Merge pull request #1715 from TheBlueMatt/2022-09-fix-msg-send
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::{InitFeatures, NodeFeatures};
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use routing::gossip::{NetworkGraph, P2PGossipSync};
29 use util::atomic_counter::AtomicCounter;
30 use util::crypto::sign;
31 use util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
32 use util::logger::Logger;
33
34 use prelude::*;
35 use io;
36 use alloc::collections::LinkedList;
37 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
38 use core::sync::atomic::{AtomicBool, AtomicU64, Ordering};
39 use core::{cmp, hash, fmt, mem};
40 use core::ops::Deref;
41 use core::convert::Infallible;
42 #[cfg(feature = "std")] use std::error;
43
44 use bitcoin::hashes::sha256::Hash as Sha256;
45 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
48
49 /// Handler for BOLT1-compliant messages.
50 pub trait CustomMessageHandler: wire::CustomMessageReader {
51         /// Called with the message type that was received and the buffer to be read.
52         /// Can return a `MessageHandlingError` if the message could not be handled.
53         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
54
55         /// Gets the list of pending messages which were generated by the custom message
56         /// handler, clearing the list in the process. The first tuple element must
57         /// correspond to the intended recipients node ids. If no connection to one of the
58         /// specified node does not exist, the message is simply not sent to it.
59         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
60 }
61
62 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
63 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
64 pub struct IgnoringMessageHandler{}
65 impl MessageSendEventsProvider for IgnoringMessageHandler {
66         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
67 }
68 impl RoutingMessageHandler for IgnoringMessageHandler {
69         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
70         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
72         fn get_next_channel_announcement(&self, _starting_point: u64) ->
73                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
74         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
75         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
76         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
78         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
80         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
81         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
82                 InitFeatures::empty()
83         }
84 }
85 impl OnionMessageProvider for IgnoringMessageHandler {
86         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
87 }
88 impl OnionMessageHandler for IgnoringMessageHandler {
89         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
90         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
91         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
92         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
93         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
94                 InitFeatures::empty()
95         }
96 }
97 impl Deref for IgnoringMessageHandler {
98         type Target = IgnoringMessageHandler;
99         fn deref(&self) -> &Self { self }
100 }
101
102 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
103 // method that takes self for it.
104 impl wire::Type for Infallible {
105         fn type_id(&self) -> u16 {
106                 unreachable!();
107         }
108 }
109 impl Writeable for Infallible {
110         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
111                 unreachable!();
112         }
113 }
114
115 impl wire::CustomMessageReader for IgnoringMessageHandler {
116         type CustomMessage = Infallible;
117         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
118                 Ok(None)
119         }
120 }
121
122 impl CustomMessageHandler for IgnoringMessageHandler {
123         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
124                 // Since we always return `None` in the read the handle method should never be called.
125                 unreachable!();
126         }
127
128         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
129 }
130
131 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
132 /// You can provide one of these as the route_handler in a MessageHandler.
133 pub struct ErroringMessageHandler {
134         message_queue: Mutex<Vec<MessageSendEvent>>
135 }
136 impl ErroringMessageHandler {
137         /// Constructs a new ErroringMessageHandler
138         pub fn new() -> Self {
139                 Self { message_queue: Mutex::new(Vec::new()) }
140         }
141         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
142                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
143                         action: msgs::ErrorAction::SendErrorMessage {
144                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
145                         },
146                         node_id: node_id.clone(),
147                 });
148         }
149 }
150 impl MessageSendEventsProvider for ErroringMessageHandler {
151         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
152                 let mut res = Vec::new();
153                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
154                 res
155         }
156 }
157 impl ChannelMessageHandler for ErroringMessageHandler {
158         // Any messages which are related to a specific channel generate an error message to let the
159         // peer know we don't care about channels.
160         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
161                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
162         }
163         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
164                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
165         }
166         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
167                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
168         }
169         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
170                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
171         }
172         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
173                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
174         }
175         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
176                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
177         }
178         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
180         }
181         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
183         }
184         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
186         }
187         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
191                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
192         }
193         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
194                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
195         }
196         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
197                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
198         }
199         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
200                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
201         }
202         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
203                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
204         }
205         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
206                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
207         }
208         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
209         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
210         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
211         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
212         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
213         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
214         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
215                 // Use our known channel feature set as peers may otherwise not be willing to talk to us at
216                 // all.
217                 InitFeatures::known_channel_features()
218         }
219 }
220 impl Deref for ErroringMessageHandler {
221         type Target = ErroringMessageHandler;
222         fn deref(&self) -> &Self { self }
223 }
224
225 /// Provides references to trait impls which handle different types of messages.
226 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
227                 CM::Target: ChannelMessageHandler,
228                 RM::Target: RoutingMessageHandler,
229                 OM::Target: OnionMessageHandler,
230 {
231         /// A message handler which handles messages specific to channels. Usually this is just a
232         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
233         ///
234         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
235         pub chan_handler: CM,
236         /// A message handler which handles messages updating our knowledge of the network channel
237         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
238         ///
239         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
240         pub route_handler: RM,
241
242         /// A message handler which handles onion messages. For now, this can only be an
243         /// [`IgnoringMessageHandler`].
244         pub onion_message_handler: OM,
245 }
246
247 /// Provides an object which can be used to send data to and which uniquely identifies a connection
248 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
249 /// implement Hash to meet the PeerManager API.
250 ///
251 /// For efficiency, Clone should be relatively cheap for this type.
252 ///
253 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
254 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
255 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
256 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
257 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
258 /// to simply use another value which is guaranteed to be globally unique instead.
259 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
260         /// Attempts to send some data from the given slice to the peer.
261         ///
262         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
263         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
264         /// called and further write attempts may occur until that time.
265         ///
266         /// If the returned size is smaller than `data.len()`, a
267         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
268         /// written. Additionally, until a `send_data` event completes fully, no further
269         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
270         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
271         /// until then.
272         ///
273         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
274         /// (indicating that read events should be paused to prevent DoS in the send buffer),
275         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
276         /// `resume_read` of false carries no meaning, and should not cause any action.
277         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
278         /// Disconnect the socket pointed to by this SocketDescriptor.
279         ///
280         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
281         /// call (doing so is a noop).
282         fn disconnect_socket(&mut self);
283 }
284
285 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
286 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
287 /// descriptor.
288 #[derive(Clone)]
289 pub struct PeerHandleError {
290         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
291         /// because we required features that our peer was missing, or vice versa).
292         ///
293         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
294         /// any channels with this peer or check for new versions of LDK.
295         ///
296         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
297         pub no_connection_possible: bool,
298 }
299 impl fmt::Debug for PeerHandleError {
300         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
301                 formatter.write_str("Peer Sent Invalid Data")
302         }
303 }
304 impl fmt::Display for PeerHandleError {
305         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
306                 formatter.write_str("Peer Sent Invalid Data")
307         }
308 }
309
310 #[cfg(feature = "std")]
311 impl error::Error for PeerHandleError {
312         fn description(&self) -> &str {
313                 "Peer Sent Invalid Data"
314         }
315 }
316
317 enum InitSyncTracker{
318         NoSyncRequested,
319         ChannelsSyncing(u64),
320         NodesSyncing(PublicKey),
321 }
322
323 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
324 /// forwarding gossip messages to peers altogether.
325 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
326
327 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
328 /// we have fewer than this many messages in the outbound buffer again.
329 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
330 /// refilled as we send bytes.
331 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
332 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
333 /// the peer.
334 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
335
336 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
337 /// the socket receive buffer before receiving the ping.
338 ///
339 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
340 /// including any network delays, outbound traffic, or the same for messages from other peers.
341 ///
342 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
343 /// per connected peer to respond to a ping, as long as they send us at least one message during
344 /// each tick, ensuring we aren't actually just disconnected.
345 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
346 /// peer.
347 ///
348 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
349 /// two connected peers, assuming most LDK-running systems have at least two cores.
350 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
351
352 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
353 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
354 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
355 /// process before the next ping.
