Drop completed blocked `ChannelMonitorUpdate`s on startup
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::blockdata::constants::ChainHash;
19 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
20
21 use crate::sign::{NodeSigner, Recipient};
22 use crate::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
23 use crate::ln::ChannelId;
24 use crate::ln::features::{InitFeatures, NodeFeatures};
25 use crate::ln::msgs;
26 use crate::ln::msgs::{ChannelMessageHandler, LightningError, SocketAddress, OnionMessageHandler, RoutingMessageHandler};
27 #[cfg(not(c_bindings))]
28 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
29 use crate::util::ser::{VecWriter, Writeable, Writer};
30 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor, NextNoiseStep, MessageBuf, MSG_BUF_ALLOC_SIZE};
31 use crate::ln::wire;
32 use crate::ln::wire::{Encode, Type};
33 #[cfg(not(c_bindings))]
34 use crate::onion_message::messenger::{SimpleArcOnionMessenger, SimpleRefOnionMessenger};
35 use crate::onion_message::messenger::{CustomOnionMessageHandler, PendingOnionMessage};
36 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
37 use crate::onion_message::packet::OnionMessageContents;
38 use crate::routing::gossip::{NodeId, NodeAlias};
39 use crate::util::atomic_counter::AtomicCounter;
40 use crate::util::logger::{Logger, WithContext};
41 use crate::util::string::PrintableString;
42
43 use crate::prelude::*;
44 use crate::io;
45 use alloc::collections::VecDeque;
46 use crate::sync::{Mutex, MutexGuard, FairRwLock};
47 use core::sync::atomic::{AtomicBool, AtomicU32, AtomicI32, Ordering};
48 use core::{cmp, hash, fmt, mem};
49 use core::ops::Deref;
50 use core::convert::Infallible;
51 #[cfg(feature = "std")]
52 use std::error;
53 #[cfg(not(c_bindings))]
54 use {
55         crate::routing::gossip::{NetworkGraph, P2PGossipSync},
56         crate::sign::KeysManager,
57         crate::sync::Arc,
58 };
59
60 use bitcoin::hashes::sha256::Hash as Sha256;
61 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
62 use bitcoin::hashes::{HashEngine, Hash};
63
64 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
65 ///
66 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
67 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
68 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
69 ///
70 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
71 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
72 pub trait CustomMessageHandler: wire::CustomMessageReader {
73         /// Handles the given message sent from `sender_node_id`, possibly producing messages for
74         /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
75         /// to send.
76         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
77
78         /// Returns the list of pending messages that were generated by the handler, clearing the list
79         /// in the process. Each message is paired with the node id of the intended recipient. If no
80         /// connection to the node exists, then the message is simply not sent.
81         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
82
83         /// Gets the node feature flags which this handler itself supports. All available handlers are
84         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
85         /// which are broadcasted in our [`NodeAnnouncement`] message.
86         ///
87         /// [`NodeAnnouncement`]: crate::ln::msgs::NodeAnnouncement
88         fn provided_node_features(&self) -> NodeFeatures;
89
90         /// Gets the init feature flags which should be sent to the given peer. All available handlers
91         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
92         /// which are sent in our [`Init`] message.
93         ///
94         /// [`Init`]: crate::ln::msgs::Init
95         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
96 }
97
98 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
99 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
100 pub struct IgnoringMessageHandler{}
101 impl EventsProvider for IgnoringMessageHandler {
102         fn process_pending_events<H: Deref>(&self, _handler: H) where H::Target: EventHandler {}
103 }
104 impl MessageSendEventsProvider for IgnoringMessageHandler {
105         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
106 }
107 impl RoutingMessageHandler for IgnoringMessageHandler {
108         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
109         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
110         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
111         fn get_next_channel_announcement(&self, _starting_point: u64) ->
112                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
113         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
114         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
115         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
116         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
117         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
118         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
119         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
120         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
121                 InitFeatures::empty()
122         }
123         fn processing_queue_high(&self) -> bool { false }
124 }
125 impl OnionMessageHandler for IgnoringMessageHandler {
126         fn get_and_clear_connections_needed(&self) -> Vec<(PublicKey, Vec<SocketAddress>)> { Vec::new() }
127         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
128         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
129         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
130         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
131         fn timer_tick_occurred(&self) {}
132         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
133         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
134                 InitFeatures::empty()
135         }
136 }
137 impl OffersMessageHandler for IgnoringMessageHandler {
138         fn handle_message(&self, _msg: OffersMessage) -> Option<OffersMessage> { None }
139 }
140 impl CustomOnionMessageHandler for IgnoringMessageHandler {
141         type CustomMessage = Infallible;
142         fn handle_custom_message(&self, _msg: Infallible) -> Option<Infallible> {
143                 // Since we always return `None` in the read the handle method should never be called.
144                 unreachable!();
145         }
146         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
147                 Ok(None)
148         }
149         fn release_pending_custom_messages(&self) -> Vec<PendingOnionMessage<Infallible>> {
150                 vec![]
151         }
152 }
153
154 impl OnionMessageContents for Infallible {
155         fn tlv_type(&self) -> u64 { unreachable!(); }
156 }
157
158 impl Deref for IgnoringMessageHandler {
159         type Target = IgnoringMessageHandler;
160         fn deref(&self) -> &Self { self }
161 }
162
163 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
164 // method that takes self for it.
165 impl wire::Type for Infallible {
166         fn type_id(&self) -> u16 {
167                 unreachable!();
168         }
169 }
170 impl Writeable for Infallible {
171         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
172                 unreachable!();
173         }
174 }
175
176 impl wire::CustomMessageReader for IgnoringMessageHandler {
177         type CustomMessage = Infallible;
178         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
179                 Ok(None)
180         }
181 }
182
183 impl CustomMessageHandler for IgnoringMessageHandler {
184         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
185                 // Since we always return `None` in the read the handle method should never be called.
186                 unreachable!();
187         }
188
189         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
190
191         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
192
193         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
194                 InitFeatures::empty()
195         }
196 }
197
198 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
199 /// You can provide one of these as the route_handler in a MessageHandler.
200 pub struct ErroringMessageHandler {
201         message_queue: Mutex<Vec<MessageSendEvent>>
202 }
203 impl ErroringMessageHandler {
204         /// Constructs a new ErroringMessageHandler
205         pub fn new() -> Self {
206                 Self { message_queue: Mutex::new(Vec::new()) }
207         }
208         fn push_error(&self, node_id: &PublicKey, channel_id: ChannelId) {
209                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
210                         action: msgs::ErrorAction::SendErrorMessage {
211                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
212                         },
213                         node_id: node_id.clone(),
214                 });
215         }
216 }
217 impl MessageSendEventsProvider for ErroringMessageHandler {
218         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
219                 let mut res = Vec::new();
220                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
221                 res
222         }
223 }
224 impl ChannelMessageHandler for ErroringMessageHandler {
225         // Any messages which are related to a specific channel generate an error message to let the
226         // peer know we don't care about channels.
227         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
228                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
229         }
230         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
231                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
232         }
233         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
234                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
235         }
236         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
237                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
238         }
239         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
240                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
241         }
242         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
243                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
244         }
245         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
246                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
247         }
248         fn handle_stfu(&self, their_node_id: &PublicKey, msg: &msgs::Stfu) {
249                 ErroringMessageHandler::push_error(&self, their_node_id, msg.channel_id);
250         }
251         fn handle_splice(&self, their_node_id: &PublicKey, msg: &msgs::Splice) {
252                 ErroringMessageHandler::push_error(&self, their_node_id, msg.channel_id);
253         }
254         fn handle_splice_ack(&self, their_node_id: &PublicKey, msg: &msgs::SpliceAck) {
255                 ErroringMessageHandler::push_error(&self, their_node_id, msg.channel_id);
256         }
257         fn handle_splice_locked(&self, their_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
258                 ErroringMessageHandler::push_error(&self, their_node_id, msg.channel_id);
259         }
260         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
261                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
262         }
263         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
264                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
265         }
266         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
267                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
268         }
269         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
270                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
271         }
272         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
273                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
274         }
275         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
276                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
277         }
278         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
279                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
280         }
281         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
282                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
283         }
284         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
285                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
286         }
287         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
288         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
289         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
290         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
291         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
292         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
293         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
294                 // Set a number of features which various nodes may require to talk to us. It's totally
295                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
296                 // channels.
297                 let mut features = InitFeatures::empty();
298                 features.set_data_loss_protect_optional();
299                 features.set_upfront_shutdown_script_optional();
300                 features.set_variable_length_onion_optional();
301                 features.set_static_remote_key_optional();
302                 features.set_payment_secret_optional();
303                 features.set_basic_mpp_optional();
304                 features.set_wumbo_optional();
305                 features.set_shutdown_any_segwit_optional();
306                 features.set_channel_type_optional();
307                 features.set_scid_privacy_optional();
308                 features.set_zero_conf_optional();
309                 features.set_route_blinding_optional();
310                 features
311         }
312
313         fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
314                 // We don't enforce any chains upon peer connection for `ErroringMessageHandler` and leave it up
315                 // to users of `ErroringMessageHandler` to make decisions on network compatiblility.
316                 // There's not really any way to pull in specific networks here, and hardcoding can cause breakages.
317                 None
318         }
319
320         fn handle_open_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
321                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
322         }
323
324         fn handle_accept_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
325                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
326         }
327
328         fn handle_tx_add_input(&self, their_node_id: &PublicKey, msg: &msgs::TxAddInput) {
329                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
330         }
331
332         fn handle_tx_add_output(&self, their_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
333                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
334         }
335
336         fn handle_tx_remove_input(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
337                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
338         }
339
340         fn handle_tx_remove_output(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
341                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
342         }
343
344         fn handle_tx_complete(&self, their_node_id: &PublicKey, msg: &msgs::TxComplete) {
345                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
346         }
347
348         fn handle_tx_signatures(&self, their_node_id: &PublicKey, msg: &msgs::TxSignatures) {
349                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
350         }
351
352         fn handle_tx_init_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
353                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
354         }
355
356         fn handle_tx_ack_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
357                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
358         }
359
360         fn handle_tx_abort(&self, their_node_id: &PublicKey, msg: &msgs::TxAbort) {
361                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
362         }
363 }
364
365 impl Deref for ErroringMessageHandler {
366         type Target = ErroringMessageHandler;
367         fn deref(&self) -> &Self { self }
368 }
369
370 /// Provides references to trait impls which handle different types of messages.
371 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref, CustomM: Deref> where
372         CM::Target: ChannelMessageHandler,
373         RM::Target: RoutingMessageHandler,
374         OM::Target: OnionMessageHandler,
375         CustomM::Target: CustomMessageHandler,
376 {
377         /// A message handler which handles messages specific to channels. Usually this is just a
378         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
379         ///
380         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
381         pub chan_handler: CM,
382         /// A message handler which handles messages updating our knowledge of the network channel
383         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
384         ///
385         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
386         pub route_handler: RM,
387
388         /// A message handler which handles onion messages. This should generally be an
389         /// [`OnionMessenger`], but can also be an [`IgnoringMessageHandler`].
390         ///
391         /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
392         pub onion_message_handler: OM,
393
394         /// A message handler which handles custom messages. The only LDK-provided implementation is
395         /// [`IgnoringMessageHandler`].
396         pub custom_message_handler: CustomM,
397 }
398
399 /// Provides an object which can be used to send data to and which uniquely identifies a connection
400 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
401 /// implement Hash to meet the PeerManager API.
402 ///
403 /// For efficiency, [`Clone`] should be relatively cheap for this type.
404 ///
405 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
406 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
407 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
408 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
409 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
410 /// to simply use another value which is guaranteed to be globally unique instead.
411 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
412         /// Attempts to send some data from the given slice to the peer.
413         ///
414         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
415         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
416         /// called and further write attempts may occur until that time.
417         ///
418         /// If the returned size is smaller than `data.len()`, a
419         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
420         /// written. Additionally, until a `send_data` event completes fully, no further
421         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
422         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
423         /// until then.
424         ///
425         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
426         /// (indicating that read events should be paused to prevent DoS in the send buffer),
427         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
428         /// `resume_read` of false carries no meaning, and should not cause any action.
429         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
430         /// Disconnect the socket pointed to by this SocketDescriptor.
431         ///
432         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
433         /// call (doing so is a noop).
434         fn disconnect_socket(&mut self);
435 }
436
437 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
438 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
439 /// descriptor.
440 #[derive(Clone)]
441 pub struct PeerHandleError { }
442 impl fmt::Debug for PeerHandleError {
443         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
444                 formatter.write_str("Peer Sent Invalid Data")
445         }
446 }
447 impl fmt::Display for PeerHandleError {
448         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
449                 formatter.write_str("Peer Sent Invalid Data")
450         }
451 }
452
453 #[cfg(feature = "std")]
454 impl error::Error for PeerHandleError {
455         fn description(&self) -> &str {
456                 "Peer Sent Invalid Data"
457         }
458 }
459
460 enum InitSyncTracker{
461         NoSyncRequested,
462         ChannelsSyncing(u64),
463         NodesSyncing(NodeId),
464 }
465
466 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
467 /// forwarding gossip messages to peers altogether.
468 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
469
470 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
471 /// we have fewer than this many messages in the outbound buffer again.
472 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
473 /// refilled as we send bytes.
474 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
475 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
476 /// the peer.
477 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
478
479 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
480 /// the socket receive buffer before receiving the ping.
481 ///
482 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
483 /// including any network delays, outbound traffic, or the same for messages from other peers.
484 ///
485 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
486 /// per connected peer to respond to a ping, as long as they send us at least one message during
487 /// each tick, ensuring we aren't actually just disconnected.
488 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
489 /// peer.
490 ///
491 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
492 /// two connected peers, assuming most LDK-running systems have at least two cores.
493 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
494
495 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
496 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
497 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
498 /// process before the next ping.
