Log peer public key more thoroughly when logging in peer_handler
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use util::byte_utils;
28 use util::events::{MessageSendEvent, MessageSendEventsProvider};
29 use util::logger::Logger;
30 use routing::network_graph::NetGraphMsgHandler;
31
32 use prelude::*;
33 use io;
34 use alloc::collections::LinkedList;
35 use sync::{Arc, Mutex};
36 use core::sync::atomic::{AtomicUsize, Ordering};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer, implying
261         /// we should go ahead and force-close any channels we have with it.
262         pub no_connection_possible: bool,
263 }
264 impl fmt::Debug for PeerHandleError {
265         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
266                 formatter.write_str("Peer Sent Invalid Data")
267         }
268 }
269 impl fmt::Display for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274
275 #[cfg(feature = "std")]
276 impl error::Error for PeerHandleError {
277         fn description(&self) -> &str {
278                 "Peer Sent Invalid Data"
279         }
280 }
281
282 enum InitSyncTracker{
283         NoSyncRequested,
284         ChannelsSyncing(u64),
285         NodesSyncing(PublicKey),
286 }
287
288 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
289 /// forwarding gossip messages to peers altogether.
290 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
291
292 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
293 /// we have fewer than this many messages in the outbound buffer again.
294 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
295 /// refilled as we send bytes.
296 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
297 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
298 /// the peer.
299 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
300
301 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
302 /// the socket receive buffer before receiving the ping.
303 ///
304 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
305 /// including any network delays, outbound traffic, or the same for messages from other peers.
306 ///
307 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
308 /// per connected peer to respond to a ping, as long as they send us at least one message during
309 /// each tick, ensuring we aren't actually just disconnected.
310 /// With a timer tick interval of five seconds, this translates to about 30 seconds per connected
311 /// peer.
312 ///
313 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
314 /// two connected peers, assuming most LDK-running systems have at least two cores.
315 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 6;
316
317 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
318 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
319 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
320 /// process before the next ping.
321 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
322
323 struct Peer {
324         channel_encryptor: PeerChannelEncryptor,
325         their_node_id: Option<PublicKey>,
326         their_features: Option<InitFeatures>,
327
328         pending_outbound_buffer: LinkedList<Vec<u8>>,
329         pending_outbound_buffer_first_msg_offset: usize,
330         awaiting_write_event: bool,
331
332         pending_read_buffer: Vec<u8>,
333         pending_read_buffer_pos: usize,
334         pending_read_is_header: bool,
335
336         sync_status: InitSyncTracker,
337
338         msgs_sent_since_pong: usize,
339         awaiting_pong_timer_tick_intervals: i8,
340         received_message_since_timer_tick: bool,
341 }
342
343 impl Peer {
344         /// Returns true if the channel announcements/updates for the given channel should be
345         /// forwarded to this peer.
346         /// If we are sending our routing table to this peer and we have not yet sent channel
347         /// announcements/updates for the given channel_id then we will send it when we get to that
348         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
349         /// sent the old versions, we should send the update, and so return true here.
350         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
351                 match self.sync_status {
352                         InitSyncTracker::NoSyncRequested => true,
353                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
354                         InitSyncTracker::NodesSyncing(_) => true,
355                 }
356         }
357
358         /// Similar to the above, but for node announcements indexed by node_id.
359         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
360                 match self.sync_status {
361                         InitSyncTracker::NoSyncRequested => true,
362                         InitSyncTracker::ChannelsSyncing(_) => false,
363                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
364                 }
365         }
366 }
367
368 struct PeerHolder<Descriptor: SocketDescriptor> {
369         peers: HashMap<Descriptor, Peer>,
370         /// Only add to this set when noise completes:
371         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
372 }
373
374 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
375 fn _check_usize_is_32_or_64() {
376         // See below, less than 32 bit pointers may be unsafe here!
377         unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
378 }
379
380 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
381 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
382 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
383 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
384 /// issues such as overly long function definitions.
385 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
386
387 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
388 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
389 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
390 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
391 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
392 /// helps with issues such as long function definitions.
393 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L, IgnoringMessageHandler>;
394
395 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
396 /// socket events into messages which it passes on to its [`MessageHandler`].
397 ///
398 /// Locks are taken internally, so you must never assume that reentrancy from a
399 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
400 ///
401 /// Calls to [`read_event`] will decode relevant messages and pass them to the
402 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
403 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
404 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
405 /// calls only after previous ones have returned.
406 ///
407 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
408 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
409 /// essentially you should default to using a SimpleRefPeerManager, and use a
410 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
411 /// you're using lightning-net-tokio.
412 ///
413 /// [`read_event`]: PeerManager::read_event
414 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
415                 CM::Target: ChannelMessageHandler,
416                 RM::Target: RoutingMessageHandler,
417                 L::Target: Logger,
418                 CMH::Target: CustomMessageHandler {
419         message_handler: MessageHandler<CM, RM>,
420         peers: Mutex<PeerHolder<Descriptor>>,
421         our_node_secret: SecretKey,
422         ephemeral_key_midstate: Sha256Engine,
423         custom_message_handler: CMH,
424
425         // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
426         // bits we will never realistically count into high:
427         peer_counter_low: AtomicUsize,
428         peer_counter_high: AtomicUsize,
429
430         logger: L,
431 }
432
433 enum MessageHandlingError {
434         PeerHandleError(PeerHandleError),
435         LightningError(LightningError),
436 }
437
438 impl From<PeerHandleError> for MessageHandlingError {
439         fn from(error: PeerHandleError) -> Self {
440                 MessageHandlingError::PeerHandleError(error)
441         }
442 }
443
444 impl From<LightningError> for MessageHandlingError {
445         fn from(error: LightningError) -> Self {
446                 MessageHandlingError::LightningError(error)
447         }
448 }
449
450 macro_rules! encode_msg {
451         ($msg: expr) => {{
452                 let mut buffer = VecWriter(Vec::new());
453                 wire::write($msg, &mut buffer).unwrap();
454                 buffer.0
455         }}
456 }
457
458 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
459                 CM::Target: ChannelMessageHandler,
460                 L::Target: Logger {
461         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
462         /// handler is used and network graph messages are ignored.