356 ///
357 /// Note that we continue responding to other messages even after we've sent this many messages, so
358 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
359 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
360 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
361
362 struct Peer {
363         channel_encryptor: PeerChannelEncryptor,
364         their_node_id: Option<PublicKey>,
365         their_features: Option<InitFeatures>,
366         their_net_address: Option<NetAddress>,
367
368         pending_outbound_buffer: LinkedList<Vec<u8>>,
369         pending_outbound_buffer_first_msg_offset: usize,
370         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
371         /// prioritize channel messages over them.
372         ///
373         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
374         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
375         awaiting_write_event: bool,
376
377         pending_read_buffer: Vec<u8>,
378         pending_read_buffer_pos: usize,
379         pending_read_is_header: bool,
380
381         sync_status: InitSyncTracker,
382
383         msgs_sent_since_pong: usize,
384         awaiting_pong_timer_tick_intervals: i8,
385         received_message_since_timer_tick: bool,
386         sent_gossip_timestamp_filter: bool,
387 }
388
389 impl Peer {
390         /// Returns true if the channel announcements/updates for the given channel should be
391         /// forwarded to this peer.
392         /// If we are sending our routing table to this peer and we have not yet sent channel
393         /// announcements/updates for the given channel_id then we will send it when we get to that
394         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
395         /// sent the old versions, we should send the update, and so return true here.
396         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
397                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
398                         !self.sent_gossip_timestamp_filter {
399                                 return false;
400                         }
401                 match self.sync_status {
402                         InitSyncTracker::NoSyncRequested => true,
403                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
404                         InitSyncTracker::NodesSyncing(_) => true,
405                 }
406         }
407
408         /// Similar to the above, but for node announcements indexed by node_id.
409         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
410                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
411                         !self.sent_gossip_timestamp_filter {
412                                 return false;
413                         }
414                 match self.sync_status {
415                         InitSyncTracker::NoSyncRequested => true,
416                         InitSyncTracker::ChannelsSyncing(_) => false,
417                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
418                 }
419         }
420
421         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
422         /// buffer still has space and we don't need to pause reads to get some writes out.
423         fn should_read(&self) -> bool {
424                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
425         }
426
427         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
428         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
429         fn should_buffer_gossip_backfill(&self) -> bool {
430                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
431                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
432         }
433
434         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
435         /// every time the peer's buffer may have been drained.
436         fn should_buffer_onion_message(&self) -> bool {
437                 self.pending_outbound_buffer.is_empty()
438                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
439         }
440
441         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
442         /// buffer. This is checked every time the peer's buffer may have been drained.
443         fn should_buffer_gossip_broadcast(&self) -> bool {
444                 self.pending_outbound_buffer.is_empty()
445                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
446         }
447
448         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
449         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
450                 let total_outbound_buffered =
451                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
452
453                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
454                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
455         }
456 }
457
458 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
459 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
460 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
461 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
462 /// issues such as overly long function definitions.
463 ///
464 /// (C-not exported) as Arcs don't make sense in bindings
465 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, IgnoringMessageHandler, Arc<L>, Arc<IgnoringMessageHandler>>;
466
467 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
468 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
469 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
470 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
471 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
472 /// helps with issues such as long function definitions.
473 ///
474 /// (C-not exported) as Arcs don't make sense in bindings
475 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, IgnoringMessageHandler, &'f L, IgnoringMessageHandler>;
476
477 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
478 /// socket events into messages which it passes on to its [`MessageHandler`].
479 ///
480 /// Locks are taken internally, so you must never assume that reentrancy from a
481 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
482 ///
483 /// Calls to [`read_event`] will decode relevant messages and pass them to the
484 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
485 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
486 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
487 /// calls only after previous ones have returned.
488 ///
489 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
490 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
491 /// essentially you should default to using a SimpleRefPeerManager, and use a
492 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
493 /// you're using lightning-net-tokio.
494 ///
495 /// [`read_event`]: PeerManager::read_event
496 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> where
497                 CM::Target: ChannelMessageHandler,
498                 RM::Target: RoutingMessageHandler,
499                 OM::Target: OnionMessageHandler,
500                 L::Target: Logger,
501                 CMH::Target: CustomMessageHandler {
502         message_handler: MessageHandler<CM, RM, OM>,
503         /// Connection state for each connected peer - we have an outer read-write lock which is taken
504         /// as read while we're doing processing for a peer and taken write when a peer is being added
505         /// or removed.
506         ///
507         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
508         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
509         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
510         /// the `MessageHandler`s for a given peer is already guaranteed.
511         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
512         /// Only add to this set when noise completes.
513         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
514         /// lock held. Entries may be added with only the `peers` read lock held (though the
515         /// `Descriptor` value must already exist in `peers`).
516         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
517         /// We can only have one thread processing events at once, but we don't usually need the full
518         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
519         /// `process_events`.
520         event_processing_lock: Mutex<()>,
521         /// Because event processing is global and always does all available work before returning,
522         /// there is no reason for us to have many event processors waiting on the lock at once.
523         /// Instead, we limit the total blocked event processors to always exactly one by setting this
524         /// when an event process call is waiting.
525         blocked_event_processors: AtomicBool,
526
527         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
528         /// value increases strictly since we don't assume access to a time source.
529         last_node_announcement_serial: AtomicU64,
530
531         our_node_secret: SecretKey,
532         ephemeral_key_midstate: Sha256Engine,
533         custom_message_handler: CMH,
534
535         peer_counter: AtomicCounter,
536
537         logger: L,
538         secp_ctx: Secp256k1<secp256k1::SignOnly>
539 }
540
541 enum MessageHandlingError {
542         PeerHandleError(PeerHandleError),
543         LightningError(LightningError),
544 }
545
546 impl From<PeerHandleError> for MessageHandlingError {
547         fn from(error: PeerHandleError) -> Self {
548                 MessageHandlingError::PeerHandleError(error)
549         }
550 }
551
552 impl From<LightningError> for MessageHandlingError {
553         fn from(error: LightningError) -> Self {
554                 MessageHandlingError::LightningError(error)
555         }
556 }
557
558 macro_rules! encode_msg {
559         ($msg: expr) => {{
560                 let mut buffer = VecWriter(Vec::new());
561                 wire::write($msg, &mut buffer).unwrap();
562                 buffer.0
563         }}
564 }
565
566 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler> where
567                 CM::Target: ChannelMessageHandler,
568                 OM::Target: OnionMessageHandler,
569                 L::Target: Logger {
570         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
571         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
572         /// ignored.
573         ///
574         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
575         /// cryptographically secure random bytes.
576         ///
577         /// `current_time` is used as an always-increasing counter that survives across restarts and is
578         /// incremented irregularly internally. In general it is best to simply use the current UNIX
579         /// timestamp, however if it is not available a persistent counter that increases once per
580         /// minute should suffice.
581         ///
582         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
583         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, our_node_secret: SecretKey, current_time: u64, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
584                 Self::new(MessageHandler {
585                         chan_handler: channel_message_handler,
586                         route_handler: IgnoringMessageHandler{},
587                         onion_message_handler,
588                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
589         }
590 }
591
592 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
593                 RM::Target: RoutingMessageHandler,
594                 L::Target: Logger {
595         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
596         /// handler or onion message handler is used and onion and channel messages will be ignored (or
597         /// generate error messages). Note that some other lightning implementations time-out connections
598         /// after some time if no channel is built with the peer.
599         ///
600         /// `current_time` is used as an always-increasing counter that survives across restarts and is
601         /// incremented irregularly internally. In general it is best to simply use the current UNIX
602         /// timestamp, however if it is not available a persistent counter that increases once per
603         /// minute should suffice.
604         ///
605         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
606         /// cryptographically secure random bytes.
607         ///
608         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
609         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, current_time: u64, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
610                 Self::new(MessageHandler {
611                         chan_handler: ErroringMessageHandler::new(),
612                         route_handler: routing_message_handler,
613                         onion_message_handler: IgnoringMessageHandler{},
614                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
615         }
616 }
617
618 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
619 /// This works around `format!()` taking a reference to each argument, preventing
620 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
621 /// due to lifetime errors.
