Expose peer addresses via `get_peer_node_ids`
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use crate::chain::keysinterface::{KeysManager, NodeSigner, Recipient};
21 use crate::ln::features::{InitFeatures, NodeFeatures};
22 use crate::ln::msgs;
23 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
24 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
25 use crate::util::ser::{VecWriter, Writeable, Writer};
26 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
27 use crate::ln::wire;
28 use crate::ln::wire::Encode;
29 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
30 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId};
31 use crate::util::atomic_counter::AtomicCounter;
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
33 use crate::util::logger::Logger;
34
35 use crate::prelude::*;
36 use crate::io;
37 use alloc::collections::LinkedList;
38 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
48
49 /// Handler for BOLT1-compliant messages.
50 pub trait CustomMessageHandler: wire::CustomMessageReader {
51         /// Called with the message type that was received and the buffer to be read.
52         /// Can return a `MessageHandlingError` if the message could not be handled.
53         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
54
55         /// Gets the list of pending messages which were generated by the custom message
56         /// handler, clearing the list in the process. The first tuple element must
57         /// correspond to the intended recipients node ids. If no connection to one of the
58         /// specified node does not exist, the message is simply not sent to it.
59         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
60 }
61
62 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
63 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
64 pub struct IgnoringMessageHandler{}
65 impl MessageSendEventsProvider for IgnoringMessageHandler {
66         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
67 }
68 impl RoutingMessageHandler for IgnoringMessageHandler {
69         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
70         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
72         fn get_next_channel_announcement(&self, _starting_point: u64) ->
73                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
74         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
75         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
76         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
78         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
80         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
81         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
82                 InitFeatures::empty()
83         }
84 }
85 impl OnionMessageProvider for IgnoringMessageHandler {
86         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
87 }
88 impl OnionMessageHandler for IgnoringMessageHandler {
89         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
90         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
91         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
92         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
93         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
94                 InitFeatures::empty()
95         }
96 }
97 impl CustomOnionMessageHandler for IgnoringMessageHandler {
98         type CustomMessage = Infallible;
99         fn handle_custom_message(&self, _msg: Infallible) {
100                 // Since we always return `None` in the read the handle method should never be called.
101                 unreachable!();
102         }
103         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
104                 Ok(None)
105         }
106 }
107
108 impl CustomOnionMessageContents for Infallible {
109         fn tlv_type(&self) -> u64 { unreachable!(); }
110 }
111
112 impl Deref for IgnoringMessageHandler {
113         type Target = IgnoringMessageHandler;
114         fn deref(&self) -> &Self { self }
115 }
116
117 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
118 // method that takes self for it.
119 impl wire::Type for Infallible {
120         fn type_id(&self) -> u16 {
121                 unreachable!();
122         }
123 }
124 impl Writeable for Infallible {
125         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
126                 unreachable!();
127         }
128 }
129
130 impl wire::CustomMessageReader for IgnoringMessageHandler {
131         type CustomMessage = Infallible;
132         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
133                 Ok(None)
134         }
135 }
136
137 impl CustomMessageHandler for IgnoringMessageHandler {
138         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
139                 // Since we always return `None` in the read the handle method should never be called.
140                 unreachable!();
141         }
142
143         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
144 }
145
146 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
147 /// You can provide one of these as the route_handler in a MessageHandler.
148 pub struct ErroringMessageHandler {
149         message_queue: Mutex<Vec<MessageSendEvent>>
150 }
151 impl ErroringMessageHandler {
152         /// Constructs a new ErroringMessageHandler
153         pub fn new() -> Self {
154                 Self { message_queue: Mutex::new(Vec::new()) }
155         }
156         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
157                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
158                         action: msgs::ErrorAction::SendErrorMessage {
159                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
160                         },
161                         node_id: node_id.clone(),
162                 });
163         }
164 }
165 impl MessageSendEventsProvider for ErroringMessageHandler {
166         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
167                 let mut res = Vec::new();
168                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
169                 res
170         }
171 }
172 impl ChannelMessageHandler for ErroringMessageHandler {
173         // Any messages which are related to a specific channel generate an error message to let the
174         // peer know we don't care about channels.
175         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
176                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
177         }
178         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
180         }
181         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
183         }
184         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
186         }
187         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
191                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
192         }
193         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
194                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
195         }
196         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
197                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
198         }
199         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
200                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
201         }
202         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
203                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
204         }
205         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
206                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
207         }
208         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
209                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
210         }
211         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
212                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
213         }
214         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
215                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
216         }
217         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
218                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
219         }
220         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
221                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
222         }
223         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
224         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
225         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
226         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
227         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
228         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
229         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
230                 // Set a number of features which various nodes may require to talk to us. It's totally
231                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
232                 // channels.
233                 let mut features = InitFeatures::empty();
234                 features.set_data_loss_protect_optional();
235                 features.set_upfront_shutdown_script_optional();
236                 features.set_variable_length_onion_optional();
237                 features.set_static_remote_key_optional();
238                 features.set_payment_secret_optional();
239                 features.set_basic_mpp_optional();
240                 features.set_wumbo_optional();
241                 features.set_shutdown_any_segwit_optional();
242                 features.set_channel_type_optional();
243                 features.set_scid_privacy_optional();
244                 features.set_zero_conf_optional();
245                 features
246         }
247 }
248 impl Deref for ErroringMessageHandler {
249         type Target = ErroringMessageHandler;
250         fn deref(&self) -> &Self { self }
251 }
252
253 /// Provides references to trait impls which handle different types of messages.
254 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
255                 CM::Target: ChannelMessageHandler,
256                 RM::Target: RoutingMessageHandler,
257                 OM::Target: OnionMessageHandler,
258 {
259         /// A message handler which handles messages specific to channels. Usually this is just a
260         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
261         ///
262         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
263         pub chan_handler: CM,
264         /// A message handler which handles messages updating our knowledge of the network channel
265         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
266         ///
267         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
268         pub route_handler: RM,
269
270         /// A message handler which handles onion messages. For now, this can only be an
271         /// [`IgnoringMessageHandler`].
272         pub onion_message_handler: OM,
273 }
274
275 /// Provides an object which can be used to send data to and which uniquely identifies a connection
276 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
277 /// implement Hash to meet the PeerManager API.
278 ///
279 /// For efficiency, Clone should be relatively cheap for this type.
280 ///
281 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
282 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
283 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
284 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
285 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
286 /// to simply use another value which is guaranteed to be globally unique instead.
287 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
288         /// Attempts to send some data from the given slice to the peer.
289         ///
290         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
291         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
292         /// called and further write attempts may occur until that time.
293         ///
294         /// If the returned size is smaller than `data.len()`, a
295         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
296         /// written. Additionally, until a `send_data` event completes fully, no further
297         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
298         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
299         /// until then.
300         ///
301         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
302         /// (indicating that read events should be paused to prevent DoS in the send buffer),
303         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
304         /// `resume_read` of false carries no meaning, and should not cause any action.
305         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
306         /// Disconnect the socket pointed to by this SocketDescriptor.
307         ///
308         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
309         /// call (doing so is a noop).
310         fn disconnect_socket(&mut self);
311 }
312
313 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
314 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
315 /// descriptor.
316 #[derive(Clone)]
317 pub struct PeerHandleError {
318         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
319         /// because we required features that our peer was missing, or vice versa).
320         ///
321         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
322         /// any channels with this peer or check for new versions of LDK.
323         ///
324         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
325         pub no_connection_possible: bool,
326 }
327 impl fmt::Debug for PeerHandleError {
328         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
329                 formatter.write_str("Peer Sent Invalid Data")
330         }
331 }
332 impl fmt::Display for PeerHandleError {
333         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
334                 formatter.write_str("Peer Sent Invalid Data")
335         }
336 }
337
338 #[cfg(feature = "std")]
339 impl error::Error for PeerHandleError {
340         fn description(&self) -> &str {
341                 "Peer Sent Invalid Data"
342         }
343 }
344
345 enum InitSyncTracker{
346         NoSyncRequested,
347         ChannelsSyncing(u64),
348         NodesSyncing(NodeId),
349 }
350
351 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
352 /// forwarding gossip messages to peers altogether.
