Backfill gossip without buffering directly in LDK
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use routing::gossip::{NetworkGraph, P2PGossipSync};
29 use util::atomic_counter::AtomicCounter;
30 use util::events::{MessageSendEvent, MessageSendEventsProvider};
31 use util::logger::Logger;
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
37 use core::sync::atomic::{AtomicBool, Ordering};
38 use core::{cmp, hash, fmt, mem};
39 use core::ops::Deref;
40 use core::convert::Infallible;
41 #[cfg(feature = "std")] use std::error;
42
43 use bitcoin::hashes::sha256::Hash as Sha256;
44 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
45 use bitcoin::hashes::{HashEngine, Hash};
46
47 /// Handler for BOLT1-compliant messages.
48 pub trait CustomMessageHandler: wire::CustomMessageReader {
49         /// Called with the message type that was received and the buffer to be read.
50         /// Can return a `MessageHandlingError` if the message could not be handled.
51         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
52
53         /// Gets the list of pending messages which were generated by the custom message
54         /// handler, clearing the list in the process. The first tuple element must
55         /// correspond to the intended recipients node ids. If no connection to one of the
56         /// specified node does not exist, the message is simply not sent to it.
57         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
58 }
59
60 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
61 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
62 pub struct IgnoringMessageHandler{}
63 impl MessageSendEventsProvider for IgnoringMessageHandler {
64         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
65 }
66 impl RoutingMessageHandler for IgnoringMessageHandler {
67         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
69         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
70         fn get_next_channel_announcement(&self, _starting_point: u64) ->
71                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
72         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
73         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
74         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
75         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
78 }
79 impl Deref for IgnoringMessageHandler {
80         type Target = IgnoringMessageHandler;
81         fn deref(&self) -> &Self { self }
82 }
83
84 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
85 // method that takes self for it.
86 impl wire::Type for Infallible {
87         fn type_id(&self) -> u16 {
88                 unreachable!();
89         }
90 }
91 impl Writeable for Infallible {
92         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
93                 unreachable!();
94         }
95 }
96
97 impl wire::CustomMessageReader for IgnoringMessageHandler {
98         type CustomMessage = Infallible;
99         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
100                 Ok(None)
101         }
102 }
103
104 impl CustomMessageHandler for IgnoringMessageHandler {
105         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
106                 // Since we always return `None` in the read the handle method should never be called.
107                 unreachable!();
108         }
109
110         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
111 }
112
113 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
114 /// You can provide one of these as the route_handler in a MessageHandler.
115 pub struct ErroringMessageHandler {
116         message_queue: Mutex<Vec<MessageSendEvent>>
117 }
118 impl ErroringMessageHandler {
119         /// Constructs a new ErroringMessageHandler
120         pub fn new() -> Self {
121                 Self { message_queue: Mutex::new(Vec::new()) }
122         }
123         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
124                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
125                         action: msgs::ErrorAction::SendErrorMessage {
126                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
127                         },
128                         node_id: node_id.clone(),
129                 });
130         }
131 }
132 impl MessageSendEventsProvider for ErroringMessageHandler {
133         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
134                 let mut res = Vec::new();
135                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
136                 res
137         }
138 }
139 impl ChannelMessageHandler for ErroringMessageHandler {
140         // Any messages which are related to a specific channel generate an error message to let the
141         // peer know we don't care about channels.
142         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
143                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
144         }
145         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
146                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
147         }
148         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
149                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
150         }
151         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
152                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
153         }
154         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
155                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
156         }
157         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
158                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
159         }
160         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
161                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
162         }
163         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
164                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
165         }
166         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
167                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
168         }
169         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
170                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
171         }
172         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
173                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
174         }
175         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
176                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
177         }
178         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
180         }
181         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
183         }
184         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
186         }
187         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
191         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
192         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
193         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
194         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
195 }
196 impl Deref for ErroringMessageHandler {
197         type Target = ErroringMessageHandler;
198         fn deref(&self) -> &Self { self }
199 }
200
201 /// Provides references to trait impls which handle different types of messages.
202 pub struct MessageHandler<CM: Deref, RM: Deref> where
203                 CM::Target: ChannelMessageHandler,
204                 RM::Target: RoutingMessageHandler {
205         /// A message handler which handles messages specific to channels. Usually this is just a
206         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
207         ///
208         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
209         pub chan_handler: CM,
210         /// A message handler which handles messages updating our knowledge of the network channel
211         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
212         ///
213         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
261         /// because we required features that our peer was missing, or vice versa).
262         ///
263         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
264         /// any channels with this peer or check for new versions of LDK.
265         ///
266         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
267         pub no_connection_possible: bool,
268 }
269 impl fmt::Debug for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274 impl fmt::Display for PeerHandleError {
275         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
276                 formatter.write_str("Peer Sent Invalid Data")
277         }
278 }
279
280 #[cfg(feature = "std")]
281 impl error::Error for PeerHandleError {
282         fn description(&self) -> &str {
283                 "Peer Sent Invalid Data"
284         }
285 }
286
287 enum InitSyncTracker{
288         NoSyncRequested,
289         ChannelsSyncing(u64),
290         NodesSyncing(PublicKey),
291 }
292
293 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
294 /// forwarding gossip messages to peers altogether.
295 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
296
297 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
298 /// we have fewer than this many messages in the outbound buffer again.
299 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
300 /// refilled as we send bytes.
301 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
302 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
303 /// the peer.
304 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
305
306 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
307 /// the socket receive buffer before receiving the ping.
308 ///
309 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
310 /// including any network delays, outbound traffic, or the same for messages from other peers.
311 ///
312 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
313 /// per connected peer to respond to a ping, as long as they send us at least one message during
314 /// each tick, ensuring we aren't actually just disconnected.
315 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
316 /// peer.
317 ///
318 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
319 /// two connected peers, assuming most LDK-running systems have at least two cores.
320 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
321
322 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
323 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
324 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
325 /// process before the next ping.
326 ///
327 /// Note that we continue responding to other messages even after we've sent this many messages, so
328 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
329 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
330 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
331
332 struct Peer {
333         channel_encryptor: PeerChannelEncryptor,
334         their_node_id: Option<PublicKey>,
335         their_features: Option<InitFeatures>,
336         their_net_address: Option<NetAddress>,
337
338         pending_outbound_buffer: LinkedList<Vec<u8>>,
339         pending_outbound_buffer_first_msg_offset: usize,
340         awaiting_write_event: bool,
341
342         pending_read_buffer: Vec<u8>,
343         pending_read_buffer_pos: usize,
344         pending_read_is_header: bool,
345
346         sync_status: InitSyncTracker,
347
348         msgs_sent_since_pong: usize,
349         awaiting_pong_timer_tick_intervals: i8,
350         received_message_since_timer_tick: bool,
351         sent_gossip_timestamp_filter: bool,
352 }
353
354 impl Peer {
355         /// Returns true if the channel announcements/updates for the given channel should be
356         /// forwarded to this peer.
357         /// If we are sending our routing table to this peer and we have not yet sent channel
358         /// announcements/updates for the given channel_id then we will send it when we get to that
359         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
360         /// sent the old versions, we should send the update, and so return true here.
