PeerManager: bump the read pause limit
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use routing::gossip::{NetworkGraph, P2PGossipSync};
29 use util::atomic_counter::AtomicCounter;
30 use util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
31 use util::logger::Logger;
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
37 use core::sync::atomic::{AtomicBool, Ordering};
38 use core::{cmp, hash, fmt, mem};
39 use core::ops::Deref;
40 use core::convert::Infallible;
41 #[cfg(feature = "std")] use std::error;
42
43 use bitcoin::hashes::sha256::Hash as Sha256;
44 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
45 use bitcoin::hashes::{HashEngine, Hash};
46
47 /// Handler for BOLT1-compliant messages.
48 pub trait CustomMessageHandler: wire::CustomMessageReader {
49         /// Called with the message type that was received and the buffer to be read.
50         /// Can return a `MessageHandlingError` if the message could not be handled.
51         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
52
53         /// Gets the list of pending messages which were generated by the custom message
54         /// handler, clearing the list in the process. The first tuple element must
55         /// correspond to the intended recipients node ids. If no connection to one of the
56         /// specified node does not exist, the message is simply not sent to it.
57         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
58 }
59
60 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
61 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
62 pub struct IgnoringMessageHandler{}
63 impl MessageSendEventsProvider for IgnoringMessageHandler {
64         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
65 }
66 impl RoutingMessageHandler for IgnoringMessageHandler {
67         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
69         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
70         fn get_next_channel_announcement(&self, _starting_point: u64) ->
71                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
72         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
73         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
74         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
75         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
78 }
79 impl OnionMessageProvider for IgnoringMessageHandler {
80         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
81 }
82 impl OnionMessageHandler for IgnoringMessageHandler {
83         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
84 }
85 impl Deref for IgnoringMessageHandler {
86         type Target = IgnoringMessageHandler;
87         fn deref(&self) -> &Self { self }
88 }
89
90 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
91 // method that takes self for it.
92 impl wire::Type for Infallible {
93         fn type_id(&self) -> u16 {
94                 unreachable!();
95         }
96 }
97 impl Writeable for Infallible {
98         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
99                 unreachable!();
100         }
101 }
102
103 impl wire::CustomMessageReader for IgnoringMessageHandler {
104         type CustomMessage = Infallible;
105         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
106                 Ok(None)
107         }
108 }
109
110 impl CustomMessageHandler for IgnoringMessageHandler {
111         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
112                 // Since we always return `None` in the read the handle method should never be called.
113                 unreachable!();
114         }
115
116         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
117 }
118
119 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
120 /// You can provide one of these as the route_handler in a MessageHandler.
121 pub struct ErroringMessageHandler {
122         message_queue: Mutex<Vec<MessageSendEvent>>
123 }
124 impl ErroringMessageHandler {
125         /// Constructs a new ErroringMessageHandler
126         pub fn new() -> Self {
127                 Self { message_queue: Mutex::new(Vec::new()) }
128         }
129         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
130                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
131                         action: msgs::ErrorAction::SendErrorMessage {
132                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
133                         },
134                         node_id: node_id.clone(),
135                 });
136         }
137 }
138 impl MessageSendEventsProvider for ErroringMessageHandler {
139         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
140                 let mut res = Vec::new();
141                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
142                 res
143         }
144 }
145 impl ChannelMessageHandler for ErroringMessageHandler {
146         // Any messages which are related to a specific channel generate an error message to let the
147         // peer know we don't care about channels.
148         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
149                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
150         }
151         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
152                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
153         }
154         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
155                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
156         }
157         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
158                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
159         }
160         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
161                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
162         }
163         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
164                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
165         }
166         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
167                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
168         }
169         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
170                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
171         }
172         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
173                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
174         }
175         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
176                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
177         }
178         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
180         }
181         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
183         }
184         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
186         }
187         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
191                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
192         }
193         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
194                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
195         }
196         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
197         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
198         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
199         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
200         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
201 }
202 impl Deref for ErroringMessageHandler {
203         type Target = ErroringMessageHandler;
204         fn deref(&self) -> &Self { self }
205 }
206
207 /// Provides references to trait impls which handle different types of messages.
208 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
209                 CM::Target: ChannelMessageHandler,
210                 RM::Target: RoutingMessageHandler,
211                 OM::Target: OnionMessageHandler,
212 {
213         /// A message handler which handles messages specific to channels. Usually this is just a
214         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
215         ///
216         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
217         pub chan_handler: CM,
218         /// A message handler which handles messages updating our knowledge of the network channel
219         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
220         ///
221         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
222         pub route_handler: RM,
223
224         /// A message handler which handles onion messages. For now, this can only be an
225         /// [`IgnoringMessageHandler`].
226         pub onion_message_handler: OM,
227 }
228
229 /// Provides an object which can be used to send data to and which uniquely identifies a connection
230 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
231 /// implement Hash to meet the PeerManager API.
232 ///
233 /// For efficiency, Clone should be relatively cheap for this type.
234 ///
235 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
236 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
237 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
238 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
239 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
240 /// to simply use another value which is guaranteed to be globally unique instead.
241 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
242         /// Attempts to send some data from the given slice to the peer.
243         ///
244         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
245         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
246         /// called and further write attempts may occur until that time.
247         ///
248         /// If the returned size is smaller than `data.len()`, a
249         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
250         /// written. Additionally, until a `send_data` event completes fully, no further
251         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
252         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
253         /// until then.
254         ///
255         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
256         /// (indicating that read events should be paused to prevent DoS in the send buffer),
257         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
258         /// `resume_read` of false carries no meaning, and should not cause any action.
259         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
260         /// Disconnect the socket pointed to by this SocketDescriptor.
261         ///
262         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
263         /// call (doing so is a noop).
264         fn disconnect_socket(&mut self);
265 }
266
267 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
268 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
269 /// descriptor.
270 #[derive(Clone)]
271 pub struct PeerHandleError {
272         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
273         /// because we required features that our peer was missing, or vice versa).
274         ///
275         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
276         /// any channels with this peer or check for new versions of LDK.
277         ///
278         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
279         pub no_connection_possible: bool,
280 }
281 impl fmt::Debug for PeerHandleError {
282         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
283                 formatter.write_str("Peer Sent Invalid Data")
284         }
285 }
286 impl fmt::Display for PeerHandleError {
287         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
288                 formatter.write_str("Peer Sent Invalid Data")
289         }
290 }
291
292 #[cfg(feature = "std")]
293 impl error::Error for PeerHandleError {
294         fn description(&self) -> &str {
295                 "Peer Sent Invalid Data"
296         }
297 }
298
299 enum InitSyncTracker{
300         NoSyncRequested,
301         ChannelsSyncing(u64),
302         NodesSyncing(PublicKey),
303 }
304
305 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
306 /// forwarding gossip messages to peers altogether.
307 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
308
309 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
310 /// we have fewer than this many messages in the outbound buffer again.
311 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
312 /// refilled as we send bytes.
313 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
314 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
315 /// the peer.
316 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
317
318 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
319 /// the socket receive buffer before receiving the ping.
320 ///
321 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
322 /// including any network delays, outbound traffic, or the same for messages from other peers.
323 ///
324 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
325 /// per connected peer to respond to a ping, as long as they send us at least one message during
326 /// each tick, ensuring we aren't actually just disconnected.
327 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
328 /// peer.
329 ///
330 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
331 /// two connected peers, assuming most LDK-running systems have at least two cores.
332 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
333
334 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
335 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
336 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
337 /// process before the next ping.