463         ///
464         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
465         /// cryptographically secure random bytes.
466         ///
467         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
468         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
469                 Self::new(MessageHandler {
470                         chan_handler: channel_message_handler,
471                         route_handler: IgnoringMessageHandler{},
472                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
473         }
474 }
475
476 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
477                 RM::Target: RoutingMessageHandler,
478                 L::Target: Logger {
479         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
480         /// handler is used and messages related to channels will be ignored (or generate error
481         /// messages). Note that some other lightning implementations time-out connections after some
482         /// time if no channel is built with the peer.
483         ///
484         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
485         /// cryptographically secure random bytes.
486         ///
487         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
488         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
489                 Self::new(MessageHandler {
490                         chan_handler: ErroringMessageHandler::new(),
491                         route_handler: routing_message_handler,
492                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
493         }
494 }
495
496 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
497 impl core::fmt::Display for OptionalFromDebugger<'_> {
498         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
499                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
500         }
501 }
502
503 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
504                 CM::Target: ChannelMessageHandler,
505                 RM::Target: RoutingMessageHandler,
506                 L::Target: Logger,
507                 CMH::Target: CustomMessageHandler {
508         /// Constructs a new PeerManager with the given message handlers and node_id secret key
509         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
510         /// cryptographically secure random bytes.
511         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
512                 let mut ephemeral_key_midstate = Sha256::engine();
513                 ephemeral_key_midstate.input(ephemeral_random_data);
514
515                 PeerManager {
516                         message_handler,
517                         peers: Mutex::new(PeerHolder {
518                                 peers: HashMap::new(),
519                                 node_id_to_descriptor: HashMap::new()
520                         }),
521                         our_node_secret,
522                         ephemeral_key_midstate,
523                         peer_counter_low: AtomicUsize::new(0),
524                         peer_counter_high: AtomicUsize::new(0),
525                         logger,
526                         custom_message_handler,
527                 }
528         }
529
530         /// Get the list of node ids for peers which have completed the initial handshake.
531         ///
532         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
533         /// new_outbound_connection, however entries will only appear once the initial handshake has
534         /// completed and we are sure the remote peer has the private key for the given node_id.
535         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
536                 let peers = self.peers.lock().unwrap();
537                 peers.peers.values().filter_map(|p| {
538                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
539                                 return None;
540                         }
541                         p.their_node_id
542                 }).collect()
543         }
544
545         fn get_ephemeral_key(&self) -> SecretKey {
546                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
547                 let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
548                 let high = if low == 0 {
549                         self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
550                 } else {
551                         self.peer_counter_high.load(Ordering::Acquire)
552                 };
553                 ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
554                 ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
555                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
556         }
557
558         /// Indicates a new outbound connection has been established to a node with the given node_id.
559         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
560         /// descriptor but must disconnect the connection immediately.
561         ///
562         /// Returns a small number of bytes to send to the remote node (currently always 50).
563         ///
564         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
565         /// [`socket_disconnected()`].
566         ///
567         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
568         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
569                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
570                 let res = peer_encryptor.get_act_one().to_vec();
571                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
572
573                 let mut peers = self.peers.lock().unwrap();
574                 if peers.peers.insert(descriptor, Peer {
575                         channel_encryptor: peer_encryptor,
576                         their_node_id: None,
577                         their_features: None,
578
579                         pending_outbound_buffer: LinkedList::new(),
580                         pending_outbound_buffer_first_msg_offset: 0,
581                         awaiting_write_event: false,
582
583                         pending_read_buffer,
584                         pending_read_buffer_pos: 0,
585                         pending_read_is_header: false,
586
587                         sync_status: InitSyncTracker::NoSyncRequested,
588
589                         msgs_sent_since_pong: 0,
590                         awaiting_pong_timer_tick_intervals: 0,
591                         received_message_since_timer_tick: false,
592                 }).is_some() {
593                         panic!("PeerManager driver duplicated descriptors!");
594                 };
595                 Ok(res)
596         }
597
598         /// Indicates a new inbound connection has been established.
599         ///
600         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
601         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
602         /// call socket_disconnected for the new descriptor but must disconnect the connection
603         /// immediately.
604         ///
605         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
606         /// [`socket_disconnected()`].
