1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Top level peer message handling and socket handling logic lives here.
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
20 use ln::features::InitFeatures;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::NetGraphMsgHandler;
35 use alloc::collections::LinkedList;
36 use alloc::fmt::Debug;
37 use sync::{Arc, Mutex};
38 use core::sync::atomic::{AtomicUsize, Ordering};
39 use core::{cmp, hash, fmt, mem};
41 #[cfg(feature = "std")] use std::error;
43 use bitcoin::hashes::sha256::Hash as Sha256;
44 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
45 use bitcoin::hashes::{HashEngine, Hash};
47 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
48 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
49 pub struct IgnoringMessageHandler{}
50 impl MessageSendEventsProvider for IgnoringMessageHandler {
51 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
53 impl RoutingMessageHandler for IgnoringMessageHandler {
54 fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
55 fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
56 fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
57 fn handle_htlc_fail_channel_update(&self, _update: &msgs::HTLCFailChannelUpdate) {}
58 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
59 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
60 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
61 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
62 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
63 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
64 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
65 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
67 impl Deref for IgnoringMessageHandler {
68 type Target = IgnoringMessageHandler;
69 fn deref(&self) -> &Self { self }
72 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
73 /// You can provide one of these as the route_handler in a MessageHandler.
74 pub struct ErroringMessageHandler {
75 message_queue: Mutex<Vec<MessageSendEvent>>
77 impl ErroringMessageHandler {
78 /// Constructs a new ErroringMessageHandler
79 pub fn new() -> Self {
80 Self { message_queue: Mutex::new(Vec::new()) }
82 fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
83 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
84 action: msgs::ErrorAction::SendErrorMessage {
85 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
87 node_id: node_id.clone(),
91 impl MessageSendEventsProvider for ErroringMessageHandler {
92 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
93 let mut res = Vec::new();
94 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
98 impl ChannelMessageHandler for ErroringMessageHandler {
99 // Any messages which are related to a specific channel generate an error message to let the
100 // peer know we don't care about channels.
101 fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
102 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
104 fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
105 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
107 fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
108 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
110 fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
111 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
113 fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
114 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
116 fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
117 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
119 fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
120 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
122 fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
123 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
125 fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
126 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
128 fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
129 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
131 fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
132 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
134 fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
135 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
137 fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
138 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
140 fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
141 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
143 fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
144 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
146 fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
147 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
149 // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
150 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
151 fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
152 fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
153 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
155 impl Deref for ErroringMessageHandler {
156 type Target = ErroringMessageHandler;
157 fn deref(&self) -> &Self { self }
160 /// Provides references to trait impls which handle different types of messages.
161 pub struct MessageHandler<CM: Deref, RM: Deref> where
162 CM::Target: ChannelMessageHandler,
163 RM::Target: RoutingMessageHandler {
164 /// A message handler which handles messages specific to channels. Usually this is just a
165 /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
167 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
168 pub chan_handler: CM,
169 /// A message handler which handles messages updating our knowledge of the network channel
170 /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
171 /// [`IgnoringMessageHandler`].
173 /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
174 pub route_handler: RM,
177 /// Provides an object which can be used to send data to and which uniquely identifies a connection
178 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
179 /// implement Hash to meet the PeerManager API.
181 /// For efficiency, Clone should be relatively cheap for this type.
183 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
184 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
185 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
186 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
187 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
188 /// to simply use another value which is guaranteed to be globally unique instead.
189 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
190 /// Attempts to send some data from the given slice to the peer.
192 /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
193 /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
194 /// called and further write attempts may occur until that time.
196 /// If the returned size is smaller than `data.len()`, a
197 /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
198 /// written. Additionally, until a `send_data` event completes fully, no further
199 /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
200 /// prevent denial-of-service issues, you should not read or buffer any data from the socket
203 /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
204 /// (indicating that read events should be paused to prevent DoS in the send buffer),
205 /// `resume_read` may be set indicating that read events on this descriptor should resume. A
206 /// `resume_read` of false carries no meaning, and should not cause any action.
207 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
208 /// Disconnect the socket pointed to by this SocketDescriptor.
210 /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
211 /// call (doing so is a noop).
212 fn disconnect_socket(&mut self);
215 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
216 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
219 pub struct PeerHandleError {
220 /// Used to indicate that we probably can't make any future connections to this peer, implying
221 /// we should go ahead and force-close any channels we have with it.