353 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
354
355 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
356 /// we have fewer than this many messages in the outbound buffer again.
357 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
358 /// refilled as we send bytes.
359 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
360 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
361 /// the peer.
362 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
363
364 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
365 /// the socket receive buffer before receiving the ping.
366 ///
367 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
368 /// including any network delays, outbound traffic, or the same for messages from other peers.
369 ///
370 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
371 /// per connected peer to respond to a ping, as long as they send us at least one message during
372 /// each tick, ensuring we aren't actually just disconnected.
373 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
374 /// peer.
375 ///
376 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
377 /// two connected peers, assuming most LDK-running systems have at least two cores.
378 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
379
380 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
381 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
382 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
383 /// process before the next ping.
384 ///
385 /// Note that we continue responding to other messages even after we've sent this many messages, so
386 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
387 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
388 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
389
390 struct Peer {
391         channel_encryptor: PeerChannelEncryptor,
392         /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
393         /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
394         their_node_id: Option<(PublicKey, NodeId)>,
395         their_features: Option<InitFeatures>,
396         their_net_address: Option<NetAddress>,
397
398         pending_outbound_buffer: LinkedList<Vec<u8>>,
399         pending_outbound_buffer_first_msg_offset: usize,
400         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
401         /// prioritize channel messages over them.
402         ///
403         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
404         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
405         awaiting_write_event: bool,
406
407         pending_read_buffer: Vec<u8>,
408         pending_read_buffer_pos: usize,
409         pending_read_is_header: bool,
410
411         sync_status: InitSyncTracker,
412
413         msgs_sent_since_pong: usize,
414         awaiting_pong_timer_tick_intervals: i8,
415         received_message_since_timer_tick: bool,
416         sent_gossip_timestamp_filter: bool,
417 }
418
419 impl Peer {
420         /// Returns true if the channel announcements/updates for the given channel should be
421         /// forwarded to this peer.
422         /// If we are sending our routing table to this peer and we have not yet sent channel
423         /// announcements/updates for the given channel_id then we will send it when we get to that
424         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
425         /// sent the old versions, we should send the update, and so return true here.
426         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
427                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
428                         !self.sent_gossip_timestamp_filter {
429                                 return false;
430                         }
431                 match self.sync_status {
432                         InitSyncTracker::NoSyncRequested => true,
433                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
434                         InitSyncTracker::NodesSyncing(_) => true,
435                 }
436         }
437
438         /// Similar to the above, but for node announcements indexed by node_id.
439         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
440                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
441                         !self.sent_gossip_timestamp_filter {
442                                 return false;
443                         }
444                 match self.sync_status {
445                         InitSyncTracker::NoSyncRequested => true,
446                         InitSyncTracker::ChannelsSyncing(_) => false,
447                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
448                 }
449         }
450
451         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
452         /// buffer still has space and we don't need to pause reads to get some writes out.
453         fn should_read(&self) -> bool {
454                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
455         }
456
457         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
458         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
459         fn should_buffer_gossip_backfill(&self) -> bool {
460                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
461                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
462         }
463
464         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
465         /// every time the peer's buffer may have been drained.
466         fn should_buffer_onion_message(&self) -> bool {
467                 self.pending_outbound_buffer.is_empty()
468                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
469         }
470
471         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
472         /// buffer. This is checked every time the peer's buffer may have been drained.
473         fn should_buffer_gossip_broadcast(&self) -> bool {
474                 self.pending_outbound_buffer.is_empty()
475                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
476         }
477
478         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
479         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
480                 let total_outbound_buffered =
481                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
482
483                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
484                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
485         }
486
487         fn set_their_node_id(&mut self, node_id: PublicKey) {
488                 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
489         }
490 }
491
492 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
493 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
494 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
495 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
496 /// issues such as overly long function definitions.
497 ///
498 /// (C-not exported) as `Arc`s don't make sense in bindings.
499 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler, Arc<KeysManager>>;
500
501 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
502 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
503 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
504 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
505 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
506 /// helps with issues such as long function definitions.
507 ///
508 /// (C-not exported) as general type aliases don't make sense in bindings.
509 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>, &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler, &'c KeysManager>;
510
511 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
512 /// socket events into messages which it passes on to its [`MessageHandler`].
513 ///
514 /// Locks are taken internally, so you must never assume that reentrancy from a
515 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
516 ///
517 /// Calls to [`read_event`] will decode relevant messages and pass them to the
518 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
519 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
520 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
521 /// calls only after previous ones have returned.
522 ///
523 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
524 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
525 /// essentially you should default to using a SimpleRefPeerManager, and use a
526 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
527 /// you're using lightning-net-tokio.
528 ///
529 /// [`read_event`]: PeerManager::read_event
530 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
531                 CM::Target: ChannelMessageHandler,
532                 RM::Target: RoutingMessageHandler,
533                 OM::Target: OnionMessageHandler,
534                 L::Target: Logger,
535                 CMH::Target: CustomMessageHandler,
536                 NS::Target: NodeSigner {
537         message_handler: MessageHandler<CM, RM, OM>,
538         /// Connection state for each connected peer - we have an outer read-write lock which is taken
539         /// as read while we're doing processing for a peer and taken write when a peer is being added
540         /// or removed.
541         ///
542         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
543         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
544         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
545         /// the `MessageHandler`s for a given peer is already guaranteed.
546         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
547         /// Only add to this set when noise completes.
548         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
549         /// lock held. Entries may be added with only the `peers` read lock held (though the
550         /// `Descriptor` value must already exist in `peers`).
551         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
552         /// We can only have one thread processing events at once, but we don't usually need the full
553         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
554         /// `process_events`.
555         event_processing_lock: Mutex<()>,
556         /// Because event processing is global and always does all available work before returning,
557         /// there is no reason for us to have many event processors waiting on the lock at once.
558         /// Instead, we limit the total blocked event processors to always exactly one by setting this
559         /// when an event process call is waiting.
560         blocked_event_processors: AtomicBool,
561
562         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
563         /// value increases strictly since we don't assume access to a time source.
564         last_node_announcement_serial: AtomicU32,
565
566         ephemeral_key_midstate: Sha256Engine,
567         custom_message_handler: CMH,
568
569         peer_counter: AtomicCounter,
570
571         node_signer: NS,
572
573         logger: L,
574         secp_ctx: Secp256k1<secp256k1::SignOnly>
575 }
576
577 enum MessageHandlingError {
578         PeerHandleError(PeerHandleError),
579         LightningError(LightningError),
580 }
581
582 impl From<PeerHandleError> for MessageHandlingError {
583         fn from(error: PeerHandleError) -> Self {
584                 MessageHandlingError::PeerHandleError(error)
585         }
586 }
587
588 impl From<LightningError> for MessageHandlingError {
589         fn from(error: LightningError) -> Self {
590                 MessageHandlingError::LightningError(error)
591         }
592 }
593
594 macro_rules! encode_msg {
595         ($msg: expr) => {{
596                 let mut buffer = VecWriter(Vec::new());
597                 wire::write($msg, &mut buffer).unwrap();
598                 buffer.0
599         }}
600 }
601
602 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
603                 CM::Target: ChannelMessageHandler,
604                 OM::Target: OnionMessageHandler,
605                 L::Target: Logger,
606                 NS::Target: NodeSigner {
607         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
608         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
609         /// ignored.
610         ///
611         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
612         /// cryptographically secure random bytes.
613         ///
614         /// `current_time` is used as an always-increasing counter that survives across restarts and is
615         /// incremented irregularly internally. In general it is best to simply use the current UNIX
616         /// timestamp, however if it is not available a persistent counter that increases once per
617         /// minute should suffice.
618         ///
619         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
620         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
621                 Self::new(MessageHandler {
622                         chan_handler: channel_message_handler,
623                         route_handler: IgnoringMessageHandler{},
624                         onion_message_handler,
625                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
626         }
627 }
628
629 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
630                 RM::Target: RoutingMessageHandler,
631                 L::Target: Logger,
632                 NS::Target: NodeSigner {
633         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
634         /// handler or onion message handler is used and onion and channel messages will be ignored (or
635         /// generate error messages). Note that some other lightning implementations time-out connections
636         /// after some time if no channel is built with the peer.