622 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
623 impl core::fmt::Display for OptionalFromDebugger<'_> {
624         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
625                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
626         }
627 }
628
629 /// A function used to filter out local or private addresses
630 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
631 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
632 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
633         match ip_address{
634                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
635                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
636                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
637                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
638                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
639                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
640                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
641                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
642                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
643                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
644                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
645                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
646                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
647                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
648                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
649                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
650                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
651                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
652                 // For remaining addresses
653                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
654                 Some(..) => ip_address,
655                 None => None,
656         }
657 }
658
659 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH> where
660                 CM::Target: ChannelMessageHandler,
661                 RM::Target: RoutingMessageHandler,
662                 OM::Target: OnionMessageHandler,
663                 L::Target: Logger,
664                 CMH::Target: CustomMessageHandler {
665         /// Constructs a new PeerManager with the given message handlers and node_id secret key
666         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
667         /// cryptographically secure random bytes.
668         ///
669         /// `current_time` is used as an always-increasing counter that survives across restarts and is
670         /// incremented irregularly internally. In general it is best to simply use the current UNIX
671         /// timestamp, however if it is not available a persistent counter that increases once per
672         /// minute should suffice.
673         pub fn new(message_handler: MessageHandler<CM, RM, OM>, our_node_secret: SecretKey, current_time: u64, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
674                 let mut ephemeral_key_midstate = Sha256::engine();
675                 ephemeral_key_midstate.input(ephemeral_random_data);
676
677                 let mut secp_ctx = Secp256k1::signing_only();
678                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
679                 secp_ctx.seeded_randomize(&ephemeral_hash);
680
681                 PeerManager {
682                         message_handler,
683                         peers: FairRwLock::new(HashMap::new()),
684                         node_id_to_descriptor: Mutex::new(HashMap::new()),
685                         event_processing_lock: Mutex::new(()),
686                         blocked_event_processors: AtomicBool::new(false),
687                         our_node_secret,
688                         ephemeral_key_midstate,
689                         peer_counter: AtomicCounter::new(),
690                         last_node_announcement_serial: AtomicU64::new(current_time),
691                         logger,
692                         custom_message_handler,
693                         secp_ctx,
694                 }
695         }
696
697         /// Get the list of node ids for peers which have completed the initial handshake.
698         ///
699         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
700         /// new_outbound_connection, however entries will only appear once the initial handshake has
701         /// completed and we are sure the remote peer has the private key for the given node_id.
702         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
703                 let peers = self.peers.read().unwrap();
704                 peers.values().filter_map(|peer_mutex| {
705                         let p = peer_mutex.lock().unwrap();
706                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
707                                 return None;
708                         }
709                         p.their_node_id
710                 }).collect()
711         }
712
713         fn get_ephemeral_key(&self) -> SecretKey {
714                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
715                 let counter = self.peer_counter.get_increment();
716                 ephemeral_hash.input(&counter.to_le_bytes());
717                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
718         }
719
720         /// Indicates a new outbound connection has been established to a node with the given node_id
721         /// and an optional remote network address.
722         ///
723         /// The remote network address adds the option to report a remote IP address back to a connecting
724         /// peer using the init message.
725         /// The user should pass the remote network address of the host they are connected to.
726         ///
727         /// If an `Err` is returned here you must disconnect the connection immediately.
728         ///
729         /// Returns a small number of bytes to send to the remote node (currently always 50).
730         ///
731         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
732         /// [`socket_disconnected()`].
733         ///
734         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
735         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
736                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
737                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
738                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
739
740                 let mut peers = self.peers.write().unwrap();
741                 if peers.insert(descriptor, Mutex::new(Peer {
742                         channel_encryptor: peer_encryptor,
743                         their_node_id: None,
744                         their_features: None,
745                         their_net_address: remote_network_address,
746
747                         pending_outbound_buffer: LinkedList::new(),
748                         pending_outbound_buffer_first_msg_offset: 0,
749                         gossip_broadcast_buffer: LinkedList::new(),
750                         awaiting_write_event: false,
751
752                         pending_read_buffer,
753                         pending_read_buffer_pos: 0,
754                         pending_read_is_header: false,
755
756                         sync_status: InitSyncTracker::NoSyncRequested,
757
758                         msgs_sent_since_pong: 0,
759                         awaiting_pong_timer_tick_intervals: 0,
760                         received_message_since_timer_tick: false,
761                         sent_gossip_timestamp_filter: false,
762                 })).is_some() {
763                         panic!("PeerManager driver duplicated descriptors!");
764                 };
765                 Ok(res)
766         }
767
768         /// Indicates a new inbound connection has been established to a node with an optional remote
769         /// network address.
770         ///
771         /// The remote network address adds the option to report a remote IP address back to a connecting
772         /// peer using the init message.
773         /// The user should pass the remote network address of the host they are connected to.
774         ///
775         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
776         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
777         /// the connection immediately.
778         ///
779         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
780         /// [`socket_disconnected()`].
781         ///
782         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
783         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
784                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
785                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
786
787                 let mut peers = self.peers.write().unwrap();
788                 if peers.insert(descriptor, Mutex::new(Peer {
789                         channel_encryptor: peer_encryptor,
790                         their_node_id: None,
791                         their_features: None,
792                         their_net_address: remote_network_address,
793
794                         pending_outbound_buffer: LinkedList::new(),
795                         pending_outbound_buffer_first_msg_offset: 0,
796                         gossip_broadcast_buffer: LinkedList::new(),
797                         awaiting_write_event: false,
798
799                         pending_read_buffer,
800                         pending_read_buffer_pos: 0,
801                         pending_read_is_header: false,
802
803                         sync_status: InitSyncTracker::NoSyncRequested,
804
805                         msgs_sent_since_pong: 0,
806                         awaiting_pong_timer_tick_intervals: 0,
807                         received_message_since_timer_tick: false,
808                         sent_gossip_timestamp_filter: false,
809                 })).is_some() {
810                         panic!("PeerManager driver duplicated descriptors!");
811                 };
812                 Ok(())
813         }
814
815         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
816                 while !peer.awaiting_write_event {
817                         if peer.should_buffer_onion_message() {
818                                 if let Some(peer_node_id) = peer.their_node_id {
819                                         if let Some(next_onion_message) =
820                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
821                                                         self.enqueue_message(peer, &next_onion_message);
822                                         }
823                                 }
824                         }
825                         if peer.should_buffer_gossip_broadcast() {
826                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
827                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
828                                 }
829                         }
830                         if peer.should_buffer_gossip_backfill() {
831                                 match peer.sync_status {
832                                         InitSyncTracker::NoSyncRequested => {},
833                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
834                                                 if let Some((announce, update_a_option, update_b_option)) =
835                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
836                                                 {
837                                                         self.enqueue_message(peer, &announce);
838                                                         if let Some(update_a) = update_a_option {
839                                                                 self.enqueue_message(peer, &update_a);
840                                                         }
841                                                         if let Some(update_b) = update_b_option {
842                                                                 self.enqueue_message(peer, &update_b);
843                                                         }
844                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
845                                                 } else {
846                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
847                                                 }
848                                         },
849                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
850                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
851                                                         self.enqueue_message(peer, &msg);
852                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
853                                                 } else {
854                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
855                                                 }
856                                         },
857                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
858                                         InitSyncTracker::NodesSyncing(key) => {
859                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
860                                                         self.enqueue_message(peer, &msg);
861                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
862                                                 } else {
863                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
864                                                 }
865                                         },
866                                 }
867                         }
868                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
869                                 self.maybe_send_extra_ping(peer);
870                         }
871
872                         let next_buff = match peer.pending_outbound_buffer.front() {
873                                 None => return,
874                                 Some(buff) => buff,
875                         };
876
877                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
878                         let data_sent = descriptor.send_data(pending, peer.should_read());
879                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
880                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
881                                 peer.pending_outbound_buffer_first_msg_offset = 0;
882                                 peer.pending_outbound_buffer.pop_front();
883                         } else {
884                                 peer.awaiting_write_event = true;
885                         }
886                 }
887         }
888
889         /// Indicates that there is room to write data to the given socket descriptor.