361         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
362                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
363                         !self.sent_gossip_timestamp_filter {
364                                 return false;
365                         }
366                 match self.sync_status {
367                         InitSyncTracker::NoSyncRequested => true,
368                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
369                         InitSyncTracker::NodesSyncing(_) => true,
370                 }
371         }
372
373         /// Similar to the above, but for node announcements indexed by node_id.
374         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
375                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
376                         !self.sent_gossip_timestamp_filter {
377                                 return false;
378                         }
379                 match self.sync_status {
380                         InitSyncTracker::NoSyncRequested => true,
381                         InitSyncTracker::ChannelsSyncing(_) => false,
382                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
383                 }
384         }
385
386         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
387         /// buffer still has space and we don't need to pause reads to get some writes out.
388         fn should_read(&self) -> bool {
389                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
390         }
391
392         /// Determines if we should push additional gossip messages onto a peer's outbound buffer for
393         /// backfilling gossip data to the peer. This is checked every time the peer's buffer may have
394         /// been drained.
395         fn should_buffer_gossip_backfill(&self) -> bool {
396                 self.pending_outbound_buffer.is_empty() &&
397                         self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
398         }
399
400         /// Returns whether this peer's buffer is full and we should drop gossip messages.
401         fn buffer_full_drop_gossip(&self) -> bool {
402                 if self.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
403                         || self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO {
404                                 return false
405                 }
406                 true
407         }
408 }
409
410 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
411 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
412 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
413 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
414 /// issues such as overly long function definitions.
415 ///
416 /// (C-not exported) as Arcs don't make sense in bindings
417 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
418
419 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
420 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
421 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
422 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
423 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
424 /// helps with issues such as long function definitions.
425 ///
426 /// (C-not exported) as Arcs don't make sense in bindings
427 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
428
429 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
430 /// socket events into messages which it passes on to its [`MessageHandler`].
431 ///
432 /// Locks are taken internally, so you must never assume that reentrancy from a
433 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
434 ///
435 /// Calls to [`read_event`] will decode relevant messages and pass them to the
436 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
437 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
438 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
439 /// calls only after previous ones have returned.
440 ///
441 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
442 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
443 /// essentially you should default to using a SimpleRefPeerManager, and use a
444 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
445 /// you're using lightning-net-tokio.
446 ///
447 /// [`read_event`]: PeerManager::read_event
448 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
449                 CM::Target: ChannelMessageHandler,
450                 RM::Target: RoutingMessageHandler,
451                 L::Target: Logger,
452                 CMH::Target: CustomMessageHandler {
453         message_handler: MessageHandler<CM, RM>,
454         /// Connection state for each connected peer - we have an outer read-write lock which is taken
455         /// as read while we're doing processing for a peer and taken write when a peer is being added
456         /// or removed.
457         ///
458         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
459         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
460         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
461         /// the `MessageHandler`s for a given peer is already guaranteed.
462         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
463         /// Only add to this set when noise completes.
464         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
465         /// lock held. Entries may be added with only the `peers` read lock held (though the
466         /// `Descriptor` value must already exist in `peers`).
467         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
468         /// We can only have one thread processing events at once, but we don't usually need the full
469         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
470         /// `process_events`.
471         event_processing_lock: Mutex<()>,
472         /// Because event processing is global and always does all available work before returning,
473         /// there is no reason for us to have many event processors waiting on the lock at once.
474         /// Instead, we limit the total blocked event processors to always exactly one by setting this
475         /// when an event process call is waiting.
476         blocked_event_processors: AtomicBool,
477         our_node_secret: SecretKey,
478         ephemeral_key_midstate: Sha256Engine,
479         custom_message_handler: CMH,
480
481         peer_counter: AtomicCounter,
482
483         logger: L,
484         secp_ctx: Secp256k1<secp256k1::SignOnly>
485 }
486
487 enum MessageHandlingError {
488         PeerHandleError(PeerHandleError),
489         LightningError(LightningError),
490 }
491
492 impl From<PeerHandleError> for MessageHandlingError {
493         fn from(error: PeerHandleError) -> Self {
494                 MessageHandlingError::PeerHandleError(error)
495         }
496 }
497
498 impl From<LightningError> for MessageHandlingError {
499         fn from(error: LightningError) -> Self {
500                 MessageHandlingError::LightningError(error)
501         }
502 }
503
504 macro_rules! encode_msg {
505         ($msg: expr) => {{
506                 let mut buffer = VecWriter(Vec::new());
507                 wire::write($msg, &mut buffer).unwrap();
508                 buffer.0
509         }}
510 }
511
512 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
513                 CM::Target: ChannelMessageHandler,
514                 L::Target: Logger {
515         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
516         /// handler is used and network graph messages are ignored.
517         ///
518         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
519         /// cryptographically secure random bytes.
520         ///
521         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
522         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
523                 Self::new(MessageHandler {
524                         chan_handler: channel_message_handler,
525                         route_handler: IgnoringMessageHandler{},
526                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
527         }
528 }
529
530 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
531                 RM::Target: RoutingMessageHandler,
532                 L::Target: Logger {
533         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
534         /// handler is used and messages related to channels will be ignored (or generate error
535         /// messages). Note that some other lightning implementations time-out connections after some
536         /// time if no channel is built with the peer.
537         ///
538         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
539         /// cryptographically secure random bytes.
540         ///
541         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
542         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
543                 Self::new(MessageHandler {
544                         chan_handler: ErroringMessageHandler::new(),
545                         route_handler: routing_message_handler,
546                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
547         }
548 }
549
550 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
551 /// This works around `format!()` taking a reference to each argument, preventing
552 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
553 /// due to lifetime errors.
554 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
555 impl core::fmt::Display for OptionalFromDebugger<'_> {
556         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
557                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
558         }
559 }
560
561 /// A function used to filter out local or private addresses
562 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
563 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
564 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
565         match ip_address{
566                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
567                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
568                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
569                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
570                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
571                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
572                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
573                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
574                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
575                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
576                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
577                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
578                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
579                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
580                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
581                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
582                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
583                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
584                 // For remaining addresses
585                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
586                 Some(..) => ip_address,
587                 None => None,
588         }
589 }
590
591 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
592                 CM::Target: ChannelMessageHandler,
593                 RM::Target: RoutingMessageHandler,
594                 L::Target: Logger,
595                 CMH::Target: CustomMessageHandler {
596         /// Constructs a new PeerManager with the given message handlers and node_id secret key
597         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
598         /// cryptographically secure random bytes.
599         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
600                 let mut ephemeral_key_midstate = Sha256::engine();
601                 ephemeral_key_midstate.input(ephemeral_random_data);
602
603                 let mut secp_ctx = Secp256k1::signing_only();
604                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
605                 secp_ctx.seeded_randomize(&ephemeral_hash);
606
607                 PeerManager {
608                         message_handler,
609                         peers: FairRwLock::new(HashMap::new()),
610                         node_id_to_descriptor: Mutex::new(HashMap::new()),
611                         event_processing_lock: Mutex::new(()),
612                         blocked_event_processors: AtomicBool::new(false),
613                         our_node_secret,
614                         ephemeral_key_midstate,
615                         peer_counter: AtomicCounter::new(),
616                         logger,
617                         custom_message_handler,
618                         secp_ctx,
619                 }
620         }
621
622         /// Get the list of node ids for peers which have completed the initial handshake.