637         ///
638         /// `current_time` is used as an always-increasing counter that survives across restarts and is
639         /// incremented irregularly internally. In general it is best to simply use the current UNIX
640         /// timestamp, however if it is not available a persistent counter that increases once per
641         /// minute should suffice.
642         ///
643         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
644         /// cryptographically secure random bytes.
645         ///
646         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
647         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
648                 Self::new(MessageHandler {
649                         chan_handler: ErroringMessageHandler::new(),
650                         route_handler: routing_message_handler,
651                         onion_message_handler: IgnoringMessageHandler{},
652                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
653         }
654 }
655
656 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
657 /// This works around `format!()` taking a reference to each argument, preventing
658 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
659 /// due to lifetime errors.
660 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
661 impl core::fmt::Display for OptionalFromDebugger<'_> {
662         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
663                 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
664         }
665 }
666
667 /// A function used to filter out local or private addresses
668 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
669 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
670 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
671         match ip_address{
672                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
673                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
674                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
675                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
676                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
677                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
678                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
679                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
680                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
681                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
682                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
683                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
684                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
685                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
686                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
687                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
688                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
689                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
690                 // For remaining addresses
691                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
692                 Some(..) => ip_address,
693                 None => None,
694         }
695 }
696
697 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
698                 CM::Target: ChannelMessageHandler,
699                 RM::Target: RoutingMessageHandler,
700                 OM::Target: OnionMessageHandler,
701                 L::Target: Logger,
702                 CMH::Target: CustomMessageHandler,
703                 NS::Target: NodeSigner
704 {
705         /// Constructs a new PeerManager with the given message handlers and node_id secret key
706         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
707         /// cryptographically secure random bytes.
708         ///
709         /// `current_time` is used as an always-increasing counter that survives across restarts and is
710         /// incremented irregularly internally. In general it is best to simply use the current UNIX
711         /// timestamp, however if it is not available a persistent counter that increases once per
712         /// minute should suffice.
713         pub fn new(message_handler: MessageHandler<CM, RM, OM>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH, node_signer: NS) -> Self {
714                 let mut ephemeral_key_midstate = Sha256::engine();
715                 ephemeral_key_midstate.input(ephemeral_random_data);
716
717                 let mut secp_ctx = Secp256k1::signing_only();
718                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
719                 secp_ctx.seeded_randomize(&ephemeral_hash);
720
721                 PeerManager {
722                         message_handler,
723                         peers: FairRwLock::new(HashMap::new()),
724                         node_id_to_descriptor: Mutex::new(HashMap::new()),
725                         event_processing_lock: Mutex::new(()),
726                         blocked_event_processors: AtomicBool::new(false),
727                         ephemeral_key_midstate,
728                         peer_counter: AtomicCounter::new(),
729                         last_node_announcement_serial: AtomicU32::new(current_time),
730                         logger,
731                         custom_message_handler,
732                         node_signer,
733                         secp_ctx,
734                 }
735         }
736
737         /// Get a list of tuples mapping from node id to network addresses for peers which have
738         /// completed the initial handshake.
739         ///
740         /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
741         /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
742         /// handshake has completed and we are sure the remote peer has the private key for the given
743         /// [`PublicKey`].
744         ///
745         /// The returned `Option`s will only be `Some` if an address had been previously given via
746         /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
747         pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<NetAddress>)> {
748                 let peers = self.peers.read().unwrap();
749                 peers.values().filter_map(|peer_mutex| {
750                         let p = peer_mutex.lock().unwrap();
751                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() ||
752                                 p.their_node_id.is_none() {
753                                 return None;
754                         }
755                         Some((p.their_node_id.unwrap().0, p.their_net_address.clone()))
756                 }).collect()
757         }
758
759         fn get_ephemeral_key(&self) -> SecretKey {
760                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
761                 let counter = self.peer_counter.get_increment();
762                 ephemeral_hash.input(&counter.to_le_bytes());
763                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
764         }
765
766         /// Indicates a new outbound connection has been established to a node with the given `node_id`
767         /// and an optional remote network address.
768         ///
769         /// The remote network address adds the option to report a remote IP address back to a connecting
770         /// peer using the init message.
771         /// The user should pass the remote network address of the host they are connected to.
772         ///
773         /// If an `Err` is returned here you must disconnect the connection immediately.
774         ///
775         /// Returns a small number of bytes to send to the remote node (currently always 50).
776         ///
777         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
778         /// [`socket_disconnected()`].
779         ///
780         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
781         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
782                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
783                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
784                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
785
786                 let mut peers = self.peers.write().unwrap();
787                 if peers.insert(descriptor, Mutex::new(Peer {
788                         channel_encryptor: peer_encryptor,
789                         their_node_id: None,
790                         their_features: None,
791                         their_net_address: remote_network_address,
792
793                         pending_outbound_buffer: LinkedList::new(),
794                         pending_outbound_buffer_first_msg_offset: 0,
795                         gossip_broadcast_buffer: LinkedList::new(),
796                         awaiting_write_event: false,
797
798                         pending_read_buffer,
799                         pending_read_buffer_pos: 0,
800                         pending_read_is_header: false,
801
802                         sync_status: InitSyncTracker::NoSyncRequested,
803
804                         msgs_sent_since_pong: 0,
805                         awaiting_pong_timer_tick_intervals: 0,
806                         received_message_since_timer_tick: false,
807                         sent_gossip_timestamp_filter: false,
808                 })).is_some() {
809                         panic!("PeerManager driver duplicated descriptors!");
810                 };
811                 Ok(res)
812         }
813
814         /// Indicates a new inbound connection has been established to a node with an optional remote
815         /// network address.
816         ///
817         /// The remote network address adds the option to report a remote IP address back to a connecting
818         /// peer using the init message.
819         /// The user should pass the remote network address of the host they are connected to.
820         ///
821         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
822         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
823         /// the connection immediately.
824         ///
825         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
826         /// [`socket_disconnected()`].
827         ///
828         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
829         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
830                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
831                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
832
833                 let mut peers = self.peers.write().unwrap();
834                 if peers.insert(descriptor, Mutex::new(Peer {
835                         channel_encryptor: peer_encryptor,
836                         their_node_id: None,
837                         their_features: None,
838                         their_net_address: remote_network_address,
839
840                         pending_outbound_buffer: LinkedList::new(),
841                         pending_outbound_buffer_first_msg_offset: 0,
842                         gossip_broadcast_buffer: LinkedList::new(),
843                         awaiting_write_event: false,
844
845                         pending_read_buffer,
846                         pending_read_buffer_pos: 0,
847                         pending_read_is_header: false,
848
849                         sync_status: InitSyncTracker::NoSyncRequested,
850
851                         msgs_sent_since_pong: 0,
852                         awaiting_pong_timer_tick_intervals: 0,
853                         received_message_since_timer_tick: false,
854                         sent_gossip_timestamp_filter: false,
855                 })).is_some() {
856                         panic!("PeerManager driver duplicated descriptors!");
857                 };
858                 Ok(())
859         }
860
861         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
862                 while !peer.awaiting_write_event {
863                         if peer.should_buffer_onion_message() {
864                                 if let Some((peer_node_id, _)) = peer.their_node_id {
865                                         if let Some(next_onion_message) =
866                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
867                                                         self.enqueue_message(peer, &next_onion_message);
868                                         }
869                                 }
870                         }
871                         if peer.should_buffer_gossip_broadcast() {
872                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
873                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
874                                 }
875                         }
876                         if peer.should_buffer_gossip_backfill() {
877                                 match peer.sync_status {
878                                         InitSyncTracker::NoSyncRequested => {},
879                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
880                                                 if let Some((announce, update_a_option, update_b_option)) =
881                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
882                                                 {
883                                                         self.enqueue_message(peer, &announce);
884                                                         if let Some(update_a) = update_a_option {
885                                                                 self.enqueue_message(peer, &update_a);
886                                                         }
887                                                         if let Some(update_b) = update_b_option {
888                                                                 self.enqueue_message(peer, &update_b);
889                                                         }
890                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
891                                                 } else {
892                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
893                                                 }
894                                         },
895                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
896                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
897                                                         self.enqueue_message(peer, &msg);
898                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
899                                                 } else {
900                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
901                                                 }
902                                         },
903                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
904                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
905                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
906                                                         self.enqueue_message(peer, &msg);
907                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
908                                                 } else {
909                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
910                                                 }
911                                         },
912                                 }
913                         }
914                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
915                                 self.maybe_send_extra_ping(peer);
916                         }
917
918                         let next_buff = match peer.pending_outbound_buffer.front() {
919                                 None => return,
920                                 Some(buff) => buff,
921                         };
922
923                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
924                         let data_sent = descriptor.send_data(pending, peer.should_read());
925                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
926                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
927                                 peer.pending_outbound_buffer_first_msg_offset = 0;
928                                 peer.pending_outbound_buffer.pop_front();
929                         } else {
930                                 peer.awaiting_write_event = true;
931                         }
932                 }
933         }
934
935         /// Indicates that there is room to write data to the given socket descriptor.