222 pub no_connection_possible: bool,
224 impl fmt::Debug for PeerHandleError {
225 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
226 formatter.write_str("Peer Sent Invalid Data")
229 impl fmt::Display for PeerHandleError {
230 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
231 formatter.write_str("Peer Sent Invalid Data")
235 #[cfg(feature = "std")]
236 impl error::Error for PeerHandleError {
237 fn description(&self) -> &str {
238 "Peer Sent Invalid Data"
242 enum InitSyncTracker{
244 ChannelsSyncing(u64),
245 NodesSyncing(PublicKey),
248 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
249 /// we have fewer than this many messages in the outbound buffer again.
250 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
251 /// refilled as we send bytes.
252 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
253 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
255 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = 20;
258 channel_encryptor: PeerChannelEncryptor,
259 their_node_id: Option<PublicKey>,
260 their_features: Option<InitFeatures>,
262 pending_outbound_buffer: LinkedList<Vec<u8>>,
263 pending_outbound_buffer_first_msg_offset: usize,
264 awaiting_write_event: bool,
266 pending_read_buffer: Vec<u8>,
267 pending_read_buffer_pos: usize,
268 pending_read_is_header: bool,
270 sync_status: InitSyncTracker,
276 /// Returns true if the channel announcements/updates for the given channel should be
277 /// forwarded to this peer.
278 /// If we are sending our routing table to this peer and we have not yet sent channel
279 /// announcements/updates for the given channel_id then we will send it when we get to that
280 /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
281 /// sent the old versions, we should send the update, and so return true here.
282 fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
283 match self.sync_status {
284 InitSyncTracker::NoSyncRequested => true,
285 InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
286 InitSyncTracker::NodesSyncing(_) => true,
290 /// Similar to the above, but for node announcements indexed by node_id.
291 fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
292 match self.sync_status {
293 InitSyncTracker::NoSyncRequested => true,
294 InitSyncTracker::ChannelsSyncing(_) => false,
295 InitSyncTracker::NodesSyncing(pk) => pk < node_id,
300 struct PeerHolder<Descriptor: SocketDescriptor> {
301 peers: HashMap<Descriptor, Peer>,
302 /// Only add to this set when noise completes:
303 node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
306 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
307 fn _check_usize_is_32_or_64() {
308 // See below, less than 32 bit pointers may be unsafe here!
309 unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
312 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
313 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
314 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
315 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
316 /// issues such as overly long function definitions.
317 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>>;
319 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
320 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
321 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
322 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
323 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
324 /// helps with issues such as long function definitions.
325 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L>;
327 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
328 /// socket events into messages which it passes on to its [`MessageHandler`].
330 /// Locks are taken internally, so you must never assume that reentrancy from a
331 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
333 /// Calls to [`read_event`] will decode relevant messages and pass them to the
334 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
335 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
336 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
337 /// calls only after previous ones have returned.
339 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
340 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
341 /// essentially you should default to using a SimpleRefPeerManager, and use a
342 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
343 /// you're using lightning-net-tokio.
345 /// [`read_event`]: PeerManager::read_event
346 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> where
347 CM::Target: ChannelMessageHandler,
348 RM::Target: RoutingMessageHandler,
350 message_handler: MessageHandler<CM, RM>,
351 peers: Mutex<PeerHolder<Descriptor>>,
352 our_node_secret: SecretKey,
353 ephemeral_key_midstate: Sha256Engine,
355 // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
356 // bits we will never realistically count into high:
357 peer_counter_low: AtomicUsize,
358 peer_counter_high: AtomicUsize,
363 enum MessageHandlingError {
364 PeerHandleError(PeerHandleError),
365 LightningError(LightningError),
368 impl From<PeerHandleError> for MessageHandlingError {
369 fn from(error: PeerHandleError) -> Self {
370 MessageHandlingError::PeerHandleError(error)
374 impl From<LightningError> for MessageHandlingError {
375 fn from(error: LightningError) -> Self {
376 MessageHandlingError::LightningError(error)
380 macro_rules! encode_msg {
382 let mut buffer = VecWriter(Vec::new());
383 wire::write($msg, &mut buffer).unwrap();
388 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L> where
389 CM::Target: ChannelMessageHandler,
391 /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
392 /// handler is used and network graph messages are ignored.
394 /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
395 /// cryptographically secure random bytes.
397 /// (C-not exported) as we can't export a PeerManager with a dummy route handler
398 pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
399 Self::new(MessageHandler {
400 chan_handler: channel_message_handler,
401 route_handler: IgnoringMessageHandler{},
402 }, our_node_secret, ephemeral_random_data, logger)
406 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L> where
407 RM::Target: RoutingMessageHandler,
409 /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
410 /// handler is used and messages related to channels will be ignored (or generate error
411 /// messages). Note that some other lightning implementations time-out connections after some
412 /// time if no channel is built with the peer.