607         ///
608         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
609         pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
610                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
611                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
612
613                 let mut peers = self.peers.lock().unwrap();
614                 if peers.peers.insert(descriptor, Peer {
615                         channel_encryptor: peer_encryptor,
616                         their_node_id: None,
617                         their_features: None,
618
619                         pending_outbound_buffer: LinkedList::new(),
620                         pending_outbound_buffer_first_msg_offset: 0,
621                         awaiting_write_event: false,
622
623                         pending_read_buffer,
624                         pending_read_buffer_pos: 0,
625                         pending_read_is_header: false,
626
627                         sync_status: InitSyncTracker::NoSyncRequested,
628
629                         msgs_sent_since_pong: 0,
630                         awaiting_pong_timer_tick_intervals: 0,
631                         received_message_since_timer_tick: false,
632                 }).is_some() {
633                         panic!("PeerManager driver duplicated descriptors!");
634                 };
635                 Ok(())
636         }
637
638         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
639                 while !peer.awaiting_write_event {
640                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
641                                 match peer.sync_status {
642                                         InitSyncTracker::NoSyncRequested => {},
643                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
644                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
645                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
646                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
647                                                         self.enqueue_message(peer, announce);
648                                                         if let &Some(ref update_a) = update_a_option {
649                                                                 self.enqueue_message(peer, update_a);
650                                                         }
651                                                         if let &Some(ref update_b) = update_b_option {
652                                                                 self.enqueue_message(peer, update_b);
653                                                         }
654                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
655                                                 }
656                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
657                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
658                                                 }
659                                         },
660                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
661                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
662                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
663                                                 for msg in all_messages.iter() {
664                                                         self.enqueue_message(peer, msg);
665                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
666                                                 }
667                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
668                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
669                                                 }
670                                         },
671                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
672                                         InitSyncTracker::NodesSyncing(key) => {
673                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
674                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
675                                                 for msg in all_messages.iter() {
676                                                         self.enqueue_message(peer, msg);
677                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
678                                                 }
679                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
680                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
681                                                 }
682                                         },
683                                 }
684                         }
685                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
686                                 self.maybe_send_extra_ping(peer);
687                         }
688
689                         if {
690                                 let next_buff = match peer.pending_outbound_buffer.front() {
691                                         None => return,
692                                         Some(buff) => buff,
693                                 };
694
695                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
696                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
697                                 let data_sent = descriptor.send_data(pending, should_be_reading);
698                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
699                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
700                         } {
701                                 peer.pending_outbound_buffer_first_msg_offset = 0;
702                                 peer.pending_outbound_buffer.pop_front();
703                         } else {
704                                 peer.awaiting_write_event = true;
705                         }
706                 }
707         }
708
709         /// Indicates that there is room to write data to the given socket descriptor.
710         ///
711         /// May return an Err to indicate that the connection should be closed.
712         ///
713         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
714         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
715         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
716         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
717         /// sufficient!
718         ///
719         /// [`send_data`]: SocketDescriptor::send_data
720         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
721         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
722                 let mut peers = self.peers.lock().unwrap();
723                 match peers.peers.get_mut(descriptor) {
724                         None => {
725                                 // This is most likely a simple race condition where the user found that the socket
726                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
727                                 // this method. Return an error to make sure we get disconnected.
728                                 return Err(PeerHandleError { no_connection_possible: false });
729                         },
730                         Some(peer) => {
731                                 peer.awaiting_write_event = false;
732                                 self.do_attempt_write_data(descriptor, peer);
733                         }
734                 };
735                 Ok(())
736         }
737
738         /// Indicates that data was read from the given socket descriptor.
739         ///
740         /// May return an Err to indicate that the connection should be closed.
741         ///
742         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
743         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
744         /// [`send_data`] calls to handle responses.
745         ///
746         /// If `Ok(true)` is returned, further read_events should not be triggered until a
747         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
748         /// send buffer).
749         ///
750         /// [`send_data`]: SocketDescriptor::send_data
751         /// [`process_events`]: PeerManager::process_events
752         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
753                 match self.do_read_event(peer_descriptor, data) {
754                         Ok(res) => Ok(res),
755                         Err(e) => {
756                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
757                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
758                                 Err(e)
759                         }
760                 }
761         }
762
763         /// Append a message to a peer's pending outbound/write buffer
764         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
765                 peer.msgs_sent_since_pong += 1;
766                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
767         }
768
769         /// Append a message to a peer's pending outbound/write buffer
770         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
771                 let mut buffer = VecWriter(Vec::with_capacity(2048));
772                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
773                 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
774                 self.enqueue_encoded_message(peer, &buffer.0);
775         }
776
777         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
778                 let pause_read = {
779                         let mut peers_lock = self.peers.lock().unwrap();
780                         let peers = &mut *peers_lock;
781                         let mut msgs_to_forward = Vec::new();
782                         let mut peer_node_id = None;
783                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
784                                 None => {
785                                         // This is most likely a simple race condition where the user read some bytes
786                                         // from the socket, then we told the user to `disconnect_socket()`, then they
787                                         // called this method. Return an error to make sure we get disconnected.