499 ///
500 /// Note that we continue responding to other messages even after we've sent this many messages, so
501 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
502 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
503 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
504
505 struct Peer {
506         channel_encryptor: PeerChannelEncryptor,
507         /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
508         /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
509         their_node_id: Option<(PublicKey, NodeId)>,
510         /// The features provided in the peer's [`msgs::Init`] message.
511         ///
512         /// This is set only after we've processed the [`msgs::Init`] message and called relevant
513         /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
514         /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
515         /// check this.
516         their_features: Option<InitFeatures>,
517         their_socket_address: Option<SocketAddress>,
518
519         pending_outbound_buffer: VecDeque<Vec<u8>>,
520         pending_outbound_buffer_first_msg_offset: usize,
521         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
522         /// prioritize channel messages over them.
523         ///
524         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
525         gossip_broadcast_buffer: VecDeque<MessageBuf>,
526         awaiting_write_event: bool,
527
528         pending_read_buffer: Vec<u8>,
529         pending_read_buffer_pos: usize,
530         pending_read_is_header: bool,
531
532         sync_status: InitSyncTracker,
533
534         msgs_sent_since_pong: usize,
535         awaiting_pong_timer_tick_intervals: i64,
536         received_message_since_timer_tick: bool,
537         sent_gossip_timestamp_filter: bool,
538
539         /// Indicates we've received a `channel_announcement` since the last time we had
540         /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
541         /// `channel_announcement` at all - we set this unconditionally but unset it every time we
542         /// check if we're gossip-processing-backlogged).
543         received_channel_announce_since_backlogged: bool,
544
545         inbound_connection: bool,
546 }
547
548 impl Peer {
549         /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
550         /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
551         /// normally.
552         fn handshake_complete(&self) -> bool {
553                 self.their_features.is_some()
554         }
555
556         /// Returns true if the channel announcements/updates for the given channel should be
557         /// forwarded to this peer.
558         /// If we are sending our routing table to this peer and we have not yet sent channel
559         /// announcements/updates for the given channel_id then we will send it when we get to that
560         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
561         /// sent the old versions, we should send the update, and so return true here.
562         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
563                 if !self.handshake_complete() { return false; }
564                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
565                         !self.sent_gossip_timestamp_filter {
566                                 return false;
567                         }
568                 match self.sync_status {
569                         InitSyncTracker::NoSyncRequested => true,
570                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
571                         InitSyncTracker::NodesSyncing(_) => true,
572                 }
573         }
574
575         /// Similar to the above, but for node announcements indexed by node_id.
576         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
577                 if !self.handshake_complete() { return false; }
578                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
579                         !self.sent_gossip_timestamp_filter {
580                                 return false;
581                         }
582                 match self.sync_status {
583                         InitSyncTracker::NoSyncRequested => true,
584                         InitSyncTracker::ChannelsSyncing(_) => false,
585                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
586                 }
587         }
588
589         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
590         /// buffer still has space and we don't need to pause reads to get some writes out.
591         fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
592                 if !gossip_processing_backlogged {
593                         self.received_channel_announce_since_backlogged = false;
594                 }
595                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
596                         (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
597         }
598
599         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
600         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
601         fn should_buffer_gossip_backfill(&self) -> bool {
602                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
603                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
604                         && self.handshake_complete()
605         }
606
607         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
608         /// every time the peer's buffer may have been drained.
609         fn should_buffer_onion_message(&self) -> bool {
610                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
611                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
612         }
613
614         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
615         /// buffer. This is checked every time the peer's buffer may have been drained.
616         fn should_buffer_gossip_broadcast(&self) -> bool {
617                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
618                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
619         }
620
621         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
622         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
623                 let total_outbound_buffered =
624                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
625
626                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
627                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
628         }
629
630         fn set_their_node_id(&mut self, node_id: PublicKey) {
631                 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
632         }
633 }
634
635 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
636 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
637 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
638 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
639 /// issues such as overly long function definitions.
640 ///
641 /// This is not exported to bindings users as type aliases aren't supported in most languages.
642 #[cfg(not(c_bindings))]
643 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<
644         SD,
645         Arc<SimpleArcChannelManager<M, T, F, L>>,
646         Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, C, Arc<L>>>,
647         Arc<SimpleArcOnionMessenger<M, T, F, L>>,
648         Arc<L>,
649         IgnoringMessageHandler,
650         Arc<KeysManager>
651 >;
652
653 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
654 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
655 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
656 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
657 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
658 /// helps with issues such as long function definitions.
659 ///
660 /// This is not exported to bindings users as type aliases aren't supported in most languages.
661 #[cfg(not(c_bindings))]
662 pub type SimpleRefPeerManager<
663         'a, 'b, 'c, 'd, 'e, 'f, 'logger, 'h, 'i, 'j, 'graph, 'k, SD, M, T, F, C, L
664 > = PeerManager<
665         SD,
666         &'j SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'graph, 'logger, 'i, M, T, F, L>,
667         &'f P2PGossipSync<&'graph NetworkGraph<&'logger L>, C, &'logger L>,
668         &'h SimpleRefOnionMessenger<'a, 'b, 'c, 'd, 'e, 'graph, 'logger, 'i, 'j, 'k, M, T, F, L>,
669         &'logger L,
670         IgnoringMessageHandler,
671         &'c KeysManager
672 >;
673
674
675 /// A generic trait which is implemented for all [`PeerManager`]s. This makes bounding functions or
676 /// structs on any [`PeerManager`] much simpler as only this trait is needed as a bound, rather
677 /// than the full set of bounds on [`PeerManager`] itself.
678 ///
679 /// This is not exported to bindings users as general cover traits aren't useful in other
680 /// languages.
681 #[allow(missing_docs)]
682 pub trait APeerManager {
683         type Descriptor: SocketDescriptor;
684         type CMT: ChannelMessageHandler + ?Sized;
685         type CM: Deref<Target=Self::CMT>;
686         type RMT: RoutingMessageHandler + ?Sized;
687         type RM: Deref<Target=Self::RMT>;
688         type OMT: OnionMessageHandler + ?Sized;
689         type OM: Deref<Target=Self::OMT>;
690         type LT: Logger + ?Sized;
691         type L: Deref<Target=Self::LT>;
692         type CMHT: CustomMessageHandler + ?Sized;
693         type CMH: Deref<Target=Self::CMHT>;
694         type NST: NodeSigner + ?Sized;
695         type NS: Deref<Target=Self::NST>;
696         /// Gets a reference to the underlying [`PeerManager`].
697         fn as_ref(&self) -> &PeerManager<Self::Descriptor, Self::CM, Self::RM, Self::OM, Self::L, Self::CMH, Self::NS>;
698         /// Returns the peer manager's [`OnionMessageHandler`].
699         fn onion_message_handler(&self) -> &Self::OMT;
700 }
701
702 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref>
703 APeerManager for PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
704         CM::Target: ChannelMessageHandler,
705         RM::Target: RoutingMessageHandler,
706         OM::Target: OnionMessageHandler,
707         L::Target: Logger,
708         CMH::Target: CustomMessageHandler,
709         NS::Target: NodeSigner,
710 {
711         type Descriptor = Descriptor;
712         type CMT = <CM as Deref>::Target;
713         type CM = CM;
714         type RMT = <RM as Deref>::Target;
715         type RM = RM;
716         type OMT = <OM as Deref>::Target;
717         type OM = OM;
718         type LT = <L as Deref>::Target;
719         type L = L;
720         type CMHT = <CMH as Deref>::Target;
721         type CMH = CMH;
722         type NST = <NS as Deref>::Target;
723         type NS = NS;
724         fn as_ref(&self) -> &PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> { self }
725         fn onion_message_handler(&self) -> &Self::OMT {
726                 self.message_handler.onion_message_handler.deref()
727         }
728 }
729
730 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
731 /// socket events into messages which it passes on to its [`MessageHandler`].
732 ///
733 /// Locks are taken internally, so you must never assume that reentrancy from a
734 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
735 ///
736 /// Calls to [`read_event`] will decode relevant messages and pass them to the
737 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
738 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
739 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
740 /// calls only after previous ones have returned.
741 ///
742 /// Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
743 /// a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
744 /// essentially you should default to using a [`SimpleRefPeerManager`], and use a
745 /// [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
746 /// you're using lightning-net-tokio.
747 ///
748 /// [`read_event`]: PeerManager::read_event
749 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
750                 CM::Target: ChannelMessageHandler,
751                 RM::Target: RoutingMessageHandler,
752                 OM::Target: OnionMessageHandler,
753                 L::Target: Logger,
754                 CMH::Target: CustomMessageHandler,
755                 NS::Target: NodeSigner {
756         message_handler: MessageHandler<CM, RM, OM, CMH>,
757         /// Connection state for each connected peer - we have an outer read-write lock which is taken
758         /// as read while we're doing processing for a peer and taken write when a peer is being added
759         /// or removed.
760         ///
761         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
762         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
763         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
764         /// the `MessageHandler`s for a given peer is already guaranteed.
765         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
766         /// Only add to this set when noise completes.
767         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
768         /// lock held. Entries may be added with only the `peers` read lock held (though the
769         /// `Descriptor` value must already exist in `peers`).
770         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
771         /// We can only have one thread processing events at once, but if a second call to
772         /// `process_events` happens while a first call is in progress, one of the two calls needs to
773         /// start from the top to ensure any new messages are also handled.
774         ///
775         /// Because the event handler calls into user code which may block, we don't want to block a
776         /// second thread waiting for another thread to handle events which is then blocked on user
777         /// code, so we store an atomic counter here:
778         ///  * 0 indicates no event processor is running
779         ///  * 1 indicates an event processor is running
780         ///  * > 1 indicates an event processor is running but needs to start again from the top once
781         ///        it finishes as another thread tried to start processing events but returned early.
782         event_processing_state: AtomicI32,
783
784         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
785         /// value increases strictly since we don't assume access to a time source.
786         last_node_announcement_serial: AtomicU32,
787
788         ephemeral_key_midstate: Sha256Engine,
789
790         peer_counter: AtomicCounter,
791
792         gossip_processing_backlogged: AtomicBool,
793         gossip_processing_backlog_lifted: AtomicBool,
794
795         node_signer: NS,
796
797         logger: L,
798         secp_ctx: Secp256k1<secp256k1::SignOnly>
799 }
800
801 enum MessageHandlingError {
802         PeerHandleError(PeerHandleError),
803         LightningError(LightningError),
804 }
805
806 impl From<PeerHandleError> for MessageHandlingError {
807         fn from(error: PeerHandleError) -> Self {
808                 MessageHandlingError::PeerHandleError(error)
809         }
810 }
811
812 impl From<LightningError> for MessageHandlingError {
813         fn from(error: LightningError) -> Self {
814                 MessageHandlingError::LightningError(error)
815         }
816 }
817
818 macro_rules! encode_msg {
819         ($msg: expr) => {{
820                 let mut buffer = VecWriter(Vec::with_capacity(MSG_BUF_ALLOC_SIZE));
821                 wire::write($msg, &mut buffer).unwrap();
822                 buffer.0
823         }}
824 }
825
826 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
827                 CM::Target: ChannelMessageHandler,
828                 OM::Target: OnionMessageHandler,
829                 L::Target: Logger,
830                 NS::Target: NodeSigner {
831         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
832         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
833         /// ignored.
834         ///
835         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
836         /// cryptographically secure random bytes.
837         ///
838         /// `current_time` is used as an always-increasing counter that survives across restarts and is
839         /// incremented irregularly internally. In general it is best to simply use the current UNIX
840         /// timestamp, however if it is not available a persistent counter that increases once per
841         /// minute should suffice.
842         ///
843         /// This is not exported to bindings users as we can't export a PeerManager with a dummy route handler
844         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
845                 Self::new(MessageHandler {
846                         chan_handler: channel_message_handler,
847                         route_handler: IgnoringMessageHandler{},
848                         onion_message_handler,
849                         custom_message_handler: IgnoringMessageHandler{},
850                 }, current_time, ephemeral_random_data, logger, node_signer)
851         }
852 }
853
854 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
855                 RM::Target: RoutingMessageHandler,
856                 L::Target: Logger,
857                 NS::Target: NodeSigner {
858         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
859         /// handler or onion message handler is used and onion and channel messages will be ignored (or
860         /// generate error messages). Note that some other lightning implementations time-out connections
861         /// after some time if no channel is built with the peer.
862         ///
863         /// `current_time` is used as an always-increasing counter that survives across restarts and is
864         /// incremented irregularly internally. In general it is best to simply use the current UNIX
865         /// timestamp, however if it is not available a persistent counter that increases once per
866         /// minute should suffice.
867         ///
868         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
869         /// cryptographically secure random bytes.
870         ///
871         /// This is not exported to bindings users as we can't export a PeerManager with a dummy channel handler
872         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
873                 Self::new(MessageHandler {
874                         chan_handler: ErroringMessageHandler::new(),
875                         route_handler: routing_message_handler,
876                         onion_message_handler: IgnoringMessageHandler{},
877                         custom_message_handler: IgnoringMessageHandler{},
878                 }, current_time, ephemeral_random_data, logger, node_signer)
879         }
880 }
881
882 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
883 /// This works around `format!()` taking a reference to each argument, preventing
884 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
885 /// due to lifetime errors.