338 ///
339 /// Note that we continue responding to other messages even after we've sent this many messages, so
340 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
341 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
342 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
343
344 struct Peer {
345         channel_encryptor: PeerChannelEncryptor,
346         their_node_id: Option<PublicKey>,
347         their_features: Option<InitFeatures>,
348         their_net_address: Option<NetAddress>,
349
350         pending_outbound_buffer: LinkedList<Vec<u8>>,
351         pending_outbound_buffer_first_msg_offset: usize,
352         // Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily prioritize
353         // channel messages over them.
354         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
355         awaiting_write_event: bool,
356
357         pending_read_buffer: Vec<u8>,
358         pending_read_buffer_pos: usize,
359         pending_read_is_header: bool,
360
361         sync_status: InitSyncTracker,
362
363         msgs_sent_since_pong: usize,
364         awaiting_pong_timer_tick_intervals: i8,
365         received_message_since_timer_tick: bool,
366         sent_gossip_timestamp_filter: bool,
367 }
368
369 impl Peer {
370         /// Returns true if the channel announcements/updates for the given channel should be
371         /// forwarded to this peer.
372         /// If we are sending our routing table to this peer and we have not yet sent channel
373         /// announcements/updates for the given channel_id then we will send it when we get to that
374         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
375         /// sent the old versions, we should send the update, and so return true here.
376         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
377                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
378                         !self.sent_gossip_timestamp_filter {
379                                 return false;
380                         }
381                 match self.sync_status {
382                         InitSyncTracker::NoSyncRequested => true,
383                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
384                         InitSyncTracker::NodesSyncing(_) => true,
385                 }
386         }
387
388         /// Similar to the above, but for node announcements indexed by node_id.
389         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
390                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
391                         !self.sent_gossip_timestamp_filter {
392                                 return false;
393                         }
394                 match self.sync_status {
395                         InitSyncTracker::NoSyncRequested => true,
396                         InitSyncTracker::ChannelsSyncing(_) => false,
397                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
398                 }
399         }
400
401         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
402         /// buffer still has space and we don't need to pause reads to get some writes out.
403         fn should_read(&self) -> bool {
404                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
405         }
406
407         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
408         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
409         fn should_buffer_gossip_backfill(&self) -> bool {
410                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
411                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
412         }
413
414         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
415         /// buffer. This is checked every time the peer's buffer may have been drained.
416         fn should_buffer_gossip_broadcast(&self) -> bool {
417                 self.pending_outbound_buffer.is_empty()
418                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
419         }
420
421         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
422         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
423                 let total_outbound_buffered =
424                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
425
426                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
427                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
428         }
429 }
430
431 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
432 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
433 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
434 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
435 /// issues such as overly long function definitions.
436 ///
437 /// (C-not exported) as Arcs don't make sense in bindings
438 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, IgnoringMessageHandler, Arc<L>, Arc<IgnoringMessageHandler>>;
439
440 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
441 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
442 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
443 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
444 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
445 /// helps with issues such as long function definitions.
446 ///
447 /// (C-not exported) as Arcs don't make sense in bindings
448 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, IgnoringMessageHandler, &'f L, IgnoringMessageHandler>;
449
450 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
451 /// socket events into messages which it passes on to its [`MessageHandler`].
452 ///
453 /// Locks are taken internally, so you must never assume that reentrancy from a
454 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
455 ///
456 /// Calls to [`read_event`] will decode relevant messages and pass them to the
457 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
458 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
459 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
460 /// calls only after previous ones have returned.
461 ///
462 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
463 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
464 /// essentially you should default to using a SimpleRefPeerManager, and use a
465 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
466 /// you're using lightning-net-tokio.
467 ///
468 /// [`read_event`]: PeerManager::read_event
469 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> where
470                 CM::Target: ChannelMessageHandler,
471                 RM::Target: RoutingMessageHandler,
472                 OM::Target: OnionMessageHandler,
473                 L::Target: Logger,
474                 CMH::Target: CustomMessageHandler {
475         message_handler: MessageHandler<CM, RM, OM>,
476         /// Connection state for each connected peer - we have an outer read-write lock which is taken
477         /// as read while we're doing processing for a peer and taken write when a peer is being added
478         /// or removed.
479         ///
480         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
481         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
482         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
483         /// the `MessageHandler`s for a given peer is already guaranteed.
484         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
485         /// Only add to this set when noise completes.
486         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
487         /// lock held. Entries may be added with only the `peers` read lock held (though the
488         /// `Descriptor` value must already exist in `peers`).
489         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
490         /// We can only have one thread processing events at once, but we don't usually need the full
491         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
492         /// `process_events`.
493         event_processing_lock: Mutex<()>,
494         /// Because event processing is global and always does all available work before returning,
495         /// there is no reason for us to have many event processors waiting on the lock at once.
496         /// Instead, we limit the total blocked event processors to always exactly one by setting this
497         /// when an event process call is waiting.
498         blocked_event_processors: AtomicBool,
499         our_node_secret: SecretKey,
500         ephemeral_key_midstate: Sha256Engine,
501         custom_message_handler: CMH,
502
503         peer_counter: AtomicCounter,
504
505         logger: L,
506         secp_ctx: Secp256k1<secp256k1::SignOnly>
507 }
508
509 enum MessageHandlingError {
510         PeerHandleError(PeerHandleError),
511         LightningError(LightningError),
512 }
513
514 impl From<PeerHandleError> for MessageHandlingError {
515         fn from(error: PeerHandleError) -> Self {
516                 MessageHandlingError::PeerHandleError(error)
517         }
518 }
519
520 impl From<LightningError> for MessageHandlingError {
521         fn from(error: LightningError) -> Self {
522                 MessageHandlingError::LightningError(error)
523         }
524 }
525
526 macro_rules! encode_msg {
527         ($msg: expr) => {{
528                 let mut buffer = VecWriter(Vec::new());
529                 wire::write($msg, &mut buffer).unwrap();
530                 buffer.0
531         }}
532 }
533
534 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler> where
535                 CM::Target: ChannelMessageHandler,
536                 OM::Target: OnionMessageHandler,
537                 L::Target: Logger {
538         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
539         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
540         /// ignored.
541         ///
542         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
543         /// cryptographically secure random bytes.
544         ///
545         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
546         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
547                 Self::new(MessageHandler {
548                         chan_handler: channel_message_handler,
549                         route_handler: IgnoringMessageHandler{},
550                         onion_message_handler,
551                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
552         }
553 }
554
555 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
556                 RM::Target: RoutingMessageHandler,
557                 L::Target: Logger {
558         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
559         /// handler or onion message handler is used and onion and channel messages will be ignored (or
560         /// generate error messages). Note that some other lightning implementations time-out connections
561         /// after some time if no channel is built with the peer.
562         ///
563         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
564         /// cryptographically secure random bytes.
565         ///
566         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
567         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
568                 Self::new(MessageHandler {
569                         chan_handler: ErroringMessageHandler::new(),
570                         route_handler: routing_message_handler,
571                         onion_message_handler: IgnoringMessageHandler{},
572                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
573         }
574 }
575
576 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
577 /// This works around `format!()` taking a reference to each argument, preventing
578 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
579 /// due to lifetime errors.