623         ///
624         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
625         /// new_outbound_connection, however entries will only appear once the initial handshake has
626         /// completed and we are sure the remote peer has the private key for the given node_id.
627         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
628                 let peers = self.peers.read().unwrap();
629                 peers.values().filter_map(|peer_mutex| {
630                         let p = peer_mutex.lock().unwrap();
631                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
632                                 return None;
633                         }
634                         p.their_node_id
635                 }).collect()
636         }
637
638         fn get_ephemeral_key(&self) -> SecretKey {
639                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
640                 let counter = self.peer_counter.get_increment();
641                 ephemeral_hash.input(&counter.to_le_bytes());
642                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
643         }
644
645         /// Indicates a new outbound connection has been established to a node with the given node_id
646         /// and an optional remote network address.
647         ///
648         /// The remote network address adds the option to report a remote IP address back to a connecting
649         /// peer using the init message.
650         /// The user should pass the remote network address of the host they are connected to.
651         ///
652         /// If an `Err` is returned here you must disconnect the connection immediately.
653         ///
654         /// Returns a small number of bytes to send to the remote node (currently always 50).
655         ///
656         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
657         /// [`socket_disconnected()`].
658         ///
659         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
660         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
661                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
662                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
663                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
664
665                 let mut peers = self.peers.write().unwrap();
666                 if peers.insert(descriptor, Mutex::new(Peer {
667                         channel_encryptor: peer_encryptor,
668                         their_node_id: None,
669                         their_features: None,
670                         their_net_address: remote_network_address,
671
672                         pending_outbound_buffer: LinkedList::new(),
673                         pending_outbound_buffer_first_msg_offset: 0,
674                         awaiting_write_event: false,
675
676                         pending_read_buffer,
677                         pending_read_buffer_pos: 0,
678                         pending_read_is_header: false,
679
680                         sync_status: InitSyncTracker::NoSyncRequested,
681
682                         msgs_sent_since_pong: 0,
683                         awaiting_pong_timer_tick_intervals: 0,
684                         received_message_since_timer_tick: false,
685                         sent_gossip_timestamp_filter: false,
686                 })).is_some() {
687                         panic!("PeerManager driver duplicated descriptors!");
688                 };
689                 Ok(res)
690         }
691
692         /// Indicates a new inbound connection has been established to a node with an optional remote
693         /// network address.
694         ///
695         /// The remote network address adds the option to report a remote IP address back to a connecting
696         /// peer using the init message.
697         /// The user should pass the remote network address of the host they are connected to.
698         ///
699         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
700         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
701         /// the connection immediately.
702         ///
703         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
704         /// [`socket_disconnected()`].
705         ///
706         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
707         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
708                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
709                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
710
711                 let mut peers = self.peers.write().unwrap();
712                 if peers.insert(descriptor, Mutex::new(Peer {
713                         channel_encryptor: peer_encryptor,
714                         their_node_id: None,
715                         their_features: None,
716                         their_net_address: remote_network_address,
717
718                         pending_outbound_buffer: LinkedList::new(),
719                         pending_outbound_buffer_first_msg_offset: 0,
720                         awaiting_write_event: false,
721
722                         pending_read_buffer,
723                         pending_read_buffer_pos: 0,
724                         pending_read_is_header: false,
725
726                         sync_status: InitSyncTracker::NoSyncRequested,
727
728                         msgs_sent_since_pong: 0,
729                         awaiting_pong_timer_tick_intervals: 0,
730                         received_message_since_timer_tick: false,
731                         sent_gossip_timestamp_filter: false,
732                 })).is_some() {
733                         panic!("PeerManager driver duplicated descriptors!");
734                 };
735                 Ok(())
736         }
737
738         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
739                 while !peer.awaiting_write_event {
740                         if peer.should_buffer_gossip_backfill() {
741                                 match peer.sync_status {
742                                         InitSyncTracker::NoSyncRequested => {},
743                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
744                                                 if let Some((announce, update_a_option, update_b_option)) =
745                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
746                                                 {
747                                                         self.enqueue_message(peer, &announce);
748                                                         if let Some(update_a) = update_a_option {
749                                                                 self.enqueue_message(peer, &update_a);
750                                                         }
751                                                         if let Some(update_b) = update_b_option {
752                                                                 self.enqueue_message(peer, &update_b);
753                                                         }
754                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
755                                                 } else {
756                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
757                                                 }
758                                         },
759                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
760                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
761                                                         self.enqueue_message(peer, &msg);
762                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
763                                                 } else {
764                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
765                                                 }
766                                         },
767                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
768                                         InitSyncTracker::NodesSyncing(key) => {
769                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
770                                                         self.enqueue_message(peer, &msg);
771                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
772                                                 } else {
773                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
774                                                 }
775                                         },
776                                 }
777                         }
778                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
779                                 self.maybe_send_extra_ping(peer);
780                         }
781
782                         if {
783                                 let next_buff = match peer.pending_outbound_buffer.front() {
784                                         None => return,
785                                         Some(buff) => buff,
786                                 };
787
788                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
789                                 let data_sent = descriptor.send_data(pending, peer.should_read());
790                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
791                                 peer.pending_outbound_buffer_first_msg_offset == next_buff.len()
792                         } {
793                                 peer.pending_outbound_buffer_first_msg_offset = 0;
794                                 peer.pending_outbound_buffer.pop_front();
795                         } else {
796                                 peer.awaiting_write_event = true;
797                         }
798                 }
799         }
800
801         /// Indicates that there is room to write data to the given socket descriptor.
802         ///
803         /// May return an Err to indicate that the connection should be closed.
804         ///
805         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
806         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
807         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
808         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
809         /// sufficient!
810         ///
811         /// [`send_data`]: SocketDescriptor::send_data
812         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
813         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
814                 let peers = self.peers.read().unwrap();
815                 match peers.get(descriptor) {
816                         None => {
817                                 // This is most likely a simple race condition where the user found that the socket
818                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
819                                 // this method. Return an error to make sure we get disconnected.
820                                 return Err(PeerHandleError { no_connection_possible: false });
821                         },
822                         Some(peer_mutex) => {
823                                 let mut peer = peer_mutex.lock().unwrap();
824                                 peer.awaiting_write_event = false;
825                                 self.do_attempt_write_data(descriptor, &mut peer);
826                         }
827                 };
828                 Ok(())
829         }
830
831         /// Indicates that data was read from the given socket descriptor.
832         ///
833         /// May return an Err to indicate that the connection should be closed.
834         ///
835         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
836         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
837         /// [`send_data`] calls to handle responses.
838         ///
839         /// If `Ok(true)` is returned, further read_events should not be triggered until a
840         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
841         /// send buffer).