414 /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
415 /// cryptographically secure random bytes.
417 /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
418 pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
419 Self::new(MessageHandler {
420 chan_handler: ErroringMessageHandler::new(),
421 route_handler: routing_message_handler,
422 }, our_node_secret, ephemeral_random_data, logger)
426 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> PeerManager<Descriptor, CM, RM, L> where
427 CM::Target: ChannelMessageHandler,
428 RM::Target: RoutingMessageHandler,
430 /// Constructs a new PeerManager with the given message handlers and node_id secret key
431 /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
432 /// cryptographically secure random bytes.
433 pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
434 let mut ephemeral_key_midstate = Sha256::engine();
435 ephemeral_key_midstate.input(ephemeral_random_data);
439 peers: Mutex::new(PeerHolder {
440 peers: HashMap::new(),
441 node_id_to_descriptor: HashMap::new()
444 ephemeral_key_midstate,
445 peer_counter_low: AtomicUsize::new(0),
446 peer_counter_high: AtomicUsize::new(0),
451 /// Get the list of node ids for peers which have completed the initial handshake.
453 /// For outbound connections, this will be the same as the their_node_id parameter passed in to
454 /// new_outbound_connection, however entries will only appear once the initial handshake has
455 /// completed and we are sure the remote peer has the private key for the given node_id.
456 pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
457 let peers = self.peers.lock().unwrap();
458 peers.peers.values().filter_map(|p| {
459 if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
466 fn get_ephemeral_key(&self) -> SecretKey {
467 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
468 let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
469 let high = if low == 0 {
470 self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
472 self.peer_counter_high.load(Ordering::Acquire)
474 ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
475 ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
476 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
479 /// Indicates a new outbound connection has been established to a node with the given node_id.
480 /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
481 /// descriptor but must disconnect the connection immediately.
483 /// Returns a small number of bytes to send to the remote node (currently always 50).
485 /// Panics if descriptor is duplicative with some other descriptor which has not yet been
486 /// [`socket_disconnected()`].
488 /// [`socket_disconnected()`]: PeerManager::socket_disconnected
489 pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
490 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
491 let res = peer_encryptor.get_act_one().to_vec();
492 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
494 let mut peers = self.peers.lock().unwrap();
495 if peers.peers.insert(descriptor, Peer {
496 channel_encryptor: peer_encryptor,
498 their_features: None,
500 pending_outbound_buffer: LinkedList::new(),
501 pending_outbound_buffer_first_msg_offset: 0,
502 awaiting_write_event: false,
505 pending_read_buffer_pos: 0,
506 pending_read_is_header: false,
508 sync_status: InitSyncTracker::NoSyncRequested,
510 awaiting_pong: false,
512 panic!("PeerManager driver duplicated descriptors!");
517 /// Indicates a new inbound connection has been established.
519 /// May refuse the connection by returning an Err, but will never write bytes to the remote end
520 /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
521 /// call socket_disconnected for the new descriptor but must disconnect the connection
524 /// Panics if descriptor is duplicative with some other descriptor which has not yet been
525 /// [`socket_disconnected()`].
527 /// [`socket_disconnected()`]: PeerManager::socket_disconnected
528 pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
529 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
530 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
532 let mut peers = self.peers.lock().unwrap();
533 if peers.peers.insert(descriptor, Peer {
534 channel_encryptor: peer_encryptor,
536 their_features: None,
538 pending_outbound_buffer: LinkedList::new(),
539 pending_outbound_buffer_first_msg_offset: 0,
540 awaiting_write_event: false,
543 pending_read_buffer_pos: 0,
544 pending_read_is_header: false,
546 sync_status: InitSyncTracker::NoSyncRequested,
548 awaiting_pong: false,
550 panic!("PeerManager driver duplicated descriptors!");
555 fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
556 while !peer.awaiting_write_event {
557 if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE {
558 match peer.sync_status {
559 InitSyncTracker::NoSyncRequested => {},
560 InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
561 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
562 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
563 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
564 self.enqueue_message(peer, announce);
565 if let &Some(ref update_a) = update_a_option {
566 self.enqueue_message(peer, update_a);
568 if let &Some(ref update_b) = update_b_option {
569 self.enqueue_message(peer, update_b);
571 peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
573 if all_messages.is_empty() || all_messages.len() != steps as usize {
574 peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
577 InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
578 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
579 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
580 for msg in all_messages.iter() {
581 self.enqueue_message(peer, msg);
582 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
584 if all_messages.is_empty() || all_messages.len() != steps as usize {
585 peer.sync_status = InitSyncTracker::NoSyncRequested;
588 InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
589 InitSyncTracker::NodesSyncing(key) => {
590 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
591 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
592 for msg in all_messages.iter() {
593 self.enqueue_message(peer, msg);
594 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
596 if all_messages.is_empty() || all_messages.len() != steps as usize {
597 peer.sync_status = InitSyncTracker::NoSyncRequested;
604 let next_buff = match peer.pending_outbound_buffer.front() {
609 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
610 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
611 let data_sent = descriptor.send_data(pending, should_be_reading);
612 peer.pending_outbound_buffer_first_msg_offset += data_sent;
613 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
615 peer.pending_outbound_buffer_first_msg_offset = 0;
616 peer.pending_outbound_buffer.pop_front();
618 peer.awaiting_write_event = true;
623 /// Indicates that there is room to write data to the given socket descriptor.