886 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
887 impl core::fmt::Display for OptionalFromDebugger<'_> {
888         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
889                 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
890         }
891 }
892
893 /// A function used to filter out local or private addresses
894 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
895 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
896 fn filter_addresses(ip_address: Option<SocketAddress>) -> Option<SocketAddress> {
897         match ip_address{
898                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
899                 Some(SocketAddress::TcpIpV4{addr: [10, _, _, _], port: _}) => None,
900                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
901                 Some(SocketAddress::TcpIpV4{addr: [0, _, _, _], port: _}) => None,
902                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
903                 Some(SocketAddress::TcpIpV4{addr: [100, 64..=127, _, _], port: _}) => None,
904                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
905                 Some(SocketAddress::TcpIpV4{addr: [127, _, _, _], port: _}) => None,
906                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
907                 Some(SocketAddress::TcpIpV4{addr: [169, 254, _, _], port: _}) => None,
908                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
909                 Some(SocketAddress::TcpIpV4{addr: [172, 16..=31, _, _], port: _}) => None,
910                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
911                 Some(SocketAddress::TcpIpV4{addr: [192, 168, _, _], port: _}) => None,
912                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
913                 Some(SocketAddress::TcpIpV4{addr: [192, 88, 99, _], port: _}) => None,
914                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
915                 Some(SocketAddress::TcpIpV6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
916                 // For remaining addresses
917                 Some(SocketAddress::TcpIpV6{addr: _, port: _}) => None,
918                 Some(..) => ip_address,
919                 None => None,
920         }
921 }
922
923 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
924                 CM::Target: ChannelMessageHandler,
925                 RM::Target: RoutingMessageHandler,
926                 OM::Target: OnionMessageHandler,
927                 L::Target: Logger,
928                 CMH::Target: CustomMessageHandler,
929                 NS::Target: NodeSigner
930 {
931         /// Constructs a new `PeerManager` with the given message handlers.
932         ///
933         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
934         /// cryptographically secure random bytes.
935         ///
936         /// `current_time` is used as an always-increasing counter that survives across restarts and is
937         /// incremented irregularly internally. In general it is best to simply use the current UNIX
938         /// timestamp, however if it is not available a persistent counter that increases once per
939         /// minute should suffice.
940         pub fn new(message_handler: MessageHandler<CM, RM, OM, CMH>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
941                 let mut ephemeral_key_midstate = Sha256::engine();
942                 ephemeral_key_midstate.input(ephemeral_random_data);
943
944                 let mut secp_ctx = Secp256k1::signing_only();
945                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).to_byte_array();
946                 secp_ctx.seeded_randomize(&ephemeral_hash);
947
948                 PeerManager {
949                         message_handler,
950                         peers: FairRwLock::new(HashMap::new()),
951                         node_id_to_descriptor: Mutex::new(HashMap::new()),
952                         event_processing_state: AtomicI32::new(0),
953                         ephemeral_key_midstate,
954                         peer_counter: AtomicCounter::new(),
955                         gossip_processing_backlogged: AtomicBool::new(false),
956                         gossip_processing_backlog_lifted: AtomicBool::new(false),
957                         last_node_announcement_serial: AtomicU32::new(current_time),
958                         logger,
959                         node_signer,
960                         secp_ctx,
961                 }
962         }
963
964         /// Get a list of tuples mapping from node id to network addresses for peers which have
965         /// completed the initial handshake.
966         ///
967         /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
968         /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
969         /// handshake has completed and we are sure the remote peer has the private key for the given
970         /// [`PublicKey`].
971         ///
972         /// The returned `Option`s will only be `Some` if an address had been previously given via
973         /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
974         pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<SocketAddress>)> {
975                 let peers = self.peers.read().unwrap();
976                 peers.values().filter_map(|peer_mutex| {
977                         let p = peer_mutex.lock().unwrap();
978                         if !p.handshake_complete() {
979                                 return None;
980                         }
981                         Some((p.their_node_id.unwrap().0, p.their_socket_address.clone()))
982                 }).collect()
983         }
984
985         fn get_ephemeral_key(&self) -> SecretKey {
986                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
987                 let counter = self.peer_counter.get_increment();
988                 ephemeral_hash.input(&counter.to_le_bytes());
989                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).to_byte_array()).expect("You broke SHA-256!")
990         }
991
992         fn init_features(&self, their_node_id: &PublicKey) -> InitFeatures {
993                 self.message_handler.chan_handler.provided_init_features(their_node_id)
994                         | self.message_handler.route_handler.provided_init_features(their_node_id)
995                         | self.message_handler.onion_message_handler.provided_init_features(their_node_id)
996                         | self.message_handler.custom_message_handler.provided_init_features(their_node_id)
997         }
998
999         /// Indicates a new outbound connection has been established to a node with the given `node_id`
1000         /// and an optional remote network address.
1001         ///
1002         /// The remote network address adds the option to report a remote IP address back to a connecting
1003         /// peer using the init message.
1004         /// The user should pass the remote network address of the host they are connected to.
1005         ///
1006         /// If an `Err` is returned here you must disconnect the connection immediately.
1007         ///
1008         /// Returns a small number of bytes to send to the remote node (currently always 50).
1009         ///
1010         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
1011         /// [`socket_disconnected`].
1012         ///
1013         /// [`socket_disconnected`]: PeerManager::socket_disconnected
1014         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<SocketAddress>) -> Result<Vec<u8>, PeerHandleError> {
1015                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
1016                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
1017                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
1018
1019                 let mut peers = self.peers.write().unwrap();
1020                 match peers.entry(descriptor) {
1021                         hash_map::Entry::Occupied(_) => {
1022                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
1023                                 Err(PeerHandleError {})
1024                         },
1025                         hash_map::Entry::Vacant(e) => {
1026                                 e.insert(Mutex::new(Peer {
1027                                         channel_encryptor: peer_encryptor,
1028                                         their_node_id: None,
1029                                         their_features: None,
1030                                         their_socket_address: remote_network_address,
1031
1032                                         pending_outbound_buffer: VecDeque::new(),
1033                                         pending_outbound_buffer_first_msg_offset: 0,
1034                                         gossip_broadcast_buffer: VecDeque::new(),
1035                                         awaiting_write_event: false,
1036
1037                                         pending_read_buffer,
1038                                         pending_read_buffer_pos: 0,
1039                                         pending_read_is_header: false,
1040
1041                                         sync_status: InitSyncTracker::NoSyncRequested,
1042
1043                                         msgs_sent_since_pong: 0,
1044                                         awaiting_pong_timer_tick_intervals: 0,
1045                                         received_message_since_timer_tick: false,
1046                                         sent_gossip_timestamp_filter: false,
1047
1048                                         received_channel_announce_since_backlogged: false,
1049                                         inbound_connection: false,
1050                                 }));
1051                                 Ok(res)
1052                         }
1053                 }
1054         }
1055
1056         /// Indicates a new inbound connection has been established to a node with an optional remote
1057         /// network address.
1058         ///
1059         /// The remote network address adds the option to report a remote IP address back to a connecting
1060         /// peer using the init message.
1061         /// The user should pass the remote network address of the host they are connected to.
1062         ///
1063         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
1064         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
1065         /// the connection immediately.
1066         ///
1067         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
1068         /// [`socket_disconnected`].
1069         ///
1070         /// [`socket_disconnected`]: PeerManager::socket_disconnected
1071         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<SocketAddress>) -> Result<(), PeerHandleError> {
1072                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
1073                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
1074
1075                 let mut peers = self.peers.write().unwrap();
1076                 match peers.entry(descriptor) {
1077                         hash_map::Entry::Occupied(_) => {
1078                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
1079                                 Err(PeerHandleError {})
1080                         },
1081                         hash_map::Entry::Vacant(e) => {
1082                                 e.insert(Mutex::new(Peer {
1083                                         channel_encryptor: peer_encryptor,
1084                                         their_node_id: None,
1085                                         their_features: None,
1086                                         their_socket_address: remote_network_address,
1087
1088                                         pending_outbound_buffer: VecDeque::new(),
1089                                         pending_outbound_buffer_first_msg_offset: 0,
1090                                         gossip_broadcast_buffer: VecDeque::new(),
1091                                         awaiting_write_event: false,
1092
1093                                         pending_read_buffer,
1094                                         pending_read_buffer_pos: 0,
1095                                         pending_read_is_header: false,
1096
1097                                         sync_status: InitSyncTracker::NoSyncRequested,
1098
1099                                         msgs_sent_since_pong: 0,
1100                                         awaiting_pong_timer_tick_intervals: 0,
1101                                         received_message_since_timer_tick: false,
1102                                         sent_gossip_timestamp_filter: false,
1103
1104                                         received_channel_announce_since_backlogged: false,
1105                                         inbound_connection: true,
1106                                 }));
1107                                 Ok(())
1108                         }
1109                 }
1110         }
1111
1112         fn peer_should_read(&self, peer: &mut Peer) -> bool {
1113                 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
1114         }
1115
1116         fn update_gossip_backlogged(&self) {
1117                 let new_state = self.message_handler.route_handler.processing_queue_high();
1118                 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
1119                 if prev_state && !new_state {
1120                         self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
1121                 }
1122         }
1123
1124         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
1125                 let mut have_written = false;
1126                 while !peer.awaiting_write_event {
1127                         if peer.should_buffer_onion_message() {
1128                                 if let Some((peer_node_id, _)) = peer.their_node_id {
1129                                         if let Some(next_onion_message) =
1130                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
1131                                                         self.enqueue_message(peer, &next_onion_message);
1132                                         }
1133                                 }
1134                         }
1135                         if peer.should_buffer_gossip_broadcast() {
1136                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
1137                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(msg));
1138                                 }
1139                         }
1140                         if peer.should_buffer_gossip_backfill() {
1141                                 match peer.sync_status {
1142                                         InitSyncTracker::NoSyncRequested => {},
1143                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
1144                                                 if let Some((announce, update_a_option, update_b_option)) =
1145                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
1146                                                 {
1147                                                         self.enqueue_message(peer, &announce);
1148                                                         if let Some(update_a) = update_a_option {
1149                                                                 self.enqueue_message(peer, &update_a);
1150                                                         }
1151                                                         if let Some(update_b) = update_b_option {
1152                                                                 self.enqueue_message(peer, &update_b);
1153                                                         }
1154                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
1155                                                 } else {
1156                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
1157                                                 }
1158                                         },
1159                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
1160                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
1161                                                         self.enqueue_message(peer, &msg);
1162                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1163                                                 } else {
1164                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
1165                                                 }
1166                                         },
1167                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
1168                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
1169                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
1170                                                         self.enqueue_message(peer, &msg);
1171                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1172                                                 } else {
1173                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
1174                                                 }
1175                                         },
1176                                 }
1177                         }
1178                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
1179                                 self.maybe_send_extra_ping(peer);
1180                         }
1181
1182                         let should_read = self.peer_should_read(peer);
1183                         let next_buff = match peer.pending_outbound_buffer.front() {
1184                                 None => {
1185                                         if force_one_write && !have_written {
1186                                                 if should_read {
1187                                                         let data_sent = descriptor.send_data(&[], should_read);
1188                                                         debug_assert_eq!(data_sent, 0, "Can't write more than no data");
1189                                                 }
1190                                         }
1191                                         return
1192                                 },
1193                                 Some(buff) => buff,
1194                         };
1195
1196                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
1197                         let data_sent = descriptor.send_data(pending, should_read);
1198                         have_written = true;
1199                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
1200                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
1201                                 peer.pending_outbound_buffer_first_msg_offset = 0;
1202                                 peer.pending_outbound_buffer.pop_front();
1203                                 const VEC_SIZE: usize = ::core::mem::size_of::<Vec<u8>>();
1204                                 let large_capacity = peer.pending_outbound_buffer.capacity() > 4096 / VEC_SIZE;
1205                                 let lots_of_slack = peer.pending_outbound_buffer.len()
1206                                         < peer.pending_outbound_buffer.capacity() / 2;
1207                                 if large_capacity && lots_of_slack {
1208                                         peer.pending_outbound_buffer.shrink_to_fit();
1209                                 }
1210                         } else {
1211                                 peer.awaiting_write_event = true;
1212                         }
1213                 }
1214         }
1215
1216         /// Indicates that there is room to write data to the given socket descriptor.
1217         ///
1218         /// May return an Err to indicate that the connection should be closed.
1219         ///
1220         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
1221         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
1222         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
1223         /// ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
1224         /// sufficient!
1225         ///
1226         /// [`send_data`]: SocketDescriptor::send_data
1227         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1228         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1229                 let peers = self.peers.read().unwrap();
1230                 match peers.get(descriptor) {
1231                         None => {
1232                                 // This is most likely a simple race condition where the user found that the socket
1233                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
1234                                 // this method. Return an error to make sure we get disconnected.
1235                                 return Err(PeerHandleError { });
1236                         },
1237                         Some(peer_mutex) => {
1238                                 let mut peer = peer_mutex.lock().unwrap();
1239                                 peer.awaiting_write_event = false;
1240                                 self.do_attempt_write_data(descriptor, &mut peer, false);
1241                         }
1242                 };
1243                 Ok(())
1244         }
1245
1246         /// Indicates that data was read from the given socket descriptor.
1247         ///
1248         /// May return an Err to indicate that the connection should be closed.
1249         ///
1250         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1251         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1252         /// [`send_data`] calls to handle responses.
1253         ///
1254         /// If `Ok(true)` is returned, further read_events should not be triggered until a
1255         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1256         /// send buffer).
1257         ///
1258         /// In order to avoid processing too many messages at once per peer, `data` should be on the
1259         /// order of 4KiB.
1260         ///
1261         /// [`send_data`]: SocketDescriptor::send_data
1262         /// [`process_events`]: PeerManager::process_events
1263         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1264                 match self.do_read_event(peer_descriptor, data) {
1265                         Ok(res) => Ok(res),
1266                         Err(e) => {
1267                                 log_trace!(self.logger, "Disconnecting peer due to a protocol error (usually a duplicate connection).");
1268                                 self.disconnect_event_internal(peer_descriptor);
1269                                 Err(e)
1270                         }
1271                 }
1272         }
1273
1274         /// Append a message to a peer's pending outbound/write buffer
1275         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1276                 let logger = WithContext::from(&self.logger, peer.their_node_id.map(|p| p.0), None);
1277                 if is_gossip_msg(message.type_id()) {
1278                         log_gossip!(logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1279                 } else {
1280                         log_trace!(logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1281                 }
1282                 peer.msgs_sent_since_pong += 1;
1283                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1284         }
1285
1286         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1287         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: MessageBuf) {
1288                 peer.msgs_sent_since_pong += 1;
1289                 debug_assert!(peer.gossip_broadcast_buffer.len() <= OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP);
1290                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1291         }
1292
1293         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1294                 let mut pause_read = false;
1295                 let peers = self.peers.read().unwrap();
1296                 let mut msgs_to_forward = Vec::new();
1297                 let mut peer_node_id = None;
1298                 match peers.get(peer_descriptor) {
1299                         None => {
1300                                 // This is most likely a simple race condition where the user read some bytes
1301                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1302                                 // called this method. Return an error to make sure we get disconnected.