936         ///
937         /// May return an Err to indicate that the connection should be closed.
938         ///
939         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
940         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
941         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
942         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
943         /// sufficient!
944         ///
945         /// [`send_data`]: SocketDescriptor::send_data
946         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
947         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
948                 let peers = self.peers.read().unwrap();
949                 match peers.get(descriptor) {
950                         None => {
951                                 // This is most likely a simple race condition where the user found that the socket
952                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
953                                 // this method. Return an error to make sure we get disconnected.
954                                 return Err(PeerHandleError { no_connection_possible: false });
955                         },
956                         Some(peer_mutex) => {
957                                 let mut peer = peer_mutex.lock().unwrap();
958                                 peer.awaiting_write_event = false;
959                                 self.do_attempt_write_data(descriptor, &mut peer);
960                         }
961                 };
962                 Ok(())
963         }
964
965         /// Indicates that data was read from the given socket descriptor.
966         ///
967         /// May return an Err to indicate that the connection should be closed.
968         ///
969         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
970         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
971         /// [`send_data`] calls to handle responses.
972         ///
973         /// If `Ok(true)` is returned, further read_events should not be triggered until a
974         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
975         /// send buffer).
976         ///
977         /// [`send_data`]: SocketDescriptor::send_data
978         /// [`process_events`]: PeerManager::process_events
979         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
980                 match self.do_read_event(peer_descriptor, data) {
981                         Ok(res) => Ok(res),
982                         Err(e) => {
983                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
984                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
985                                 Err(e)
986                         }
987                 }
988         }
989
990         /// Append a message to a peer's pending outbound/write buffer
991         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
992                 if is_gossip_msg(message.type_id()) {
993                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
994                 } else {
995                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
996                 }
997                 peer.msgs_sent_since_pong += 1;
998                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
999         }
1000
1001         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1002         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1003                 peer.msgs_sent_since_pong += 1;
1004                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1005         }
1006
1007         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1008                 let mut pause_read = false;
1009                 let peers = self.peers.read().unwrap();
1010                 let mut msgs_to_forward = Vec::new();
1011                 let mut peer_node_id = None;
1012                 match peers.get(peer_descriptor) {
1013                         None => {
1014                                 // This is most likely a simple race condition where the user read some bytes
1015                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1016                                 // called this method. Return an error to make sure we get disconnected.
1017                                 return Err(PeerHandleError { no_connection_possible: false });
1018                         },
1019                         Some(peer_mutex) => {
1020                                 let mut read_pos = 0;
1021                                 while read_pos < data.len() {
1022                                         macro_rules! try_potential_handleerror {
1023                                                 ($peer: expr, $thing: expr) => {
1024                                                         match $thing {
1025                                                                 Ok(x) => x,
1026                                                                 Err(e) => {
1027                                                                         match e.action {
1028                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1029                                                                                         //TODO: Try to push msg
1030                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1031                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
1032                                                                                 },
1033                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1034                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1035                                                                                         continue
1036                                                                                 },
1037                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1038                                                                                 msgs::ErrorAction::IgnoreError => {
1039                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1040                                                                                         continue;
1041                                                                                 },
1042                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1043                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1044                                                                                         self.enqueue_message($peer, &msg);
1045                                                                                         continue;
1046                                                                                 },
1047                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1048                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1049                                                                                         self.enqueue_message($peer, &msg);
1050                                                                                         continue;
1051                                                                                 },
1052                                                                         }
1053                                                                 }
1054                                                         }
1055                                                 }
1056                                         }
1057
1058                                         let mut peer_lock = peer_mutex.lock().unwrap();
1059                                         let peer = &mut *peer_lock;
1060                                         let mut msg_to_handle = None;
1061                                         if peer_node_id.is_none() {
1062                                                 peer_node_id = peer.their_node_id.clone();
1063                                         }
1064
1065                                         assert!(peer.pending_read_buffer.len() > 0);
1066                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1067
1068                                         {
1069                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1070                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1071                                                 read_pos += data_to_copy;
1072                                                 peer.pending_read_buffer_pos += data_to_copy;
1073                                         }
1074
1075                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1076                                                 peer.pending_read_buffer_pos = 0;
1077
1078                                                 macro_rules! insert_node_id {
1079                                                         () => {
1080                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1081                                                                         hash_map::Entry::Occupied(_) => {
1082                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1083                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1084                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1085                                                                         },
1086                                                                         hash_map::Entry::Vacant(entry) => {
1087                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1088                                                                                 entry.insert(peer_descriptor.clone())
1089                                                                         },
1090                                                                 };
1091                                                         }
1092                                                 }
1093
1094                                                 let next_step = peer.channel_encryptor.get_noise_step();
1095                                                 match next_step {
1096                                                         NextNoiseStep::ActOne => {
1097                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1098                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1099                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1100                                                                 peer.pending_outbound_buffer.push_back(act_two);
1101                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1102                                                         },
1103                                                         NextNoiseStep::ActTwo => {
1104                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1105                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1106                                                                                 &self.node_signer));
1107                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1108                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1109                                                                 peer.pending_read_is_header = true;
1110
1111                                                                 peer.set_their_node_id(their_node_id);
1112                                                                 insert_node_id!();
1113                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1114                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1115                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1116                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1117                                                                 self.enqueue_message(peer, &resp);
1118                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1119                                                         },
1120                                                         NextNoiseStep::ActThree => {
1121                                                                 let their_node_id = try_potential_handleerror!(peer,
1122                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1123                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1124                                                                 peer.pending_read_is_header = true;
1125                                                                 peer.set_their_node_id(their_node_id);
1126                                                                 insert_node_id!();
1127                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1128                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1129                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1130                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1131                                                                 self.enqueue_message(peer, &resp);
1132                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1133                                                         },
1134                                                         NextNoiseStep::NoiseComplete => {
1135                                                                 if peer.pending_read_is_header {
1136                                                                         let msg_len = try_potential_handleerror!(peer,
1137                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1138                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1139                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1140                                                                         if msg_len < 2 { // Need at least the message type tag
1141                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1142                                                                         }
1143                                                                         peer.pending_read_is_header = false;
1144                                                                 } else {
1145                                                                         let msg_data = try_potential_handleerror!(peer,
1146                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1147                                                                         assert!(msg_data.len() >= 2);
1148
1149                                                                         // Reset read buffer
1150                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1151                                                                         peer.pending_read_buffer.resize(18, 0);
1152                                                                         peer.pending_read_is_header = true;
1153
1154                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1155                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1156                                                                         let message = match message_result {
1157                                                                                 Ok(x) => x,
1158                                                                                 Err(e) => {
1159                                                                                         match e {
1160                                                                                                 // Note that to avoid recursion we never call
1161                                                                                                 // `do_attempt_write_data` from here, causing
1162                                                                                                 // the messages enqueued here to not actually
1163                                                                                                 // be sent before the peer is disconnected.