788                                         return Err(PeerHandleError { no_connection_possible: false });
789                                 },
790                                 Some(peer) => {
791                                         assert!(peer.pending_read_buffer.len() > 0);
792                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
793
794                                         let mut read_pos = 0;
795                                         while read_pos < data.len() {
796                                                 {
797                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
798                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
799                                                         read_pos += data_to_copy;
800                                                         peer.pending_read_buffer_pos += data_to_copy;
801                                                 }
802
803                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
804                                                         peer.pending_read_buffer_pos = 0;
805
806                                                         macro_rules! try_potential_handleerror {
807                                                                 ($thing: expr) => {
808                                                                         match $thing {
809                                                                                 Ok(x) => x,
810                                                                                 Err(e) => {
811                                                                                         match e.action {
812                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
813                                                                                                         //TODO: Try to push msg
814                                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
815                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
816                                                                                                 },
817                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
818                                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
819                                                                                                         continue
820                                                                                                 },
821                                                                                                 msgs::ErrorAction::IgnoreError => {
822                                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
823                                                                                                         continue;
824                                                                                                 },
825                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
826                                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
827                                                                                                         self.enqueue_message(peer, &msg);
828                                                                                                         continue;
829                                                                                                 },
830                                                                                         }
831                                                                                 }
832                                                                         }
833                                                                 }
834                                                         }
835
836                                                         macro_rules! insert_node_id {
837                                                                 () => {
838                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
839                                                                                 hash_map::Entry::Occupied(_) => {
840                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
841                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
842                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
843                                                                                 },
844                                                                                 hash_map::Entry::Vacant(entry) => {
845                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
846                                                                                         entry.insert(peer_descriptor.clone())
847                                                                                 },
848                                                                         };
849                                                                 }
850                                                         }
851
852                                                         let next_step = peer.channel_encryptor.get_noise_step();
853                                                         match next_step {
854                                                                 NextNoiseStep::ActOne => {
855                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
856                                                                         peer.pending_outbound_buffer.push_back(act_two);
857                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
858                                                                 },
859                                                                 NextNoiseStep::ActTwo => {
860                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
861                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
862                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
863                                                                         peer.pending_read_is_header = true;
864
865                                                                         peer.their_node_id = Some(their_node_id);
866                                                                         insert_node_id!();
867                                                                         let features = InitFeatures::known();
868                                                                         let resp = msgs::Init { features };
869                                                                         self.enqueue_message(peer, &resp);
870                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
871                                                                 },
872                                                                 NextNoiseStep::ActThree => {
873                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
874                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
875                                                                         peer.pending_read_is_header = true;
876                                                                         peer.their_node_id = Some(their_node_id);
877                                                                         insert_node_id!();
878                                                                         let features = InitFeatures::known();
879                                                                         let resp = msgs::Init { features };
880                                                                         self.enqueue_message(peer, &resp);
881                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
882                                                                 },
883                                                                 NextNoiseStep::NoiseComplete => {
884                                                                         if peer.pending_read_is_header {
885                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
886                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
887                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
888                                                                                 if msg_len < 2 { // Need at least the message type tag
889                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
890                                                                                 }
891                                                                                 peer.pending_read_is_header = false;
892                                                                         } else {
893                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
894                                                                                 assert!(msg_data.len() >= 2);
895
896                                                                                 // Reset read buffer
897                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
898                                                                                 peer.pending_read_is_header = true;
899
900                                                                                 let mut reader = io::Cursor::new(&msg_data[..]);
901                                                                                 let message_result = wire::read(&mut reader, &*self.custom_message_handler);
902                                                                                 let message = match message_result {
903                                                                                         Ok(x) => x,
904                                                                                         Err(e) => {
905                                                                                                 match e {
906                                                                                                         msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
907                                                                                                         msgs::DecodeError::UnknownRequiredFeature => {
908                                                                                                                 log_trace!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
909                                                                                                                 continue;
910                                                                                                         }
911                                                                                                         msgs::DecodeError::InvalidValue => {
912                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
913                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
914                                                                                                         }
915                                                                                                         msgs::DecodeError::ShortRead => {
916                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
917                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
918                                                                                                         }
919                                                                                                         msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
920                                                                                                         msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
921                                                                                                         msgs::DecodeError::UnsupportedCompression => {
922                                                                                                                 log_trace!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
923                                                                                                                 continue;
924                                                                                                         }
925                                                                                                 }
926                                                                                         }
927                                                                                 };
928
929                                                                                 match self.handle_message(peer, message) {
930                                                                                         Err(handling_error) => match handling_error {
931                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
932                                                                                                 MessageHandlingError::LightningError(e) => {
933                                                                                                         try_potential_handleerror!(Err(e));
934                                                                                                 },
935                                                                                         },
936                                                                                         Ok(Some(msg)) => {
937                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
938                                                                                                 msgs_to_forward.push(msg);
939                                                                                         },
940                                                                                         Ok(None) => {},
941                                                                                 }
942                                                                         }
943                                                                 }
944                                                         }
945                                                 }
946                                         }
947
948                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
949                                 }
950                         };
951
952                         for msg in msgs_to_forward.drain(..) {
953                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
954                         }
955
956                         pause_read
957                 };
958
959                 Ok(pause_read)
960         }
961
962         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
963         /// Returns the message back if it needs to be broadcasted to all other peers.