1303                                 return Err(PeerHandleError { });
1304                         },
1305                         Some(peer_mutex) => {
1306                                 let mut read_pos = 0;
1307                                 while read_pos < data.len() {
1308                                         macro_rules! try_potential_handleerror {
1309                                                 ($peer: expr, $thing: expr) => {{
1310                                                         let res = $thing;
1311                                                         let logger = WithContext::from(&self.logger, peer_node_id.map(|(id, _)| id), None);
1312                                                         match res {
1313                                                                 Ok(x) => x,
1314                                                                 Err(e) => {
1315                                                                         match e.action {
1316                                                                                 msgs::ErrorAction::DisconnectPeer { .. } => {
1317                                                                                         // We may have an `ErrorMessage` to send to the peer,
1318                                                                                         // but writing to the socket while reading can lead to
1319                                                                                         // re-entrant code and possibly unexpected behavior. The
1320                                                                                         // message send is optimistic anyway, and in this case
1321                                                                                         // we immediately disconnect the peer.
1322                                                                                         log_debug!(logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1323                                                                                         return Err(PeerHandleError { });
1324                                                                                 },
1325                                                                                 msgs::ErrorAction::DisconnectPeerWithWarning { .. } => {
1326                                                                                         // We have a `WarningMessage` to send to the peer, but
1327                                                                                         // writing to the socket while reading can lead to
1328                                                                                         // re-entrant code and possibly unexpected behavior. The
1329                                                                                         // message send is optimistic anyway, and in this case
1330                                                                                         // we immediately disconnect the peer.
1331                                                                                         log_debug!(logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1332                                                                                         return Err(PeerHandleError { });
1333                                                                                 },
1334                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1335                                                                                         log_given_level!(logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1336                                                                                         continue
1337                                                                                 },
1338                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1339                                                                                 msgs::ErrorAction::IgnoreError => {
1340                                                                                         log_debug!(logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1341                                                                                         continue;
1342                                                                                 },
1343                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1344                                                                                         log_debug!(logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1345                                                                                         self.enqueue_message($peer, &msg);
1346                                                                                         continue;
1347                                                                                 },
1348                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1349                                                                                         log_given_level!(logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1350                                                                                         self.enqueue_message($peer, &msg);
1351                                                                                         continue;
1352                                                                                 },
1353                                                                         }
1354                                                                 }
1355                                                         }
1356                                                 }}
1357                                         }
1358
1359                                         let mut peer_lock = peer_mutex.lock().unwrap();
1360                                         let peer = &mut *peer_lock;
1361                                         let mut msg_to_handle = None;
1362                                         if peer_node_id.is_none() {
1363                                                 peer_node_id = peer.their_node_id.clone();
1364                                         }
1365
1366                                         assert!(peer.pending_read_buffer.len() > 0);
1367                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1368
1369                                         {
1370                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1371                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1372                                                 read_pos += data_to_copy;
1373                                                 peer.pending_read_buffer_pos += data_to_copy;
1374                                         }
1375
1376                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1377                                                 peer.pending_read_buffer_pos = 0;
1378
1379                                                 macro_rules! insert_node_id {
1380                                                         () => {
1381                                                                 let logger = WithContext::from(&self.logger, peer.their_node_id.map(|p| p.0), None);
1382                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1383                                                                         hash_map::Entry::Occupied(e) => {
1384                                                                                 log_trace!(logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1385                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1386                                                                                 // Check that the peers map is consistent with the
1387                                                                                 // node_id_to_descriptor map, as this has been broken
1388                                                                                 // before.
1389                                                                                 debug_assert!(peers.get(e.get()).is_some());
1390                                                                                 return Err(PeerHandleError { })
1391                                                                         },
1392                                                                         hash_map::Entry::Vacant(entry) => {
1393                                                                                 log_debug!(logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1394                                                                                 entry.insert(peer_descriptor.clone())
1395                                                                         },
1396                                                                 };
1397                                                         }
1398                                                 }
1399
1400                                                 let next_step = peer.channel_encryptor.get_noise_step();
1401                                                 match next_step {
1402                                                         NextNoiseStep::ActOne => {
1403                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1404                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1405                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1406                                                                 peer.pending_outbound_buffer.push_back(act_two);
1407                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1408                                                         },
1409                                                         NextNoiseStep::ActTwo => {
1410                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1411                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1412                                                                                 &self.node_signer));
1413                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1414                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1415                                                                 peer.pending_read_is_header = true;
1416
1417                                                                 peer.set_their_node_id(their_node_id);
1418                                                                 insert_node_id!();
1419                                                                 let features = self.init_features(&their_node_id);
1420                                                                 let networks = self.message_handler.chan_handler.get_chain_hashes();
1421                                                                 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_socket_address.clone()) };
1422                                                                 self.enqueue_message(peer, &resp);
1423                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1424                                                         },
1425                                                         NextNoiseStep::ActThree => {
1426                                                                 let their_node_id = try_potential_handleerror!(peer,
1427                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1428                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1429                                                                 peer.pending_read_is_header = true;
1430                                                                 peer.set_their_node_id(their_node_id);
1431                                                                 insert_node_id!();
1432                                                                 let features = self.init_features(&their_node_id);
1433                                                                 let networks = self.message_handler.chan_handler.get_chain_hashes();
1434                                                                 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_socket_address.clone()) };
1435                                                                 self.enqueue_message(peer, &resp);
1436                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1437                                                         },
1438                                                         NextNoiseStep::NoiseComplete => {
1439                                                                 if peer.pending_read_is_header {
1440                                                                         let msg_len = try_potential_handleerror!(peer,
1441                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1442                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1443                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1444                                                                         if msg_len < 2 { // Need at least the message type tag
1445                                                                                 return Err(PeerHandleError { });
1446                                                                         }
1447                                                                         peer.pending_read_is_header = false;
1448                                                                 } else {
1449                                                                         debug_assert!(peer.pending_read_buffer.len() >= 2 + 16);
1450                                                                         try_potential_handleerror!(peer,
1451                                                                                 peer.channel_encryptor.decrypt_message(&mut peer.pending_read_buffer[..]));
1452
1453                                                                         let mut reader = io::Cursor::new(&peer.pending_read_buffer[..peer.pending_read_buffer.len() - 16]);
1454                                                                         let message_result = wire::read(&mut reader, &*self.message_handler.custom_message_handler);
1455
1456                                                                         // Reset read buffer
1457                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1458                                                                         peer.pending_read_buffer.resize(18, 0);
1459                                                                         peer.pending_read_is_header = true;
1460
1461                                                                         let logger = WithContext::from(&self.logger, peer.their_node_id.map(|p| p.0), None);
1462                                                                         let message = match message_result {
1463                                                                                 Ok(x) => x,
1464                                                                                 Err(e) => {
1465                                                                                         match e {
1466                                                                                                 // Note that to avoid re-entrancy we never call
1467                                                                                                 // `do_attempt_write_data` from here, causing
1468                                                                                                 // the messages enqueued here to not actually
1469                                                                                                 // be sent before the peer is disconnected.
1470                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1471                                                                                                         log_gossip!(logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1472                                                                                                         continue;
1473                                                                                                 }
1474                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1475                                                                                                         log_gossip!(logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1476                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: ChannelId::new_zero(), data: "Unsupported message compression: zlib".to_owned() });
1477                                                                                                         continue;
1478                                                                                                 }
1479                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1480                                                                                                         log_gossip!(logger, "Got an invalid value while deserializing a gossip message");
1481                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1482                                                                                                                 channel_id: ChannelId::new_zero(),
1483                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1484                                                                                                         });
1485                                                                                                         continue;
1486                                                                                                 }
1487                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, _) => {
1488                                                                                                         log_debug!(logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1489                                                                                                         return Err(PeerHandleError { });
1490                                                                                                 }
1491                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1492                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1493                                                                                                         log_debug!(logger, "Got an invalid value while deserializing message");
1494                                                                                                         return Err(PeerHandleError { });
1495                                                                                                 }
1496                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1497                                                                                                         log_debug!(logger, "Deserialization failed due to shortness of message");
1498                                                                                                         return Err(PeerHandleError { });
1499                                                                                                 }
1500                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1501                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1502                                                                                         }
1503                                                                                 }
1504                                                                         };
1505
1506                                                                         msg_to_handle = Some(message);
1507                                                                 }
1508                                                         }
1509                                                 }
1510                                         }
1511                                         pause_read = !self.peer_should_read(peer);
1512
1513                                         if let Some(message) = msg_to_handle {
1514                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1515                                                         Err(handling_error) => match handling_error {
1516                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1517                                                                 MessageHandlingError::LightningError(e) => {
1518                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1519                                                                 },
1520                                                         },
1521                                                         Ok(Some(msg)) => {
1522                                                                 msgs_to_forward.push(msg);
1523                                                         },
1524                                                         Ok(None) => {},
1525                                                 }
1526                                         }
1527                                 }
1528                         }
1529                 }
1530
1531                 for msg in msgs_to_forward.drain(..) {
1532                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1533                 }
1534
1535                 Ok(pause_read)
1536         }
1537
1538         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1539         /// Returns the message back if it needs to be broadcasted to all other peers.
1540         fn handle_message(
1541                 &self,
1542                 peer_mutex: &Mutex<Peer>,
1543                 mut peer_lock: MutexGuard<Peer>,
1544                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1545         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1546                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1547                 let logger = WithContext::from(&self.logger, Some(their_node_id), None);
1548                 peer_lock.received_message_since_timer_tick = true;
1549
1550                 // Need an Init as first message
1551                 if let wire::Message::Init(msg) = message {
1552                         // Check if we have any compatible chains if the `networks` field is specified.