580 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
581 impl core::fmt::Display for OptionalFromDebugger<'_> {
582         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
583                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
584         }
585 }
586
587 /// A function used to filter out local or private addresses
588 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
589 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
590 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
591         match ip_address{
592                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
593                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
594                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
595                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
596                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
597                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
598                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
599                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
600                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
601                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
602                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
603                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
604                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
605                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
606                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
607                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
608                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
609                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
610                 // For remaining addresses
611                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
612                 Some(..) => ip_address,
613                 None => None,
614         }
615 }
616
617 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH> where
618                 CM::Target: ChannelMessageHandler,
619                 RM::Target: RoutingMessageHandler,
620                 OM::Target: OnionMessageHandler,
621                 L::Target: Logger,
622                 CMH::Target: CustomMessageHandler {
623         /// Constructs a new PeerManager with the given message handlers and node_id secret key
624         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
625         /// cryptographically secure random bytes.
626         pub fn new(message_handler: MessageHandler<CM, RM, OM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
627                 let mut ephemeral_key_midstate = Sha256::engine();
628                 ephemeral_key_midstate.input(ephemeral_random_data);
629
630                 let mut secp_ctx = Secp256k1::signing_only();
631                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
632                 secp_ctx.seeded_randomize(&ephemeral_hash);
633
634                 PeerManager {
635                         message_handler,
636                         peers: FairRwLock::new(HashMap::new()),
637                         node_id_to_descriptor: Mutex::new(HashMap::new()),
638                         event_processing_lock: Mutex::new(()),
639                         blocked_event_processors: AtomicBool::new(false),
640                         our_node_secret,
641                         ephemeral_key_midstate,
642                         peer_counter: AtomicCounter::new(),
643                         logger,
644                         custom_message_handler,
645                         secp_ctx,
646                 }
647         }
648
649         /// Get the list of node ids for peers which have completed the initial handshake.
650         ///
651         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
652         /// new_outbound_connection, however entries will only appear once the initial handshake has
653         /// completed and we are sure the remote peer has the private key for the given node_id.
654         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
655                 let peers = self.peers.read().unwrap();
656                 peers.values().filter_map(|peer_mutex| {
657                         let p = peer_mutex.lock().unwrap();
658                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
659                                 return None;
660                         }
661                         p.their_node_id
662                 }).collect()
663         }
664
665         fn get_ephemeral_key(&self) -> SecretKey {
666                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
667                 let counter = self.peer_counter.get_increment();
668                 ephemeral_hash.input(&counter.to_le_bytes());
669                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
670         }
671
672         /// Indicates a new outbound connection has been established to a node with the given node_id
673         /// and an optional remote network address.
674         ///
675         /// The remote network address adds the option to report a remote IP address back to a connecting
676         /// peer using the init message.
677         /// The user should pass the remote network address of the host they are connected to.
678         ///
679         /// If an `Err` is returned here you must disconnect the connection immediately.
680         ///
681         /// Returns a small number of bytes to send to the remote node (currently always 50).
682         ///
683         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
684         /// [`socket_disconnected()`].
685         ///
686         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
687         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
688                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
689                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
690                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
691
692                 let mut peers = self.peers.write().unwrap();
693                 if peers.insert(descriptor, Mutex::new(Peer {
694                         channel_encryptor: peer_encryptor,
695                         their_node_id: None,
696                         their_features: None,
697                         their_net_address: remote_network_address,
698
699                         pending_outbound_buffer: LinkedList::new(),
700                         pending_outbound_buffer_first_msg_offset: 0,
701                         gossip_broadcast_buffer: LinkedList::new(),
702                         awaiting_write_event: false,
703
704                         pending_read_buffer,
705                         pending_read_buffer_pos: 0,
706                         pending_read_is_header: false,
707
708                         sync_status: InitSyncTracker::NoSyncRequested,
709
710                         msgs_sent_since_pong: 0,
711                         awaiting_pong_timer_tick_intervals: 0,
712                         received_message_since_timer_tick: false,
713                         sent_gossip_timestamp_filter: false,
714                 })).is_some() {
715                         panic!("PeerManager driver duplicated descriptors!");
716                 };
717                 Ok(res)
718         }
719
720         /// Indicates a new inbound connection has been established to a node with an optional remote
721         /// network address.
722         ///
723         /// The remote network address adds the option to report a remote IP address back to a connecting
724         /// peer using the init message.
725         /// The user should pass the remote network address of the host they are connected to.
726         ///
727         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
728         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
729         /// the connection immediately.
730         ///
731         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
732         /// [`socket_disconnected()`].
733         ///
734         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
735         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
736                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
737                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
738
739                 let mut peers = self.peers.write().unwrap();
740                 if peers.insert(descriptor, Mutex::new(Peer {
741                         channel_encryptor: peer_encryptor,
742                         their_node_id: None,
743                         their_features: None,
744                         their_net_address: remote_network_address,
745
746                         pending_outbound_buffer: LinkedList::new(),
747                         pending_outbound_buffer_first_msg_offset: 0,
748                         gossip_broadcast_buffer: LinkedList::new(),
749                         awaiting_write_event: false,
750
751                         pending_read_buffer,
752                         pending_read_buffer_pos: 0,
753                         pending_read_is_header: false,
754
755                         sync_status: InitSyncTracker::NoSyncRequested,
756
757                         msgs_sent_since_pong: 0,
758                         awaiting_pong_timer_tick_intervals: 0,
759                         received_message_since_timer_tick: false,
760                         sent_gossip_timestamp_filter: false,
761                 })).is_some() {
762                         panic!("PeerManager driver duplicated descriptors!");
763                 };
764                 Ok(())
765         }
766
767         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
768                 while !peer.awaiting_write_event {
769                         if peer.should_buffer_gossip_broadcast() {
770                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
771                                         peer.pending_outbound_buffer.push_back(msg);
772                                 }
773                         }
774                         if peer.should_buffer_gossip_backfill() {
775                                 match peer.sync_status {
776                                         InitSyncTracker::NoSyncRequested => {},
777                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
778                                                 if let Some((announce, update_a_option, update_b_option)) =
779                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
780                                                 {
781                                                         self.enqueue_message(peer, &announce);
782                                                         if let Some(update_a) = update_a_option {
783                                                                 self.enqueue_message(peer, &update_a);
784                                                         }
785                                                         if let Some(update_b) = update_b_option {
786                                                                 self.enqueue_message(peer, &update_b);
787                                                         }
788                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
789                                                 } else {
790                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
791                                                 }
792                                         },
793                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
794                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
795                                                         self.enqueue_message(peer, &msg);
796                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
797                                                 } else {
798                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
799                                                 }
800                                         },
801                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
802                                         InitSyncTracker::NodesSyncing(key) => {
803                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
804                                                         self.enqueue_message(peer, &msg);
805                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
806                                                 } else {
807                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
808                                                 }
809                                         },
810                                 }
811                         }
812                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
813                                 self.maybe_send_extra_ping(peer);
814                         }
815
816                         let next_buff = match peer.pending_outbound_buffer.front() {
817                                 None => return,
818                                 Some(buff) => buff,
819                         };
820
821                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
822                         let data_sent = descriptor.send_data(pending, peer.should_read());
823                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
824                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
825                                 peer.pending_outbound_buffer_first_msg_offset = 0;
826                                 peer.pending_outbound_buffer.pop_front();
827                         } else {
828                                 peer.awaiting_write_event = true;
829                         }
830                 }
831         }
832
833         /// Indicates that there is room to write data to the given socket descriptor.
834         ///
835         /// May return an Err to indicate that the connection should be closed.
836         ///
837         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
838         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
839         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
840         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
841         /// sufficient!