625 /// May return an Err to indicate that the connection should be closed.
627 /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
628 /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
629 /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
630 /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
633 /// [`send_data`]: SocketDescriptor::send_data
634 /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
635 pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
636 let mut peers = self.peers.lock().unwrap();
637 match peers.peers.get_mut(descriptor) {
639 // This is most likely a simple race condition where the user found that the socket
640 // was writeable, then we told the user to `disconnect_socket()`, then they called
641 // this method. Return an error to make sure we get disconnected.
642 return Err(PeerHandleError { no_connection_possible: false });
645 peer.awaiting_write_event = false;
646 self.do_attempt_write_data(descriptor, peer);
652 /// Indicates that data was read from the given socket descriptor.
654 /// May return an Err to indicate that the connection should be closed.
656 /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
657 /// Thus, however, you should call [`process_events`] after any `read_event` to generate
658 /// [`send_data`] calls to handle responses.
660 /// If `Ok(true)` is returned, further read_events should not be triggered until a
661 /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
664 /// [`send_data`]: SocketDescriptor::send_data
665 /// [`process_events`]: PeerManager::process_events
666 pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
667 match self.do_read_event(peer_descriptor, data) {
670 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
671 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
677 /// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly.
678 fn enqueue_message<M: Encode + Writeable + Debug>(&self, peer: &mut Peer, message: &M) {
679 let mut buffer = VecWriter(Vec::new());
680 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
681 let encoded_message = buffer.0;
683 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
684 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
687 fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
689 let mut peers_lock = self.peers.lock().unwrap();
690 let peers = &mut *peers_lock;
691 let mut msgs_to_forward = Vec::new();
692 let mut peer_node_id = None;
693 let pause_read = match peers.peers.get_mut(peer_descriptor) {
695 // This is most likely a simple race condition where the user read some bytes
696 // from the socket, then we told the user to `disconnect_socket()`, then they
697 // called this method. Return an error to make sure we get disconnected.
698 return Err(PeerHandleError { no_connection_possible: false });
701 assert!(peer.pending_read_buffer.len() > 0);
702 assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
704 let mut read_pos = 0;
705 while read_pos < data.len() {
707 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
708 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
709 read_pos += data_to_copy;
710 peer.pending_read_buffer_pos += data_to_copy;
713 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
714 peer.pending_read_buffer_pos = 0;
716 macro_rules! try_potential_handleerror {
722 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
723 //TODO: Try to push msg
724 log_debug!(self.logger, "Error handling message; disconnecting peer with: {}", e.err);
725 return Err(PeerHandleError{ no_connection_possible: false });
727 msgs::ErrorAction::IgnoreAndLog(level) => {
728 log_given_level!(self.logger, level, "Error handling message; ignoring: {}", e.err);
731 msgs::ErrorAction::IgnoreError => {
732 log_debug!(self.logger, "Error handling message; ignoring: {}", e.err);
735 msgs::ErrorAction::SendErrorMessage { msg } => {
736 log_debug!(self.logger, "Error handling message; sending error message with: {}", e.err);
737 self.enqueue_message(peer, &msg);
746 macro_rules! insert_node_id {
748 match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
749 hash_map::Entry::Occupied(_) => {
750 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
751 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
752 return Err(PeerHandleError{ no_connection_possible: false })
754 hash_map::Entry::Vacant(entry) => {
755 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
756 entry.insert(peer_descriptor.clone())
762 let next_step = peer.channel_encryptor.get_noise_step();
764 NextNoiseStep::ActOne => {
765 let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
766 peer.pending_outbound_buffer.push_back(act_two);
767 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
769 NextNoiseStep::ActTwo => {
770 let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
771 peer.pending_outbound_buffer.push_back(act_three.to_vec());
772 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
773 peer.pending_read_is_header = true;
775 peer.their_node_id = Some(their_node_id);
777 let features = InitFeatures::known();
778 let resp = msgs::Init { features };
779 self.enqueue_message(peer, &resp);
781 NextNoiseStep::ActThree => {
782 let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
783 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