1553                         if let Some(networks) = &msg.networks {
1554                                 if let Some(our_chains) = self.message_handler.chan_handler.get_chain_hashes() {
1555                                         let mut have_compatible_chains = false;
1556                                         'our_chains: for our_chain in our_chains.iter() {
1557                                                 for their_chain in networks {
1558                                                         if our_chain == their_chain {
1559                                                                 have_compatible_chains = true;
1560                                                                 break 'our_chains;
1561                                                         }
1562                                                 }
1563                                         }
1564                                         if !have_compatible_chains {
1565                                                 log_debug!(logger, "Peer does not support any of our supported chains");
1566                                                 return Err(PeerHandleError { }.into());
1567                                         }
1568                                 }
1569                         }
1570
1571                         let our_features = self.init_features(&their_node_id);
1572                         if msg.features.requires_unknown_bits_from(&our_features) {
1573                                 log_debug!(logger, "Peer requires features unknown to us");
1574                                 return Err(PeerHandleError { }.into());
1575                         }
1576
1577                         if our_features.requires_unknown_bits_from(&msg.features) {
1578                                 log_debug!(logger, "We require features unknown to our peer");
1579                                 return Err(PeerHandleError { }.into());
1580                         }
1581
1582                         if peer_lock.their_features.is_some() {
1583                                 return Err(PeerHandleError { }.into());
1584                         }
1585
1586                         log_info!(logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1587
1588                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1589                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1590                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1591                         }
1592
1593                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1594                                 log_debug!(logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1595                                 return Err(PeerHandleError { }.into());
1596                         }
1597                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1598                                 log_debug!(logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1599                                 return Err(PeerHandleError { }.into());
1600                         }
1601                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1602                                 log_debug!(logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1603                                 return Err(PeerHandleError { }.into());
1604                         }
1605
1606                         peer_lock.their_features = Some(msg.features);
1607                         return Ok(None);
1608                 } else if peer_lock.their_features.is_none() {
1609                         log_debug!(logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1610                         return Err(PeerHandleError { }.into());
1611                 }
1612
1613                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1614                         // When supporting gossip messages, start initial gossip sync only after we receive
1615                         // a GossipTimestampFilter
1616                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1617                                 !peer_lock.sent_gossip_timestamp_filter {
1618                                 peer_lock.sent_gossip_timestamp_filter = true;
1619                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1620                         }
1621                         return Ok(None);
1622                 }
1623
1624                 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1625                         peer_lock.received_channel_announce_since_backlogged = true;
1626                 }
1627
1628                 mem::drop(peer_lock);
1629
1630                 if is_gossip_msg(message.type_id()) {
1631                         log_gossip!(logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1632                 } else {
1633                         log_trace!(logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1634                 }
1635
1636                 let mut should_forward = None;
1637
1638                 match message {
1639                         // Setup and Control messages:
1640                         wire::Message::Init(_) => {
1641                                 // Handled above
1642                         },
1643                         wire::Message::GossipTimestampFilter(_) => {
1644                                 // Handled above
1645                         },
1646                         wire::Message::Error(msg) => {
1647                                 log_debug!(logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1648                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1649                                 if msg.channel_id.is_zero() {
1650                                         return Err(PeerHandleError { }.into());
1651                                 }
1652                         },
1653                         wire::Message::Warning(msg) => {
1654                                 log_debug!(logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1655                         },
1656
1657                         wire::Message::Ping(msg) => {
1658                                 if msg.ponglen < 65532 {
1659                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1660                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1661                                 }
1662                         },
1663                         wire::Message::Pong(_msg) => {
1664                                 let mut peer_lock = peer_mutex.lock().unwrap();
1665                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1666                                 peer_lock.msgs_sent_since_pong = 0;
1667                         },
1668
1669                         // Channel messages:
1670                         wire::Message::OpenChannel(msg) => {
1671                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1672                         },
1673                         wire::Message::OpenChannelV2(msg) => {
1674                                 self.message_handler.chan_handler.handle_open_channel_v2(&their_node_id, &msg);
1675                         },
1676                         wire::Message::AcceptChannel(msg) => {
1677                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1678                         },
1679                         wire::Message::AcceptChannelV2(msg) => {
1680                                 self.message_handler.chan_handler.handle_accept_channel_v2(&their_node_id, &msg);
1681                         },
1682
1683                         wire::Message::FundingCreated(msg) => {
1684                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1685                         },
1686                         wire::Message::FundingSigned(msg) => {
1687                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1688                         },
1689                         wire::Message::ChannelReady(msg) => {
1690                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1691                         },
1692
1693                         // Quiescence messages:
1694                         wire::Message::Stfu(msg) => {
1695                                 self.message_handler.chan_handler.handle_stfu(&their_node_id, &msg);
1696                         }
1697
1698                         // Splicing messages:
1699                         wire::Message::Splice(msg) => {
1700                                 self.message_handler.chan_handler.handle_splice(&their_node_id, &msg);
1701                         }
1702                         wire::Message::SpliceAck(msg) => {
1703                                 self.message_handler.chan_handler.handle_splice_ack(&their_node_id, &msg);
1704                         }
1705                         wire::Message::SpliceLocked(msg) => {
1706                                 self.message_handler.chan_handler.handle_splice_locked(&their_node_id, &msg);
1707                         }
1708
1709                         // Interactive transaction construction messages:
1710                         wire::Message::TxAddInput(msg) => {
1711                                 self.message_handler.chan_handler.handle_tx_add_input(&their_node_id, &msg);
1712                         },
1713                         wire::Message::TxAddOutput(msg) => {
1714                                 self.message_handler.chan_handler.handle_tx_add_output(&their_node_id, &msg);
1715                         },
1716                         wire::Message::TxRemoveInput(msg) => {
1717                                 self.message_handler.chan_handler.handle_tx_remove_input(&their_node_id, &msg);
1718                         },
1719                         wire::Message::TxRemoveOutput(msg) => {
1720                                 self.message_handler.chan_handler.handle_tx_remove_output(&their_node_id, &msg);
1721                         },
1722                         wire::Message::TxComplete(msg) => {
1723                                 self.message_handler.chan_handler.handle_tx_complete(&their_node_id, &msg);
1724                         },
1725                         wire::Message::TxSignatures(msg) => {
1726                                 self.message_handler.chan_handler.handle_tx_signatures(&their_node_id, &msg);
1727                         },
1728                         wire::Message::TxInitRbf(msg) => {
1729                                 self.message_handler.chan_handler.handle_tx_init_rbf(&their_node_id, &msg);
1730                         },
1731                         wire::Message::TxAckRbf(msg) => {
1732                                 self.message_handler.chan_handler.handle_tx_ack_rbf(&their_node_id, &msg);
1733                         },
1734                         wire::Message::TxAbort(msg) => {
1735                                 self.message_handler.chan_handler.handle_tx_abort(&their_node_id, &msg);
1736                         }
1737
1738                         wire::Message::Shutdown(msg) => {
1739                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1740                         },
1741                         wire::Message::ClosingSigned(msg) => {
1742                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1743                         },
1744
1745                         // Commitment messages:
1746                         wire::Message::UpdateAddHTLC(msg) => {
1747                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1748                         },
1749                         wire::Message::UpdateFulfillHTLC(msg) => {
1750                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1751                         },
1752                         wire::Message::UpdateFailHTLC(msg) => {
1753                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1754                         },
1755                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1756                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1757                         },
1758
1759                         wire::Message::CommitmentSigned(msg) => {
1760                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1761                         },
1762                         wire::Message::RevokeAndACK(msg) => {
1763                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1764                         },
1765                         wire::Message::UpdateFee(msg) => {
1766                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1767                         },
1768                         wire::Message::ChannelReestablish(msg) => {
1769                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1770                         },
1771
1772                         // Routing messages:
1773                         wire::Message::AnnouncementSignatures(msg) => {
1774                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1775                         },
1776                         wire::Message::ChannelAnnouncement(msg) => {
1777                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1778                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1779                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1780                                 }
1781                                 self.update_gossip_backlogged();
1782                         },
1783                         wire::Message::NodeAnnouncement(msg) => {
1784                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1785                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1786                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1787                                 }
1788                                 self.update_gossip_backlogged();
1789                         },
1790                         wire::Message::ChannelUpdate(msg) => {
1791                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1792                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1793                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1794                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1795                                 }
1796                                 self.update_gossip_backlogged();
1797                         },
1798                         wire::Message::QueryShortChannelIds(msg) => {
1799                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1800                         },
1801                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1802                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1803                         },
1804                         wire::Message::QueryChannelRange(msg) => {
1805                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1806                         },
1807                         wire::Message::ReplyChannelRange(msg) => {
1808                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1809                         },
1810
1811                         // Onion message:
1812                         wire::Message::OnionMessage(msg) => {
1813                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1814                         },
1815
1816                         // Unknown messages:
1817                         wire::Message::Unknown(type_id) if message.is_even() => {
1818                                 log_debug!(logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1819                                 return Err(PeerHandleError { }.into());
1820                         },
1821                         wire::Message::Unknown(type_id) => {
1822                                 log_trace!(logger, "Received unknown odd message of type {}, ignoring", type_id);
1823                         },
1824                         wire::Message::Custom(custom) => {
1825                                 self.message_handler.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1826                         },
1827                 };
1828                 Ok(should_forward)
1829         }
1830
1831         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1832                 match msg {
1833                         wire::Message::ChannelAnnouncement(ref msg) => {
1834                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1835                                 let encoded_msg = encode_msg!(msg);
1836
1837                                 for (_, peer_mutex) in peers.iter() {
1838                                         let mut peer = peer_mutex.lock().unwrap();
1839                                         if !peer.handshake_complete() ||
1840                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1841                                                 continue
1842                                         }
1843                                         debug_assert!(peer.their_node_id.is_some());
1844                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1845                                         let logger = WithContext::from(&self.logger, peer.their_node_id.map(|p| p.0), None);
1846                                         if peer.buffer_full_drop_gossip_broadcast() {
1847                                                 log_gossip!(logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1848                                                 continue;
1849                                         }
1850                                         if let Some((_, their_node_id)) = peer.their_node_id {
1851                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1852                                                         continue;
1853                                                 }
1854                                         }
1855                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1856                                                 continue;
1857                                         }
1858                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, MessageBuf::from_encoded(&encoded_msg));
1859                                 }
1860                         },
1861                         wire::Message::NodeAnnouncement(ref msg) => {
1862                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1863                                 let encoded_msg = encode_msg!(msg);
1864
1865                                 for (_, peer_mutex) in peers.iter() {
1866                                         let mut peer = peer_mutex.lock().unwrap();
1867                                         if !peer.handshake_complete() ||
1868                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1869                                                 continue
1870                                         }
1871                                         debug_assert!(peer.their_node_id.is_some());
1872                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1873                                         let logger = WithContext::from(&self.logger, peer.their_node_id.map(|p| p.0), None);
1874                                         if peer.buffer_full_drop_gossip_broadcast() {
1875                                                 log_gossip!(logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1876                                                 continue;
1877                                         }
1878                                         if let Some((_, their_node_id)) = peer.their_node_id {
1879                                                 if their_node_id == msg.contents.node_id {
1880                                                         continue;
1881                                                 }
1882                                         }
1883                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1884                                                 continue;
1885                                         }
1886                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, MessageBuf::from_encoded(&encoded_msg));
1887                                 }
1888                         },
1889                         wire::Message::ChannelUpdate(ref msg) => {
1890                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1891                                 let encoded_msg = encode_msg!(msg);
1892
1893                                 for (_, peer_mutex) in peers.iter() {
1894                                         let mut peer = peer_mutex.lock().unwrap();
1895                                         if !peer.handshake_complete() ||
1896                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1897                                                 continue
1898                                         }
1899                                         debug_assert!(peer.their_node_id.is_some());
1900                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1901                                         let logger = WithContext::from(&self.logger, peer.their_node_id.map(|p| p.0), None);
1902                                         if peer.buffer_full_drop_gossip_broadcast() {
1903                                                 log_gossip!(logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1904                                                 continue;
1905                                         }
1906                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1907                                                 continue;
1908                                         }
1909                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, MessageBuf::from_encoded(&encoded_msg));
1910                                 }
1911                         },
1912                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1913                 }
1914         }
1915
1916         /// Checks for any events generated by our handlers and processes them. Includes sending most
1917         /// response messages as well as messages generated by calls to handler functions directly (eg
1918         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1919         ///
1920         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1921         /// issues!
1922         ///
1923         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1924         /// or one of the other clients provided in our language bindings.
1925         ///
1926         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1927         /// without doing any work. All available events that need handling will be handled before the
1928         /// other calls return.
1929         ///
1930         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1931         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1932         /// [`send_data`]: SocketDescriptor::send_data
1933         pub fn process_events(&self) {
1934                 if self.event_processing_state.fetch_add(1, Ordering::AcqRel) > 0 {
1935                         // If we're not the first event processor to get here, just return early, the increment
1936                         // we just did will be treated as "go around again" at the end.
1937                         return;
1938                 }
1939
1940                 loop {
1941                         self.update_gossip_backlogged();
1942                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1943
1944                         let mut peers_to_disconnect = HashMap::new();
1945
1946                         {
1947                                 let peers_lock = self.peers.read().unwrap();
1948
1949                                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1950                                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1951
1952                                 let peers = &*peers_lock;
1953                                 macro_rules! get_peer_for_forwarding {
1954                                         ($node_id: expr) => {
1955                                                 {
1956                                                         if peers_to_disconnect.get($node_id).is_some() {
1957                                                                 // If we've "disconnected" this peer, do not send to it.
1958                                                                 continue;
1959                                                         }
1960                                                         let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1961                                                         match descriptor_opt {
1962                                                                 Some(descriptor) => match peers.get(&descriptor) {
1963                                                                         Some(peer_mutex) => {
1964                                                                                 let peer_lock = peer_mutex.lock().unwrap();
1965                                                                                 if !peer_lock.handshake_complete() {
1966                                                                                         continue;
1967                                                                                 }
1968                                                                                 peer_lock
1969                                                                         },
1970                                                                         None => {
1971                                                                                 debug_assert!(false, "Inconsistent peers set state!");
1972                                                                                 continue;
1973                                                                         }
1974                                                                 },
1975                                                                 None => {
1976                                                                         continue;
1977                                                                 },
1978                                                         }
1979                                                 }
1980                                         }
1981                                 }
1982                                 for event in events_generated.drain(..) {
1983                                         match event {
1984                                                 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1985                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.temporary_channel_id)), "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1986                                                                         log_pubkey!(node_id),
1987                                                                         &msg.temporary_channel_id);
1988                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1989                                                 },
1990                                                 MessageSendEvent::SendAcceptChannelV2 { ref node_id, ref msg } => {
1991                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.temporary_channel_id)), "Handling SendAcceptChannelV2 event in peer_handler for node {} for channel {}",
1992                                                                         log_pubkey!(node_id),
1993                                                                         &msg.temporary_channel_id);
1994                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1995                                                 },
1996                                                 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1997                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.temporary_channel_id)), "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1998                                                                         log_pubkey!(node_id),
1999                                                                         &msg.temporary_channel_id);
2000                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2001                                                 },
2002                                                 MessageSendEvent::SendOpenChannelV2 { ref node_id, ref msg } => {
2003                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.temporary_channel_id)), "Handling SendOpenChannelV2 event in peer_handler for node {} for channel {}",
2004                                                                         log_pubkey!(node_id),
2005                                                                         &msg.temporary_channel_id);
2006                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2007                                                 },
2008                                                 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
2009                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.temporary_channel_id)), "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
2010                                                                         log_pubkey!(node_id),
2011                                                                         &msg.temporary_channel_id,
2012                                                                         log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
2013                                                         // TODO: If the peer is gone we should generate a DiscardFunding event
2014                                                         // indicating to the wallet that they should just throw away this funding transaction
2015                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2016                                                 },
2017                                                 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
2018                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
2019                                                                         log_pubkey!(node_id),
2020                                                                         &msg.channel_id);
2021                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2022                                                 },
2023                                                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
2024                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendChannelReady event in peer_handler for node {} for channel {}",
2025                                                                         log_pubkey!(node_id),
2026                                                                         &msg.channel_id);
2027                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2028                                                 },
2029                                                 MessageSendEvent::SendStfu { ref node_id, ref msg} => {
2030                                                         let logger = WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id));
2031                                                         log_debug!(logger, "Handling SendStfu event in peer_handler for node {} for channel {}",
2032                                                                         log_pubkey!(node_id),
2033                                                                         &msg.channel_id);
2034                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2035                                                 }
2036                                                 MessageSendEvent::SendSplice { ref node_id, ref msg} => {