842         ///
843         /// [`send_data`]: SocketDescriptor::send_data
844         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
845         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
846                 let peers = self.peers.read().unwrap();
847                 match peers.get(descriptor) {
848                         None => {
849                                 // This is most likely a simple race condition where the user found that the socket
850                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
851                                 // this method. Return an error to make sure we get disconnected.
852                                 return Err(PeerHandleError { no_connection_possible: false });
853                         },
854                         Some(peer_mutex) => {
855                                 let mut peer = peer_mutex.lock().unwrap();
856                                 peer.awaiting_write_event = false;
857                                 self.do_attempt_write_data(descriptor, &mut peer);
858                         }
859                 };
860                 Ok(())
861         }
862
863         /// Indicates that data was read from the given socket descriptor.
864         ///
865         /// May return an Err to indicate that the connection should be closed.
866         ///
867         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
868         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
869         /// [`send_data`] calls to handle responses.
870         ///
871         /// If `Ok(true)` is returned, further read_events should not be triggered until a
872         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
873         /// send buffer).
874         ///
875         /// [`send_data`]: SocketDescriptor::send_data
876         /// [`process_events`]: PeerManager::process_events
877         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
878                 match self.do_read_event(peer_descriptor, data) {
879                         Ok(res) => Ok(res),
880                         Err(e) => {
881                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
882                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
883                                 Err(e)
884                         }
885                 }
886         }
887
888         /// Append a message to a peer's pending outbound/write buffer
889         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
890                 let mut buffer = VecWriter(Vec::with_capacity(2048));
891                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
892
893                 if is_gossip_msg(message.type_id()) {
894                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
895                 } else {
896                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
897                 }
898                 peer.msgs_sent_since_pong += 1;
899                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&buffer.0[..]));
900         }
901
902         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
903         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
904                 peer.msgs_sent_since_pong += 1;
905                 peer.gossip_broadcast_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
906         }
907
908         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
909                 let mut pause_read = false;
910                 let peers = self.peers.read().unwrap();
911                 let mut msgs_to_forward = Vec::new();
912                 let mut peer_node_id = None;
913                 match peers.get(peer_descriptor) {
914                         None => {
915                                 // This is most likely a simple race condition where the user read some bytes
916                                 // from the socket, then we told the user to `disconnect_socket()`, then they
917                                 // called this method. Return an error to make sure we get disconnected.
918                                 return Err(PeerHandleError { no_connection_possible: false });
919                         },
920                         Some(peer_mutex) => {
921                                 let mut read_pos = 0;
922                                 while read_pos < data.len() {
923                                         macro_rules! try_potential_handleerror {
924                                                 ($peer: expr, $thing: expr) => {
925                                                         match $thing {
926                                                                 Ok(x) => x,
927                                                                 Err(e) => {
928                                                                         match e.action {
929                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
930                                                                                         //TODO: Try to push msg
931                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
932                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
933                                                                                 },
934                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
935                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
936                                                                                         continue
937                                                                                 },
938                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
939                                                                                 msgs::ErrorAction::IgnoreError => {
940                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
941                                                                                         continue;
942                                                                                 },
943                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
944                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
945                                                                                         self.enqueue_message($peer, &msg);
946                                                                                         continue;
947                                                                                 },
948                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
949                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
950                                                                                         self.enqueue_message($peer, &msg);
951                                                                                         continue;
952                                                                                 },
953                                                                         }
954                                                                 }
955                                                         }
956                                                 }
957                                         }
958
959                                         let mut peer_lock = peer_mutex.lock().unwrap();
960                                         let peer = &mut *peer_lock;
961                                         let mut msg_to_handle = None;
962                                         if peer_node_id.is_none() {
963                                                 peer_node_id = peer.their_node_id.clone();
964                                         }
965
966                                         assert!(peer.pending_read_buffer.len() > 0);
967                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
968
969                                         {
970                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
971                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
972                                                 read_pos += data_to_copy;
973                                                 peer.pending_read_buffer_pos += data_to_copy;
974                                         }
975
976                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
977                                                 peer.pending_read_buffer_pos = 0;
978
979                                                 macro_rules! insert_node_id {
980                                                         () => {
981                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
982                                                                         hash_map::Entry::Occupied(_) => {
983                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
984                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
985                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
986                                                                         },
987                                                                         hash_map::Entry::Vacant(entry) => {
988                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
989                                                                                 entry.insert(peer_descriptor.clone())
990                                                                         },
991                                                                 };
992                                                         }
993                                                 }
994
995                                                 let next_step = peer.channel_encryptor.get_noise_step();
996                                                 match next_step {
997                                                         NextNoiseStep::ActOne => {
998                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
999                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1000                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1001                                                                 peer.pending_outbound_buffer.push_back(act_two);
1002                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1003                                                         },
1004                                                         NextNoiseStep::ActTwo => {
1005                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1006                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1007                                                                                 &self.our_node_secret, &self.secp_ctx));
1008                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1009                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1010                                                                 peer.pending_read_is_header = true;
1011
1012                                                                 peer.their_node_id = Some(their_node_id);
1013                                                                 insert_node_id!();
1014                                                                 let features = InitFeatures::known();
1015                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1016                                                                 self.enqueue_message(peer, &resp);
1017                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1018                                                         },
1019                                                         NextNoiseStep::ActThree => {
1020                                                                 let their_node_id = try_potential_handleerror!(peer,
1021                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1022                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1023                                                                 peer.pending_read_is_header = true;
1024                                                                 peer.their_node_id = Some(their_node_id);
1025                                                                 insert_node_id!();
1026                                                                 let features = InitFeatures::known();
1027                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1028                                                                 self.enqueue_message(peer, &resp);
1029                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1030                                                         },
1031                                                         NextNoiseStep::NoiseComplete => {
1032                                                                 if peer.pending_read_is_header {
1033                                                                         let msg_len = try_potential_handleerror!(peer,
1034                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1035                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1036                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1037                                                                         if msg_len < 2 { // Need at least the message type tag
1038                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1039                                                                         }
1040                                                                         peer.pending_read_is_header = false;
1041                                                                 } else {
1042                                                                         let msg_data = try_potential_handleerror!(peer,
1043                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1044                                                                         assert!(msg_data.len() >= 2);
1045
1046                                                                         // Reset read buffer
1047                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1048                                                                         peer.pending_read_buffer.resize(18, 0);
1049                                                                         peer.pending_read_is_header = true;
1050
1051                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1052                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1053                                                                         let message = match message_result {
1054                                                                                 Ok(x) => x,
1055                                                                                 Err(e) => {
1056                                                                                         match e {
1057                                                                                                 // Note that to avoid recursion we never call
1058                                                                                                 // `do_attempt_write_data` from here, causing
1059                                                                                                 // the messages enqueued here to not actually
1060                                                                                                 // be sent before the peer is disconnected.