842         ///
843         /// [`send_data`]: SocketDescriptor::send_data
844         /// [`process_events`]: PeerManager::process_events
845         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
846                 match self.do_read_event(peer_descriptor, data) {
847                         Ok(res) => Ok(res),
848                         Err(e) => {
849                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
850                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
851                                 Err(e)
852                         }
853                 }
854         }
855
856         /// Append a message to a peer's pending outbound/write buffer
857         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
858                 peer.msgs_sent_since_pong += 1;
859                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
860         }
861
862         /// Append a message to a peer's pending outbound/write buffer
863         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
864                 let mut buffer = VecWriter(Vec::with_capacity(2048));
865                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
866
867                 if is_gossip_msg(message.type_id()) {
868                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
869                 } else {
870                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
871                 }
872                 self.enqueue_encoded_message(peer, &buffer.0);
873         }
874
875         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
876                 let mut pause_read = false;
877                 let peers = self.peers.read().unwrap();
878                 let mut msgs_to_forward = Vec::new();
879                 let mut peer_node_id = None;
880                 match peers.get(peer_descriptor) {
881                         None => {
882                                 // This is most likely a simple race condition where the user read some bytes
883                                 // from the socket, then we told the user to `disconnect_socket()`, then they
884                                 // called this method. Return an error to make sure we get disconnected.
885                                 return Err(PeerHandleError { no_connection_possible: false });
886                         },
887                         Some(peer_mutex) => {
888                                 let mut read_pos = 0;
889                                 while read_pos < data.len() {
890                                         macro_rules! try_potential_handleerror {
891                                                 ($peer: expr, $thing: expr) => {
892                                                         match $thing {
893                                                                 Ok(x) => x,
894                                                                 Err(e) => {
895                                                                         match e.action {
896                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
897                                                                                         //TODO: Try to push msg
898                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
899                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
900                                                                                 },
901                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
902                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
903                                                                                         continue
904                                                                                 },
905                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
906                                                                                 msgs::ErrorAction::IgnoreError => {
907                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
908                                                                                         continue;
909                                                                                 },
910                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
911                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
912                                                                                         self.enqueue_message($peer, &msg);
913                                                                                         continue;
914                                                                                 },
915                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
916                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
917                                                                                         self.enqueue_message($peer, &msg);
918                                                                                         continue;
919                                                                                 },
920                                                                         }
921                                                                 }
922                                                         }
923                                                 }
924                                         }
925
926                                         let mut peer_lock = peer_mutex.lock().unwrap();
927                                         let peer = &mut *peer_lock;
928                                         let mut msg_to_handle = None;
929                                         if peer_node_id.is_none() {
930                                                 peer_node_id = peer.their_node_id.clone();
931                                         }
932
933                                         assert!(peer.pending_read_buffer.len() > 0);
934                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
935
936                                         {
937                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
938                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
939                                                 read_pos += data_to_copy;
940                                                 peer.pending_read_buffer_pos += data_to_copy;
941                                         }
942
943                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
944                                                 peer.pending_read_buffer_pos = 0;
945
946                                                 macro_rules! insert_node_id {
947                                                         () => {
948                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
949                                                                         hash_map::Entry::Occupied(_) => {
950                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
951                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
952                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
953                                                                         },
954                                                                         hash_map::Entry::Vacant(entry) => {
955                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
956                                                                                 entry.insert(peer_descriptor.clone())
957                                                                         },
958                                                                 };
959                                                         }
960                                                 }
961
962                                                 let next_step = peer.channel_encryptor.get_noise_step();
963                                                 match next_step {
964                                                         NextNoiseStep::ActOne => {
965                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
966                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
967                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
968                                                                 peer.pending_outbound_buffer.push_back(act_two);
969                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
970                                                         },
971                                                         NextNoiseStep::ActTwo => {
972                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
973                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
974                                                                                 &self.our_node_secret, &self.secp_ctx));
975                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
976                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
977                                                                 peer.pending_read_is_header = true;
978
979                                                                 peer.their_node_id = Some(their_node_id);
980                                                                 insert_node_id!();
981                                                                 let features = InitFeatures::known();
982                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
983                                                                 self.enqueue_message(peer, &resp);
984                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
985                                                         },
986                                                         NextNoiseStep::ActThree => {
987                                                                 let their_node_id = try_potential_handleerror!(peer,
988                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
989                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
990                                                                 peer.pending_read_is_header = true;
991                                                                 peer.their_node_id = Some(their_node_id);
992                                                                 insert_node_id!();
993                                                                 let features = InitFeatures::known();
994                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
995                                                                 self.enqueue_message(peer, &resp);
996                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
997                                                         },
998                                                         NextNoiseStep::NoiseComplete => {
999                                                                 if peer.pending_read_is_header {
1000                                                                         let msg_len = try_potential_handleerror!(peer,
1001                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1002                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1003                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1004                                                                         if msg_len < 2 { // Need at least the message type tag
1005                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1006                                                                         }
1007                                                                         peer.pending_read_is_header = false;
1008                                                                 } else {
1009                                                                         let msg_data = try_potential_handleerror!(peer,
1010                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1011                                                                         assert!(msg_data.len() >= 2);
1012
1013                                                                         // Reset read buffer
1014                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1015                                                                         peer.pending_read_buffer.resize(18, 0);
1016                                                                         peer.pending_read_is_header = true;
1017
1018                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1019                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1020                                                                         let message = match message_result {
1021                                                                                 Ok(x) => x,
1022                                                                                 Err(e) => {
1023                                                                                         match e {
1024                                                                                                 // Note that to avoid recursion we never call
1025                                                                                                 // `do_attempt_write_data` from here, causing
1026                                                                                                 // the messages enqueued here to not actually
1027                                                                                                 // be sent before the peer is disconnected.
1028                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1029                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1030                                                                                                         continue;
1031                                                                                                 }
1032                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1033                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1034                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1035                                                                                                         continue;
1036                                                                                                 }
1037                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1038                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1039                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1040                                                                                                         continue;
1041                                                                                                 }
1042                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1043                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1044                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1045                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1046                                                                                                 }
1047                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1048                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1049                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1050                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1051                                                                                                 }
1052                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1053                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1054                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1055                                                                                                 }
1056                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1057                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1058                                                                                         }
1059                                                                                 }
1060                                                                         };
1061
1062                                                                         msg_to_handle = Some(message);
1063                                                                 }
1064                                                         }
1065                                                 }
1066                                         }
1067                                         pause_read = !peer.should_read();
1068
1069                                         if let Some(message) = msg_to_handle {
1070                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1071                                                         Err(handling_error) => match handling_error {
1072                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1073                                                                 MessageHandlingError::LightningError(e) => {
1074                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1075                                                                 },
1076                                                         },
1077                                                         Ok(Some(msg)) => {
1078                                                                 msgs_to_forward.push(msg);
1079                                                         },
1080                                                         Ok(None) => {},
1081                                                 }
1082                                         }
1083                                 }
1084                         }
1085                 }
1086
1087                 for msg in msgs_to_forward.drain(..) {
1088                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1089                 }
1090
1091                 Ok(pause_read)
1092         }
1093
1094         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1095         /// Returns the message back if it needs to be broadcasted to all other peers.