890         ///
891         /// May return an Err to indicate that the connection should be closed.
892         ///
893         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
894         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
895         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
896         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
897         /// sufficient!
898         ///
899         /// [`send_data`]: SocketDescriptor::send_data
900         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
901         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
902                 let peers = self.peers.read().unwrap();
903                 match peers.get(descriptor) {
904                         None => {
905                                 // This is most likely a simple race condition where the user found that the socket
906                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
907                                 // this method. Return an error to make sure we get disconnected.
908                                 return Err(PeerHandleError { no_connection_possible: false });
909                         },
910                         Some(peer_mutex) => {
911                                 let mut peer = peer_mutex.lock().unwrap();
912                                 peer.awaiting_write_event = false;
913                                 self.do_attempt_write_data(descriptor, &mut peer);
914                         }
915                 };
916                 Ok(())
917         }
918
919         /// Indicates that data was read from the given socket descriptor.
920         ///
921         /// May return an Err to indicate that the connection should be closed.
922         ///
923         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
924         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
925         /// [`send_data`] calls to handle responses.
926         ///
927         /// If `Ok(true)` is returned, further read_events should not be triggered until a
928         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
929         /// send buffer).
930         ///
931         /// [`send_data`]: SocketDescriptor::send_data
932         /// [`process_events`]: PeerManager::process_events
933         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
934                 match self.do_read_event(peer_descriptor, data) {
935                         Ok(res) => Ok(res),
936                         Err(e) => {
937                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
938                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
939                                 Err(e)
940                         }
941                 }
942         }
943
944         /// Append a message to a peer's pending outbound/write buffer
945         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
946                 if is_gossip_msg(message.type_id()) {
947                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
948                 } else {
949                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
950                 }
951                 peer.msgs_sent_since_pong += 1;
952                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
953         }
954
955         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
956         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
957                 peer.msgs_sent_since_pong += 1;
958                 peer.gossip_broadcast_buffer.push_back(encoded_message);
959         }
960
961         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
962                 let mut pause_read = false;
963                 let peers = self.peers.read().unwrap();
964                 let mut msgs_to_forward = Vec::new();
965                 let mut peer_node_id = None;
966                 match peers.get(peer_descriptor) {
967                         None => {
968                                 // This is most likely a simple race condition where the user read some bytes
969                                 // from the socket, then we told the user to `disconnect_socket()`, then they
970                                 // called this method. Return an error to make sure we get disconnected.
971                                 return Err(PeerHandleError { no_connection_possible: false });
972                         },
973                         Some(peer_mutex) => {
974                                 let mut read_pos = 0;
975                                 while read_pos < data.len() {
976                                         macro_rules! try_potential_handleerror {
977                                                 ($peer: expr, $thing: expr) => {
978                                                         match $thing {
979                                                                 Ok(x) => x,
980                                                                 Err(e) => {
981                                                                         match e.action {
982                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
983                                                                                         //TODO: Try to push msg
984                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
985                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
986                                                                                 },
987                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
988                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
989                                                                                         continue
990                                                                                 },
991                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
992                                                                                 msgs::ErrorAction::IgnoreError => {
993                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
994                                                                                         continue;
995                                                                                 },
996                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
997                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
998                                                                                         self.enqueue_message($peer, &msg);
999                                                                                         continue;
1000                                                                                 },
1001                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1002                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1003                                                                                         self.enqueue_message($peer, &msg);
1004                                                                                         continue;
1005                                                                                 },
1006                                                                         }
1007                                                                 }
1008                                                         }
1009                                                 }
1010                                         }
1011
1012                                         let mut peer_lock = peer_mutex.lock().unwrap();
1013                                         let peer = &mut *peer_lock;
1014                                         let mut msg_to_handle = None;
1015                                         if peer_node_id.is_none() {
1016                                                 peer_node_id = peer.their_node_id.clone();
1017                                         }
1018
1019                                         assert!(peer.pending_read_buffer.len() > 0);
1020                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1021
1022                                         {
1023                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1024                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1025                                                 read_pos += data_to_copy;
1026                                                 peer.pending_read_buffer_pos += data_to_copy;
1027                                         }
1028
1029                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1030                                                 peer.pending_read_buffer_pos = 0;
1031
1032                                                 macro_rules! insert_node_id {
1033                                                         () => {
1034                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
1035                                                                         hash_map::Entry::Occupied(_) => {
1036                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
1037                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1038                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1039                                                                         },
1040                                                                         hash_map::Entry::Vacant(entry) => {
1041                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
1042                                                                                 entry.insert(peer_descriptor.clone())
1043                                                                         },
1044                                                                 };
1045                                                         }
1046                                                 }
1047
1048                                                 let next_step = peer.channel_encryptor.get_noise_step();
1049                                                 match next_step {
1050                                                         NextNoiseStep::ActOne => {
1051                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1052                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1053                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1054                                                                 peer.pending_outbound_buffer.push_back(act_two);
1055                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1056                                                         },
1057                                                         NextNoiseStep::ActTwo => {
1058                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1059                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1060                                                                                 &self.our_node_secret, &self.secp_ctx));
1061                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1062                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1063                                                                 peer.pending_read_is_header = true;
1064
1065                                                                 peer.their_node_id = Some(their_node_id);
1066                                                                 insert_node_id!();
1067                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1068                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1069                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1070                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1071                                                                 self.enqueue_message(peer, &resp);
1072                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1073                                                         },
1074                                                         NextNoiseStep::ActThree => {
1075                                                                 let their_node_id = try_potential_handleerror!(peer,
1076                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1077                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1078                                                                 peer.pending_read_is_header = true;
1079                                                                 peer.their_node_id = Some(their_node_id);
1080                                                                 insert_node_id!();
1081                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1082                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1083                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1084                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1085                                                                 self.enqueue_message(peer, &resp);
1086                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1087                                                         },
1088                                                         NextNoiseStep::NoiseComplete => {
1089                                                                 if peer.pending_read_is_header {
1090                                                                         let msg_len = try_potential_handleerror!(peer,
1091                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1092                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1093                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1094                                                                         if msg_len < 2 { // Need at least the message type tag
1095                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1096                                                                         }
1097                                                                         peer.pending_read_is_header = false;
1098                                                                 } else {
1099                                                                         let msg_data = try_potential_handleerror!(peer,
1100                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1101                                                                         assert!(msg_data.len() >= 2);
1102
1103                                                                         // Reset read buffer
1104                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1105                                                                         peer.pending_read_buffer.resize(18, 0);
1106                                                                         peer.pending_read_is_header = true;
1107
1108                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1109                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1110                                                                         let message = match message_result {
1111                                                                                 Ok(x) => x,
1112                                                                                 Err(e) => {
1113                                                                                         match e {
1114                                                                                                 // Note that to avoid recursion we never call
1115                                                                                                 // `do_attempt_write_data` from here, causing
1116                                                                                                 // the messages enqueued here to not actually
1117                                                                                                 // be sent before the peer is disconnected.
1118                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1119                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1120                                                                                                         continue;
1121                                                                                                 }
1122                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1123                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1124                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1125                                                                                                         continue;
1126                                                                                                 }
1127                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1128                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1129                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1130                                                                                                                 channel_id: [0; 32],
1131                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1132                                                                                                         });
1133                                                                                                         continue;
1134                                                                                                 }
1135                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1136                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1137                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1138                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1139                                                                                                 }
1140                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1141                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1142                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1143                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1144                                                                                                 }
1145                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1146                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1147                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1148                                                                                                 }
1149                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1150                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1151                                                                                         }
1152                                                                                 }
1153                                                                         };
1154
1155                                                                         msg_to_handle = Some(message);
1156                                                                 }
1157                                                         }
1158                                                 }
1159                                         }
1160                                         pause_read = !peer.should_read();
1161
1162                                         if let Some(message) = msg_to_handle {
1163                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1164                                                         Err(handling_error) => match handling_error {
1165                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1166                                                                 MessageHandlingError::LightningError(e) => {
1167                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1168                                                                 },
1169                                                         },
1170                                                         Ok(Some(msg)) => {
1171                                                                 msgs_to_forward.push(msg);
1172                                                         },
1173                                                         Ok(None) => {},
1174                                                 }
1175                                         }
1176                                 }
1177                         }
1178                 }
1179
1180                 for msg in msgs_to_forward.drain(..) {
1181                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1182                 }
1183
1184                 Ok(pause_read)
1185         }
1186
1187         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1188         /// Returns the message back if it needs to be broadcasted to all other peers.