784 peer.pending_read_is_header = true;
785 peer.their_node_id = Some(their_node_id);
787 let features = InitFeatures::known();
788 let resp = msgs::Init { features };
789 self.enqueue_message(peer, &resp);
791 NextNoiseStep::NoiseComplete => {
792 if peer.pending_read_is_header {
793 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
794 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
795 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
796 if msg_len < 2 { // Need at least the message type tag
797 return Err(PeerHandleError{ no_connection_possible: false });
799 peer.pending_read_is_header = false;
801 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
802 assert!(msg_data.len() >= 2);
805 peer.pending_read_buffer = [0; 18].to_vec();
806 peer.pending_read_is_header = true;
808 let mut reader = io::Cursor::new(&msg_data[..]);
809 let message_result = wire::read(&mut reader);
810 let message = match message_result {
814 msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
815 msgs::DecodeError::UnknownRequiredFeature => {
816 log_trace!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
819 msgs::DecodeError::InvalidValue => {
820 log_debug!(self.logger, "Got an invalid value while deserializing message");
821 return Err(PeerHandleError { no_connection_possible: false });
823 msgs::DecodeError::ShortRead => {
824 log_debug!(self.logger, "Deserialization failed due to shortness of message");
825 return Err(PeerHandleError { no_connection_possible: false });
827 msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
828 msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
829 msgs::DecodeError::UnsupportedCompression => {
830 log_trace!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
837 match self.handle_message(peer, message) {
838 Err(handling_error) => match handling_error {
839 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
840 MessageHandlingError::LightningError(e) => {
841 try_potential_handleerror!(Err(e));
845 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
846 msgs_to_forward.push(msg);
856 peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
860 for msg in msgs_to_forward.drain(..) {
861 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
870 /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
871 /// Returns the message back if it needs to be broadcasted to all other peers.
872 fn handle_message(&self, peer: &mut Peer, message: wire::Message) -> Result<Option<wire::Message>, MessageHandlingError> {
873 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
875 // Need an Init as first message
876 if let wire::Message::Init(_) = message {
877 } else if peer.their_features.is_none() {
878 log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
879 return Err(PeerHandleError{ no_connection_possible: false }.into());
882 let mut should_forward = None;
885 // Setup and Control messages:
886 wire::Message::Init(msg) => {
887 if msg.features.requires_unknown_bits() {
888 log_debug!(self.logger, "Peer features required unknown version bits");
889 return Err(PeerHandleError{ no_connection_possible: true }.into());
891 if peer.their_features.is_some() {
892 return Err(PeerHandleError{ no_connection_possible: false }.into());
895 log_info!(self.logger, "Received peer Init message: {}", msg.features);
897 if msg.features.initial_routing_sync() {
898 peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
900 if !msg.features.supports_static_remote_key() {
901 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
902 return Err(PeerHandleError{ no_connection_possible: true }.into());
905 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
907 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
908 peer.their_features = Some(msg.features);
910 wire::Message::Error(msg) => {
911 let mut data_is_printable = true;
912 for b in msg.data.bytes() {
913 if b < 32 || b > 126 {
914 data_is_printable = false;
919 if data_is_printable {
920 log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
922 log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
924 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
925 if msg.channel_id == [0; 32] {
926 return Err(PeerHandleError{ no_connection_possible: true }.into());
930 wire::Message::Ping(msg) => {
931 if msg.ponglen < 65532 {
932 let resp = msgs::Pong { byteslen: msg.ponglen };
933 self.enqueue_message(peer, &resp);
936 wire::Message::Pong(_msg) => {
937 peer.awaiting_pong = false;
941 wire::Message::OpenChannel(msg) => {
942 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
944 wire::Message::AcceptChannel(msg) => {
945 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
948 wire::Message::FundingCreated(msg) => {
949 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
951 wire::Message::FundingSigned(msg) => {
952 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
954 wire::Message::FundingLocked(msg) => {
955 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
958 wire::Message::Shutdown(msg) => {
959 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
961 wire::Message::ClosingSigned(msg) => {
962 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
965 // Commitment messages:
966 wire::Message::UpdateAddHTLC(msg) => {
967 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
969 wire::Message::UpdateFulfillHTLC(msg) => {