1096         fn handle_message(
1097                 &self,
1098                 peer_mutex: &Mutex<Peer>,
1099                 mut peer_lock: MutexGuard<Peer>,
1100                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1101         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1102                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1103                 peer_lock.received_message_since_timer_tick = true;
1104
1105                 // Need an Init as first message
1106                 if let wire::Message::Init(msg) = message {
1107                         if msg.features.requires_unknown_bits() {
1108                                 log_debug!(self.logger, "Peer features required unknown version bits");
1109                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1110                         }
1111                         if peer_lock.their_features.is_some() {
1112                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1113                         }
1114
1115                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1116
1117                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1118                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1119                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1120                         }
1121
1122                         if !msg.features.supports_static_remote_key() {
1123                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1124                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1125                         }
1126
1127                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1128
1129                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1130                         peer_lock.their_features = Some(msg.features);
1131                         return Ok(None);
1132                 } else if peer_lock.their_features.is_none() {
1133                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1134                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1135                 }
1136
1137                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1138                         // When supporting gossip messages, start inital gossip sync only after we receive
1139                         // a GossipTimestampFilter
1140                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1141                                 !peer_lock.sent_gossip_timestamp_filter {
1142                                 peer_lock.sent_gossip_timestamp_filter = true;
1143                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1144                         }
1145                         return Ok(None);
1146                 }
1147
1148                 let their_features = peer_lock.their_features.clone();
1149                 mem::drop(peer_lock);
1150
1151                 if is_gossip_msg(message.type_id()) {
1152                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1153                 } else {
1154                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1155                 }
1156
1157                 let mut should_forward = None;
1158
1159                 match message {
1160                         // Setup and Control messages:
1161                         wire::Message::Init(_) => {
1162                                 // Handled above
1163                         },
1164                         wire::Message::GossipTimestampFilter(_) => {
1165                                 // Handled above
1166                         },
1167                         wire::Message::Error(msg) => {
1168                                 let mut data_is_printable = true;
1169                                 for b in msg.data.bytes() {
1170                                         if b < 32 || b > 126 {
1171                                                 data_is_printable = false;
1172                                                 break;
1173                                         }
1174                                 }
1175
1176                                 if data_is_printable {
1177                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1178                                 } else {
1179                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1180                                 }
1181                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1182                                 if msg.channel_id == [0; 32] {
1183                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1184                                 }
1185                         },
1186                         wire::Message::Warning(msg) => {
1187                                 let mut data_is_printable = true;
1188                                 for b in msg.data.bytes() {
1189                                         if b < 32 || b > 126 {
1190                                                 data_is_printable = false;
1191                                                 break;
1192                                         }
1193                                 }
1194
1195                                 if data_is_printable {
1196                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1197                                 } else {
1198                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1199                                 }
1200                         },
1201
1202                         wire::Message::Ping(msg) => {
1203                                 if msg.ponglen < 65532 {
1204                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1205                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1206                                 }
1207                         },
1208                         wire::Message::Pong(_msg) => {
1209                                 let mut peer_lock = peer_mutex.lock().unwrap();
1210                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1211                                 peer_lock.msgs_sent_since_pong = 0;
1212                         },
1213
1214                         // Channel messages:
1215                         wire::Message::OpenChannel(msg) => {
1216                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1217                         },
1218                         wire::Message::AcceptChannel(msg) => {
1219                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1220                         },
1221
1222                         wire::Message::FundingCreated(msg) => {
1223                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1224                         },
1225                         wire::Message::FundingSigned(msg) => {
1226                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1227                         },
1228                         wire::Message::ChannelReady(msg) => {
1229                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1230                         },
1231
1232                         wire::Message::Shutdown(msg) => {
1233                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1234                         },
1235                         wire::Message::ClosingSigned(msg) => {
1236                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1237                         },
1238
1239                         // Commitment messages:
1240                         wire::Message::UpdateAddHTLC(msg) => {
1241                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1242                         },
1243                         wire::Message::UpdateFulfillHTLC(msg) => {
1244                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1245                         },
1246                         wire::Message::UpdateFailHTLC(msg) => {
1247                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1248                         },
1249                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1250                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1251                         },
1252
1253                         wire::Message::CommitmentSigned(msg) => {
1254                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1255                         },
1256                         wire::Message::RevokeAndACK(msg) => {
1257                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1258                         },
1259                         wire::Message::UpdateFee(msg) => {
1260                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1261                         },
1262                         wire::Message::ChannelReestablish(msg) => {
1263                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1264                         },
1265
1266                         // Routing messages:
1267                         wire::Message::AnnouncementSignatures(msg) => {
1268                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1269                         },
1270                         wire::Message::ChannelAnnouncement(msg) => {
1271                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1272                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1273                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1274                                 }
1275                         },
1276                         wire::Message::NodeAnnouncement(msg) => {
1277                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1278                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1279                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1280                                 }
1281                         },
1282                         wire::Message::ChannelUpdate(msg) => {
1283                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1284                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1285                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1286                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1287                                 }
1288                         },
1289                         wire::Message::QueryShortChannelIds(msg) => {
1290                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1291                         },
1292                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1293                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1294                         },
1295                         wire::Message::QueryChannelRange(msg) => {
1296                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1297                         },
1298                         wire::Message::ReplyChannelRange(msg) => {
1299                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1300                         },
1301
1302                         // Unknown messages:
1303                         wire::Message::Unknown(type_id) if message.is_even() => {
1304                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1305                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1306                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1307                         },
1308                         wire::Message::Unknown(type_id) => {
1309                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1310                         },
1311                         wire::Message::Custom(custom) => {
1312                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1313                         },
1314                 };
1315                 Ok(should_forward)
1316         }
1317
1318         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1319                 match msg {
1320                         wire::Message::ChannelAnnouncement(ref msg) => {
1321                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1322                                 let encoded_msg = encode_msg!(msg);
1323
1324                                 for (_, peer_mutex) in peers.iter() {
1325                                         let mut peer = peer_mutex.lock().unwrap();
1326                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1327                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1328                                                 continue
1329                                         }
1330                                         if peer.buffer_full_drop_gossip() {
1331                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1332                                                 continue;
1333                                         }
1334                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1335                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1336                                                 continue;
1337                                         }
1338                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1339                                                 continue;
1340                                         }
1341                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1342                                 }
1343                         },
1344                         wire::Message::NodeAnnouncement(ref msg) => {
1345                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1346                                 let encoded_msg = encode_msg!(msg);
1347
1348                                 for (_, peer_mutex) in peers.iter() {
1349                                         let mut peer = peer_mutex.lock().unwrap();
1350                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1351                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1352                                                 continue
1353                                         }
1354                                         if peer.buffer_full_drop_gossip() {
1355                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1356                                                 continue;
1357                                         }
1358                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1359                                                 continue;
1360                                         }
1361                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1362                                                 continue;
1363                                         }
1364                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1365                                 }
1366                         },
1367                         wire::Message::ChannelUpdate(ref msg) => {
1368                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1369                                 let encoded_msg = encode_msg!(msg);
1370
1371                                 for (_, peer_mutex) in peers.iter() {
1372                                         let mut peer = peer_mutex.lock().unwrap();
1373                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1374                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1375                                                 continue
1376                                         }
1377                                         if peer.buffer_full_drop_gossip() {
1378                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1379                                                 continue;
1380                                         }
1381                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1382                                                 continue;
1383                                         }
1384                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1385                                 }
1386                         },
1387                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1388                 }
1389         }
1390
1391         /// Checks for any events generated by our handlers and processes them. Includes sending most
1392         /// response messages as well as messages generated by calls to handler functions directly (eg
1393         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1394         ///
1395         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1396         /// issues!