1189         fn handle_message(
1190                 &self,
1191                 peer_mutex: &Mutex<Peer>,
1192                 mut peer_lock: MutexGuard<Peer>,
1193                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1194         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1195                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1196                 peer_lock.received_message_since_timer_tick = true;
1197
1198                 // Need an Init as first message
1199                 if let wire::Message::Init(msg) = message {
1200                         if msg.features.requires_unknown_bits() {
1201                                 log_debug!(self.logger, "Peer features required unknown version bits");
1202                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1203                         }
1204                         if peer_lock.their_features.is_some() {
1205                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1206                         }
1207
1208                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1209
1210                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1211                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1212                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1213                         }
1214
1215                         if !msg.features.supports_static_remote_key() {
1216                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1217                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1218                         }
1219
1220                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1221                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1222                         self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg);
1223
1224                         peer_lock.their_features = Some(msg.features);
1225                         return Ok(None);
1226                 } else if peer_lock.their_features.is_none() {
1227                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1228                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1229                 }
1230
1231                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1232                         // When supporting gossip messages, start inital gossip sync only after we receive
1233                         // a GossipTimestampFilter
1234                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1235                                 !peer_lock.sent_gossip_timestamp_filter {
1236                                 peer_lock.sent_gossip_timestamp_filter = true;
1237                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1238                         }
1239                         return Ok(None);
1240                 }
1241
1242                 let their_features = peer_lock.their_features.clone();
1243                 mem::drop(peer_lock);
1244
1245                 if is_gossip_msg(message.type_id()) {
1246                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1247                 } else {
1248                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1249                 }
1250
1251                 let mut should_forward = None;
1252
1253                 match message {
1254                         // Setup and Control messages:
1255                         wire::Message::Init(_) => {
1256                                 // Handled above
1257                         },
1258                         wire::Message::GossipTimestampFilter(_) => {
1259                                 // Handled above
1260                         },
1261                         wire::Message::Error(msg) => {
1262                                 let mut data_is_printable = true;
1263                                 for b in msg.data.bytes() {
1264                                         if b < 32 || b > 126 {
1265                                                 data_is_printable = false;
1266                                                 break;
1267                                         }
1268                                 }
1269
1270                                 if data_is_printable {
1271                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1272                                 } else {
1273                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1274                                 }
1275                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1276                                 if msg.channel_id == [0; 32] {
1277                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1278                                 }
1279                         },
1280                         wire::Message::Warning(msg) => {
1281                                 let mut data_is_printable = true;
1282                                 for b in msg.data.bytes() {
1283                                         if b < 32 || b > 126 {
1284                                                 data_is_printable = false;
1285                                                 break;
1286                                         }
1287                                 }
1288
1289                                 if data_is_printable {
1290                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1291                                 } else {
1292                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1293                                 }
1294                         },
1295
1296                         wire::Message::Ping(msg) => {
1297                                 if msg.ponglen < 65532 {
1298                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1299                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1300                                 }
1301                         },
1302                         wire::Message::Pong(_msg) => {
1303                                 let mut peer_lock = peer_mutex.lock().unwrap();
1304                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1305                                 peer_lock.msgs_sent_since_pong = 0;
1306                         },
1307
1308                         // Channel messages:
1309                         wire::Message::OpenChannel(msg) => {
1310                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1311                         },
1312                         wire::Message::AcceptChannel(msg) => {
1313                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1314                         },
1315
1316                         wire::Message::FundingCreated(msg) => {
1317                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1318                         },
1319                         wire::Message::FundingSigned(msg) => {
1320                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1321                         },
1322                         wire::Message::ChannelReady(msg) => {
1323                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1324                         },
1325
1326                         wire::Message::Shutdown(msg) => {
1327                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1328                         },
1329                         wire::Message::ClosingSigned(msg) => {
1330                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1331                         },
1332
1333                         // Commitment messages:
1334                         wire::Message::UpdateAddHTLC(msg) => {
1335                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1336                         },
1337                         wire::Message::UpdateFulfillHTLC(msg) => {
1338                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1339                         },
1340                         wire::Message::UpdateFailHTLC(msg) => {
1341                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1342                         },
1343                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1344                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1345                         },
1346
1347                         wire::Message::CommitmentSigned(msg) => {
1348                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1349                         },
1350                         wire::Message::RevokeAndACK(msg) => {
1351                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1352                         },
1353                         wire::Message::UpdateFee(msg) => {
1354                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1355                         },
1356                         wire::Message::ChannelReestablish(msg) => {
1357                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1358                         },
1359
1360                         // Routing messages:
1361                         wire::Message::AnnouncementSignatures(msg) => {
1362                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1363                         },
1364                         wire::Message::ChannelAnnouncement(msg) => {
1365                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1366                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1367                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1368                                 }
1369                         },
1370                         wire::Message::NodeAnnouncement(msg) => {
1371                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1372                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1373                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1374                                 }
1375                         },
1376                         wire::Message::ChannelUpdate(msg) => {
1377                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1378                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1379                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1380                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1381                                 }
1382                         },
1383                         wire::Message::QueryShortChannelIds(msg) => {
1384                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1385                         },
1386                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1387                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1388                         },
1389                         wire::Message::QueryChannelRange(msg) => {
1390                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1391                         },
1392                         wire::Message::ReplyChannelRange(msg) => {
1393                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1394                         },
1395
1396                         // Onion message:
1397                         wire::Message::OnionMessage(msg) => {
1398                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1399                         },
1400
1401                         // Unknown messages:
1402                         wire::Message::Unknown(type_id) if message.is_even() => {
1403                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1404                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1405                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1406                         },
1407                         wire::Message::Unknown(type_id) => {
1408                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1409                         },
1410                         wire::Message::Custom(custom) => {
1411                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1412                         },
1413                 };
1414                 Ok(should_forward)
1415         }
1416
1417         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1418                 match msg {
1419                         wire::Message::ChannelAnnouncement(ref msg) => {
1420                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1421                                 let encoded_msg = encode_msg!(msg);
1422
1423                                 for (_, peer_mutex) in peers.iter() {
1424                                         let mut peer = peer_mutex.lock().unwrap();
1425                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1426                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1427                                                 continue
1428                                         }
1429                                         if peer.buffer_full_drop_gossip_broadcast() {
1430                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1431                                                 continue;
1432                                         }
1433                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1434                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1435                                                 continue;
1436                                         }
1437                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1438                                                 continue;
1439                                         }
1440                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1441                                 }
1442                         },
1443                         wire::Message::NodeAnnouncement(ref msg) => {
1444                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1445                                 let encoded_msg = encode_msg!(msg);
1446
1447                                 for (_, peer_mutex) in peers.iter() {
1448                                         let mut peer = peer_mutex.lock().unwrap();
1449                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1450                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1451                                                 continue
1452                                         }
1453                                         if peer.buffer_full_drop_gossip_broadcast() {
1454                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1455                                                 continue;
1456                                         }
1457                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1458                                                 continue;
1459                                         }
1460                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1461                                                 continue;
1462                                         }
1463                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1464                                 }
1465                         },
1466                         wire::Message::ChannelUpdate(ref msg) => {
1467                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1468                                 let encoded_msg = encode_msg!(msg);
1469
1470                                 for (_, peer_mutex) in peers.iter() {
1471                                         let mut peer = peer_mutex.lock().unwrap();
1472                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1473                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1474                                                 continue
1475                                         }
1476                                         if peer.buffer_full_drop_gossip_broadcast() {
1477                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1478                                                 continue;
1479                                         }
1480                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1481                                                 continue;
1482                                         }
1483                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1484                                 }
1485                         },
1486                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1487                 }
1488         }
1489
1490         /// Checks for any events generated by our handlers and processes them. Includes sending most
1491         /// response messages as well as messages generated by calls to handler functions directly (eg
1492         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1493         ///
1494         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1495         /// issues!