1061                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1062                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1063                                                                                                         continue;
1064                                                                                                 }
1065                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1066                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1067                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1068                                                                                                         continue;
1069                                                                                                 }
1070                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1071                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1072                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1073                                                                                                         continue;
1074                                                                                                 }
1075                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1076                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1077                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1078                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1079                                                                                                 }
1080                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1081                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1082                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1083                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1084                                                                                                 }
1085                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1086                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1087                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1088                                                                                                 }
1089                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1090                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1091                                                                                         }
1092                                                                                 }
1093                                                                         };
1094
1095                                                                         msg_to_handle = Some(message);
1096                                                                 }
1097                                                         }
1098                                                 }
1099                                         }
1100                                         pause_read = !peer.should_read();
1101
1102                                         if let Some(message) = msg_to_handle {
1103                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1104                                                         Err(handling_error) => match handling_error {
1105                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1106                                                                 MessageHandlingError::LightningError(e) => {
1107                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1108                                                                 },
1109                                                         },
1110                                                         Ok(Some(msg)) => {
1111                                                                 msgs_to_forward.push(msg);
1112                                                         },
1113                                                         Ok(None) => {},
1114                                                 }
1115                                         }
1116                                 }
1117                         }
1118                 }
1119
1120                 for msg in msgs_to_forward.drain(..) {
1121                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1122                 }
1123
1124                 Ok(pause_read)
1125         }
1126
1127         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1128         /// Returns the message back if it needs to be broadcasted to all other peers.
1129         fn handle_message(
1130                 &self,
1131                 peer_mutex: &Mutex<Peer>,
1132                 mut peer_lock: MutexGuard<Peer>,
1133                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1134         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1135                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1136                 peer_lock.received_message_since_timer_tick = true;
1137
1138                 // Need an Init as first message
1139                 if let wire::Message::Init(msg) = message {
1140                         if msg.features.requires_unknown_bits() {
1141                                 log_debug!(self.logger, "Peer features required unknown version bits");
1142                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1143                         }
1144                         if peer_lock.their_features.is_some() {
1145                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1146                         }
1147
1148                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1149
1150                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1151                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1152                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1153                         }
1154
1155                         if !msg.features.supports_static_remote_key() {
1156                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1157                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1158                         }
1159
1160                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1161
1162                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1163                         peer_lock.their_features = Some(msg.features);
1164                         return Ok(None);
1165                 } else if peer_lock.their_features.is_none() {
1166                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1167                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1168                 }
1169
1170                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1171                         // When supporting gossip messages, start inital gossip sync only after we receive
1172                         // a GossipTimestampFilter
1173                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1174                                 !peer_lock.sent_gossip_timestamp_filter {
1175                                 peer_lock.sent_gossip_timestamp_filter = true;
1176                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1177                         }
1178                         return Ok(None);
1179                 }
1180
1181                 let their_features = peer_lock.their_features.clone();
1182                 mem::drop(peer_lock);
1183
1184                 if is_gossip_msg(message.type_id()) {
1185                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1186                 } else {
1187                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1188                 }
1189
1190                 let mut should_forward = None;
1191
1192                 match message {
1193                         // Setup and Control messages:
1194                         wire::Message::Init(_) => {
1195                                 // Handled above
1196                         },
1197                         wire::Message::GossipTimestampFilter(_) => {
1198                                 // Handled above
1199                         },
1200                         wire::Message::Error(msg) => {
1201                                 let mut data_is_printable = true;
1202                                 for b in msg.data.bytes() {
1203                                         if b < 32 || b > 126 {
1204                                                 data_is_printable = false;
1205                                                 break;
1206                                         }
1207                                 }
1208
1209                                 if data_is_printable {
1210                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1211                                 } else {
1212                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1213                                 }
1214                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1215                                 if msg.channel_id == [0; 32] {
1216                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1217                                 }
1218                         },
1219                         wire::Message::Warning(msg) => {
1220                                 let mut data_is_printable = true;
1221                                 for b in msg.data.bytes() {
1222                                         if b < 32 || b > 126 {
1223                                                 data_is_printable = false;
1224                                                 break;
1225                                         }
1226                                 }
1227
1228                                 if data_is_printable {
1229                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1230                                 } else {
1231                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1232                                 }
1233                         },
1234
1235                         wire::Message::Ping(msg) => {
1236                                 if msg.ponglen < 65532 {
1237                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1238                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1239                                 }
1240                         },
1241                         wire::Message::Pong(_msg) => {
1242                                 let mut peer_lock = peer_mutex.lock().unwrap();
1243                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1244                                 peer_lock.msgs_sent_since_pong = 0;
1245                         },
1246
1247                         // Channel messages:
1248                         wire::Message::OpenChannel(msg) => {
1249                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1250                         },
1251                         wire::Message::AcceptChannel(msg) => {
1252                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1253                         },
1254
1255                         wire::Message::FundingCreated(msg) => {
1256                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1257                         },
1258                         wire::Message::FundingSigned(msg) => {
1259                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1260                         },
1261                         wire::Message::ChannelReady(msg) => {
1262                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1263                         },
1264
1265                         wire::Message::Shutdown(msg) => {
1266                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1267                         },
1268                         wire::Message::ClosingSigned(msg) => {
1269                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1270                         },
1271
1272                         // Commitment messages:
1273                         wire::Message::UpdateAddHTLC(msg) => {
1274                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1275                         },
1276                         wire::Message::UpdateFulfillHTLC(msg) => {
1277                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1278                         },
1279                         wire::Message::UpdateFailHTLC(msg) => {
1280                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1281                         },
1282                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1283                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1284                         },
1285
1286                         wire::Message::CommitmentSigned(msg) => {
1287                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1288                         },
1289                         wire::Message::RevokeAndACK(msg) => {
1290                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1291                         },
1292                         wire::Message::UpdateFee(msg) => {
1293                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1294                         },
1295                         wire::Message::ChannelReestablish(msg) => {
1296                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1297                         },
1298
1299                         // Routing messages:
1300                         wire::Message::AnnouncementSignatures(msg) => {
1301                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1302                         },
1303                         wire::Message::ChannelAnnouncement(msg) => {
1304                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1305                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1306                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1307                                 }
1308                         },
1309                         wire::Message::NodeAnnouncement(msg) => {
1310                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1311                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1312                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1313                                 }
1314                         },
1315                         wire::Message::ChannelUpdate(msg) => {
1316                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1317                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1318                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1319                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1320                                 }
1321                         },
1322                         wire::Message::QueryShortChannelIds(msg) => {
1323                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1324                         },
1325                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1326                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1327                         },
1328                         wire::Message::QueryChannelRange(msg) => {
1329                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1330                         },
1331                         wire::Message::ReplyChannelRange(msg) => {
1332                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1333                         },
1334
1335                         // Onion message:
1336                         wire::Message::OnionMessage(msg) => {
1337                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1338                         },
1339
1340                         // Unknown messages:
1341                         wire::Message::Unknown(type_id) if message.is_even() => {
1342                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1343                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1344                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1345                         },
1346                         wire::Message::Unknown(type_id) => {
1347                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1348                         },
1349                         wire::Message::Custom(custom) => {
1350                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1351                         },
1352                 };
1353                 Ok(should_forward)
1354         }
1355
1356         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1357                 match msg {
1358                         wire::Message::ChannelAnnouncement(ref msg) => {
1359                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1360                                 let encoded_msg = encode_msg!(msg);
1361
1362                                 for (_, peer_mutex) in peers.iter() {
1363                                         let mut peer = peer_mutex.lock().unwrap();
1364                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1365                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1366                                                 continue
1367                                         }
1368                                         if peer.buffer_full_drop_gossip_broadcast() {
1369                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1370                                                 continue;
1371                                         }
1372                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1373                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1374                                                 continue;
1375                                         }
1376                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1377                                                 continue;
1378                                         }
1379                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1380                                 }
1381                         },
1382                         wire::Message::NodeAnnouncement(ref msg) => {
1383                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1384                                 let encoded_msg = encode_msg!(msg);
1385
1386                                 for (_, peer_mutex) in peers.iter() {
1387                                         let mut peer = peer_mutex.lock().unwrap();
1388                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1389                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1390                                                 continue
1391                                         }
1392                                         if peer.buffer_full_drop_gossip_broadcast() {
1393                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1394                                                 continue;
1395                                         }
1396                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1397                                                 continue;
1398                                         }
1399                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1400                                                 continue;
1401                                         }
1402                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1403                                 }
1404                         },
1405                         wire::Message::ChannelUpdate(ref msg) => {
1406                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1407                                 let encoded_msg = encode_msg!(msg);
1408
1409                                 for (_, peer_mutex) in peers.iter() {
1410                                         let mut peer = peer_mutex.lock().unwrap();
1411                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1412                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1413                                                 continue
1414                                         }
1415                                         if peer.buffer_full_drop_gossip_broadcast() {
1416                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1417                                                 continue;
1418                                         }
1419                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1420                                                 continue;
1421                                         }
1422                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1423                                 }
1424                         },
1425                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1426                 }
1427         }
1428
1429         /// Checks for any events generated by our handlers and processes them. Includes sending most
1430         /// response messages as well as messages generated by calls to handler functions directly (eg
1431         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1432         ///
1433         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1434         /// issues!