970 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
972 wire::Message::UpdateFailHTLC(msg) => {
973 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
975 wire::Message::UpdateFailMalformedHTLC(msg) => {
976 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
979 wire::Message::CommitmentSigned(msg) => {
980 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
982 wire::Message::RevokeAndACK(msg) => {
983 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
985 wire::Message::UpdateFee(msg) => {
986 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
988 wire::Message::ChannelReestablish(msg) => {
989 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
993 wire::Message::AnnouncementSignatures(msg) => {
994 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
996 wire::Message::ChannelAnnouncement(msg) => {
997 if self.message_handler.route_handler.handle_channel_announcement(&msg)
998 .map_err(|e| -> MessageHandlingError { e.into() })? {
999 should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1002 wire::Message::NodeAnnouncement(msg) => {
1003 if self.message_handler.route_handler.handle_node_announcement(&msg)
1004 .map_err(|e| -> MessageHandlingError { e.into() })? {
1005 should_forward = Some(wire::Message::NodeAnnouncement(msg));
1008 wire::Message::ChannelUpdate(msg) => {
1009 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1010 if self.message_handler.route_handler.handle_channel_update(&msg)
1011 .map_err(|e| -> MessageHandlingError { e.into() })? {
1012 should_forward = Some(wire::Message::ChannelUpdate(msg));
1015 wire::Message::QueryShortChannelIds(msg) => {
1016 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1018 wire::Message::ReplyShortChannelIdsEnd(msg) => {
1019 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1021 wire::Message::QueryChannelRange(msg) => {
1022 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1024 wire::Message::ReplyChannelRange(msg) => {
1025 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1027 wire::Message::GossipTimestampFilter(_msg) => {
1028 // TODO: handle message
1031 // Unknown messages:
1032 wire::Message::Unknown(msg_type) if msg_type.is_even() => {
1033 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", msg_type);
1034 // Fail the channel if message is an even, unknown type as per BOLT #1.
1035 return Err(PeerHandleError{ no_connection_possible: true }.into());
1037 wire::Message::Unknown(msg_type) => {
1038 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", msg_type);
1044 fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message, except_node: Option<&PublicKey>) {
1046 wire::Message::ChannelAnnouncement(ref msg) => {
1047 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1048 let encoded_msg = encode_msg!(msg);
1050 for (_, peer) in peers.peers.iter_mut() {
1051 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1052 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1055 if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1056 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1059 if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1060 peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1063 if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1066 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1069 wire::Message::NodeAnnouncement(ref msg) => {
1070 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1071 let encoded_msg = encode_msg!(msg);
1073 for (_, peer) in peers.peers.iter_mut() {
1074 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1075 !peer.should_forward_node_announcement(msg.contents.node_id) {
1078 if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1079 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1082 if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1085 if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1088 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1091 wire::Message::ChannelUpdate(ref msg) => {
1092 log_trace!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1093 let encoded_msg = encode_msg!(msg);
1095 for (_, peer) in peers.peers.iter_mut() {
1096 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1097 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1100 if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1101 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1104 if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1107 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1110 _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1114 /// Checks for any events generated by our handlers and processes them. Includes sending most
1115 /// response messages as well as messages generated by calls to handler functions directly (eg
1116 /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1118 /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1121 /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1122 /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1123 /// [`send_data`]: SocketDescriptor::send_data
1124 pub fn process_events(&self) {
1126 // TODO: There are some DoS attacks here where you can flood someone's outbound send
1127 // buffer by doing things like announcing channels on another node. We should be willing to
1128 // drop optional-ish messages when send buffers get full!