1496         ///
1497         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1498         /// or one of the other clients provided in our language bindings.
1499         ///
1500         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1501         /// without doing any work. All available events that need handling will be handled before the
1502         /// other calls return.
1503         ///
1504         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1505         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1506         /// [`send_data`]: SocketDescriptor::send_data
1507         pub fn process_events(&self) {
1508                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1509                 if _single_processor_lock.is_err() {
1510                         // While we could wake the older sleeper here with a CV and make more even waiting
1511                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1512                         // count" goal.
1513                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1514                                 Err(val) => {
1515                                         debug_assert!(val, "compare_exchange failed spuriously?");
1516                                         return;
1517                                 },
1518                                 Ok(val) => {
1519                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1520                                         // We're the only waiter, as the running process_events may have emptied the
1521                                         // pending events "long" ago and there are new events for us to process, wait until
1522                                         // its done and process any leftover events before returning.
1523                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1524                                         self.blocked_event_processors.store(false, Ordering::Release);
1525                                 }
1526                         }
1527                 }
1528
1529                 let mut peers_to_disconnect = HashMap::new();
1530                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1531                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1532
1533                 {
1534                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1535                         // buffer by doing things like announcing channels on another node. We should be willing to
1536                         // drop optional-ish messages when send buffers get full!
1537
1538                         let peers_lock = self.peers.read().unwrap();
1539                         let peers = &*peers_lock;
1540                         macro_rules! get_peer_for_forwarding {
1541                                 ($node_id: expr) => {
1542                                         {
1543                                                 if peers_to_disconnect.get($node_id).is_some() {
1544                                                         // If we've "disconnected" this peer, do not send to it.
1545                                                         continue;
1546                                                 }
1547                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1548                                                 match descriptor_opt {
1549                                                         Some(descriptor) => match peers.get(&descriptor) {
1550                                                                 Some(peer_mutex) => {
1551                                                                         let peer_lock = peer_mutex.lock().unwrap();
1552                                                                         if peer_lock.their_features.is_none() {
1553                                                                                 continue;
1554                                                                         }
1555                                                                         peer_lock
1556                                                                 },
1557                                                                 None => {
1558                                                                         debug_assert!(false, "Inconsistent peers set state!");
1559                                                                         continue;
1560                                                                 }
1561                                                         },
1562                                                         None => {
1563                                                                 continue;
1564                                                         },
1565                                                 }
1566                                         }
1567                                 }
1568                         }
1569                         for event in events_generated.drain(..) {
1570                                 match event {
1571                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1572                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1573                                                                 log_pubkey!(node_id),
1574                                                                 log_bytes!(msg.temporary_channel_id));
1575                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1576                                         },
1577                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1578                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1579                                                                 log_pubkey!(node_id),
1580                                                                 log_bytes!(msg.temporary_channel_id));
1581                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1582                                         },
1583                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1584                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1585                                                                 log_pubkey!(node_id),
1586                                                                 log_bytes!(msg.temporary_channel_id),
1587                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1588                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1589                                                 // indicating to the wallet that they should just throw away this funding transaction
1590                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1591                                         },
1592                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1593                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1594                                                                 log_pubkey!(node_id),
1595                                                                 log_bytes!(msg.channel_id));
1596                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1597                                         },
1598                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1599                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1600                                                                 log_pubkey!(node_id),
1601                                                                 log_bytes!(msg.channel_id));
1602                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1603                                         },
1604                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1605                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1606                                                                 log_pubkey!(node_id),
1607                                                                 log_bytes!(msg.channel_id));
1608                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1609                                         },
1610                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1611                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1612                                                                 log_pubkey!(node_id),
1613                                                                 update_add_htlcs.len(),
1614                                                                 update_fulfill_htlcs.len(),
1615                                                                 update_fail_htlcs.len(),
1616                                                                 log_bytes!(commitment_signed.channel_id));
1617                                                 let mut peer = get_peer_for_forwarding!(node_id);
1618                                                 for msg in update_add_htlcs {
1619                                                         self.enqueue_message(&mut *peer, msg);
1620                                                 }
1621                                                 for msg in update_fulfill_htlcs {
1622                                                         self.enqueue_message(&mut *peer, msg);
1623                                                 }
1624                                                 for msg in update_fail_htlcs {
1625                                                         self.enqueue_message(&mut *peer, msg);
1626                                                 }
1627                                                 for msg in update_fail_malformed_htlcs {
1628                                                         self.enqueue_message(&mut *peer, msg);
1629                                                 }
1630                                                 if let &Some(ref msg) = update_fee {
1631                                                         self.enqueue_message(&mut *peer, msg);
1632                                                 }
1633                                                 self.enqueue_message(&mut *peer, commitment_signed);
1634                                         },
1635                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1636                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1637                                                                 log_pubkey!(node_id),
1638                                                                 log_bytes!(msg.channel_id));
1639                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1640                                         },
1641                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1642                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1643                                                                 log_pubkey!(node_id),
1644                                                                 log_bytes!(msg.channel_id));
1645                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1646                                         },
1647                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1648                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1649                                                                 log_pubkey!(node_id),
1650                                                                 log_bytes!(msg.channel_id));
1651                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1652                                         },
1653                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1654                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1655                                                                 log_pubkey!(node_id),
1656                                                                 log_bytes!(msg.channel_id));
1657                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1658                                         },
1659                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1660                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1661                                                                 log_pubkey!(node_id),
1662                                                                 msg.contents.short_channel_id);
1663                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1664                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1665                                         },
1666                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1667                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1668                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1669                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1670                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1671                                                         _ => {},
1672                                                 }
1673                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1674                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1675                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1676                                                         _ => {},
1677                                                 }
1678                                         },
1679                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1680                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1681                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1682                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1683                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1684                                                         _ => {},
1685                                                 }
1686                                         },
1687                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1688                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1689                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1690                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1691                                         },
1692                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1693                                                 match *action {
1694                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1695                                                                 // We do not have the peers write lock, so we just store that we're
1696                                                                 // about to disconenct the peer and do it after we finish
1697                                                                 // processing most messages.
1698                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1699                                                         },
1700                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1701                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1702                                                         },
1703                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1704                                                         msgs::ErrorAction::IgnoreError => {
1705                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1706                                                         },
1707                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1708                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1709                                                                                 log_pubkey!(node_id),
1710                                                                                 msg.data);
1711                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1712                                                         },
1713                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1714                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1715                                                                                 log_pubkey!(node_id),
1716                                                                                 msg.data);
1717                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1718                                                         },
1719                                                 }
1720                                         },
1721                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1722                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1723                                         },
1724                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1725                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1726                                         }
1727                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1728                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1729                                                         log_pubkey!(node_id),
1730                                                         msg.short_channel_ids.len(),
1731                                                         msg.first_blocknum,
1732                                                         msg.number_of_blocks,
1733                                                         msg.sync_complete);
1734                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1735                                         }
1736                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1737                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1738                                         }
1739                                 }
1740                         }
1741
1742                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1743                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1744                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1745                         }
1746
1747                         for (descriptor, peer_mutex) in peers.iter() {
1748                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1749                         }
1750                 }
1751                 if !peers_to_disconnect.is_empty() {
1752                         let mut peers_lock = self.peers.write().unwrap();
1753                         let peers = &mut *peers_lock;
1754                         for (node_id, msg) in peers_to_disconnect.drain() {
1755                                 // Note that since we are holding the peers *write* lock we can
1756                                 // remove from node_id_to_descriptor immediately (as no other
1757                                 // thread can be holding the peer lock if we have the global write
1758                                 // lock).