1435         ///
1436         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1437         /// or one of the other clients provided in our language bindings.
1438         ///
1439         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1440         /// without doing any work. All available events that need handling will be handled before the
1441         /// other calls return.
1442         ///
1443         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1444         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1445         /// [`send_data`]: SocketDescriptor::send_data
1446         pub fn process_events(&self) {
1447                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1448                 if _single_processor_lock.is_err() {
1449                         // While we could wake the older sleeper here with a CV and make more even waiting
1450                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1451                         // count" goal.
1452                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1453                                 Err(val) => {
1454                                         debug_assert!(val, "compare_exchange failed spuriously?");
1455                                         return;
1456                                 },
1457                                 Ok(val) => {
1458                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1459                                         // We're the only waiter, as the running process_events may have emptied the
1460                                         // pending events "long" ago and there are new events for us to process, wait until
1461                                         // its done and process any leftover events before returning.
1462                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1463                                         self.blocked_event_processors.store(false, Ordering::Release);
1464                                 }
1465                         }
1466                 }
1467
1468                 let mut peers_to_disconnect = HashMap::new();
1469                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1470                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1471
1472                 {
1473                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1474                         // buffer by doing things like announcing channels on another node. We should be willing to
1475                         // drop optional-ish messages when send buffers get full!
1476
1477                         let peers_lock = self.peers.read().unwrap();
1478                         let peers = &*peers_lock;
1479                         macro_rules! get_peer_for_forwarding {
1480                                 ($node_id: expr) => {
1481                                         {
1482                                                 if peers_to_disconnect.get($node_id).is_some() {
1483                                                         // If we've "disconnected" this peer, do not send to it.
1484                                                         continue;
1485                                                 }
1486                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1487                                                 match descriptor_opt {
1488                                                         Some(descriptor) => match peers.get(&descriptor) {
1489                                                                 Some(peer_mutex) => {
1490                                                                         let peer_lock = peer_mutex.lock().unwrap();
1491                                                                         if peer_lock.their_features.is_none() {
1492                                                                                 continue;
1493                                                                         }
1494                                                                         peer_lock
1495                                                                 },
1496                                                                 None => {
1497                                                                         debug_assert!(false, "Inconsistent peers set state!");
1498                                                                         continue;
1499                                                                 }
1500                                                         },
1501                                                         None => {
1502                                                                 continue;
1503                                                         },
1504                                                 }
1505                                         }
1506                                 }
1507                         }
1508                         for event in events_generated.drain(..) {
1509                                 match event {
1510                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1511                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1512                                                                 log_pubkey!(node_id),
1513                                                                 log_bytes!(msg.temporary_channel_id));
1514                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1515                                         },
1516                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1517                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1518                                                                 log_pubkey!(node_id),
1519                                                                 log_bytes!(msg.temporary_channel_id));
1520                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1521                                         },
1522                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1523                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1524                                                                 log_pubkey!(node_id),
1525                                                                 log_bytes!(msg.temporary_channel_id),
1526                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1527                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1528                                                 // indicating to the wallet that they should just throw away this funding transaction
1529                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1530                                         },
1531                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1532                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1533                                                                 log_pubkey!(node_id),
1534                                                                 log_bytes!(msg.channel_id));
1535                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1536                                         },
1537                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1538                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1539                                                                 log_pubkey!(node_id),
1540                                                                 log_bytes!(msg.channel_id));
1541                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1542                                         },
1543                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1544                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1545                                                                 log_pubkey!(node_id),
1546                                                                 log_bytes!(msg.channel_id));
1547                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1548                                         },
1549                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1550                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1551                                                                 log_pubkey!(node_id),
1552                                                                 update_add_htlcs.len(),
1553                                                                 update_fulfill_htlcs.len(),
1554                                                                 update_fail_htlcs.len(),
1555                                                                 log_bytes!(commitment_signed.channel_id));
1556                                                 let mut peer = get_peer_for_forwarding!(node_id);
1557                                                 for msg in update_add_htlcs {
1558                                                         self.enqueue_message(&mut *peer, msg);
1559                                                 }
1560                                                 for msg in update_fulfill_htlcs {
1561                                                         self.enqueue_message(&mut *peer, msg);
1562                                                 }
1563                                                 for msg in update_fail_htlcs {
1564                                                         self.enqueue_message(&mut *peer, msg);
1565                                                 }
1566                                                 for msg in update_fail_malformed_htlcs {
1567                                                         self.enqueue_message(&mut *peer, msg);
1568                                                 }
1569                                                 if let &Some(ref msg) = update_fee {
1570                                                         self.enqueue_message(&mut *peer, msg);
1571                                                 }
1572                                                 self.enqueue_message(&mut *peer, commitment_signed);
1573                                         },
1574                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1575                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1576                                                                 log_pubkey!(node_id),
1577                                                                 log_bytes!(msg.channel_id));
1578                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1579                                         },
1580                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1581                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1582                                                                 log_pubkey!(node_id),
1583                                                                 log_bytes!(msg.channel_id));
1584                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1585                                         },
1586                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1587                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1588                                                                 log_pubkey!(node_id),
1589                                                                 log_bytes!(msg.channel_id));
1590                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1591                                         },
1592                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1593                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1594                                                                 log_pubkey!(node_id),
1595                                                                 log_bytes!(msg.channel_id));
1596                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1597                                         },
1598                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1599                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1600                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1601                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1602                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1603                                                         _ => {},
1604                                                 }
1605                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1606                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1607                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1608                                                         _ => {},
1609                                                 }
1610                                         },
1611                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1612                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1613                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1614                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1615                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1616                                                         _ => {},
1617                                                 }
1618                                         },
1619                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1620                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1621                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1622                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1623                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1624                                                         _ => {},
1625                                                 }
1626                                         },
1627                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1628                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1629                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1630                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1631                                         },
1632                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1633                                                 match *action {
1634                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1635                                                                 // We do not have the peers write lock, so we just store that we're
1636                                                                 // about to disconenct the peer and do it after we finish
1637                                                                 // processing most messages.