1130 let mut peers_lock = self.peers.lock().unwrap();
1131 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1132 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1133 let peers = &mut *peers_lock;
1134 for event in events_generated.drain(..) {
1135 macro_rules! get_peer_for_forwarding {
1136 ($node_id: expr) => {
1138 match peers.node_id_to_descriptor.get($node_id) {
1139 Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1141 if peer.their_features.is_none() {
1146 None => panic!("Inconsistent peers set state!"),
1156 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1157 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1158 log_pubkey!(node_id),
1159 log_bytes!(msg.temporary_channel_id));
1160 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1162 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1163 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1164 log_pubkey!(node_id),
1165 log_bytes!(msg.temporary_channel_id));
1166 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1168 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1169 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1170 log_pubkey!(node_id),
1171 log_bytes!(msg.temporary_channel_id),
1172 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1173 // TODO: If the peer is gone we should generate a DiscardFunding event
1174 // indicating to the wallet that they should just throw away this funding transaction
1175 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1177 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1178 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1179 log_pubkey!(node_id),
1180 log_bytes!(msg.channel_id));
1181 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1183 MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1184 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1185 log_pubkey!(node_id),
1186 log_bytes!(msg.channel_id));
1187 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1189 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1190 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1191 log_pubkey!(node_id),
1192 log_bytes!(msg.channel_id));
1193 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1195 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1196 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1197 log_pubkey!(node_id),
1198 update_add_htlcs.len(),
1199 update_fulfill_htlcs.len(),
1200 update_fail_htlcs.len(),
1201 log_bytes!(commitment_signed.channel_id));
1202 let peer = get_peer_for_forwarding!(node_id);
1203 for msg in update_add_htlcs {
1204 self.enqueue_message(peer, msg);
1206 for msg in update_fulfill_htlcs {
1207 self.enqueue_message(peer, msg);
1209 for msg in update_fail_htlcs {
1210 self.enqueue_message(peer, msg);
1212 for msg in update_fail_malformed_htlcs {
1213 self.enqueue_message(peer, msg);
1215 if let &Some(ref msg) = update_fee {
1216 self.enqueue_message(peer, msg);
1218 self.enqueue_message(peer, commitment_signed);
1220 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1221 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1222 log_pubkey!(node_id),
1223 log_bytes!(msg.channel_id));
1224 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1226 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1227 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1228 log_pubkey!(node_id),
1229 log_bytes!(msg.channel_id));
1230 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1232 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1233 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1234 log_pubkey!(node_id),
1235 log_bytes!(msg.channel_id));
1236 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1238 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1239 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1240 log_pubkey!(node_id),
1241 log_bytes!(msg.channel_id));
1242 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1244 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1245 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1246 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1247 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1248 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1251 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1252 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1253 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1254 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1257 MessageSendEvent::BroadcastChannelUpdate { msg } => {
1258 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1259 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1260 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1263 MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1264 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1265 log_pubkey!(node_id), msg.contents.short_channel_id);
1266 let peer = get_peer_for_forwarding!(node_id);
1267 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1269 MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
1270 self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
1272 MessageSendEvent::HandleError { ref node_id, ref action } => {
1274 msgs::ErrorAction::DisconnectPeer { ref msg } => {
1275 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1276 if let Some(mut peer) = peers.peers.remove(&descriptor) {
1277 if let Some(ref msg) = *msg {
1278 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1279 log_pubkey!(node_id),
1281 self.enqueue_message(&mut peer, msg);
1282 // This isn't guaranteed to work, but if there is enough free
1283 // room in the send buffer, put the error message there...
1284 self.do_attempt_write_data(&mut descriptor, &mut peer);
1286 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1289 descriptor.disconnect_socket();
1290 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1293 msgs::ErrorAction::IgnoreAndLog(level) => {
1294 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1296 msgs::ErrorAction::IgnoreError => {
1297 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1299 msgs::ErrorAction::SendErrorMessage { ref msg } => {
1300 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1301 log_pubkey!(node_id),
1303 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1307 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1308 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1310 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1311 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1313 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1314 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1315 log_pubkey!(node_id),
1316 msg.short_channel_ids.len(),
1318 msg.number_of_blocks,
1320 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1325 for (descriptor, peer) in peers.peers.iter_mut() {
1326 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1331 /// Indicates that the given socket descriptor's connection is now closed.
1332 pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1333 self.disconnect_event_internal(descriptor, false);
1336 fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1337 let mut peers = self.peers.lock().unwrap();
1338 let peer_option = peers.peers.remove(descriptor);
1341 // This is most likely a simple race condition where the user found that the socket
1342 // was disconnected, then we told the user to `disconnect_socket()`, then they
1343 // called this method. Either way we're disconnected, return.
1346 match peer.their_node_id {
1348 log_trace!(self.logger,
1349 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1350 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1351 peers.node_id_to_descriptor.remove(&node_id);
1352 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1360 /// Disconnect a peer given its node id.
1362 /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1363 /// force-closing any channels we have with it.
1365 /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1366 /// peer. Thus, be very careful about reentrancy issues.
1368 /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1369 pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1370 let mut peers_lock = self.peers.lock().unwrap();
1371 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1372 log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1373 peers_lock.peers.remove(&descriptor);
1374 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1375 descriptor.disconnect_socket();
1379 /// Send pings to each peer and disconnect those which did not respond to the last round of
1382 /// This may be called on any timescale you want, however, roughly once every five to ten
1383 /// seconds is preferred. The call rate determines both how often we send a ping to our peers
1384 /// and how much time they have to respond before we disconnect them.
1386 /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1389 /// [`send_data`]: SocketDescriptor::send_data
1390 pub fn timer_tick_occurred(&self) {
1391 let mut peers_lock = self.peers.lock().unwrap();
1393 let peers = &mut *peers_lock;
1394 let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1395 let peers = &mut peers.peers;
1396 let mut descriptors_needing_disconnect = Vec::new();
1398 peers.retain(|descriptor, peer| {
1399 if peer.awaiting_pong {
1400 descriptors_needing_disconnect.push(descriptor.clone());
1401 match peer.their_node_id {
1403 log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1404 node_id_to_descriptor.remove(&node_id);
1405 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1408 // This can't actually happen as we should have hit
1409 // is_ready_for_encryption() previously on this same peer.