1164                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1165                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1166                                                                                                         continue;
1167                                                                                                 }
1168                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1169                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1170                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1171                                                                                                         continue;
1172                                                                                                 }
1173                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1174                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1175                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1176                                                                                                                 channel_id: [0; 32],
1177                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1178                                                                                                         });
1179                                                                                                         continue;
1180                                                                                                 }
1181                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1182                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1183                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1184                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1185                                                                                                 }
1186                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1187                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1188                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1189                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1190                                                                                                 }
1191                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1192                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1193                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1194                                                                                                 }
1195                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1196                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1197                                                                                         }
1198                                                                                 }
1199                                                                         };
1200
1201                                                                         msg_to_handle = Some(message);
1202                                                                 }
1203                                                         }
1204                                                 }
1205                                         }
1206                                         pause_read = !peer.should_read();
1207
1208                                         if let Some(message) = msg_to_handle {
1209                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1210                                                         Err(handling_error) => match handling_error {
1211                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1212                                                                 MessageHandlingError::LightningError(e) => {
1213                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1214                                                                 },
1215                                                         },
1216                                                         Ok(Some(msg)) => {
1217                                                                 msgs_to_forward.push(msg);
1218                                                         },
1219                                                         Ok(None) => {},
1220                                                 }
1221                                         }
1222                                 }
1223                         }
1224                 }
1225
1226                 for msg in msgs_to_forward.drain(..) {
1227                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1228                 }
1229
1230                 Ok(pause_read)
1231         }
1232
1233         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1234         /// Returns the message back if it needs to be broadcasted to all other peers.
1235         fn handle_message(
1236                 &self,
1237                 peer_mutex: &Mutex<Peer>,
1238                 mut peer_lock: MutexGuard<Peer>,
1239                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1240         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1241                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1242                 peer_lock.received_message_since_timer_tick = true;
1243
1244                 // Need an Init as first message
1245                 if let wire::Message::Init(msg) = message {
1246                         if msg.features.requires_unknown_bits() {
1247                                 log_debug!(self.logger, "Peer features required unknown version bits");
1248                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1249                         }
1250                         if peer_lock.their_features.is_some() {
1251                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1252                         }
1253
1254                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1255
1256                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1257                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1258                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1259                         }
1260
1261                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg) {
1262                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1263                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1264                         }
1265                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg) {
1266                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1267                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1268                         }
1269                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg) {
1270                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1271                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1272                         }
1273
1274                         peer_lock.their_features = Some(msg.features);
1275                         return Ok(None);
1276                 } else if peer_lock.their_features.is_none() {
1277                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1278                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1279                 }
1280
1281                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1282                         // When supporting gossip messages, start inital gossip sync only after we receive
1283                         // a GossipTimestampFilter
1284                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1285                                 !peer_lock.sent_gossip_timestamp_filter {
1286                                 peer_lock.sent_gossip_timestamp_filter = true;
1287                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1288                         }
1289                         return Ok(None);
1290                 }
1291
1292                 mem::drop(peer_lock);
1293
1294                 if is_gossip_msg(message.type_id()) {
1295                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1296                 } else {
1297                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1298                 }
1299
1300                 let mut should_forward = None;
1301
1302                 match message {
1303                         // Setup and Control messages:
1304                         wire::Message::Init(_) => {
1305                                 // Handled above
1306                         },
1307                         wire::Message::GossipTimestampFilter(_) => {
1308                                 // Handled above
1309                         },
1310                         wire::Message::Error(msg) => {
1311                                 let mut data_is_printable = true;
1312                                 for b in msg.data.bytes() {
1313                                         if b < 32 || b > 126 {
1314                                                 data_is_printable = false;
1315                                                 break;
1316                                         }
1317                                 }
1318
1319                                 if data_is_printable {
1320                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1321                                 } else {
1322                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1323                                 }
1324                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1325                                 if msg.channel_id == [0; 32] {
1326                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1327                                 }
1328                         },
1329                         wire::Message::Warning(msg) => {
1330                                 let mut data_is_printable = true;
1331                                 for b in msg.data.bytes() {
1332                                         if b < 32 || b > 126 {
1333                                                 data_is_printable = false;
1334                                                 break;
1335                                         }
1336                                 }
1337
1338                                 if data_is_printable {
1339                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1340                                 } else {
1341                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1342                                 }
1343                         },
1344
1345                         wire::Message::Ping(msg) => {
1346                                 if msg.ponglen < 65532 {
1347                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1348                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1349                                 }
1350                         },
1351                         wire::Message::Pong(_msg) => {
1352                                 let mut peer_lock = peer_mutex.lock().unwrap();
1353                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1354                                 peer_lock.msgs_sent_since_pong = 0;
1355                         },
1356
1357                         // Channel messages:
1358                         wire::Message::OpenChannel(msg) => {
1359                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1360                         },
1361                         wire::Message::AcceptChannel(msg) => {
1362                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1363                         },
1364
1365                         wire::Message::FundingCreated(msg) => {
1366                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1367                         },
1368                         wire::Message::FundingSigned(msg) => {
1369                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1370                         },
1371                         wire::Message::ChannelReady(msg) => {
1372                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1373                         },
1374
1375                         wire::Message::Shutdown(msg) => {
1376                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1377                         },
1378                         wire::Message::ClosingSigned(msg) => {
1379                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1380                         },
1381
1382                         // Commitment messages:
1383                         wire::Message::UpdateAddHTLC(msg) => {
1384                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1385                         },
1386                         wire::Message::UpdateFulfillHTLC(msg) => {
1387                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1388                         },
1389                         wire::Message::UpdateFailHTLC(msg) => {
1390                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1391                         },
1392                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1393                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1394                         },
1395
1396                         wire::Message::CommitmentSigned(msg) => {
1397                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1398                         },
1399                         wire::Message::RevokeAndACK(msg) => {
1400                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1401                         },
1402                         wire::Message::UpdateFee(msg) => {
1403                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1404                         },
1405                         wire::Message::ChannelReestablish(msg) => {
1406                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1407                         },
1408
1409                         // Routing messages:
1410                         wire::Message::AnnouncementSignatures(msg) => {
1411                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1412                         },
1413                         wire::Message::ChannelAnnouncement(msg) => {
1414                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1415                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1416                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1417                                 }
1418                         },
1419                         wire::Message::NodeAnnouncement(msg) => {
1420                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1421                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1422                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1423                                 }
1424                         },
1425                         wire::Message::ChannelUpdate(msg) => {
1426                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1427                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1428                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1429                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1430                                 }
1431                         },
1432                         wire::Message::QueryShortChannelIds(msg) => {
1433                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1434                         },
1435                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1436                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1437                         },
1438                         wire::Message::QueryChannelRange(msg) => {
1439                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1440                         },
1441                         wire::Message::ReplyChannelRange(msg) => {
1442                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1443                         },
1444
1445                         // Onion message:
1446                         wire::Message::OnionMessage(msg) => {
1447                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1448                         },
1449
1450                         // Unknown messages:
1451                         wire::Message::Unknown(type_id) if message.is_even() => {
1452                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1453                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1454                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1455                         },
1456                         wire::Message::Unknown(type_id) => {
1457                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1458                         },
1459                         wire::Message::Custom(custom) => {
1460                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1461                         },
1462                 };
1463                 Ok(should_forward)
1464         }
1465
1466         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1467                 match msg {
1468                         wire::Message::ChannelAnnouncement(ref msg) => {
1469                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1470                                 let encoded_msg = encode_msg!(msg);
1471
1472                                 for (_, peer_mutex) in peers.iter() {
1473                                         let mut peer = peer_mutex.lock().unwrap();
1474                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1475                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1476                                                 continue
1477                                         }
1478                                         if peer.buffer_full_drop_gossip_broadcast() {
1479                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1480                                                 continue;
1481                                         }
1482                                         if let Some((_, their_node_id)) = peer.their_node_id {
1483                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1484                                                         continue;
1485                                                 }
1486                                         }
1487                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1488                                                 continue;
1489                                         }
1490                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1491                                 }
1492                         },
1493                         wire::Message::NodeAnnouncement(ref msg) => {
1494                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1495                                 let encoded_msg = encode_msg!(msg);
1496
1497                                 for (_, peer_mutex) in peers.iter() {
1498                                         let mut peer = peer_mutex.lock().unwrap();
1499                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1500                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1501                                                 continue
1502                                         }
1503                                         if peer.buffer_full_drop_gossip_broadcast() {
1504                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1505                                                 continue;
1506                                         }
1507                                         if let Some((_, their_node_id)) = peer.their_node_id {
1508                                                 if their_node_id == msg.contents.node_id {
1509                                                         continue;
1510                                                 }
1511                                         }
1512                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1513                                                 continue;
1514                                         }
1515                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1516                                 }
1517                         },
1518                         wire::Message::ChannelUpdate(ref msg) => {
1519                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1520                                 let encoded_msg = encode_msg!(msg);
1521
1522                                 for (_, peer_mutex) in peers.iter() {
1523                                         let mut peer = peer_mutex.lock().unwrap();
1524                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1525                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1526                                                 continue
1527                                         }
1528                                         if peer.buffer_full_drop_gossip_broadcast() {
1529                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1530                                                 continue;
1531                                         }
1532                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1533                                                 continue;
1534                                         }
1535                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1536                                 }
1537                         },
1538                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1539                 }
1540         }
1541
1542         /// Checks for any events generated by our handlers and processes them. Includes sending most
1543         /// response messages as well as messages generated by calls to handler functions directly (eg
1544         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1545         ///
1546         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1547         /// issues!