964         fn handle_message(
965                 &self,
966                 peer: &mut Peer,
967                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
968         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
969                 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
970                 peer.received_message_since_timer_tick = true;
971
972                 // Need an Init as first message
973                 if let wire::Message::Init(_) = message {
974                 } else if peer.their_features.is_none() {
975                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
976                         return Err(PeerHandleError{ no_connection_possible: false }.into());
977                 }
978
979                 let mut should_forward = None;
980
981                 match message {
982                         // Setup and Control messages:
983                         wire::Message::Init(msg) => {
984                                 if msg.features.requires_unknown_bits() {
985                                         log_debug!(self.logger, "Peer features required unknown version bits");
986                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
987                                 }
988                                 if peer.their_features.is_some() {
989                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
990                                 }
991
992                                 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);
993
994                                 if msg.features.initial_routing_sync() {
995                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
996                                 }
997                                 if !msg.features.supports_static_remote_key() {
998                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
999                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1000                                 }
1001
1002                                 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
1003
1004                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1005                                 peer.their_features = Some(msg.features);
1006                         },
1007                         wire::Message::Error(msg) => {
1008                                 let mut data_is_printable = true;
1009                                 for b in msg.data.bytes() {
1010                                         if b < 32 || b > 126 {
1011                                                 data_is_printable = false;
1012                                                 break;
1013                                         }
1014                                 }
1015
1016                                 if data_is_printable {
1017                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1018                                 } else {
1019                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1020                                 }
1021                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1022                                 if msg.channel_id == [0; 32] {
1023                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1024                                 }
1025                         },
1026
1027                         wire::Message::Ping(msg) => {
1028                                 if msg.ponglen < 65532 {
1029                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1030                                         self.enqueue_message(peer, &resp);
1031                                 }
1032                         },
1033                         wire::Message::Pong(_msg) => {
1034                                 peer.awaiting_pong_timer_tick_intervals = 0;
1035                                 peer.msgs_sent_since_pong = 0;
1036                         },
1037
1038                         // Channel messages:
1039                         wire::Message::OpenChannel(msg) => {
1040                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1041                         },
1042                         wire::Message::AcceptChannel(msg) => {
1043                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1044                         },
1045
1046                         wire::Message::FundingCreated(msg) => {
1047                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1048                         },
1049                         wire::Message::FundingSigned(msg) => {
1050                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1051                         },
1052                         wire::Message::FundingLocked(msg) => {
1053                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1054                         },
1055
1056                         wire::Message::Shutdown(msg) => {
1057                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1058                         },
1059                         wire::Message::ClosingSigned(msg) => {
1060                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1061                         },
1062
1063                         // Commitment messages:
1064                         wire::Message::UpdateAddHTLC(msg) => {
1065                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1066                         },
1067                         wire::Message::UpdateFulfillHTLC(msg) => {
1068                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1069                         },
1070                         wire::Message::UpdateFailHTLC(msg) => {
1071                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1072                         },
1073                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1074                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1075                         },
1076
1077                         wire::Message::CommitmentSigned(msg) => {
1078                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1079                         },
1080                         wire::Message::RevokeAndACK(msg) => {
1081                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1082                         },
1083                         wire::Message::UpdateFee(msg) => {
1084                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1085                         },
1086                         wire::Message::ChannelReestablish(msg) => {
1087                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1088                         },
1089
1090                         // Routing messages:
1091                         wire::Message::AnnouncementSignatures(msg) => {
1092                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1093                         },
1094                         wire::Message::ChannelAnnouncement(msg) => {
1095                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1096                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1097                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1098                                 }
1099                         },
1100                         wire::Message::NodeAnnouncement(msg) => {
1101                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1102                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1103                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1104                                 }
1105                         },
1106                         wire::Message::ChannelUpdate(msg) => {
1107                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1108                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1109                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1110                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1111                                 }
1112                         },
1113                         wire::Message::QueryShortChannelIds(msg) => {
1114                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1115                         },
1116                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1117                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1118                         },
1119                         wire::Message::QueryChannelRange(msg) => {
1120                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1121                         },
1122                         wire::Message::ReplyChannelRange(msg) => {
1123                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1124                         },
1125                         wire::Message::GossipTimestampFilter(_msg) => {
1126                                 // TODO: handle message
1127                         },
1128
1129                         // Unknown messages:
1130                         wire::Message::Unknown(type_id) if message.is_even() => {
1131                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1132                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1133                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1134                         },
1135                         wire::Message::Unknown(type_id) => {
1136                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1137                         },
1138                         wire::Message::Custom(custom) => {
1139                                 self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
1140                         },
1141                 };
1142                 Ok(should_forward)
1143         }
1144
1145         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1146                 match msg {
1147                         wire::Message::ChannelAnnouncement(ref msg) => {
1148                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1149                                 let encoded_msg = encode_msg!(msg);
1150
1151                                 for (_, peer) in peers.peers.iter_mut() {
1152                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1153                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1154                                                 continue
1155                                         }
1156                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1157                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_SIZE_LIMIT
1158                                         {
1159                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1160                                                 continue;
1161                                         }
1162                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1163                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1164                                                 continue;
1165                                         }
1166                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1167                                                 continue;
1168                                         }
1169                                         self.enqueue_encoded_message(peer, &encoded_msg);
1170                                 }
1171                         },
1172                         wire::Message::NodeAnnouncement(ref msg) => {
1173                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1174                                 let encoded_msg = encode_msg!(msg);
1175
1176                                 for (_, peer) in peers.peers.iter_mut() {
1177                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1178                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1179                                                 continue
1180                                         }
1181                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1182                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_SIZE_LIMIT
1183                                         {
1184                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1185                                                 continue;
1186                                         }
1187                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1188                                                 continue;
1189                                         }
1190                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1191                                                 continue;
1192                                         }
1193                                         self.enqueue_encoded_message(peer, &encoded_msg);
1194                                 }
1195                         },
1196                         wire::Message::ChannelUpdate(ref msg) => {
1197                                 log_trace!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1198                                 let encoded_msg = encode_msg!(msg);
1199
1200                                 for (_, peer) in peers.peers.iter_mut() {
1201                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1202                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1203                                                 continue
1204                                         }
1205                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1206                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_SIZE_LIMIT
1207                                         {
1208                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1209                                                 continue;
1210                                         }
1211                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1212                                                 continue;
1213                                         }
1214                                         self.enqueue_encoded_message(peer, &encoded_msg);
1215                                 }
1216                         },
1217                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1218                 }
1219         }
1220
1221         /// Checks for any events generated by our handlers and processes them. Includes sending most
1222         /// response messages as well as messages generated by calls to handler functions directly (eg
1223         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1224         ///
1225         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1226         /// issues!