1416 if !peer.channel_encryptor.is_ready_for_encryption() {
1417 // The peer needs to complete its handshake before we can exchange messages
1421 let ping = msgs::Ping {
1425 self.enqueue_message(peer, &ping);
1427 let mut descriptor_clone = descriptor.clone();
1428 self.do_attempt_write_data(&mut descriptor_clone, peer);
1430 peer.awaiting_pong = true;
1434 for mut descriptor in descriptors_needing_disconnect.drain(..) {
1435 descriptor.disconnect_socket();
1443 use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
1446 use util::test_utils;
1448 use bitcoin::secp256k1::Secp256k1;
1449 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1452 use sync::{Arc, Mutex};
1453 use core::sync::atomic::Ordering;
1456 struct FileDescriptor {
1458 outbound_data: Arc<Mutex<Vec<u8>>>,
1460 impl PartialEq for FileDescriptor {
1461 fn eq(&self, other: &Self) -> bool {
1465 impl Eq for FileDescriptor { }
1466 impl core::hash::Hash for FileDescriptor {
1467 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1468 self.fd.hash(hasher)
1472 impl SocketDescriptor for FileDescriptor {
1473 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1474 self.outbound_data.lock().unwrap().extend_from_slice(data);
1478 fn disconnect_socket(&mut self) {}
1481 struct PeerManagerCfg {
1482 chan_handler: test_utils::TestChannelMessageHandler,
1483 routing_handler: test_utils::TestRoutingMessageHandler,
1484 logger: test_utils::TestLogger,
1487 fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1488 let mut cfgs = Vec::new();
1489 for _ in 0..peer_count {
1492 chan_handler: test_utils::TestChannelMessageHandler::new(),
1493 logger: test_utils::TestLogger::new(),
1494 routing_handler: test_utils::TestRoutingMessageHandler::new(),
1502 fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>> {
1503 let mut peers = Vec::new();
1504 for i in 0..peer_count {
1505 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1506 let ephemeral_bytes = [i as u8; 32];
1507 let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1508 let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger);
1515 fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>) -> (FileDescriptor, FileDescriptor) {
1516 let secp_ctx = Secp256k1::new();
1517 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1518 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1519 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1520 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1521 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1522 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1523 peer_a.process_events();
1524 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1525 peer_b.process_events();
1526 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1527 (fd_a.clone(), fd_b.clone())
1531 fn test_disconnect_peer() {
1532 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1533 // push a DisconnectPeer event to remove the node flagged by id
1534 let cfgs = create_peermgr_cfgs(2);
1535 let chan_handler = test_utils::TestChannelMessageHandler::new();
1536 let mut peers = create_network(2, &cfgs);
1537 establish_connection(&peers[0], &peers[1]);
1538 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1540 let secp_ctx = Secp256k1::new();
1541 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1543 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1545 action: msgs::ErrorAction::DisconnectPeer { msg: None },
1547 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1548 peers[0].message_handler.chan_handler = &chan_handler;
1550 peers[0].process_events();
1551 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1555 fn test_timer_tick_occurred() {
1556 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1557 let cfgs = create_peermgr_cfgs(2);
1558 let peers = create_network(2, &cfgs);
1559 establish_connection(&peers[0], &peers[1]);
1560 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1562 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1563 peers[0].timer_tick_occurred();
1564 peers[0].process_events();
1565 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1567 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1568 peers[0].timer_tick_occurred();
1569 peers[0].process_events();
1570 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1574 fn test_do_attempt_write_data() {
1575 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1576 let cfgs = create_peermgr_cfgs(2);
1577 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1578 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1579 let peers = create_network(2, &cfgs);
1581 // By calling establish_connect, we trigger do_attempt_write_data between
1582 // the peers. Previously this function would mistakenly enter an infinite loop
1583 // when there were more channel messages available than could fit into a peer's
1584 // buffer. This issue would now be detected by this test (because we use custom
1585 // RoutingMessageHandlers that intentionally return more channel messages
1586 // than can fit into a peer's buffer).
1587 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1589 // Make each peer to read the messages that the other peer just wrote to them.
1590 peers[0].process_events();
1591 peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap();
1592 peers[1].process_events();
1593 peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap();
1595 // Check that each peer has received the expected number of channel updates and channel
1597 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1598 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1599 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1600 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);