1548         ///
1549         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1550         /// or one of the other clients provided in our language bindings.
1551         ///
1552         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1553         /// without doing any work. All available events that need handling will be handled before the
1554         /// other calls return.
1555         ///
1556         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1557         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1558         /// [`send_data`]: SocketDescriptor::send_data
1559         pub fn process_events(&self) {
1560                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1561                 if _single_processor_lock.is_err() {
1562                         // While we could wake the older sleeper here with a CV and make more even waiting
1563                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1564                         // count" goal.
1565                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1566                                 Err(val) => {
1567                                         debug_assert!(val, "compare_exchange failed spuriously?");
1568                                         return;
1569                                 },
1570                                 Ok(val) => {
1571                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1572                                         // We're the only waiter, as the running process_events may have emptied the
1573                                         // pending events "long" ago and there are new events for us to process, wait until
1574                                         // its done and process any leftover events before returning.
1575                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1576                                         self.blocked_event_processors.store(false, Ordering::Release);
1577                                 }
1578                         }
1579                 }
1580
1581                 let mut peers_to_disconnect = HashMap::new();
1582                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1583                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1584
1585                 {
1586                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1587                         // buffer by doing things like announcing channels on another node. We should be willing to
1588                         // drop optional-ish messages when send buffers get full!
1589
1590                         let peers_lock = self.peers.read().unwrap();
1591                         let peers = &*peers_lock;
1592                         macro_rules! get_peer_for_forwarding {
1593                                 ($node_id: expr) => {
1594                                         {
1595                                                 if peers_to_disconnect.get($node_id).is_some() {
1596                                                         // If we've "disconnected" this peer, do not send to it.
1597                                                         continue;
1598                                                 }
1599                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1600                                                 match descriptor_opt {
1601                                                         Some(descriptor) => match peers.get(&descriptor) {
1602                                                                 Some(peer_mutex) => {
1603                                                                         let peer_lock = peer_mutex.lock().unwrap();
1604                                                                         if peer_lock.their_features.is_none() {
1605                                                                                 continue;
1606                                                                         }
1607                                                                         peer_lock
1608                                                                 },
1609                                                                 None => {
1610                                                                         debug_assert!(false, "Inconsistent peers set state!");
1611                                                                         continue;
1612                                                                 }
1613                                                         },
1614                                                         None => {
1615                                                                 continue;
1616                                                         },
1617                                                 }
1618                                         }
1619                                 }
1620                         }
1621                         for event in events_generated.drain(..) {
1622                                 match event {
1623                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1624                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1625                                                                 log_pubkey!(node_id),
1626                                                                 log_bytes!(msg.temporary_channel_id));
1627                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1628                                         },
1629                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1630                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1631                                                                 log_pubkey!(node_id),
1632                                                                 log_bytes!(msg.temporary_channel_id));
1633                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1634                                         },
1635                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1636                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1637                                                                 log_pubkey!(node_id),
1638                                                                 log_bytes!(msg.temporary_channel_id),
1639                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1640                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1641                                                 // indicating to the wallet that they should just throw away this funding transaction
1642                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1643                                         },
1644                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1645                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1646                                                                 log_pubkey!(node_id),
1647                                                                 log_bytes!(msg.channel_id));
1648                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1649                                         },
1650                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1651                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1652                                                                 log_pubkey!(node_id),
1653                                                                 log_bytes!(msg.channel_id));
1654                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1655                                         },
1656                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1657                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1658                                                                 log_pubkey!(node_id),
1659                                                                 log_bytes!(msg.channel_id));
1660                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1661                                         },
1662                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1663                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1664                                                                 log_pubkey!(node_id),
1665                                                                 update_add_htlcs.len(),
1666                                                                 update_fulfill_htlcs.len(),
1667                                                                 update_fail_htlcs.len(),
1668                                                                 log_bytes!(commitment_signed.channel_id));
1669                                                 let mut peer = get_peer_for_forwarding!(node_id);
1670                                                 for msg in update_add_htlcs {
1671                                                         self.enqueue_message(&mut *peer, msg);
1672                                                 }
1673                                                 for msg in update_fulfill_htlcs {
1674                                                         self.enqueue_message(&mut *peer, msg);
1675                                                 }
1676                                                 for msg in update_fail_htlcs {
1677                                                         self.enqueue_message(&mut *peer, msg);
1678                                                 }
1679                                                 for msg in update_fail_malformed_htlcs {
1680                                                         self.enqueue_message(&mut *peer, msg);
1681                                                 }
1682                                                 if let &Some(ref msg) = update_fee {
1683                                                         self.enqueue_message(&mut *peer, msg);
1684                                                 }
1685                                                 self.enqueue_message(&mut *peer, commitment_signed);
1686                                         },
1687                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1688                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1689                                                                 log_pubkey!(node_id),
1690                                                                 log_bytes!(msg.channel_id));
1691                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1692                                         },
1693                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1694                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1695                                                                 log_pubkey!(node_id),
1696                                                                 log_bytes!(msg.channel_id));
1697                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1698                                         },
1699                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1700                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1701                                                                 log_pubkey!(node_id),
1702                                                                 log_bytes!(msg.channel_id));
1703                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1704                                         },
1705                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1706                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1707                                                                 log_pubkey!(node_id),
1708                                                                 log_bytes!(msg.channel_id));
1709                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1710                                         },
1711                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1712                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1713                                                                 log_pubkey!(node_id),
1714                                                                 msg.contents.short_channel_id);
1715                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1716                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1717                                         },
1718                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1719                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1720                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1721                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1722                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1723                                                         _ => {},
1724                                                 }
1725                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1726                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1727                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1728                                                         _ => {},
1729                                                 }
1730                                         },
1731                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1732                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1733                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1734                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1735                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1736                                                         _ => {},
1737                                                 }
1738                                         },
1739                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1740                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1741                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1742                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1743                                         },
1744                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1745                                                 match *action {
1746                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1747                                                                 // We do not have the peers write lock, so we just store that we're
1748                                                                 // about to disconenct the peer and do it after we finish
1749                                                                 // processing most messages.
1750                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1751                                                         },
1752                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1753                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1754                                                         },
1755                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1756                                                         msgs::ErrorAction::IgnoreError => {
1757                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1758                                                         },
1759                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1760                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1761                                                                                 log_pubkey!(node_id),
1762                                                                                 msg.data);
1763                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1764                                                         },
1765                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1766                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1767                                                                                 log_pubkey!(node_id),
1768                                                                                 msg.data);
1769                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1770                                                         },
1771                                                 }
1772                                         },
1773                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1774                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1775                                         },
1776                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1777                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1778                                         }
1779                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1780                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1781                                                         log_pubkey!(node_id),
1782                                                         msg.short_channel_ids.len(),
1783                                                         msg.first_blocknum,
1784                                                         msg.number_of_blocks,
1785                                                         msg.sync_complete);
1786                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1787                                         }
1788                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1789                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1790                                         }
1791                                 }
1792                         }
1793
1794                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1795                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1796                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1797                         }
1798
1799                         for (descriptor, peer_mutex) in peers.iter() {
1800                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1801                         }
1802                 }
1803                 if !peers_to_disconnect.is_empty() {
1804                         let mut peers_lock = self.peers.write().unwrap();
1805                         let peers = &mut *peers_lock;
1806                         for (node_id, msg) in peers_to_disconnect.drain() {
1807                                 // Note that since we are holding the peers *write* lock we can
1808                                 // remove from node_id_to_descriptor immediately (as no other
1809                                 // thread can be holding the peer lock if we have the global write
1810                                 // lock).