2037                                                         let logger = WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id));
2038                                                         log_debug!(logger, "Handling SendSplice event in peer_handler for node {} for channel {}",
2039                                                                         log_pubkey!(node_id),
2040                                                                         &msg.channel_id);
2041                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2042                                                 }
2043                                                 MessageSendEvent::SendSpliceAck { ref node_id, ref msg} => {
2044                                                         let logger = WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id));
2045                                                         log_debug!(logger, "Handling SendSpliceAck event in peer_handler for node {} for channel {}",
2046                                                                         log_pubkey!(node_id),
2047                                                                         &msg.channel_id);
2048                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2049                                                 }
2050                                                 MessageSendEvent::SendSpliceLocked { ref node_id, ref msg} => {
2051                                                         let logger = WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id));
2052                                                         log_debug!(logger, "Handling SendSpliceLocked event in peer_handler for node {} for channel {}",
2053                                                                         log_pubkey!(node_id),
2054                                                                         &msg.channel_id);
2055                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2056                                                 }
2057                                                 MessageSendEvent::SendTxAddInput { ref node_id, ref msg } => {
2058                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxAddInput event in peer_handler for node {} for channel {}",
2059                                                                         log_pubkey!(node_id),
2060                                                                         &msg.channel_id);
2061                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2062                                                 },
2063                                                 MessageSendEvent::SendTxAddOutput { ref node_id, ref msg } => {
2064                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxAddOutput event in peer_handler for node {} for channel {}",
2065                                                                         log_pubkey!(node_id),
2066                                                                         &msg.channel_id);
2067                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2068                                                 },
2069                                                 MessageSendEvent::SendTxRemoveInput { ref node_id, ref msg } => {
2070                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxRemoveInput event in peer_handler for node {} for channel {}",
2071                                                                         log_pubkey!(node_id),
2072                                                                         &msg.channel_id);
2073                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2074                                                 },
2075                                                 MessageSendEvent::SendTxRemoveOutput { ref node_id, ref msg } => {
2076                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxRemoveOutput event in peer_handler for node {} for channel {}",
2077                                                                         log_pubkey!(node_id),
2078                                                                         &msg.channel_id);
2079                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2080                                                 },
2081                                                 MessageSendEvent::SendTxComplete { ref node_id, ref msg } => {
2082                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxComplete event in peer_handler for node {} for channel {}",
2083                                                                         log_pubkey!(node_id),
2084                                                                         &msg.channel_id);
2085                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2086                                                 },
2087                                                 MessageSendEvent::SendTxSignatures { ref node_id, ref msg } => {
2088                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxSignatures event in peer_handler for node {} for channel {}",
2089                                                                         log_pubkey!(node_id),
2090                                                                         &msg.channel_id);
2091                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2092                                                 },
2093                                                 MessageSendEvent::SendTxInitRbf { ref node_id, ref msg } => {
2094                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxInitRbf event in peer_handler for node {} for channel {}",
2095                                                                         log_pubkey!(node_id),
2096                                                                         &msg.channel_id);
2097                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2098                                                 },
2099                                                 MessageSendEvent::SendTxAckRbf { ref node_id, ref msg } => {
2100                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxAckRbf event in peer_handler for node {} for channel {}",
2101                                                                         log_pubkey!(node_id),
2102                                                                         &msg.channel_id);
2103                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2104                                                 },
2105                                                 MessageSendEvent::SendTxAbort { ref node_id, ref msg } => {
2106                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendTxAbort event in peer_handler for node {} for channel {}",
2107                                                                         log_pubkey!(node_id),
2108                                                                         &msg.channel_id);
2109                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2110                                                 },
2111                                                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
2112                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
2113                                                                         log_pubkey!(node_id),
2114                                                                         &msg.channel_id);
2115                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2116                                                 },
2117                                                 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
2118                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(commitment_signed.channel_id)), "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
2119                                                                         log_pubkey!(node_id),
2120                                                                         update_add_htlcs.len(),
2121                                                                         update_fulfill_htlcs.len(),
2122                                                                         update_fail_htlcs.len(),
2123                                                                         &commitment_signed.channel_id);
2124                                                         let mut peer = get_peer_for_forwarding!(node_id);
2125                                                         for msg in update_add_htlcs {
2126                                                                 self.enqueue_message(&mut *peer, msg);
2127                                                         }
2128                                                         for msg in update_fulfill_htlcs {
2129                                                                 self.enqueue_message(&mut *peer, msg);
2130                                                         }
2131                                                         for msg in update_fail_htlcs {
2132                                                                 self.enqueue_message(&mut *peer, msg);
2133                                                         }
2134                                                         for msg in update_fail_malformed_htlcs {
2135                                                                 self.enqueue_message(&mut *peer, msg);
2136                                                         }
2137                                                         if let &Some(ref msg) = update_fee {
2138                                                                 self.enqueue_message(&mut *peer, msg);
2139                                                         }
2140                                                         self.enqueue_message(&mut *peer, commitment_signed);
2141                                                 },
2142                                                 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
2143                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
2144                                                                         log_pubkey!(node_id),
2145                                                                         &msg.channel_id);
2146                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2147                                                 },
2148                                                 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
2149                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
2150                                                                         log_pubkey!(node_id),
2151                                                                         &msg.channel_id);
2152                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2153                                                 },
2154                                                 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
2155                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling Shutdown event in peer_handler for node {} for channel {}",
2156                                                                         log_pubkey!(node_id),
2157                                                                         &msg.channel_id);
2158                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2159                                                 },
2160                                                 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
2161                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), Some(msg.channel_id)), "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
2162                                                                         log_pubkey!(node_id),
2163                                                                         &msg.channel_id);
2164                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2165                                                 },
2166                                                 MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
2167                                                         log_debug!(WithContext::from(&self.logger, Some(*node_id), None), "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
2168                                                                         log_pubkey!(node_id),
2169                                                                         msg.contents.short_channel_id);
2170                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2171                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
2172                                                 },
2173                                                 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
2174                                                         log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2175                                                         match self.message_handler.route_handler.handle_channel_announcement(&msg) {
2176                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2177                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
2178                                                                 _ => {},
2179                                                         }
2180                                                         if let Some(msg) = update_msg {
2181                                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
2182                                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2183                                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2184                                                                         _ => {},
2185                                                                 }
2186                                                         }
2187                                                 },
2188                                                 MessageSendEvent::BroadcastChannelUpdate { msg } => {
2189                                                         log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for contents {:?}", msg.contents);
2190                                                         match self.message_handler.route_handler.handle_channel_update(&msg) {
2191                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2192                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2193                                                                 _ => {},
2194                                                         }
2195                                                 },
2196                                                 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
2197                                                         log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
2198                                                         match self.message_handler.route_handler.handle_node_announcement(&msg) {
2199                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2200                                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
2201                                                                 _ => {},
2202                                                         }
2203                                                 },
2204                                                 MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
2205                                                         log_trace!(WithContext::from(&self.logger, Some(*node_id), None), "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
2206                                                                         log_pubkey!(node_id), msg.contents.short_channel_id);
2207                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2208                                                 },
2209                                                 MessageSendEvent::HandleError { node_id, action } => {
2210                                                         let logger = WithContext::from(&self.logger, Some(node_id), None);
2211                                                         match action {
2212                                                                 msgs::ErrorAction::DisconnectPeer { msg } => {
2213                                                                         if let Some(msg) = msg.as_ref() {
2214                                                                                 log_trace!(logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2215                                                                                         log_pubkey!(node_id), msg.data);
2216                                                                         } else {
2217                                                                                 log_trace!(logger, "Handling DisconnectPeer HandleError event in peer_handler for node {}",
2218                                                                                         log_pubkey!(node_id));
2219                                                                         }
2220                                                                         // We do not have the peers write lock, so we just store that we're
2221                                                                         // about to disconnect the peer and do it after we finish
2222                                                                         // processing most messages.
2223                                                                         let msg = msg.map(|msg| wire::Message::<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>::Error(msg));
2224                                                                         peers_to_disconnect.insert(node_id, msg);
2225                                                                 },
2226                                                                 msgs::ErrorAction::DisconnectPeerWithWarning { msg } => {
2227                                                                         log_trace!(logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2228                                                                                 log_pubkey!(node_id), msg.data);
2229                                                                         // We do not have the peers write lock, so we just store that we're
2230                                                                         // about to disconnect the peer and do it after we finish
2231                                                                         // processing most messages.
2232                                                                         peers_to_disconnect.insert(node_id, Some(wire::Message::Warning(msg)));
2233                                                                 },
2234                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
2235                                                                         log_given_level!(logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2236                                                                 },
2237                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => {},
2238                                                                 msgs::ErrorAction::IgnoreError => {
2239                                                                                 log_debug!(logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2240                                                                         },
2241                                                                 msgs::ErrorAction::SendErrorMessage { ref msg } => {
2242                                                                         log_trace!(logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
2243                                                                                         log_pubkey!(node_id),
2244                                                                                         msg.data);
2245                                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2246                                                                 },
2247                                                                 msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
2248                                                                         log_given_level!(logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
2249                                                                                         log_pubkey!(node_id),
2250                                                                                         msg.data);
2251                                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2252                                                                 },
2253                                                         }
2254                                                 },
2255                                                 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
2256                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2257                                                 },
2258                                                 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
2259                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2260                                                 }
2261                                                 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
2262                                                         log_gossip!(WithContext::from(&self.logger, Some(*node_id), None), "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
2263                                                                 log_pubkey!(node_id),
2264                                                                 msg.short_channel_ids.len(),
2265                                                                 msg.first_blocknum,
2266                                                                 msg.number_of_blocks,
2267                                                                 msg.sync_complete);
2268                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2269                                                 }
2270                                                 MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
2271                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2272                                                 }
2273                                         }
2274                                 }
2275
2276                                 for (node_id, msg) in self.message_handler.custom_message_handler.get_and_clear_pending_msg() {
2277                                         if peers_to_disconnect.get(&node_id).is_some() { continue; }
2278                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
2279                                 }
2280
2281                                 for (descriptor, peer_mutex) in peers.iter() {
2282                                         let mut peer = peer_mutex.lock().unwrap();
2283                                         if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2284                                         self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
2285                                 }
2286                         }
2287                         if !peers_to_disconnect.is_empty() {
2288                                 let mut peers_lock = self.peers.write().unwrap();
2289                                 let peers = &mut *peers_lock;
2290                                 for (node_id, msg) in peers_to_disconnect.drain() {
2291                                         // Note that since we are holding the peers *write* lock we can
2292                                         // remove from node_id_to_descriptor immediately (as no other
2293                                         // thread can be holding the peer lock if we have the global write
2294                                         // lock).
2295
2296                                         let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2297                                         if let Some(mut descriptor) = descriptor_opt {
2298                                                 if let Some(peer_mutex) = peers.remove(&descriptor) {
2299                                                         let mut peer = peer_mutex.lock().unwrap();
2300                                                         if let Some(msg) = msg {
2301                                                                 self.enqueue_message(&mut *peer, &msg);
2302                                                                 // This isn't guaranteed to work, but if there is enough free
2303                                                                 // room in the send buffer, put the error message there...
2304                                                                 self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
2305                                                         }
2306                                                         self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
2307                                                 } else { debug_assert!(false, "Missing connection for peer"); }
2308                                         }
2309                                 }
2310                         }
2311
2312                         if self.event_processing_state.fetch_sub(1, Ordering::AcqRel) != 1 {
2313                                 // If another thread incremented the state while we were running we should go
2314                                 // around again, but only once.
2315                                 self.event_processing_state.store(1, Ordering::Release);
2316                                 continue;
2317                         }
2318                         break;
2319                 }
2320         }
2321
2322         /// Indicates that the given socket descriptor's connection is now closed.
2323         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
2324                 self.disconnect_event_internal(descriptor);
2325         }
2326
2327         fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
2328                 if !peer.handshake_complete() {
2329                         log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
2330                         descriptor.disconnect_socket();
2331                         return;
2332                 }
2333
2334                 debug_assert!(peer.their_node_id.is_some());
2335                 if let Some((node_id, _)) = peer.their_node_id {
2336                         log_trace!(WithContext::from(&self.logger, Some(node_id), None), "Disconnecting peer with id {} due to {}", node_id, reason);
2337                         self.message_handler.chan_handler.peer_disconnected(&node_id);
2338                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2339                 }
2340                 descriptor.disconnect_socket();
2341         }
2342
2343         fn disconnect_event_internal(&self, descriptor: &Descriptor) {
2344                 let mut peers = self.peers.write().unwrap();
2345                 let peer_option = peers.remove(descriptor);
2346                 match peer_option {
2347                         None => {
2348                                 // This is most likely a simple race condition where the user found that the socket
2349                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
2350                                 // called this method. Either way we're disconnected, return.
2351                         },
2352                         Some(peer_lock) => {
2353                                 let peer = peer_lock.lock().unwrap();
2354                                 if let Some((node_id, _)) = peer.their_node_id {
2355                                         log_trace!(WithContext::from(&self.logger, Some(node_id), None), "Handling disconnection of peer {}", log_pubkey!(node_id));
2356                                         let removed = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2357                                         debug_assert!(removed.is_some(), "descriptor maps should be consistent");
2358                                         if !peer.handshake_complete() { return; }
2359                                         self.message_handler.chan_handler.peer_disconnected(&node_id);
2360                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2361                                 }
2362                         }
2363                 };
2364         }
2365
2366         /// Disconnect a peer given its node id.
2367         ///
2368         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
2369         /// peer. Thus, be very careful about reentrancy issues.
2370         ///
2371         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
2372         pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
2373                 let mut peers_lock = self.peers.write().unwrap();
2374                 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
2375                         let peer_opt = peers_lock.remove(&descriptor);
2376                         if let Some(peer_mutex) = peer_opt {
2377                                 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
2378                         } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
2379                 }
2380         }
2381
2382         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
2383         /// an indication that TCP sockets have stalled even if we weren't around to time them out
2384         /// using regular ping/pongs.
2385         pub fn disconnect_all_peers(&self) {
2386                 let mut peers_lock = self.peers.write().unwrap();
2387                 self.node_id_to_descriptor.lock().unwrap().clear();
2388                 let peers = &mut *peers_lock;
2389                 for (descriptor, peer_mutex) in peers.drain() {
2390                         self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
2391                 }
2392         }
2393
2394         /// This is called when we're blocked on sending additional gossip messages until we receive a
2395         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
2396         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
2397         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
2398                 if peer.awaiting_pong_timer_tick_intervals == 0 {
2399                         peer.awaiting_pong_timer_tick_intervals = -1;
2400                         let ping = msgs::Ping {
2401                                 ponglen: 0,
2402                                 byteslen: 64,
2403                         };
2404                         self.enqueue_message(peer, &ping);
2405                 }
2406         }
2407
2408         /// Send pings to each peer and disconnect those which did not respond to the last round of
2409         /// pings.
2410         ///
2411         /// This may be called on any timescale you want, however, roughly once every ten seconds is
2412         /// preferred. The call rate determines both how often we send a ping to our peers and how much
2413         /// time they have to respond before we disconnect them.