1397         ///
1398         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1399         /// or one of the other clients provided in our language bindings.
1400         ///
1401         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1402         /// without doing any work. All available events that need handling will be handled before the
1403         /// other calls return.
1404         ///
1405         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1406         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1407         /// [`send_data`]: SocketDescriptor::send_data
1408         pub fn process_events(&self) {
1409                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1410                 if _single_processor_lock.is_err() {
1411                         // While we could wake the older sleeper here with a CV and make more even waiting
1412                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1413                         // count" goal.
1414                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1415                                 Err(val) => {
1416                                         debug_assert!(val, "compare_exchange failed spuriously?");
1417                                         return;
1418                                 },
1419                                 Ok(val) => {
1420                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1421                                         // We're the only waiter, as the running process_events may have emptied the
1422                                         // pending events "long" ago and there are new events for us to process, wait until
1423                                         // its done and process any leftover events before returning.
1424                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1425                                         self.blocked_event_processors.store(false, Ordering::Release);
1426                                 }
1427                         }
1428                 }
1429
1430                 let mut peers_to_disconnect = HashMap::new();
1431                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1432                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1433
1434                 {
1435                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1436                         // buffer by doing things like announcing channels on another node. We should be willing to
1437                         // drop optional-ish messages when send buffers get full!
1438
1439                         let peers_lock = self.peers.read().unwrap();
1440                         let peers = &*peers_lock;
1441                         macro_rules! get_peer_for_forwarding {
1442                                 ($node_id: expr) => {
1443                                         {
1444                                                 if peers_to_disconnect.get($node_id).is_some() {
1445                                                         // If we've "disconnected" this peer, do not send to it.
1446                                                         continue;
1447                                                 }
1448                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1449                                                 match descriptor_opt {
1450                                                         Some(descriptor) => match peers.get(&descriptor) {
1451                                                                 Some(peer_mutex) => {
1452                                                                         let peer_lock = peer_mutex.lock().unwrap();
1453                                                                         if peer_lock.their_features.is_none() {
1454                                                                                 continue;
1455                                                                         }
1456                                                                         peer_lock
1457                                                                 },
1458                                                                 None => {
1459                                                                         debug_assert!(false, "Inconsistent peers set state!");
1460                                                                         continue;
1461                                                                 }
1462                                                         },
1463                                                         None => {
1464                                                                 continue;
1465                                                         },
1466                                                 }
1467                                         }
1468                                 }
1469                         }
1470                         for event in events_generated.drain(..) {
1471                                 match event {
1472                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1473                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1474                                                                 log_pubkey!(node_id),
1475                                                                 log_bytes!(msg.temporary_channel_id));
1476                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1477                                         },
1478                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1479                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1480                                                                 log_pubkey!(node_id),
1481                                                                 log_bytes!(msg.temporary_channel_id));
1482                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1483                                         },
1484                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1485                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1486                                                                 log_pubkey!(node_id),
1487                                                                 log_bytes!(msg.temporary_channel_id),
1488                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1489                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1490                                                 // indicating to the wallet that they should just throw away this funding transaction
1491                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1492                                         },
1493                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1494                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1495                                                                 log_pubkey!(node_id),
1496                                                                 log_bytes!(msg.channel_id));
1497                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1498                                         },
1499                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1500                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1501                                                                 log_pubkey!(node_id),
1502                                                                 log_bytes!(msg.channel_id));
1503                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1504                                         },
1505                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1506                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1507                                                                 log_pubkey!(node_id),
1508                                                                 log_bytes!(msg.channel_id));
1509                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1510                                         },
1511                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1512                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1513                                                                 log_pubkey!(node_id),
1514                                                                 update_add_htlcs.len(),
1515                                                                 update_fulfill_htlcs.len(),
1516                                                                 update_fail_htlcs.len(),
1517                                                                 log_bytes!(commitment_signed.channel_id));
1518                                                 let mut peer = get_peer_for_forwarding!(node_id);
1519                                                 for msg in update_add_htlcs {
1520                                                         self.enqueue_message(&mut *peer, msg);
1521                                                 }
1522                                                 for msg in update_fulfill_htlcs {
1523                                                         self.enqueue_message(&mut *peer, msg);
1524                                                 }
1525                                                 for msg in update_fail_htlcs {
1526                                                         self.enqueue_message(&mut *peer, msg);
1527                                                 }
1528                                                 for msg in update_fail_malformed_htlcs {
1529                                                         self.enqueue_message(&mut *peer, msg);
1530                                                 }
1531                                                 if let &Some(ref msg) = update_fee {
1532                                                         self.enqueue_message(&mut *peer, msg);
1533                                                 }
1534                                                 self.enqueue_message(&mut *peer, commitment_signed);
1535                                         },
1536                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1537                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1538                                                                 log_pubkey!(node_id),
1539                                                                 log_bytes!(msg.channel_id));
1540                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1541                                         },
1542                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1543                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1544                                                                 log_pubkey!(node_id),
1545                                                                 log_bytes!(msg.channel_id));
1546                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1547                                         },
1548                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1549                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1550                                                                 log_pubkey!(node_id),
1551                                                                 log_bytes!(msg.channel_id));
1552                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1553                                         },
1554                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1555                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1556                                                                 log_pubkey!(node_id),
1557                                                                 log_bytes!(msg.channel_id));
1558                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1559                                         },
1560                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1561                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1562                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1563                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1564                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1565                                                         _ => {},
1566                                                 }
1567                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1568                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1569                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1570                                                         _ => {},
1571                                                 }
1572                                         },
1573                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1574                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1575                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1576                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1577                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1578                                                         _ => {},
1579                                                 }
1580                                         },
1581                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1582                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1583                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1584                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1585                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1586                                                         _ => {},
1587                                                 }
1588                                         },
1589                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1590                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1591                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1592                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1593                                         },
1594                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1595                                                 match *action {
1596                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1597                                                                 // We do not have the peers write lock, so we just store that we're
1598                                                                 // about to disconenct the peer and do it after we finish
1599                                                                 // processing most messages.
1600                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1601                                                         },
1602                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1603                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1604                                                         },
1605                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1606                                                         msgs::ErrorAction::IgnoreError => {
1607                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1608                                                         },
1609                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1610                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1611                                                                                 log_pubkey!(node_id),
1612                                                                                 msg.data);
1613                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1614                                                         },
1615                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1616                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1617                                                                                 log_pubkey!(node_id),
1618                                                                                 msg.data);
1619                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1620                                                         },
1621                                                 }
1622                                         },
1623                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1624                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1625                                         },
1626                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1627                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1628                                         }
1629                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1630                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1631                                                         log_pubkey!(node_id),
1632                                                         msg.short_channel_ids.len(),
1633                                                         msg.first_blocknum,
1634                                                         msg.number_of_blocks,
1635                                                         msg.sync_complete);
1636                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1637                                         }
1638                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1639                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1640                                         }
1641                                 }
1642                         }
1643
1644                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1645                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1646                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1647                         }
1648
1649                         for (descriptor, peer_mutex) in peers.iter() {
1650                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1651                         }
1652                 }
1653                 if !peers_to_disconnect.is_empty() {
1654                         let mut peers_lock = self.peers.write().unwrap();
1655                         let peers = &mut *peers_lock;
1656                         for (node_id, msg) in peers_to_disconnect.drain() {
1657                                 // Note that since we are holding the peers *write* lock we can
1658                                 // remove from node_id_to_descriptor immediately (as no other
1659                                 // thread can be holding the peer lock if we have the global write
1660                                 // lock).