1811
1812                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1813                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1814                                                 if let Some(msg) = msg {
1815                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1816                                                                         log_pubkey!(node_id),
1817                                                                         msg.data);
1818                                                         let mut peer = peer_mutex.lock().unwrap();
1819                                                         self.enqueue_message(&mut *peer, &msg);
1820                                                         // This isn't guaranteed to work, but if there is enough free
1821                                                         // room in the send buffer, put the error message there...
1822                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1823                                                 } else {
1824                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1825                                                 }
1826                                         }
1827                                         descriptor.disconnect_socket();
1828                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1829                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1830                                 }
1831                         }
1832                 }
1833         }
1834
1835         /// Indicates that the given socket descriptor's connection is now closed.
1836         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1837                 self.disconnect_event_internal(descriptor, false);
1838         }
1839
1840         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1841                 let mut peers = self.peers.write().unwrap();
1842                 let peer_option = peers.remove(descriptor);
1843                 match peer_option {
1844                         None => {
1845                                 // This is most likely a simple race condition where the user found that the socket
1846                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1847                                 // called this method. Either way we're disconnected, return.
1848                         },
1849                         Some(peer_lock) => {
1850                                 let peer = peer_lock.lock().unwrap();
1851                                 if let Some((node_id, _)) = peer.their_node_id {
1852                                         log_trace!(self.logger,
1853                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1854                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1855                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1856                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1857                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1858                                 }
1859                         }
1860                 };
1861         }
1862
1863         /// Disconnect a peer given its node id.
1864         ///
1865         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1866         /// force-closing any channels we have with it.
1867         ///
1868         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1869         /// peer. Thus, be very careful about reentrancy issues.
1870         ///
1871         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1872         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1873                 let mut peers_lock = self.peers.write().unwrap();
1874                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1875                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1876                         peers_lock.remove(&descriptor);
1877                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1878                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1879                         descriptor.disconnect_socket();
1880                 }
1881         }
1882
1883         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1884         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1885         /// using regular ping/pongs.
1886         pub fn disconnect_all_peers(&self) {
1887                 let mut peers_lock = self.peers.write().unwrap();
1888                 self.node_id_to_descriptor.lock().unwrap().clear();
1889                 let peers = &mut *peers_lock;
1890                 for (mut descriptor, peer) in peers.drain() {
1891                         if let Some((node_id, _)) = peer.lock().unwrap().their_node_id {
1892                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1893                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1894                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1895                         }
1896                         descriptor.disconnect_socket();
1897                 }
1898         }
1899
1900         /// This is called when we're blocked on sending additional gossip messages until we receive a
1901         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1902         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1903         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1904                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1905                         peer.awaiting_pong_timer_tick_intervals = -1;
1906                         let ping = msgs::Ping {
1907                                 ponglen: 0,
1908                                 byteslen: 64,
1909                         };
1910                         self.enqueue_message(peer, &ping);
1911                 }
1912         }
1913
1914         /// Send pings to each peer and disconnect those which did not respond to the last round of
1915         /// pings.
1916         ///
1917         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1918         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1919         /// time they have to respond before we disconnect them.
1920         ///
1921         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1922         /// issues!
1923         ///
1924         /// [`send_data`]: SocketDescriptor::send_data
1925         pub fn timer_tick_occurred(&self) {
1926                 let mut descriptors_needing_disconnect = Vec::new();
1927                 {
1928                         let peers_lock = self.peers.read().unwrap();
1929
1930                         for (descriptor, peer_mutex) in peers_lock.iter() {
1931                                 let mut peer = peer_mutex.lock().unwrap();
1932                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1933                                         // The peer needs to complete its handshake before we can exchange messages. We
1934                                         // give peers one timer tick to complete handshake, reusing
1935                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1936                                         // for handshake completion.
1937                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1938                                                 descriptors_needing_disconnect.push(descriptor.clone());
1939                                         } else {
1940                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1941                                         }
1942                                         continue;
1943                                 }
1944
1945                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1946                                         // Magic value set in `maybe_send_extra_ping`.
1947                                         peer.awaiting_pong_timer_tick_intervals = 1;
1948                                         peer.received_message_since_timer_tick = false;
1949                                         continue;
1950                                 }
1951
1952                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1953                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1954                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1955                                 {
1956                                         descriptors_needing_disconnect.push(descriptor.clone());
1957                                         continue;
1958                                 }
1959                                 peer.received_message_since_timer_tick = false;
1960
1961                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1962                                         peer.awaiting_pong_timer_tick_intervals += 1;
1963                                         continue;
1964                                 }
1965
1966                                 peer.awaiting_pong_timer_tick_intervals = 1;
1967                                 let ping = msgs::Ping {
1968                                         ponglen: 0,
1969                                         byteslen: 64,
1970                                 };
1971                                 self.enqueue_message(&mut *peer, &ping);
1972                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1973                         }
1974                 }
1975
1976                 if !descriptors_needing_disconnect.is_empty() {
1977                         {
1978                                 let mut peers_lock = self.peers.write().unwrap();
1979                                 for descriptor in descriptors_needing_disconnect.iter() {
1980                                         if let Some(peer) = peers_lock.remove(descriptor) {
1981                                                 if let Some((node_id, _)) = peer.lock().unwrap().their_node_id {
1982                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1983                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1984                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1985                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1986                                                 }
1987                                         }
1988                                 }
1989                         }
1990
1991                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1992                                 descriptor.disconnect_socket();
1993                         }
1994                 }
1995         }
1996
1997         #[allow(dead_code)]
1998         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1999         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2000         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2001         // message...
2002         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2003         #[deny(const_err)]
2004         #[allow(dead_code)]
2005         // ...by failing to compile if the number of addresses that would be half of a message is
2006         // smaller than 100:
2007         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2008
2009         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2010         /// peers. Note that peers will likely ignore this message unless we have at least one public
2011         /// channel which has at least six confirmations on-chain.
2012         ///
2013         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2014         /// node to humans. They carry no in-protocol meaning.
2015         ///
2016         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2017         /// accepts incoming connections. These will be included in the node_announcement, publicly
2018         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2019         /// addresses should likely contain only Tor Onion addresses.
2020         ///
2021         /// Panics if `addresses` is absurdly large (more than 100).
2022         ///
2023         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2024         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2025                 if addresses.len() > 100 {
2026                         panic!("More than half the message size was taken up by public addresses!");
2027                 }
2028
2029                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2030                 // addresses be sorted for future compatibility.