1759
1760                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1761                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1762                                                 if let Some(msg) = msg {
1763                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1764                                                                         log_pubkey!(node_id),
1765                                                                         msg.data);
1766                                                         let mut peer = peer_mutex.lock().unwrap();
1767                                                         self.enqueue_message(&mut *peer, &msg);
1768                                                         // This isn't guaranteed to work, but if there is enough free
1769                                                         // room in the send buffer, put the error message there...
1770                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1771                                                 } else {
1772                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1773                                                 }
1774                                         }
1775                                         descriptor.disconnect_socket();
1776                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1777                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1778                                 }
1779                         }
1780                 }
1781         }
1782
1783         /// Indicates that the given socket descriptor's connection is now closed.
1784         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1785                 self.disconnect_event_internal(descriptor, false);
1786         }
1787
1788         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1789                 let mut peers = self.peers.write().unwrap();
1790                 let peer_option = peers.remove(descriptor);
1791                 match peer_option {
1792                         None => {
1793                                 // This is most likely a simple race condition where the user found that the socket
1794                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1795                                 // called this method. Either way we're disconnected, return.
1796                         },
1797                         Some(peer_lock) => {
1798                                 let peer = peer_lock.lock().unwrap();
1799                                 if let Some(node_id) = peer.their_node_id {
1800                                         log_trace!(self.logger,
1801                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1802                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1803                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1804                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1805                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1806                                 }
1807                         }
1808                 };
1809         }
1810
1811         /// Disconnect a peer given its node id.
1812         ///
1813         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1814         /// force-closing any channels we have with it.
1815         ///
1816         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1817         /// peer. Thus, be very careful about reentrancy issues.
1818         ///
1819         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1820         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1821                 let mut peers_lock = self.peers.write().unwrap();
1822                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1823                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1824                         peers_lock.remove(&descriptor);
1825                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1826                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1827                         descriptor.disconnect_socket();
1828                 }
1829         }
1830
1831         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1832         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1833         /// using regular ping/pongs.
1834         pub fn disconnect_all_peers(&self) {
1835                 let mut peers_lock = self.peers.write().unwrap();
1836                 self.node_id_to_descriptor.lock().unwrap().clear();
1837                 let peers = &mut *peers_lock;
1838                 for (mut descriptor, peer) in peers.drain() {
1839                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1840                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1841                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1842                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1843                         }
1844                         descriptor.disconnect_socket();
1845                 }
1846         }
1847
1848         /// This is called when we're blocked on sending additional gossip messages until we receive a
1849         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1850         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1851         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1852                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1853                         peer.awaiting_pong_timer_tick_intervals = -1;
1854                         let ping = msgs::Ping {
1855                                 ponglen: 0,
1856                                 byteslen: 64,
1857                         };
1858                         self.enqueue_message(peer, &ping);
1859                 }
1860         }
1861
1862         /// Send pings to each peer and disconnect those which did not respond to the last round of
1863         /// pings.
1864         ///
1865         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1866         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1867         /// time they have to respond before we disconnect them.
1868         ///
1869         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1870         /// issues!
1871         ///
1872         /// [`send_data`]: SocketDescriptor::send_data
1873         pub fn timer_tick_occurred(&self) {
1874                 let mut descriptors_needing_disconnect = Vec::new();
1875                 {
1876                         let peers_lock = self.peers.read().unwrap();
1877
1878                         for (descriptor, peer_mutex) in peers_lock.iter() {
1879                                 let mut peer = peer_mutex.lock().unwrap();
1880                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1881                                         // The peer needs to complete its handshake before we can exchange messages. We
1882                                         // give peers one timer tick to complete handshake, reusing
1883                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1884                                         // for handshake completion.
1885                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1886                                                 descriptors_needing_disconnect.push(descriptor.clone());
1887                                         } else {
1888                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1889                                         }
1890                                         continue;
1891                                 }
1892
1893                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1894                                         // Magic value set in `maybe_send_extra_ping`.
1895                                         peer.awaiting_pong_timer_tick_intervals = 1;
1896                                         peer.received_message_since_timer_tick = false;
1897                                         continue;
1898                                 }
1899
1900                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1901                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1902                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1903                                 {
1904                                         descriptors_needing_disconnect.push(descriptor.clone());
1905                                         continue;
1906                                 }
1907                                 peer.received_message_since_timer_tick = false;
1908
1909                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1910                                         peer.awaiting_pong_timer_tick_intervals += 1;
1911                                         continue;
1912                                 }
1913
1914                                 peer.awaiting_pong_timer_tick_intervals = 1;
1915                                 let ping = msgs::Ping {
1916                                         ponglen: 0,
1917                                         byteslen: 64,
1918                                 };
1919                                 self.enqueue_message(&mut *peer, &ping);
1920                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1921                         }
1922                 }
1923
1924                 if !descriptors_needing_disconnect.is_empty() {
1925                         {
1926                                 let mut peers_lock = self.peers.write().unwrap();
1927                                 for descriptor in descriptors_needing_disconnect.iter() {
1928                                         if let Some(peer) = peers_lock.remove(descriptor) {
1929                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1930                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1931                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1932                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1933                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1934                                                 }
1935                                         }
1936                                 }
1937                         }
1938
1939                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1940                                 descriptor.disconnect_socket();
1941                         }
1942                 }
1943         }
1944
1945         #[allow(dead_code)]
1946         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1947         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
1948         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1949         // message...
1950         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1951         #[deny(const_err)]
1952         #[allow(dead_code)]
1953         // ...by failing to compile if the number of addresses that would be half of a message is
1954         // smaller than 100:
1955         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
1956
1957         /// Generates a signed node_announcement from the given arguments, sending it to all connected
1958         /// peers. Note that peers will likely ignore this message unless we have at least one public
1959         /// channel which has at least six confirmations on-chain.
1960         ///
1961         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1962         /// node to humans. They carry no in-protocol meaning.
1963         ///
1964         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
1965         /// accepts incoming connections. These will be included in the node_announcement, publicly
1966         /// tying these addresses together and to this node. If you wish to preserve user privacy,
1967         /// addresses should likely contain only Tor Onion addresses.
1968         ///
1969         /// Panics if `addresses` is absurdly large (more than 100).
1970         ///
1971         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
1972         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1973                 if addresses.len() > 100 {
1974                         panic!("More than half the message size was taken up by public addresses!");
1975                 }
1976
1977                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1978                 // addresses be sorted for future compatibility.