1661
1662                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1663                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1664                                                 if let Some(msg) = msg {
1665                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1666                                                                         log_pubkey!(node_id),
1667                                                                         msg.data);
1668                                                         let mut peer = peer_mutex.lock().unwrap();
1669                                                         self.enqueue_message(&mut *peer, &msg);
1670                                                         // This isn't guaranteed to work, but if there is enough free
1671                                                         // room in the send buffer, put the error message there...
1672                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1673                                                 } else {
1674                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1675                                                 }
1676                                         }
1677                                         descriptor.disconnect_socket();
1678                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1679                                 }
1680                         }
1681                 }
1682         }
1683
1684         /// Indicates that the given socket descriptor's connection is now closed.
1685         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1686                 self.disconnect_event_internal(descriptor, false);
1687         }
1688
1689         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1690                 let mut peers = self.peers.write().unwrap();
1691                 let peer_option = peers.remove(descriptor);
1692                 match peer_option {
1693                         None => {
1694                                 // This is most likely a simple race condition where the user found that the socket
1695                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1696                                 // called this method. Either way we're disconnected, return.
1697                         },
1698                         Some(peer_lock) => {
1699                                 let peer = peer_lock.lock().unwrap();
1700                                 if let Some(node_id) = peer.their_node_id {
1701                                         log_trace!(self.logger,
1702                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1703                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1704                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1705                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1706                                 }
1707                         }
1708                 };
1709         }
1710
1711         /// Disconnect a peer given its node id.
1712         ///
1713         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1714         /// force-closing any channels we have with it.
1715         ///
1716         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1717         /// peer. Thus, be very careful about reentrancy issues.
1718         ///
1719         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1720         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1721                 let mut peers_lock = self.peers.write().unwrap();
1722                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1723                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1724                         peers_lock.remove(&descriptor);
1725                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1726                         descriptor.disconnect_socket();
1727                 }
1728         }
1729
1730         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1731         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1732         /// using regular ping/pongs.
1733         pub fn disconnect_all_peers(&self) {
1734                 let mut peers_lock = self.peers.write().unwrap();
1735                 self.node_id_to_descriptor.lock().unwrap().clear();
1736                 let peers = &mut *peers_lock;
1737                 for (mut descriptor, peer) in peers.drain() {
1738                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1739                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1740                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1741                         }
1742                         descriptor.disconnect_socket();
1743                 }
1744         }
1745
1746         /// This is called when we're blocked on sending additional gossip messages until we receive a
1747         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1748         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1749         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1750                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1751                         peer.awaiting_pong_timer_tick_intervals = -1;
1752                         let ping = msgs::Ping {
1753                                 ponglen: 0,
1754                                 byteslen: 64,
1755                         };
1756                         self.enqueue_message(peer, &ping);
1757                 }
1758         }
1759
1760         /// Send pings to each peer and disconnect those which did not respond to the last round of
1761         /// pings.
1762         ///
1763         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1764         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1765         /// time they have to respond before we disconnect them.
1766         ///
1767         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1768         /// issues!
1769         ///
1770         /// [`send_data`]: SocketDescriptor::send_data
1771         pub fn timer_tick_occurred(&self) {
1772                 let mut descriptors_needing_disconnect = Vec::new();
1773                 {
1774                         let peers_lock = self.peers.read().unwrap();
1775
1776                         for (descriptor, peer_mutex) in peers_lock.iter() {
1777                                 let mut peer = peer_mutex.lock().unwrap();
1778                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1779                                         // The peer needs to complete its handshake before we can exchange messages. We
1780                                         // give peers one timer tick to complete handshake, reusing
1781                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1782                                         // for handshake completion.
1783                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1784                                                 descriptors_needing_disconnect.push(descriptor.clone());
1785                                         } else {
1786                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1787                                         }
1788                                         continue;
1789                                 }
1790
1791                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1792                                         // Magic value set in `maybe_send_extra_ping`.
1793                                         peer.awaiting_pong_timer_tick_intervals = 1;
1794                                         peer.received_message_since_timer_tick = false;
1795                                         continue;
1796                                 }
1797
1798                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1799                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1800                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1801                                 {
1802                                         descriptors_needing_disconnect.push(descriptor.clone());
1803                                         continue;
1804                                 }
1805                                 peer.received_message_since_timer_tick = false;
1806
1807                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1808                                         peer.awaiting_pong_timer_tick_intervals += 1;
1809                                         continue;
1810                                 }
1811
1812                                 peer.awaiting_pong_timer_tick_intervals = 1;
1813                                 let ping = msgs::Ping {
1814                                         ponglen: 0,
1815                                         byteslen: 64,
1816                                 };
1817                                 self.enqueue_message(&mut *peer, &ping);
1818                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1819                         }
1820                 }
1821
1822                 if !descriptors_needing_disconnect.is_empty() {
1823                         {
1824                                 let mut peers_lock = self.peers.write().unwrap();
1825                                 for descriptor in descriptors_needing_disconnect.iter() {
1826                                         if let Some(peer) = peers_lock.remove(descriptor) {
1827                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1828                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1829                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1830                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1831                                                 }
1832                                         }
1833                                 }
1834                         }
1835
1836                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1837                                 descriptor.disconnect_socket();
1838                         }
1839                 }
1840         }
1841 }
1842
1843 fn is_gossip_msg(type_id: u16) -> bool {
1844         match type_id {
1845                 msgs::ChannelAnnouncement::TYPE |
1846                 msgs::ChannelUpdate::TYPE |
1847                 msgs::NodeAnnouncement::TYPE |
1848                 msgs::QueryChannelRange::TYPE |
1849                 msgs::ReplyChannelRange::TYPE |
1850                 msgs::QueryShortChannelIds::TYPE |
1851                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1852                 _ => false
1853         }
1854 }
1855
1856 #[cfg(test)]
1857 mod tests {
1858         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1859         use ln::{msgs, wire};
1860         use ln::msgs::NetAddress;
1861         use util::events;
1862         use util::test_utils;
1863
1864         use bitcoin::secp256k1::Secp256k1;
1865         use bitcoin::secp256k1::{SecretKey, PublicKey};
1866
1867         use prelude::*;
1868         use sync::{Arc, Mutex};
1869         use core::sync::atomic::Ordering;
1870
1871         #[derive(Clone)]
1872         struct FileDescriptor {
1873                 fd: u16,
1874                 outbound_data: Arc<Mutex<Vec<u8>>>,
1875         }
1876         impl PartialEq for FileDescriptor {
1877                 fn eq(&self, other: &Self) -> bool {
1878                         self.fd == other.fd
1879                 }
1880         }
1881         impl Eq for FileDescriptor { }
1882         impl core::hash::Hash for FileDescriptor {
1883                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1884                         self.fd.hash(hasher)
1885                 }
1886         }
1887
1888         impl SocketDescriptor for FileDescriptor {
1889                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1890                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1891                         data.len()
1892                 }
1893
1894                 fn disconnect_socket(&mut self) {}
1895         }
1896
1897         struct PeerManagerCfg {
1898                 chan_handler: test_utils::TestChannelMessageHandler,
1899                 routing_handler: test_utils::TestRoutingMessageHandler,
1900                 logger: test_utils::TestLogger,
1901         }
1902
1903         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1904                 let mut cfgs = Vec::new();
1905                 for _ in 0..peer_count {
1906                         cfgs.push(
1907                                 PeerManagerCfg{
1908                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1909                                         logger: test_utils::TestLogger::new(),
1910                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1911                                 }
1912                         );
1913                 }
1914
1915                 cfgs
1916         }
1917
1918         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1919                 let mut peers = Vec::new();
1920                 for i in 0..peer_count {
1921                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1922                         let ephemeral_bytes = [i as u8; 32];
1923                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1924                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1925                         peers.push(peer);
1926                 }
1927
1928                 peers
1929         }
1930
1931         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1932                 let secp_ctx = Secp256k1::new();
1933                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1934                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1935                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1936                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1937                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1938                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1939                 peer_a.process_events();
1940
1941                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1942                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
1943