1227         ///
1228         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1229         /// or one of the other clients provided in our language bindings.
1230         ///
1231         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1232         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1233         /// [`send_data`]: SocketDescriptor::send_data
1234         pub fn process_events(&self) {
1235                 {
1236                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1237                         // buffer by doing things like announcing channels on another node. We should be willing to
1238                         // drop optional-ish messages when send buffers get full!
1239
1240                         let mut peers_lock = self.peers.lock().unwrap();
1241                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1242                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1243                         let peers = &mut *peers_lock;
1244                         macro_rules! get_peer_for_forwarding {
1245                                 ($node_id: expr) => {
1246                                         {
1247                                                 match peers.node_id_to_descriptor.get($node_id) {
1248                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1249                                                                 Some(peer) => {
1250                                                                         if peer.their_features.is_none() {
1251                                                                                 continue;
1252                                                                         }
1253                                                                         peer
1254                                                                 },
1255                                                                 None => panic!("Inconsistent peers set state!"),
1256                                                         },
1257                                                         None => {
1258                                                                 continue;
1259                                                         },
1260                                                 }
1261                                         }
1262                                 }
1263                         }
1264                         for event in events_generated.drain(..) {
1265                                 match event {
1266                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1267                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1268                                                                 log_pubkey!(node_id),
1269                                                                 log_bytes!(msg.temporary_channel_id));
1270                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1271                                         },
1272                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1273                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1274                                                                 log_pubkey!(node_id),
1275                                                                 log_bytes!(msg.temporary_channel_id));
1276                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1277                                         },
1278                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1279                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1280                                                                 log_pubkey!(node_id),
1281                                                                 log_bytes!(msg.temporary_channel_id),
1282                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1283                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1284                                                 // indicating to the wallet that they should just throw away this funding transaction
1285                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1286                                         },
1287                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1288                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1289                                                                 log_pubkey!(node_id),
1290                                                                 log_bytes!(msg.channel_id));
1291                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1292                                         },
1293                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1294                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1295                                                                 log_pubkey!(node_id),
1296                                                                 log_bytes!(msg.channel_id));
1297                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1298                                         },
1299                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1300                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1301                                                                 log_pubkey!(node_id),
1302                                                                 log_bytes!(msg.channel_id));
1303                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1304                                         },
1305                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1306                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1307                                                                 log_pubkey!(node_id),
1308                                                                 update_add_htlcs.len(),
1309                                                                 update_fulfill_htlcs.len(),
1310                                                                 update_fail_htlcs.len(),
1311                                                                 log_bytes!(commitment_signed.channel_id));
1312                                                 let peer = get_peer_for_forwarding!(node_id);
1313                                                 for msg in update_add_htlcs {
1314                                                         self.enqueue_message(peer, msg);
1315                                                 }
1316                                                 for msg in update_fulfill_htlcs {
1317                                                         self.enqueue_message(peer, msg);
1318                                                 }
1319                                                 for msg in update_fail_htlcs {
1320                                                         self.enqueue_message(peer, msg);
1321                                                 }
1322                                                 for msg in update_fail_malformed_htlcs {
1323                                                         self.enqueue_message(peer, msg);
1324                                                 }
1325                                                 if let &Some(ref msg) = update_fee {
1326                                                         self.enqueue_message(peer, msg);
1327                                                 }
1328                                                 self.enqueue_message(peer, commitment_signed);
1329                                         },
1330                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1331                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1332                                                                 log_pubkey!(node_id),
1333                                                                 log_bytes!(msg.channel_id));
1334                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1335                                         },
1336                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1337                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1338                                                                 log_pubkey!(node_id),
1339                                                                 log_bytes!(msg.channel_id));
1340                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1341                                         },
1342                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1343                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1344                                                                 log_pubkey!(node_id),
1345                                                                 log_bytes!(msg.channel_id));
1346                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1347                                         },
1348                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1349                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1350                                                                 log_pubkey!(node_id),
1351                                                                 log_bytes!(msg.channel_id));
1352                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1353                                         },
1354                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1355                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1356                                                 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1357                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1358                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1359                                                 }
1360                                         },
1361                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1362                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1363                                                 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1364                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1365                                                 }
1366                                         },
1367                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1368                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1369                                                 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1370                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1371                                                 }
1372                                         },
1373                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1374                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1375                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1376                                                 let peer = get_peer_for_forwarding!(node_id);
1377                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1378                                         },
1379                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1380                                                 match *action {
1381                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1382                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1383                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1384                                                                                 if let Some(ref msg) = *msg {
1385                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1386                                                                                                         log_pubkey!(node_id),
1387                                                                                                         msg.data);
1388                                                                                         self.enqueue_message(&mut peer, msg);
1389                                                                                         // This isn't guaranteed to work, but if there is enough free
1390                                                                                         // room in the send buffer, put the error message there...