2031                 addresses.sort_by_key(|addr| addr.get_id());
2032
2033                 let features = self.message_handler.chan_handler.provided_node_features()
2034                         .or(self.message_handler.route_handler.provided_node_features())
2035                         .or(self.message_handler.onion_message_handler.provided_node_features());
2036                 let announcement = msgs::UnsignedNodeAnnouncement {
2037                         features,
2038                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2039                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2040                         rgb, alias, addresses,
2041                         excess_address_data: Vec::new(),
2042                         excess_data: Vec::new(),
2043                 };
2044                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2045                         msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2046                 ) {
2047                         Ok(sig) => sig,
2048                         Err(_) => {
2049                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2050                                 return;
2051                         },
2052                 };
2053
2054                 let msg = msgs::NodeAnnouncement {
2055                         signature: node_announce_sig,
2056                         contents: announcement
2057                 };
2058
2059                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2060                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2061                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2062         }
2063 }
2064
2065 fn is_gossip_msg(type_id: u16) -> bool {
2066         match type_id {
2067                 msgs::ChannelAnnouncement::TYPE |
2068                 msgs::ChannelUpdate::TYPE |
2069                 msgs::NodeAnnouncement::TYPE |
2070                 msgs::QueryChannelRange::TYPE |
2071                 msgs::ReplyChannelRange::TYPE |
2072                 msgs::QueryShortChannelIds::TYPE |
2073                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2074                 _ => false
2075         }
2076 }
2077
2078 #[cfg(test)]
2079 mod tests {
2080         use crate::chain::keysinterface::{NodeSigner, Recipient};
2081         use crate::ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2082         use crate::ln::{msgs, wire};
2083         use crate::ln::msgs::NetAddress;
2084         use crate::util::events;
2085         use crate::util::test_utils;
2086
2087         use bitcoin::secp256k1::SecretKey;
2088
2089         use crate::prelude::*;
2090         use crate::sync::{Arc, Mutex};
2091         use core::sync::atomic::Ordering;
2092
2093         #[derive(Clone)]
2094         struct FileDescriptor {
2095                 fd: u16,
2096                 outbound_data: Arc<Mutex<Vec<u8>>>,
2097         }
2098         impl PartialEq for FileDescriptor {
2099                 fn eq(&self, other: &Self) -> bool {
2100                         self.fd == other.fd
2101                 }
2102         }
2103         impl Eq for FileDescriptor { }
2104         impl core::hash::Hash for FileDescriptor {
2105                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2106                         self.fd.hash(hasher)
2107                 }
2108         }
2109
2110         impl SocketDescriptor for FileDescriptor {
2111                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2112                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2113                         data.len()
2114                 }
2115
2116                 fn disconnect_socket(&mut self) {}
2117         }
2118
2119         struct PeerManagerCfg {
2120                 chan_handler: test_utils::TestChannelMessageHandler,
2121                 routing_handler: test_utils::TestRoutingMessageHandler,
2122                 logger: test_utils::TestLogger,
2123                 node_signer: test_utils::TestNodeSigner,
2124         }
2125
2126         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2127                 let mut cfgs = Vec::new();
2128                 for i in 0..peer_count {
2129                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2130                         cfgs.push(
2131                                 PeerManagerCfg{
2132                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2133                                         logger: test_utils::TestLogger::new(),
2134                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2135                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2136                                 }
2137                         );
2138                 }
2139
2140                 cfgs
2141         }
2142
2143         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>> {
2144                 let mut peers = Vec::new();
2145                 for i in 0..peer_count {
2146                         let ephemeral_bytes = [i as u8; 32];
2147                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2148                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {}, &cfgs[i].node_signer);
2149                         peers.push(peer);
2150                 }
2151
2152                 peers
2153         }
2154
2155         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2156                 let a_id = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2157                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2158                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2159                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2160                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2161                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2162                 peer_a.process_events();
2163
2164                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2165                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2166
2167                 peer_b.process_events();
2168                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2169                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2170
2171                 peer_a.process_events();
2172                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2173                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2174
2175                 (fd_a.clone(), fd_b.clone())
2176         }
2177
2178         #[test]
2179         fn test_disconnect_peer() {
2180                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2181                 // push a DisconnectPeer event to remove the node flagged by id
2182                 let cfgs = create_peermgr_cfgs(2);
2183                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2184                 let mut peers = create_network(2, &cfgs);
2185                 establish_connection(&peers[0], &peers[1]);
2186                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2187
2188                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2189
2190                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2191                         node_id: their_id,
2192                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2193                 });
2194                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2195                 peers[0].message_handler.chan_handler = &chan_handler;
2196
2197                 peers[0].process_events();
2198                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2199         }
2200
2201         #[test]
2202         fn test_send_simple_msg() {
2203                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2204                 // push a message from one peer to another.
2205                 let cfgs = create_peermgr_cfgs(2);
2206                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2207                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2208                 let mut peers = create_network(2, &cfgs);
2209                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2210                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2211
2212                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2213
2214                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2215                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2216                         node_id: their_id, msg: msg.clone()
2217                 });
2218                 peers[0].message_handler.chan_handler = &a_chan_handler;
2219
2220                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2221                 peers[1].message_handler.chan_handler = &b_chan_handler;
2222
2223                 peers[0].process_events();
2224
2225                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2226                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2227         }
2228
2229         #[test]
2230         fn test_disconnect_all_peer() {
2231                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2232                 // then calls disconnect_all_peers
2233                 let cfgs = create_peermgr_cfgs(2);
2234                 let peers = create_network(2, &cfgs);
2235                 establish_connection(&peers[0], &peers[1]);
2236                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2237
2238                 peers[0].disconnect_all_peers();
2239                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2240         }
2241
2242         #[test]
2243         fn test_timer_tick_occurred() {
2244                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2245                 let cfgs = create_peermgr_cfgs(2);
2246                 let peers = create_network(2, &cfgs);
2247                 establish_connection(&peers[0], &peers[1]);
2248                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2249
2250                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2251                 peers[0].timer_tick_occurred();
2252                 peers[0].process_events();
2253                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2254
2255                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2256                 peers[0].timer_tick_occurred();
2257                 peers[0].process_events();
2258                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2259         }
2260
2261         #[test]
2262         fn test_do_attempt_write_data() {
2263                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2264                 let cfgs = create_peermgr_cfgs(2);
2265                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2266                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2267                 let peers = create_network(2, &cfgs);
2268
2269                 // By calling establish_connect, we trigger do_attempt_write_data between
2270                 // the peers. Previously this function would mistakenly enter an infinite loop
2271                 // when there were more channel messages available than could fit into a peer's
2272                 // buffer. This issue would now be detected by this test (because we use custom
2273                 // RoutingMessageHandlers that intentionally return more channel messages
2274                 // than can fit into a peer's buffer).
2275                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2276
2277                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2278                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2279                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2280                         peers[1].process_events();
2281                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2282                         assert!(!a_read_data.is_empty());
2283
2284                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2285                         peers[0].process_events();
2286
2287                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2288                         assert!(!b_read_data.is_empty());
2289                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2290
2291                         peers[0].process_events();
2292                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2293                 }
2294
2295                 // Check that each peer has received the expected number of channel updates and channel
2296                 // announcements.
2297                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2298                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2299                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2300                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2301         }
2302
2303         #[test]
2304         fn test_handshake_timeout() {
2305                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2306                 // tick.
2307                 let cfgs = create_peermgr_cfgs(2);
2308                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2309                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2310                 let peers = create_network(2, &cfgs);
2311
2312                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2313                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2314                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2315                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2316                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2317
2318                 // If we get a single timer tick before completion, that's fine
2319                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2320                 peers[0].timer_tick_occurred();
2321                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2322
2323                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2324                 peers[0].process_events();
2325                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2326                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2327                 peers[1].process_events();
2328
2329                 // ...but if we get a second timer tick, we should disconnect the peer
2330                 peers[0].timer_tick_occurred();
2331                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2332
2333                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2334                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2335         }
2336
2337         #[test]
2338         fn test_filter_addresses(){
2339                 // Tests the filter_addresses function.
2340
2341                 // For (10/8)
2342                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2343                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2344                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2345                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2346                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2347                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2348
2349                 // For (0/8)
2350                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2351                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2352                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2353                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2354                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2355                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2356
2357                 // For (100.64/10)
2358                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2359                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2360                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2361                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2362                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2363                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2364
2365                 // For (127/8)
2366                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2367                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2368                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2369                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2370                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2371                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2372
2373                 // For (169.254/16)
2374                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2375                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2376                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2377                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2378                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2379                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2380
2381                 // For (172.16/12)
2382                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2383                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2384                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2385                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2386                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2387                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2388
2389                 // For (192.168/16)
2390                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2391                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2392                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2393                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2394                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2395                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2396
2397                 // For (192.88.99/24)
2398                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2399                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2400                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2401                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2402                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2403                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2404
2405                 // For other IPv4 addresses
2406                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2407                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2408                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2409                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2410                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2411                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2412
2413                 // For (2000::/3)
2414                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2415                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2416                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2417                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2418                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2419                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2420
2421                 // For other IPv6 addresses
2422                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2423                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2424                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2425                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2426                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2427                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2428
2429                 // For (None)
2430                 assert_eq!(filter_addresses(None), None);
2431         }
2432 }