1979                 addresses.sort_by_key(|addr| addr.get_id());
1980
1981                 let features = self.message_handler.chan_handler.provided_node_features()
1982                         .or(self.message_handler.route_handler.provided_node_features())
1983                         .or(self.message_handler.onion_message_handler.provided_node_features());
1984                 let announcement = msgs::UnsignedNodeAnnouncement {
1985                         features,
1986                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1987                         node_id: PublicKey::from_secret_key(&self.secp_ctx, &self.our_node_secret),
1988                         rgb, alias, addresses,
1989                         excess_address_data: Vec::new(),
1990                         excess_data: Vec::new(),
1991                 };
1992                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1993                 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_node_secret);
1994
1995                 let msg = msgs::NodeAnnouncement {
1996                         signature: node_announce_sig,
1997                         contents: announcement
1998                 };
1999
2000                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2001                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2002                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2003         }
2004 }
2005
2006 fn is_gossip_msg(type_id: u16) -> bool {
2007         match type_id {
2008                 msgs::ChannelAnnouncement::TYPE |
2009                 msgs::ChannelUpdate::TYPE |
2010                 msgs::NodeAnnouncement::TYPE |
2011                 msgs::QueryChannelRange::TYPE |
2012                 msgs::ReplyChannelRange::TYPE |
2013                 msgs::QueryShortChannelIds::TYPE |
2014                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2015                 _ => false
2016         }
2017 }
2018
2019 #[cfg(test)]
2020 mod tests {
2021         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2022         use ln::{msgs, wire};
2023         use ln::msgs::NetAddress;
2024         use util::events;
2025         use util::test_utils;
2026
2027         use bitcoin::secp256k1::Secp256k1;
2028         use bitcoin::secp256k1::{SecretKey, PublicKey};
2029
2030         use prelude::*;
2031         use sync::{Arc, Mutex};
2032         use core::sync::atomic::Ordering;
2033
2034         #[derive(Clone)]
2035         struct FileDescriptor {
2036                 fd: u16,
2037                 outbound_data: Arc<Mutex<Vec<u8>>>,
2038         }
2039         impl PartialEq for FileDescriptor {
2040                 fn eq(&self, other: &Self) -> bool {
2041                         self.fd == other.fd
2042                 }
2043         }
2044         impl Eq for FileDescriptor { }
2045         impl core::hash::Hash for FileDescriptor {
2046                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2047                         self.fd.hash(hasher)
2048                 }
2049         }
2050
2051         impl SocketDescriptor for FileDescriptor {
2052                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2053                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2054                         data.len()
2055                 }
2056
2057                 fn disconnect_socket(&mut self) {}
2058         }
2059
2060         struct PeerManagerCfg {
2061                 chan_handler: test_utils::TestChannelMessageHandler,
2062                 routing_handler: test_utils::TestRoutingMessageHandler,
2063                 logger: test_utils::TestLogger,
2064         }
2065
2066         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2067                 let mut cfgs = Vec::new();
2068                 for _ in 0..peer_count {
2069                         cfgs.push(
2070                                 PeerManagerCfg{
2071                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2072                                         logger: test_utils::TestLogger::new(),
2073                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2074                                 }
2075                         );
2076                 }
2077
2078                 cfgs
2079         }
2080
2081         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
2082                 let mut peers = Vec::new();
2083                 for i in 0..peer_count {
2084                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2085                         let ephemeral_bytes = [i as u8; 32];
2086                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2087                         let peer = PeerManager::new(msg_handler, node_secret, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
2088                         peers.push(peer);
2089                 }
2090
2091                 peers
2092         }
2093
2094         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
2095                 let secp_ctx = Secp256k1::new();
2096                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
2097                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2098                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2099                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2100                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2101                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2102                 peer_a.process_events();
2103
2104                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2105                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2106
2107                 peer_b.process_events();
2108                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2109                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2110
2111                 peer_a.process_events();
2112                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2113                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2114
2115                 (fd_a.clone(), fd_b.clone())
2116         }
2117
2118         #[test]
2119         fn test_disconnect_peer() {
2120                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2121                 // push a DisconnectPeer event to remove the node flagged by id
2122                 let cfgs = create_peermgr_cfgs(2);
2123                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2124                 let mut peers = create_network(2, &cfgs);
2125                 establish_connection(&peers[0], &peers[1]);
2126                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2127
2128                 let secp_ctx = Secp256k1::new();
2129                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2130
2131                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2132                         node_id: their_id,
2133                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2134                 });
2135                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2136                 peers[0].message_handler.chan_handler = &chan_handler;
2137
2138                 peers[0].process_events();
2139                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2140         }
2141
2142         #[test]
2143         fn test_send_simple_msg() {
2144                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2145                 // push a message from one peer to another.
2146                 let cfgs = create_peermgr_cfgs(2);
2147                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2148                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2149                 let mut peers = create_network(2, &cfgs);
2150                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2151                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2152
2153                 let secp_ctx = Secp256k1::new();
2154                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2155
2156                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2157                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2158                         node_id: their_id, msg: msg.clone()
2159                 });
2160                 peers[0].message_handler.chan_handler = &a_chan_handler;
2161
2162                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2163                 peers[1].message_handler.chan_handler = &b_chan_handler;
2164
2165                 peers[0].process_events();
2166
2167                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2168                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2169         }
2170
2171         #[test]
2172         fn test_disconnect_all_peer() {
2173                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2174                 // then calls disconnect_all_peers
2175                 let cfgs = create_peermgr_cfgs(2);
2176                 let peers = create_network(2, &cfgs);
2177                 establish_connection(&peers[0], &peers[1]);
2178                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2179
2180                 peers[0].disconnect_all_peers();
2181                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2182         }
2183
2184         #[test]
2185         fn test_timer_tick_occurred() {
2186                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2187                 let cfgs = create_peermgr_cfgs(2);
2188                 let peers = create_network(2, &cfgs);
2189                 establish_connection(&peers[0], &peers[1]);
2190                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2191
2192                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2193                 peers[0].timer_tick_occurred();
2194                 peers[0].process_events();
2195                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2196
2197                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2198                 peers[0].timer_tick_occurred();
2199                 peers[0].process_events();
2200                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2201         }
2202
2203         #[test]
2204         fn test_do_attempt_write_data() {
2205                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2206                 let cfgs = create_peermgr_cfgs(2);
2207                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2208                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2209                 let peers = create_network(2, &cfgs);
2210
2211                 // By calling establish_connect, we trigger do_attempt_write_data between
2212                 // the peers. Previously this function would mistakenly enter an infinite loop
2213                 // when there were more channel messages available than could fit into a peer's
2214                 // buffer. This issue would now be detected by this test (because we use custom
2215                 // RoutingMessageHandlers that intentionally return more channel messages
2216                 // than can fit into a peer's buffer).
2217                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2218
2219                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2220                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2221                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2222                         peers[1].process_events();
2223                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2224                         assert!(!a_read_data.is_empty());
2225
2226                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2227                         peers[0].process_events();
2228
2229                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2230                         assert!(!b_read_data.is_empty());
2231                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2232
2233                         peers[0].process_events();
2234                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2235                 }
2236
2237                 // Check that each peer has received the expected number of channel updates and channel
2238                 // announcements.
2239                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2240                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2241                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2242                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2243         }
2244
2245         #[test]
2246         fn test_handshake_timeout() {
2247                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2248                 // tick.
2249                 let cfgs = create_peermgr_cfgs(2);
2250                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2251                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2252                 let peers = create_network(2, &cfgs);
2253
2254                 let secp_ctx = Secp256k1::new();
2255                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2256                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2257                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2258                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2259                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2260
2261                 // If we get a single timer tick before completion, that's fine
2262                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2263                 peers[0].timer_tick_occurred();
2264                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2265
2266                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2267                 peers[0].process_events();
2268                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2269                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2270                 peers[1].process_events();
2271
2272                 // ...but if we get a second timer tick, we should disconnect the peer
2273                 peers[0].timer_tick_occurred();
2274                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2275
2276                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2277                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2278         }
2279
2280         #[test]
2281         fn test_filter_addresses(){
2282                 // Tests the filter_addresses function.
2283
2284                 // For (10/8)
2285                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2286                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2287                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2288                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2289                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2290                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2291
2292                 // For (0/8)
2293                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2294                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2295                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2296                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2297                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2298                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2299
2300                 // For (100.64/10)
2301                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2302                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2303                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2304                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2305                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2306                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2307
2308                 // For (127/8)
2309                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2310                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2311                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2312                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2313                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2314                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2315
2316                 // For (169.254/16)
2317                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2318                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2319                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2320                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2321                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2322                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2323
2324                 // For (172.16/12)
2325                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2326                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2327                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2328                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2329                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2330                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2331
2332                 // For (192.168/16)
2333                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2334                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2335                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2336                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2337                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2338                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2339
2340                 // For (192.88.99/24)
2341                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2342                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2343                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2344                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2345                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2346                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2347
2348                 // For other IPv4 addresses
2349                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2350                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2351                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2352                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2353                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2354                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2355
2356                 // For (2000::/3)
2357                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2358                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2359                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2360                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2361                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2362                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2363
2364                 // For other IPv6 addresses
2365                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2366                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2367                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2368                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2369                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2370                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2371
2372                 // For (None)
2373                 assert_eq!(filter_addresses(None), None);
2374         }
2375 }