1638                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1639                                                         },
1640                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1641                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1642                                                         },
1643                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1644                                                         msgs::ErrorAction::IgnoreError => {
1645                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1646                                                         },
1647                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1648                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1649                                                                                 log_pubkey!(node_id),
1650                                                                                 msg.data);
1651                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1652                                                         },
1653                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1654                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1655                                                                                 log_pubkey!(node_id),
1656                                                                                 msg.data);
1657                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1658                                                         },
1659                                                 }
1660                                         },
1661                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1662                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1663                                         },
1664                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1665                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1666                                         }
1667                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1668                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1669                                                         log_pubkey!(node_id),
1670                                                         msg.short_channel_ids.len(),
1671                                                         msg.first_blocknum,
1672                                                         msg.number_of_blocks,
1673                                                         msg.sync_complete);
1674                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1675                                         }
1676                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1677                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1678                                         }
1679                                 }
1680                         }
1681
1682                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1683                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1684                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1685                         }
1686
1687                         for (descriptor, peer_mutex) in peers.iter() {
1688                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1689                         }
1690                 }
1691                 if !peers_to_disconnect.is_empty() {
1692                         let mut peers_lock = self.peers.write().unwrap();
1693                         let peers = &mut *peers_lock;
1694                         for (node_id, msg) in peers_to_disconnect.drain() {
1695                                 // Note that since we are holding the peers *write* lock we can
1696                                 // remove from node_id_to_descriptor immediately (as no other
1697                                 // thread can be holding the peer lock if we have the global write
1698                                 // lock).
1699
1700                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1701                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1702                                                 if let Some(msg) = msg {
1703                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1704                                                                         log_pubkey!(node_id),
1705                                                                         msg.data);
1706                                                         let mut peer = peer_mutex.lock().unwrap();
1707                                                         self.enqueue_message(&mut *peer, &msg);
1708                                                         // This isn't guaranteed to work, but if there is enough free
1709                                                         // room in the send buffer, put the error message there...
1710                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1711                                                 } else {
1712                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1713                                                 }
1714                                         }
1715                                         descriptor.disconnect_socket();
1716                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1717                                 }
1718                         }
1719                 }
1720         }
1721
1722         /// Indicates that the given socket descriptor's connection is now closed.
1723         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1724                 self.disconnect_event_internal(descriptor, false);
1725         }
1726
1727         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1728                 let mut peers = self.peers.write().unwrap();
1729                 let peer_option = peers.remove(descriptor);
1730                 match peer_option {
1731                         None => {
1732                                 // This is most likely a simple race condition where the user found that the socket
1733                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1734                                 // called this method. Either way we're disconnected, return.
1735                         },
1736                         Some(peer_lock) => {
1737                                 let peer = peer_lock.lock().unwrap();
1738                                 if let Some(node_id) = peer.their_node_id {
1739                                         log_trace!(self.logger,
1740                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1741                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1742                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1743                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1744                                 }
1745                         }
1746                 };
1747         }
1748
1749         /// Disconnect a peer given its node id.
1750         ///
1751         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1752         /// force-closing any channels we have with it.
1753         ///
1754         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1755         /// peer. Thus, be very careful about reentrancy issues.
1756         ///
1757         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1758         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1759                 let mut peers_lock = self.peers.write().unwrap();
1760                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1761                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1762                         peers_lock.remove(&descriptor);
1763                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1764                         descriptor.disconnect_socket();
1765                 }
1766         }
1767
1768         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1769         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1770         /// using regular ping/pongs.
1771         pub fn disconnect_all_peers(&self) {
1772                 let mut peers_lock = self.peers.write().unwrap();
1773                 self.node_id_to_descriptor.lock().unwrap().clear();
1774                 let peers = &mut *peers_lock;
1775                 for (mut descriptor, peer) in peers.drain() {
1776                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1777                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1778                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1779                         }
1780                         descriptor.disconnect_socket();
1781                 }
1782         }
1783
1784         /// This is called when we're blocked on sending additional gossip messages until we receive a
1785         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1786         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1787         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1788                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1789                         peer.awaiting_pong_timer_tick_intervals = -1;
1790                         let ping = msgs::Ping {
1791                                 ponglen: 0,
1792                                 byteslen: 64,
1793                         };
1794                         self.enqueue_message(peer, &ping);
1795                 }
1796         }
1797
1798         /// Send pings to each peer and disconnect those which did not respond to the last round of
1799         /// pings.
1800         ///
1801         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1802         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1803         /// time they have to respond before we disconnect them.
1804         ///
1805         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1806         /// issues!
1807         ///
1808         /// [`send_data`]: SocketDescriptor::send_data
1809         pub fn timer_tick_occurred(&self) {
1810                 let mut descriptors_needing_disconnect = Vec::new();
1811                 {
1812                         let peers_lock = self.peers.read().unwrap();
1813
1814                         for (descriptor, peer_mutex) in peers_lock.iter() {
1815                                 let mut peer = peer_mutex.lock().unwrap();
1816                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1817                                         // The peer needs to complete its handshake before we can exchange messages. We
1818                                         // give peers one timer tick to complete handshake, reusing
1819                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1820                                         // for handshake completion.
1821                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1822                                                 descriptors_needing_disconnect.push(descriptor.clone());
1823                                         } else {
1824                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1825                                         }
1826                                         continue;
1827                                 }
1828
1829                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1830                                         // Magic value set in `maybe_send_extra_ping`.
1831                                         peer.awaiting_pong_timer_tick_intervals = 1;
1832                                         peer.received_message_since_timer_tick = false;
1833                                         continue;
1834                                 }
1835
1836                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1837                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1838                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1839                                 {
1840                                         descriptors_needing_disconnect.push(descriptor.clone());
1841                                         continue;
1842                                 }
1843                                 peer.received_message_since_timer_tick = false;
1844
1845                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1846                                         peer.awaiting_pong_timer_tick_intervals += 1;
1847                                         continue;
1848                                 }
1849
1850                                 peer.awaiting_pong_timer_tick_intervals = 1;
1851                                 let ping = msgs::Ping {
1852                                         ponglen: 0,
1853                                         byteslen: 64,
1854                                 };
1855                                 self.enqueue_message(&mut *peer, &ping);
1856                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1857                         }
1858                 }
1859
1860                 if !descriptors_needing_disconnect.is_empty() {
1861                         {
1862                                 let mut peers_lock = self.peers.write().unwrap();
1863                                 for descriptor in descriptors_needing_disconnect.iter() {
1864                                         if let Some(peer) = peers_lock.remove(descriptor) {
1865                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1866                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1867                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1868                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1869                                                 }
1870                                         }
1871                                 }
1872                         }
1873
1874                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1875                                 descriptor.disconnect_socket();
1876                         }
1877                 }
1878         }
1879 }
1880
1881 fn is_gossip_msg(type_id: u16) -> bool {
1882         match type_id {
1883                 msgs::ChannelAnnouncement::TYPE |
1884                 msgs::ChannelUpdate::TYPE |
1885                 msgs::NodeAnnouncement::TYPE |
1886                 msgs::QueryChannelRange::TYPE |
1887                 msgs::ReplyChannelRange::TYPE |
1888                 msgs::QueryShortChannelIds::TYPE |
1889                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1890                 _ => false
1891         }
1892 }
1893
1894 #[cfg(test)]
1895 mod tests {
1896         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1897         use ln::{msgs, wire};
1898         use ln::msgs::NetAddress;
1899         use util::events;
1900         use util::test_utils;
1901
1902         use bitcoin::secp256k1::Secp256k1;
1903         use bitcoin::secp256k1::{SecretKey, PublicKey};
1904
1905         use prelude::*;
1906         use sync::{Arc, Mutex};
1907         use core::sync::atomic::Ordering;
1908
1909         #[derive(Clone)]
1910         struct FileDescriptor {
1911                 fd: u16,
1912                 outbound_data: Arc<Mutex<Vec<u8>>>,
1913         }
1914         impl PartialEq for FileDescriptor {
1915                 fn eq(&self, other: &Self) -> bool {
1916                         self.fd == other.fd
1917                 }
1918         }
1919         impl Eq for FileDescriptor { }
1920         impl core::hash::Hash for FileDescriptor {
1921                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1922                         self.fd.hash(hasher)
1923                 }
1924         }
1925
1926         impl SocketDescriptor for FileDescriptor {
1927                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1928                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1929                         data.len()
1930                 }
1931
1932                 fn disconnect_socket(&mut self) {}
1933         }
1934
1935         struct PeerManagerCfg {
1936                 chan_handler: test_utils::TestChannelMessageHandler,
1937                 routing_handler: test_utils::TestRoutingMessageHandler,