2414         ///
2415         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2416         /// issues!
2417         ///
2418         /// [`send_data`]: SocketDescriptor::send_data
2419         pub fn timer_tick_occurred(&self) {
2420                 let mut descriptors_needing_disconnect = Vec::new();
2421                 {
2422                         let peers_lock = self.peers.read().unwrap();
2423
2424                         self.update_gossip_backlogged();
2425                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2426
2427                         for (descriptor, peer_mutex) in peers_lock.iter() {
2428                                 let mut peer = peer_mutex.lock().unwrap();
2429                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2430
2431                                 if !peer.handshake_complete() {
2432                                         // The peer needs to complete its handshake before we can exchange messages. We
2433                                         // give peers one timer tick to complete handshake, reusing
2434                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2435                                         // for handshake completion.
2436                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
2437                                                 descriptors_needing_disconnect.push(descriptor.clone());
2438                                         } else {
2439                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2440                                         }
2441                                         continue;
2442                                 }
2443                                 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2444                                 debug_assert!(peer.their_node_id.is_some());
2445
2446                                 loop { // Used as a `goto` to skip writing a Ping message.
2447                                         if peer.awaiting_pong_timer_tick_intervals == -1 {
2448                                                 // Magic value set in `maybe_send_extra_ping`.
2449                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2450                                                 peer.received_message_since_timer_tick = false;
2451                                                 break;
2452                                         }
2453
2454                                         if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2455                                                 || peer.awaiting_pong_timer_tick_intervals as u64 >
2456                                                         MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2457                                         {
2458                                                 descriptors_needing_disconnect.push(descriptor.clone());
2459                                                 break;
2460                                         }
2461                                         peer.received_message_since_timer_tick = false;
2462
2463                                         if peer.awaiting_pong_timer_tick_intervals > 0 {
2464                                                 peer.awaiting_pong_timer_tick_intervals += 1;
2465                                                 break;
2466                                         }
2467
2468                                         peer.awaiting_pong_timer_tick_intervals = 1;
2469                                         let ping = msgs::Ping {
2470                                                 ponglen: 0,
2471                                                 byteslen: 64,
2472                                         };
2473                                         self.enqueue_message(&mut *peer, &ping);
2474                                         break;
2475                                 }
2476                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2477                         }
2478                 }
2479
2480                 if !descriptors_needing_disconnect.is_empty() {
2481                         {
2482                                 let mut peers_lock = self.peers.write().unwrap();
2483                                 for descriptor in descriptors_needing_disconnect {
2484                                         if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2485                                                 let peer = peer_mutex.lock().unwrap();
2486                                                 if let Some((node_id, _)) = peer.their_node_id {
2487                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2488                                                 }
2489                                                 self.do_disconnect(descriptor, &*peer, "ping/handshake timeout");
2490                                         }
2491                                 }
2492                         }
2493                 }
2494         }
2495
2496         #[allow(dead_code)]
2497         // Messages of up to 64KB should never end up more than half full with addresses, as that would
2498         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2499         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2500         // message...
2501         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (SocketAddress::MAX_LEN as u32 + 1) / 2;
2502         #[allow(dead_code)]
2503         // ...by failing to compile if the number of addresses that would be half of a message is
2504         // smaller than 100:
2505         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2506
2507         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2508         /// peers. Note that peers will likely ignore this message unless we have at least one public
2509         /// channel which has at least six confirmations on-chain.
2510         ///
2511         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2512         /// node to humans. They carry no in-protocol meaning.
2513         ///
2514         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2515         /// accepts incoming connections. These will be included in the node_announcement, publicly
2516         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2517         /// addresses should likely contain only Tor Onion addresses.
2518         ///
2519         /// Panics if `addresses` is absurdly large (more than 100).
2520         ///
2521         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2522         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<SocketAddress>) {
2523                 if addresses.len() > 100 {
2524                         panic!("More than half the message size was taken up by public addresses!");
2525                 }
2526
2527                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2528                 // addresses be sorted for future compatibility.
2529                 addresses.sort_by_key(|addr| addr.get_id());
2530
2531                 let features = self.message_handler.chan_handler.provided_node_features()
2532                         | self.message_handler.route_handler.provided_node_features()
2533                         | self.message_handler.onion_message_handler.provided_node_features()
2534                         | self.message_handler.custom_message_handler.provided_node_features();
2535                 let announcement = msgs::UnsignedNodeAnnouncement {
2536                         features,
2537                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2538                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2539                         rgb,
2540                         alias: NodeAlias(alias),
2541                         addresses,
2542                         excess_address_data: Vec::new(),
2543                         excess_data: Vec::new(),
2544                 };
2545                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2546                         msgs::UnsignedGossipMessage::NodeAnnouncement(announcement.clone())
2547                 ) {
2548                         Ok(sig) => sig,
2549                         Err(_) => {
2550                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2551                                 return;
2552                         },
2553                 };
2554
2555                 let msg = msgs::NodeAnnouncement {
2556                         signature: node_announce_sig,
2557                         contents: announcement
2558                 };
2559
2560                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2561                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2562                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2563         }
2564 }
2565
2566 fn is_gossip_msg(type_id: u16) -> bool {
2567         match type_id {
2568                 msgs::ChannelAnnouncement::TYPE |
2569                 msgs::ChannelUpdate::TYPE |
2570                 msgs::NodeAnnouncement::TYPE |
2571                 msgs::QueryChannelRange::TYPE |
2572                 msgs::ReplyChannelRange::TYPE |
2573                 msgs::QueryShortChannelIds::TYPE |
2574                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2575                 _ => false
2576         }
2577 }
2578
2579 #[cfg(test)]
2580 mod tests {
2581         use crate::sign::{NodeSigner, Recipient};
2582         use crate::events;
2583         use crate::io;
2584         use crate::ln::ChannelId;
2585         use crate::ln::features::{InitFeatures, NodeFeatures};
2586         use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2587         use crate::ln::peer_handler::{CustomMessageHandler, PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2588         use crate::ln::{msgs, wire};
2589         use crate::ln::msgs::{LightningError, SocketAddress};
2590         use crate::util::test_utils;
2591
2592         use bitcoin::Network;
2593         use bitcoin::blockdata::constants::ChainHash;
2594         use bitcoin::secp256k1::{PublicKey, SecretKey};
2595
2596         use crate::prelude::*;
2597         use crate::sync::{Arc, Mutex};
2598         use core::convert::Infallible;
2599         use core::sync::atomic::{AtomicBool, Ordering};
2600
2601         #[derive(Clone)]
2602         struct FileDescriptor {
2603                 fd: u16,
2604                 outbound_data: Arc<Mutex<Vec<u8>>>,
2605                 disconnect: Arc<AtomicBool>,
2606         }
2607         impl PartialEq for FileDescriptor {
2608                 fn eq(&self, other: &Self) -> bool {
2609                         self.fd == other.fd
2610                 }
2611         }
2612         impl Eq for FileDescriptor { }
2613         impl core::hash::Hash for FileDescriptor {
2614                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2615                         self.fd.hash(hasher)
2616                 }
2617         }
2618
2619         impl SocketDescriptor for FileDescriptor {
2620                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2621                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2622                         data.len()
2623                 }
2624
2625                 fn disconnect_socket(&mut self) { self.disconnect.store(true, Ordering::Release); }
2626         }
2627
2628         struct PeerManagerCfg {
2629                 chan_handler: test_utils::TestChannelMessageHandler,
2630                 routing_handler: test_utils::TestRoutingMessageHandler,
2631                 custom_handler: TestCustomMessageHandler,
2632                 logger: test_utils::TestLogger,
2633                 node_signer: test_utils::TestNodeSigner,
2634         }
2635
2636         struct TestCustomMessageHandler {
2637                 features: InitFeatures,
2638         }
2639
2640         impl wire::CustomMessageReader for TestCustomMessageHandler {
2641                 type CustomMessage = Infallible;
2642                 fn read<R: io::Read>(&self, _: u16, _: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
2643                         Ok(None)
2644                 }
2645         }
2646
2647         impl CustomMessageHandler for TestCustomMessageHandler {
2648                 fn handle_custom_message(&self, _: Infallible, _: &PublicKey) -> Result<(), LightningError> {
2649                         unreachable!();
2650                 }
2651
2652                 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
2653
2654                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
2655
2656                 fn provided_init_features(&self, _: &PublicKey) -> InitFeatures {
2657                         self.features.clone()
2658                 }
2659         }
2660
2661         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2662                 let mut cfgs = Vec::new();
2663                 for i in 0..peer_count {
2664                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2665                         let features = {
2666                                 let mut feature_bits = vec![0u8; 33];
2667                                 feature_bits[32] = 0b00000001;
2668                                 InitFeatures::from_le_bytes(feature_bits)
2669                         };
2670                         cfgs.push(
2671                                 PeerManagerCfg{
2672                                         chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2673                                         logger: test_utils::TestLogger::new(),
2674                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2675                                         custom_handler: TestCustomMessageHandler { features },
2676                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2677                                 }
2678                         );
2679                 }
2680
2681                 cfgs
2682         }
2683
2684         fn create_feature_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2685                 let mut cfgs = Vec::new();
2686                 for i in 0..peer_count {
2687                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2688                         let features = {
2689                                 let mut feature_bits = vec![0u8; 33 + i + 1];
2690                                 feature_bits[33 + i] = 0b00000001;
2691                                 InitFeatures::from_le_bytes(feature_bits)
2692                         };
2693                         cfgs.push(
2694                                 PeerManagerCfg{
2695                                         chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2696                                         logger: test_utils::TestLogger::new(),
2697                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2698                                         custom_handler: TestCustomMessageHandler { features },
2699                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2700                                 }
2701                         );
2702                 }
2703
2704                 cfgs
2705         }
2706
2707         fn create_chain_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2708                 let mut cfgs = Vec::new();
2709                 for i in 0..peer_count {
2710                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2711                         let features = InitFeatures::from_le_bytes(vec![0u8; 33]);
2712                         let network = ChainHash::from(&[i as u8; 32]);
2713                         cfgs.push(
2714                                 PeerManagerCfg{
2715                                         chan_handler: test_utils::TestChannelMessageHandler::new(network),
2716                                         logger: test_utils::TestLogger::new(),
2717                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2718                                         custom_handler: TestCustomMessageHandler { features },
2719                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2720                                 }
2721                         );
2722                 }
2723
2724                 cfgs
2725         }
2726
2727         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>> {
2728                 let mut peers = Vec::new();
2729                 for i in 0..peer_count {
2730                         let ephemeral_bytes = [i as u8; 32];
2731                         let msg_handler = MessageHandler {
2732                                 chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler,
2733                                 onion_message_handler: IgnoringMessageHandler {}, custom_message_handler: &cfgs[i].custom_handler
2734                         };
2735                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, &cfgs[i].node_signer);
2736                         peers.push(peer);
2737                 }
2738
2739                 peers
2740         }
2741
2742         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2743                 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2744                 let mut fd_a = FileDescriptor {
2745                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2746                         disconnect: Arc::new(AtomicBool::new(false)),
2747                 };
2748                 let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2749                 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2750                 let mut fd_b = FileDescriptor {
2751                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2752                         disconnect: Arc::new(AtomicBool::new(false)),
2753                 };
2754                 let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2755                 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2756                 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2757                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2758                 peer_a.process_events();
2759
2760                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2761                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2762
2763                 peer_b.process_events();
2764                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2765                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2766
2767                 peer_a.process_events();
2768                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2769                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2770
2771                 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2772                 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2773
2774                 (fd_a.clone(), fd_b.clone())
2775         }
2776
2777         #[test]
2778         #[cfg(feature = "std")]
2779         fn fuzz_threaded_connections() {
2780                 // Spawn two threads which repeatedly connect two peers together, leading to "got second
2781                 // connection with peer" disconnections and rapid reconnect. This previously found an issue
2782                 // with our internal map consistency, and is a generally good smoke test of disconnection.