1391                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1392                                                                                 } else {
1393                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1394                                                                                 }
1395                                                                         }
1396                                                                         descriptor.disconnect_socket();
1397                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1398                                                                 }
1399                                                         },
1400                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1401                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1402                                                         },
1403                                                         msgs::ErrorAction::IgnoreError => {
1404                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1405                                                         },
1406                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1407                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1408                                                                                 log_pubkey!(node_id),
1409                                                                                 msg.data);
1410                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1411                                                         },
1412                                                 }
1413                                         },
1414                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1415                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1416                                         },
1417                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1418                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1419                                         }
1420                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1421                                                 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1422                                                         log_pubkey!(node_id),
1423                                                         msg.short_channel_ids.len(),
1424                                                         msg.first_blocknum,
1425                                                         msg.number_of_blocks,
1426                                                         msg.sync_complete);
1427                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1428                                         }
1429                                 }
1430                         }
1431
1432                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1433                                 self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
1434                         }
1435
1436                         for (descriptor, peer) in peers.peers.iter_mut() {
1437                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1438                         }
1439                 }
1440         }
1441
1442         /// Indicates that the given socket descriptor's connection is now closed.
1443         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1444                 self.disconnect_event_internal(descriptor, false);
1445         }
1446
1447         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1448                 let mut peers = self.peers.lock().unwrap();
1449                 let peer_option = peers.peers.remove(descriptor);
1450                 match peer_option {
1451                         None => {
1452                                 // This is most likely a simple race condition where the user found that the socket
1453                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1454                                 // called this method. Either way we're disconnected, return.
1455                         },
1456                         Some(peer) => {
1457                                 match peer.their_node_id {
1458                                         Some(node_id) => {
1459                                                 log_trace!(self.logger,
1460                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1461                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1462                                                 peers.node_id_to_descriptor.remove(&node_id);
1463                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1464                                         },
1465                                         None => {}
1466                                 }
1467                         }
1468                 };
1469         }
1470
1471         /// Disconnect a peer given its node id.
1472         ///
1473         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1474         /// force-closing any channels we have with it.
1475         ///
1476         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1477         /// peer. Thus, be very careful about reentrancy issues.
1478         ///
1479         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1480         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1481                 let mut peers_lock = self.peers.lock().unwrap();
1482                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1483                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1484                         peers_lock.peers.remove(&descriptor);
1485                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1486                         descriptor.disconnect_socket();
1487                 }
1488         }
1489
1490         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1491         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1492         /// using regular ping/pongs.
1493         pub fn disconnect_all_peers(&self) {
1494                 let mut peers_lock = self.peers.lock().unwrap();
1495                 let peers = &mut *peers_lock;
1496                 for (mut descriptor, peer) in peers.peers.drain() {
1497                         if let Some(node_id) = peer.their_node_id {
1498                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1499                                 peers.node_id_to_descriptor.remove(&node_id);
1500                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1501                         }
1502                         descriptor.disconnect_socket();
1503                 }
1504                 debug_assert!(peers.node_id_to_descriptor.is_empty());
1505         }
1506
1507         /// This is called when we're blocked on sending additional gossip messages until we receive a
1508         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1509         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1510         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1511                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1512                         peer.awaiting_pong_timer_tick_intervals = -1;
1513                         let ping = msgs::Ping {
1514                                 ponglen: 0,
1515                                 byteslen: 64,
1516                         };
1517                         self.enqueue_message(peer, &ping);
1518                 }
1519         }
1520
1521         /// Send pings to each peer and disconnect those which did not respond to the last round of
1522         /// pings.
1523         ///
1524         /// This may be called on any timescale you want, however, roughly once every five to ten
1525         /// seconds is preferred. The call rate determines both how often we send a ping to our peers
1526         /// and how much time they have to respond before we disconnect them.
1527         ///
1528         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1529         /// issues!
1530         ///
1531         /// [`send_data`]: SocketDescriptor::send_data
1532         pub fn timer_tick_occurred(&self) {
1533                 let mut peers_lock = self.peers.lock().unwrap();
1534                 {
1535                         let peers = &mut *peers_lock;
1536                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1537                         let peers = &mut peers.peers;
1538                         let mut descriptors_needing_disconnect = Vec::new();
1539                         let peer_count = peers.len();
1540
1541                         peers.retain(|descriptor, peer| {
1542                                 let mut do_disconnect_peer = false;
1543                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1544                                         // The peer needs to complete its handshake before we can exchange messages. We
1545                                         // give peers one timer tick to complete handshake, reusing
1546                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1547                                         // for handshake completion.
1548                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1549                                                 do_disconnect_peer = true;
1550                                         } else {
1551                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1552                                                 return true;
1553                                         }
1554                                 }
1555
1556                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1557                                         // Magic value set in `maybe_send_extra_ping`.