1938                 logger: test_utils::TestLogger,
1939         }
1940
1941         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1942                 let mut cfgs = Vec::new();
1943                 for _ in 0..peer_count {
1944                         cfgs.push(
1945                                 PeerManagerCfg{
1946                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1947                                         logger: test_utils::TestLogger::new(),
1948                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1949                                 }
1950                         );
1951                 }
1952
1953                 cfgs
1954         }
1955
1956         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1957                 let mut peers = Vec::new();
1958                 for i in 0..peer_count {
1959                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1960                         let ephemeral_bytes = [i as u8; 32];
1961                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
1962                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1963                         peers.push(peer);
1964                 }
1965
1966                 peers
1967         }
1968
1969         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1970                 let secp_ctx = Secp256k1::new();
1971                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1972                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1973                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1974                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1975                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1976                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1977                 peer_a.process_events();
1978
1979                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1980                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
1981
1982                 peer_b.process_events();
1983                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1984                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
1985
1986                 peer_a.process_events();
1987                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1988                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
1989
1990                 (fd_a.clone(), fd_b.clone())
1991         }
1992
1993         #[test]
1994         fn test_disconnect_peer() {
1995                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1996                 // push a DisconnectPeer event to remove the node flagged by id
1997                 let cfgs = create_peermgr_cfgs(2);
1998                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1999                 let mut peers = create_network(2, &cfgs);
2000                 establish_connection(&peers[0], &peers[1]);
2001                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2002
2003                 let secp_ctx = Secp256k1::new();
2004                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2005
2006                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2007                         node_id: their_id,
2008                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2009                 });
2010                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2011                 peers[0].message_handler.chan_handler = &chan_handler;
2012
2013                 peers[0].process_events();
2014                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2015         }
2016
2017         #[test]
2018         fn test_send_simple_msg() {
2019                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2020                 // push a message from one peer to another.
2021                 let cfgs = create_peermgr_cfgs(2);
2022                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2023                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2024                 let mut peers = create_network(2, &cfgs);
2025                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2026                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2027
2028                 let secp_ctx = Secp256k1::new();
2029                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2030
2031                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2032                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2033                         node_id: their_id, msg: msg.clone()
2034                 });
2035                 peers[0].message_handler.chan_handler = &a_chan_handler;
2036
2037                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2038                 peers[1].message_handler.chan_handler = &b_chan_handler;
2039
2040                 peers[0].process_events();
2041
2042                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2043                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2044         }
2045
2046         #[test]
2047         fn test_disconnect_all_peer() {
2048                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2049                 // then calls disconnect_all_peers
2050                 let cfgs = create_peermgr_cfgs(2);
2051                 let peers = create_network(2, &cfgs);
2052                 establish_connection(&peers[0], &peers[1]);
2053                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2054
2055                 peers[0].disconnect_all_peers();
2056                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2057         }
2058
2059         #[test]
2060         fn test_timer_tick_occurred() {
2061                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2062                 let cfgs = create_peermgr_cfgs(2);
2063                 let peers = create_network(2, &cfgs);
2064                 establish_connection(&peers[0], &peers[1]);
2065                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2066
2067                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2068                 peers[0].timer_tick_occurred();
2069                 peers[0].process_events();
2070                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2071
2072                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2073                 peers[0].timer_tick_occurred();
2074                 peers[0].process_events();
2075                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2076         }
2077
2078         #[test]
2079         fn test_do_attempt_write_data() {
2080                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2081                 let cfgs = create_peermgr_cfgs(2);
2082                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2083                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2084                 let peers = create_network(2, &cfgs);
2085
2086                 // By calling establish_connect, we trigger do_attempt_write_data between
2087                 // the peers. Previously this function would mistakenly enter an infinite loop
2088                 // when there were more channel messages available than could fit into a peer's
2089                 // buffer. This issue would now be detected by this test (because we use custom
2090                 // RoutingMessageHandlers that intentionally return more channel messages
2091                 // than can fit into a peer's buffer).
2092                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2093
2094                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2095                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2096                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2097                         peers[1].process_events();
2098                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2099                         assert!(!a_read_data.is_empty());
2100
2101                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2102                         peers[0].process_events();
2103
2104                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2105                         assert!(!b_read_data.is_empty());
2106                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2107
2108                         peers[0].process_events();
2109                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2110                 }
2111
2112                 // Check that each peer has received the expected number of channel updates and channel
2113                 // announcements.
2114                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2115                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2116                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2117                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2118         }
2119
2120         #[test]
2121         fn test_handshake_timeout() {
2122                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2123                 // tick.
2124                 let cfgs = create_peermgr_cfgs(2);
2125                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2126                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2127                 let peers = create_network(2, &cfgs);
2128
2129                 let secp_ctx = Secp256k1::new();
2130                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2131                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2132                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2133                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2134                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2135
2136                 // If we get a single timer tick before completion, that's fine
2137                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2138                 peers[0].timer_tick_occurred();
2139                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2140
2141                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2142                 peers[0].process_events();
2143                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2144                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2145                 peers[1].process_events();
2146
2147                 // ...but if we get a second timer tick, we should disconnect the peer
2148                 peers[0].timer_tick_occurred();
2149                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2150
2151                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2152                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2153         }
2154
2155         #[test]
2156         fn test_filter_addresses(){
2157                 // Tests the filter_addresses function.
2158
2159                 // For (10/8)
2160                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2161                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2162                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2163                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2164                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2165                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2166
2167                 // For (0/8)
2168                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2169                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2170                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2171                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2172                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2173                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2174
2175                 // For (100.64/10)
2176                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2177                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2178                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2179                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2180                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2181                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2182
2183                 // For (127/8)
2184                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2185                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2186                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2187                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2188                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2189                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2190
2191                 // For (169.254/16)
2192                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2193                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2194                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2195                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2196                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2197                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2198
2199                 // For (172.16/12)
2200                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2201                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2202                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2203                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2204                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2205                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2206
2207                 // For (192.168/16)
2208                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2209                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2210                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2211                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2212                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2213                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2214
2215                 // For (192.88.99/24)
2216                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2217                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2218                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2219                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2220                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2221                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2222
2223                 // For other IPv4 addresses
2224                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2225                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2226                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2227                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2228                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2229                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2230
2231                 // For (2000::/3)
2232                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2233                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2234                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2235                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2236                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2237                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2238
2239                 // For other IPv6 addresses
2240                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2241                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2242                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2243                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2244                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2245                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2246
2247                 // For (None)
2248                 assert_eq!(filter_addresses(None), None);
2249         }
2250 }