2783                 let cfgs = Arc::new(create_peermgr_cfgs(2));
2784                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
2785                 let peers = Arc::new(create_network(2, unsafe { &*(&*cfgs as *const _) as &'static _ }));
2786
2787                 let start_time = std::time::Instant::now();
2788                 macro_rules! spawn_thread { ($id: expr) => { {
2789                         let peers = Arc::clone(&peers);
2790                         let cfgs = Arc::clone(&cfgs);
2791                         std::thread::spawn(move || {
2792                                 let mut ctr = 0;
2793                                 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2794                                         let id_a = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2795                                         let mut fd_a = FileDescriptor {
2796                                                 fd: $id  + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2797                                                 disconnect: Arc::new(AtomicBool::new(false)),
2798                                         };
2799                                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2800                                         let mut fd_b = FileDescriptor {
2801                                                 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2802                                                 disconnect: Arc::new(AtomicBool::new(false)),
2803                                         };
2804                                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2805                                         let initial_data = peers[1].new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2806                                         peers[0].new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2807                                         if peers[0].read_event(&mut fd_a, &initial_data).is_err() { break; }
2808
2809                                         while start_time.elapsed() < std::time::Duration::from_secs(1) {
2810                                                 peers[0].process_events();
2811                                                 if fd_a.disconnect.load(Ordering::Acquire) { break; }
2812                                                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2813                                                 if peers[1].read_event(&mut fd_b, &a_data).is_err() { break; }
2814
2815                                                 peers[1].process_events();
2816                                                 if fd_b.disconnect.load(Ordering::Acquire) { break; }
2817                                                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2818                                                 if peers[0].read_event(&mut fd_a, &b_data).is_err() { break; }
2819
2820                                                 cfgs[0].chan_handler.pending_events.lock().unwrap()
2821                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2822                                                                 node_id: peers[1].node_signer.get_node_id(Recipient::Node).unwrap(),
2823                                                                 msg: msgs::Shutdown {
2824                                                                         channel_id: ChannelId::new_zero(),
2825                                                                         scriptpubkey: bitcoin::ScriptBuf::new(),
2826                                                                 },
2827                                                         });
2828                                                 cfgs[1].chan_handler.pending_events.lock().unwrap()
2829                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2830                                                                 node_id: peers[0].node_signer.get_node_id(Recipient::Node).unwrap(),
2831                                                                 msg: msgs::Shutdown {
2832                                                                         channel_id: ChannelId::new_zero(),
2833                                                                         scriptpubkey: bitcoin::ScriptBuf::new(),
2834                                                                 },
2835                                                         });
2836
2837                                                 if ctr % 2 == 0 {
2838                                                         peers[0].timer_tick_occurred();
2839                                                         peers[1].timer_tick_occurred();
2840                                                 }
2841                                         }
2842
2843                                         peers[0].socket_disconnected(&fd_a);
2844                                         peers[1].socket_disconnected(&fd_b);
2845                                         ctr += 1;
2846                                         std::thread::sleep(std::time::Duration::from_micros(1));
2847                                 }
2848                         })
2849                 } } }
2850                 let thrd_a = spawn_thread!(1);
2851                 let thrd_b = spawn_thread!(2);
2852
2853                 thrd_a.join().unwrap();
2854                 thrd_b.join().unwrap();
2855         }
2856
2857         #[test]
2858         fn test_feature_incompatible_peers() {
2859                 let cfgs = create_peermgr_cfgs(2);
2860                 let incompatible_cfgs = create_feature_incompatible_peermgr_cfgs(2);
2861
2862                 let peers = create_network(2, &cfgs);
2863                 let incompatible_peers = create_network(2, &incompatible_cfgs);
2864                 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2865                 for (peer_a, peer_b) in peer_pairs.iter() {
2866                         let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2867                         let mut fd_a = FileDescriptor {
2868                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2869                                 disconnect: Arc::new(AtomicBool::new(false)),
2870                         };
2871                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2872                         let mut fd_b = FileDescriptor {
2873                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2874                                 disconnect: Arc::new(AtomicBool::new(false)),
2875                         };
2876                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2877                         let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2878                         peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2879                         assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2880                         peer_a.process_events();
2881
2882                         let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2883                         assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2884
2885                         peer_b.process_events();
2886                         let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2887
2888                         // Should fail because of unknown required features
2889                         assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2890                 }
2891         }
2892
2893         #[test]
2894         fn test_chain_incompatible_peers() {
2895                 let cfgs = create_peermgr_cfgs(2);
2896                 let incompatible_cfgs = create_chain_incompatible_peermgr_cfgs(2);
2897
2898                 let peers = create_network(2, &cfgs);
2899                 let incompatible_peers = create_network(2, &incompatible_cfgs);
2900                 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2901                 for (peer_a, peer_b) in peer_pairs.iter() {
2902                         let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2903                         let mut fd_a = FileDescriptor {
2904                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2905                                 disconnect: Arc::new(AtomicBool::new(false)),
2906                         };
2907                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2908                         let mut fd_b = FileDescriptor {
2909                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2910                                 disconnect: Arc::new(AtomicBool::new(false)),
2911                         };
2912                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2913                         let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2914                         peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2915                         assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2916                         peer_a.process_events();
2917
2918                         let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2919                         assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2920
2921                         peer_b.process_events();
2922                         let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2923
2924                         // Should fail because of incompatible chains
2925                         assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2926                 }
2927         }
2928
2929         #[test]
2930         fn test_disconnect_peer() {
2931                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2932                 // push a DisconnectPeer event to remove the node flagged by id
2933                 let cfgs = create_peermgr_cfgs(2);
2934                 let peers = create_network(2, &cfgs);
2935                 establish_connection(&peers[0], &peers[1]);
2936                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2937
2938                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2939                 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2940                         node_id: their_id,
2941                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2942                 });
2943
2944                 peers[0].process_events();
2945                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2946         }
2947
2948         #[test]
2949         fn test_send_simple_msg() {
2950                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2951                 // push a message from one peer to another.
2952                 let cfgs = create_peermgr_cfgs(2);
2953                 let a_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2954                 let b_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2955                 let mut peers = create_network(2, &cfgs);
2956                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2957                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2958
2959                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2960
2961                 let msg = msgs::Shutdown { channel_id: ChannelId::from_bytes([42; 32]), scriptpubkey: bitcoin::ScriptBuf::new() };
2962                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2963                         node_id: their_id, msg: msg.clone()
2964                 });
2965                 peers[0].message_handler.chan_handler = &a_chan_handler;
2966
2967                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2968                 peers[1].message_handler.chan_handler = &b_chan_handler;
2969
2970                 peers[0].process_events();
2971
2972                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2973                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2974         }
2975
2976         #[test]
2977         fn test_non_init_first_msg() {
2978                 // Simple test of the first message received over a connection being something other than
2979                 // Init. This results in an immediate disconnection, which previously included a spurious
2980                 // peer_disconnected event handed to event handlers (which would panic in
2981                 // `TestChannelMessageHandler` here).
2982                 let cfgs = create_peermgr_cfgs(2);
2983                 let peers = create_network(2, &cfgs);
2984
2985                 let mut fd_dup = FileDescriptor {
2986                         fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2987                         disconnect: Arc::new(AtomicBool::new(false)),
2988                 };
2989                 let addr_dup = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1003};
2990                 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2991                 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2992
2993                 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2994                 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2995                 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2996                 peers[0].process_events();
2997
2998                 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2999                 let (act_three, _) =
3000                         dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
3001                 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
3002
3003                 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
3004                 let msg_bytes = dup_encryptor.encrypt_message(&not_init_msg);
3005                 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
3006         }
3007
3008         #[test]
3009         fn test_disconnect_all_peer() {
3010                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
3011                 // then calls disconnect_all_peers
3012                 let cfgs = create_peermgr_cfgs(2);
3013                 let peers = create_network(2, &cfgs);
3014                 establish_connection(&peers[0], &peers[1]);
3015                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3016
3017                 peers[0].disconnect_all_peers();
3018                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
3019         }
3020
3021         #[test]
3022         fn test_timer_tick_occurred() {
3023                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
3024                 let cfgs = create_peermgr_cfgs(2);
3025                 let peers = create_network(2, &cfgs);
3026                 establish_connection(&peers[0], &peers[1]);
3027                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3028
3029                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
3030                 peers[0].timer_tick_occurred();
3031                 peers[0].process_events();
3032                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3033
3034                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
3035                 peers[0].timer_tick_occurred();
3036                 peers[0].process_events();
3037                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
3038         }
3039
3040         #[test]
3041         fn test_do_attempt_write_data() {
3042                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
3043                 let cfgs = create_peermgr_cfgs(2);
3044                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
3045                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
3046                 let peers = create_network(2, &cfgs);
3047
3048                 // By calling establish_connect, we trigger do_attempt_write_data between
3049                 // the peers. Previously this function would mistakenly enter an infinite loop
3050                 // when there were more channel messages available than could fit into a peer's
3051                 // buffer. This issue would now be detected by this test (because we use custom
3052                 // RoutingMessageHandlers that intentionally return more channel messages
3053                 // than can fit into a peer's buffer).
3054                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
3055
3056                 // Make each peer to read the messages that the other peer just wrote to them. Note that
3057                 // due to the max-message-before-ping limits this may take a few iterations to complete.
3058                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
3059                         peers[1].process_events();
3060                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
3061                         assert!(!a_read_data.is_empty());
3062
3063                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
3064                         peers[0].process_events();
3065
3066                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
3067                         assert!(!b_read_data.is_empty());
3068                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
3069
3070                         peers[0].process_events();
3071                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
3072                 }
3073
3074                 // Check that each peer has received the expected number of channel updates and channel
3075                 // announcements.
3076                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
3077                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
3078                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
3079                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
3080         }
3081
3082         #[test]
3083         fn test_handshake_timeout() {
3084                 // Tests that we time out a peer still waiting on handshake completion after a full timer
3085                 // tick.
3086                 let cfgs = create_peermgr_cfgs(2);
3087                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
3088                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
3089                 let peers = create_network(2, &cfgs);
3090
3091                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
3092                 let mut fd_a = FileDescriptor {
3093                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
3094                         disconnect: Arc::new(AtomicBool::new(false)),
3095                 };
3096                 let mut fd_b = FileDescriptor {
3097                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
3098                         disconnect: Arc::new(AtomicBool::new(false)),
3099                 };
3100                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
3101                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
3102
3103                 // If we get a single timer tick before completion, that's fine
3104                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3105                 peers[0].timer_tick_occurred();
3106                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3107
3108                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
3109                 peers[0].process_events();
3110                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
3111                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
3112                 peers[1].process_events();
3113
3114                 // ...but if we get a second timer tick, we should disconnect the peer
3115                 peers[0].timer_tick_occurred();
3116                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
3117
3118                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
3119                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
3120         }
3121
3122         #[test]
3123         fn test_filter_addresses(){
3124                 // Tests the filter_addresses function.
3125
3126                 // For (10/8)
3127                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 0, 0, 0], port: 1000};
3128                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3129                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 0, 255, 201], port: 1000};
3130                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3131                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 255, 255, 255], port: 1000};
3132                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3133
3134                 // For (0/8)
3135                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 0, 0, 0], port: 1000};
3136                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3137                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 0, 255, 187], port: 1000};
3138                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3139                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 255, 255, 255], port: 1000};
3140                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3141
3142                 // For (100.64/10)
3143                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 64, 0, 0], port: 1000};
3144                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3145                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 78, 255, 0], port: 1000};
3146                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3147                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 127, 255, 255], port: 1000};
3148                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3149
3150                 // For (127/8)
3151                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 0, 0, 0], port: 1000};
3152                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3153                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 65, 73, 0], port: 1000};
3154                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3155                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 255, 255, 255], port: 1000};
3156                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3157
3158                 // For (169.254/16)
3159                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 0, 0], port: 1000};
3160                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3161                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 221, 101], port: 1000};
3162                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3163                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 255, 255], port: 1000};
3164                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3165
3166                 // For (172.16/12)
3167                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 16, 0, 0], port: 1000};
3168                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3169                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 27, 101, 23], port: 1000};
3170                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3171                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 31, 255, 255], port: 1000};
3172                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3173
3174                 // For (192.168/16)
3175                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 0, 0], port: 1000};
3176                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3177                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 205, 159], port: 1000};
3178                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3179                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 255, 255], port: 1000};
3180                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3181
3182                 // For (192.88.99/24)
3183                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 0], port: 1000};
3184                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3185                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 140], port: 1000};
3186                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3187                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 255], port: 1000};
3188                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3189
3190                 // For other IPv4 addresses
3191                 let ip_address = SocketAddress::TcpIpV4{addr: [188, 255, 99, 0], port: 1000};
3192                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3193                 let ip_address = SocketAddress::TcpIpV4{addr: [123, 8, 129, 14], port: 1000};
3194                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3195                 let ip_address = SocketAddress::TcpIpV4{addr: [2, 88, 9, 255], port: 1000};
3196                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3197
3198                 // For (2000::/3)
3199                 let ip_address = SocketAddress::TcpIpV6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
3200                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3201                 let ip_address = SocketAddress::TcpIpV6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
3202                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3203                 let ip_address = SocketAddress::TcpIpV6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
3204                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3205
3206                 // For other IPv6 addresses
3207                 let ip_address = SocketAddress::TcpIpV6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
3208                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3209                 let ip_address = SocketAddress::TcpIpV6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
3210                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3211                 let ip_address = SocketAddress::TcpIpV6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
3212                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3213
3214                 // For (None)
3215                 assert_eq!(filter_addresses(None), None);
3216         }
3217
3218         #[test]
3219         #[cfg(feature = "std")]
3220         fn test_process_events_multithreaded() {
3221                 use std::time::{Duration, Instant};
3222                 // Test that `process_events` getting called on multiple threads doesn't generate too many
3223                 // loop iterations.
3224                 // Each time `process_events` goes around the loop we call
3225                 // `get_and_clear_pending_msg_events`, which we count using the `TestMessageHandler`.
3226                 // Because the loop should go around once more after a call which fails to take the
3227                 // single-threaded lock, if we write zero to the counter before calling `process_events` we
3228                 // should never observe there having been more than 2 loop iterations.
3229                 // Further, because the last thread to exit will call `process_events` before returning, we
3230                 // should always have at least one count at the end.
3231                 let cfg = Arc::new(create_peermgr_cfgs(1));
3232                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
3233                 let peer = Arc::new(create_network(1, unsafe { &*(&*cfg as *const _) as &'static _ }).pop().unwrap());
3234
3235                 let exit_flag = Arc::new(AtomicBool::new(false));
3236                 macro_rules! spawn_thread { () => { {
3237                         let thread_cfg = Arc::clone(&cfg);
3238                         let thread_peer = Arc::clone(&peer);
3239                         let thread_exit = Arc::clone(&exit_flag);
3240                         std::thread::spawn(move || {
3241                                 while !thread_exit.load(Ordering::Acquire) {
3242                                         thread_cfg[0].chan_handler.message_fetch_counter.store(0, Ordering::Release);
3243                                         thread_peer.process_events();
3244                                         std::thread::sleep(Duration::from_micros(1));
3245                                 }
3246                         })
3247                 } } }
3248
3249                 let thread_a = spawn_thread!();
3250                 let thread_b = spawn_thread!();
3251                 let thread_c = spawn_thread!();
3252
3253                 let start_time = Instant::now();
3254                 while start_time.elapsed() < Duration::from_millis(100) {
3255                         let val = cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire);
3256                         assert!(val <= 2);
3257                         std::thread::yield_now(); // Winblowz seemingly doesn't ever interrupt threads?!
3258                 }
3259
3260                 exit_flag.store(true, Ordering::Release);
3261                 thread_a.join().unwrap();
3262                 thread_b.join().unwrap();
3263                 thread_c.join().unwrap();
3264                 assert!(cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire) >= 1);
3265         }
3266 }