1944                 peer_b.process_events();
1945                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1946                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
1947
1948                 peer_a.process_events();
1949                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1950                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
1951
1952                 (fd_a.clone(), fd_b.clone())
1953         }
1954
1955         #[test]
1956         fn test_disconnect_peer() {
1957                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1958                 // push a DisconnectPeer event to remove the node flagged by id
1959                 let cfgs = create_peermgr_cfgs(2);
1960                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1961                 let mut peers = create_network(2, &cfgs);
1962                 establish_connection(&peers[0], &peers[1]);
1963                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
1964
1965                 let secp_ctx = Secp256k1::new();
1966                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1967
1968                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1969                         node_id: their_id,
1970                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1971                 });
1972                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1973                 peers[0].message_handler.chan_handler = &chan_handler;
1974
1975                 peers[0].process_events();
1976                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
1977         }
1978
1979         #[test]
1980         fn test_send_simple_msg() {
1981                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1982                 // push a message from one peer to another.
1983                 let cfgs = create_peermgr_cfgs(2);
1984                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
1985                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
1986                 let mut peers = create_network(2, &cfgs);
1987                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1988                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
1989
1990                 let secp_ctx = Secp256k1::new();
1991                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1992
1993                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
1994                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
1995                         node_id: their_id, msg: msg.clone()
1996                 });
1997                 peers[0].message_handler.chan_handler = &a_chan_handler;
1998
1999                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2000                 peers[1].message_handler.chan_handler = &b_chan_handler;
2001
2002                 peers[0].process_events();
2003
2004                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2005                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2006         }
2007
2008         #[test]
2009         fn test_disconnect_all_peer() {
2010                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2011                 // then calls disconnect_all_peers
2012                 let cfgs = create_peermgr_cfgs(2);
2013                 let peers = create_network(2, &cfgs);
2014                 establish_connection(&peers[0], &peers[1]);
2015                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2016
2017                 peers[0].disconnect_all_peers();
2018                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2019         }
2020
2021         #[test]
2022         fn test_timer_tick_occurred() {
2023                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2024                 let cfgs = create_peermgr_cfgs(2);
2025                 let peers = create_network(2, &cfgs);
2026                 establish_connection(&peers[0], &peers[1]);
2027                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2028
2029                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2030                 peers[0].timer_tick_occurred();
2031                 peers[0].process_events();
2032                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2033
2034                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2035                 peers[0].timer_tick_occurred();
2036                 peers[0].process_events();
2037                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2038         }
2039
2040         #[test]
2041         fn test_do_attempt_write_data() {
2042                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2043                 let cfgs = create_peermgr_cfgs(2);
2044                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2045                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2046                 let peers = create_network(2, &cfgs);
2047
2048                 // By calling establish_connect, we trigger do_attempt_write_data between
2049                 // the peers. Previously this function would mistakenly enter an infinite loop
2050                 // when there were more channel messages available than could fit into a peer's
2051                 // buffer. This issue would now be detected by this test (because we use custom
2052                 // RoutingMessageHandlers that intentionally return more channel messages
2053                 // than can fit into a peer's buffer).
2054                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2055
2056                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2057                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2058                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2059                         peers[1].process_events();
2060                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2061                         assert!(!a_read_data.is_empty());
2062
2063                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2064                         peers[0].process_events();
2065
2066                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2067                         assert!(!b_read_data.is_empty());
2068                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2069
2070                         peers[0].process_events();
2071                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2072                 }
2073
2074                 // Check that each peer has received the expected number of channel updates and channel
2075                 // announcements.
2076                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2077                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2078                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2079                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2080         }
2081
2082         #[test]
2083         fn test_handshake_timeout() {
2084                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2085                 // tick.
2086                 let cfgs = create_peermgr_cfgs(2);
2087                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2088                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2089                 let peers = create_network(2, &cfgs);
2090
2091                 let secp_ctx = Secp256k1::new();
2092                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2093                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2094                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2095                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2096                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2097
2098                 // If we get a single timer tick before completion, that's fine
2099                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2100                 peers[0].timer_tick_occurred();
2101                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2102
2103                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2104                 peers[0].process_events();
2105                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2106                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2107                 peers[1].process_events();
2108
2109                 // ...but if we get a second timer tick, we should disconnect the peer
2110                 peers[0].timer_tick_occurred();
2111                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2112
2113                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2114                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2115         }
2116
2117         #[test]
2118         fn test_filter_addresses(){
2119                 // Tests the filter_addresses function.
2120
2121                 // For (10/8)
2122                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2123                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2124                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2125                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2126                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2127                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2128
2129                 // For (0/8)
2130                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2131                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2132                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2133                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2134                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2135                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2136
2137                 // For (100.64/10)
2138                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2139                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2140                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2141                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2142                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2143                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2144
2145                 // For (127/8)
2146                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2147                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2148                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2149                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2150                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2151                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2152
2153                 // For (169.254/16)
2154                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2155                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2156                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2157                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2158                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2159                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2160
2161                 // For (172.16/12)
2162                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2163                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2164                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2165                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2166                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2167                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2168
2169                 // For (192.168/16)
2170                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2171                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2172                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2173                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2174                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2175                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2176
2177                 // For (192.88.99/24)
2178                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2179                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2180                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2181                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2182                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2183                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2184
2185                 // For other IPv4 addresses
2186                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2187                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2188                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2189                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2190                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2191                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2192
2193                 // For (2000::/3)
2194                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2195                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2196                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2197                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2198                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2199                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2200
2201                 // For other IPv6 addresses
2202                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2203                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2204                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2205                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2206                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2207                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2208
2209                 // For (None)
2210                 assert_eq!(filter_addresses(None), None);
2211         }
2212 }