1558                                         peer.awaiting_pong_timer_tick_intervals = 1;
1559                                         peer.received_message_since_timer_tick = false;
1560                                         return true;
1561                                 }
1562
1563                                 if do_disconnect_peer
1564                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1565                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1566                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1567                                 {
1568                                         descriptors_needing_disconnect.push(descriptor.clone());
1569                                         match peer.their_node_id {
1570                                                 Some(node_id) => {
1571                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1572                                                         node_id_to_descriptor.remove(&node_id);
1573                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1574                                                 }
1575                                                 None => {},
1576                                         }
1577                                         return false;
1578                                 }
1579                                 peer.received_message_since_timer_tick = false;
1580
1581                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1582                                         peer.awaiting_pong_timer_tick_intervals += 1;
1583                                         return true;
1584                                 }
1585
1586                                 peer.awaiting_pong_timer_tick_intervals = 1;
1587                                 let ping = msgs::Ping {
1588                                         ponglen: 0,
1589                                         byteslen: 64,
1590                                 };
1591                                 self.enqueue_message(peer, &ping);
1592                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1593
1594                                 true
1595                         });
1596
1597                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1598                                 descriptor.disconnect_socket();
1599                         }
1600                 }
1601         }
1602 }
1603
1604 #[cfg(test)]
1605 mod tests {
1606         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler};
1607         use ln::msgs;
1608         use util::events;
1609         use util::test_utils;
1610
1611         use bitcoin::secp256k1::Secp256k1;
1612         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1613
1614         use prelude::*;
1615         use sync::{Arc, Mutex};
1616         use core::sync::atomic::Ordering;
1617
1618         #[derive(Clone)]
1619         struct FileDescriptor {
1620                 fd: u16,
1621                 outbound_data: Arc<Mutex<Vec<u8>>>,
1622         }
1623         impl PartialEq for FileDescriptor {
1624                 fn eq(&self, other: &Self) -> bool {
1625                         self.fd == other.fd
1626                 }
1627         }
1628         impl Eq for FileDescriptor { }
1629         impl core::hash::Hash for FileDescriptor {
1630                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1631                         self.fd.hash(hasher)
1632                 }
1633         }
1634
1635         impl SocketDescriptor for FileDescriptor {
1636                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1637                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1638                         data.len()
1639                 }
1640
1641                 fn disconnect_socket(&mut self) {}
1642         }
1643
1644         struct PeerManagerCfg {
1645                 chan_handler: test_utils::TestChannelMessageHandler,
1646                 routing_handler: test_utils::TestRoutingMessageHandler,
1647                 logger: test_utils::TestLogger,
1648         }
1649
1650         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1651                 let mut cfgs = Vec::new();
1652                 for _ in 0..peer_count {
1653                         cfgs.push(
1654                                 PeerManagerCfg{
1655                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1656                                         logger: test_utils::TestLogger::new(),
1657                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1658                                 }
1659                         );
1660                 }
1661
1662                 cfgs
1663         }
1664
1665         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1666                 let mut peers = Vec::new();
1667                 for i in 0..peer_count {
1668                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1669                         let ephemeral_bytes = [i as u8; 32];
1670                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1671                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1672                         peers.push(peer);
1673                 }
1674
1675                 peers
1676         }
1677
1678         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1679                 let secp_ctx = Secp256k1::new();
1680                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1681                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1682                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1683                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1684                 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1685                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1686                 peer_a.process_events();
1687                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1688                 peer_b.process_events();
1689                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1690                 (fd_a.clone(), fd_b.clone())
1691         }
1692
1693         #[test]
1694         fn test_disconnect_peer() {
1695                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1696                 // push a DisconnectPeer event to remove the node flagged by id
1697                 let cfgs = create_peermgr_cfgs(2);
1698                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1699                 let mut peers = create_network(2, &cfgs);
1700                 establish_connection(&peers[0], &peers[1]);
1701                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1702
1703                 let secp_ctx = Secp256k1::new();
1704                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1705
1706                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1707                         node_id: their_id,
1708                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1709                 });
1710                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1711                 peers[0].message_handler.chan_handler = &chan_handler;
1712
1713                 peers[0].process_events();
1714                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1715         }
1716
1717         #[test]
1718         fn test_timer_tick_occurred() {
1719                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1720                 let cfgs = create_peermgr_cfgs(2);
1721                 let peers = create_network(2, &cfgs);
1722                 establish_connection(&peers[0], &peers[1]);
1723                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1724
1725                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1726                 peers[0].timer_tick_occurred();
1727                 peers[0].process_events();
1728                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1729
1730                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1731                 peers[0].timer_tick_occurred();
1732                 peers[0].process_events();
1733                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1734         }
1735
1736         #[test]
1737         fn test_do_attempt_write_data() {
1738                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1739                 let cfgs = create_peermgr_cfgs(2);
1740                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1741                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1742                 let peers = create_network(2, &cfgs);
1743
1744                 // By calling establish_connect, we trigger do_attempt_write_data between
1745                 // the peers. Previously this function would mistakenly enter an infinite loop
1746                 // when there were more channel messages available than could fit into a peer's
1747                 // buffer. This issue would now be detected by this test (because we use custom
1748                 // RoutingMessageHandlers that intentionally return more channel messages
1749                 // than can fit into a peer's buffer).
1750                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1751
1752                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1753                 // due to the max-messagse-before-ping limits this may take a few iterations to complete.
1754                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1755                         peers[0].process_events();
1756                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1757                         assert!(!b_read_data.is_empty());
1758
1759                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1760                         peers[1].process_events();
1761
1762                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1763                         assert!(!a_read_data.is_empty());
1764                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1765
1766                         peers[1].process_events();
1767                         assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages");
1768                 }
1769
1770                 // Check that each peer has received the expected number of channel updates and channel
1771                 // announcements.
1772                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1773                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1774                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1775                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1776         }
1777
1778         #[test]
1779         fn test_handshake_timeout() {
1780                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1781                 // tick.
1782                 let cfgs = create_peermgr_cfgs(2);
1783                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1784                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1785                 let peers = create_network(2, &cfgs);
1786
1787                 let secp_ctx = Secp256k1::new();
1788                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1789                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1790                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1791                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone()).unwrap();
1792                 peers[0].new_inbound_connection(fd_a.clone()).unwrap();
1793
1794                 // If we get a single timer tick before completion, that's fine
1795                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1796                 peers[0].timer_tick_occurred();
1797                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1798
1799                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1800                 peers[0].process_events();
1801                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1802                 peers[1].process_events();
1803
1804                 // ...but if we get a second timer tick, we should disconnect the peer
1805                 peers[0].timer_tick_occurred();
1806                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1807
1808                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1809         }
1810 }