peers[1].process_events();
2960 let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2961 assert!(!a_read_data.is_empty());
2963 peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2964 peers[0].process_events();
2966 let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2967 assert!(!b_read_data.is_empty());
2968 peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2970 peers[0].process_events();
2971 assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2974 // Check that each peer has received the expected number of channel updates and channel
2976 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2977 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2978 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2979 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2983 fn test_handshake_timeout() {
2984 // Tests that we time out a peer still waiting on handshake completion after a full timer
2986 let cfgs = create_peermgr_cfgs(2);
2987 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2988 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2989 let peers = create_network(2, &cfgs);
2991 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2992 let mut fd_a = FileDescriptor {
2993 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2994 disconnect: Arc::new(AtomicBool::new(false)),
2996 let mut fd_b = FileDescriptor {
2997 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2998 disconnect: Arc::new(AtomicBool::new(false)),
3000 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
3001 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
3003 // If we get a single timer tick before completion, that's fine
3004 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3005 peers[0].timer_tick_occurred();
3006 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3008 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
3009 peers[0].process_events();
3010 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
3011 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
3012 peers[1].process_events();
3014 // ...but if we get a second timer tick, we should disconnect the peer
3015 peers[0].timer_tick_occurred();
3016 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
3018 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
3019 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
3023 fn test_filter_addresses(){
3024 // Tests the filter_addresses function.
3027 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
3028 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3029 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
3030 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3031 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
3032 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3035 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
3036 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3037 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
3038 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3039 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
3040 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3043 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
3044 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3045 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
3046 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3047 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
3048 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3051 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
3052 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3053 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
3054 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3055 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
3056 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3059 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
3060 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3061 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
3062 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3063 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
3064 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3067 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
3068 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3069 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
3070 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3071 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
3072 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3075 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
3076 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3077 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
3078 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3079 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
3080 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3082 // For (192.88.99/24)
3083 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
3084 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3085 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
3086 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3087 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
3088 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3090 // For other IPv4 addresses
3091 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
3092 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3093 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
3094 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3095 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
3096 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3099 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
3100 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3101 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
3102 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3103 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
3104 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3106 // For other IPv6 addresses
3107 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
3108 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3109 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
3110 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3111 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
3112 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3115 assert_eq!(filter_addresses(None), None);
3119 #[cfg(feature = "std")]
3120 fn test_process_events_multithreaded() {
3121 use std::time::{Duration, Instant};
3122 // Test that `process_events` getting called on multiple threads doesn't generate too many
3124 // Each time `process_events` goes around the loop we call
3125 // `get_and_clear_pending_msg_events`, which we count using the `TestMessageHandler`.
3126 // Because the loop should go around once more after a call which fails to take the
3127 // single-threaded lock, if we write zero to the counter before calling `process_events` we
3128 // should never observe there having been more than 2 loop iterations.
3129 // Further, because the last thread to exit will call `process_events` before returning, we
3130 // should always have at least one count at the end.
3131 let cfg = Arc::new(create_peermgr_cfgs(1));
3132 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
3133 let peer = Arc::new(create_network(1, unsafe { &*(&*cfg as *const _) as &'static _ }).pop().unwrap());
3135 let exit_flag = Arc::new(AtomicBool::new(false));
3136 macro_rules! spawn_thread { () => { {
3137 let thread_cfg = Arc::clone(&cfg);
3138 let thread_peer = Arc::clone(&peer);
3139 let thread_exit = Arc::clone(&exit_flag);
3140 std::thread::spawn(move || {
3141 while !thread_exit.load(Ordering::Acquire) {
3142 thread_cfg[0].chan_handler.message_fetch_counter.store(0, Ordering::Release);
3143 thread_peer.process_events();
3144 std::thread::sleep(Duration::from_micros(1));
3149 let thread_a = spawn_thread!();
3150 let thread_b = spawn_thread!();
3151 let thread_c = spawn_thread!();
3153 let start_time = Instant::now();
3154 while start_time.elapsed() < Duration::from_millis(100) {
3155 let val = cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire);
3157 std::thread::yield_now(); // Winblowz seemingly doesn't ever interrupt threads?!
3160 exit_flag.store(true, Ordering::Release);
3161 thread_a.join().unwrap();
3162 thread_b.join().unwrap();
3163 thread_c.join().unwrap();
3164 assert!(cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire) >= 1);