77087f38cff2ef50a329046b385aefe24db1bb6d
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::blockdata::constants::ChainHash;
19 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
20
21 use crate::sign::{KeysManager, NodeSigner, Recipient};
22 use crate::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
23 use crate::ln::ChannelId;
24 use crate::ln::features::{InitFeatures, NodeFeatures};
25 use crate::ln::msgs;
26 use crate::ln::msgs::{ChannelMessageHandler, LightningError, SocketAddress, OnionMessageHandler, RoutingMessageHandler};
27 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
28 use crate::util::ser::{VecWriter, Writeable, Writer};
29 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
30 use crate::ln::wire;
31 use crate::ln::wire::{Encode, Type};
32 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, OffersMessage, OffersMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
33 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId, NodeAlias};
34 use crate::util::atomic_counter::AtomicCounter;
35 use crate::util::logger::Logger;
36 use crate::util::string::PrintableString;
37
38 use crate::prelude::*;
39 use crate::io;
40 use alloc::collections::LinkedList;
41 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
42 use core::sync::atomic::{AtomicBool, AtomicU32, AtomicI32, Ordering};
43 use core::{cmp, hash, fmt, mem};
44 use core::ops::Deref;
45 use core::convert::Infallible;
46 #[cfg(feature = "std")] use std::error;
47
48 use bitcoin::hashes::sha256::Hash as Sha256;
49 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
50 use bitcoin::hashes::{HashEngine, Hash};
51
52 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
53 ///
54 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
55 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
56 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
57 ///
58 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
59 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
60 pub trait CustomMessageHandler: wire::CustomMessageReader {
61         /// Handles the given message sent from `sender_node_id`, possibly producing messages for
62         /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
63         /// to send.
64         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
65
66         /// Returns the list of pending messages that were generated by the handler, clearing the list
67         /// in the process. Each message is paired with the node id of the intended recipient. If no
68         /// connection to the node exists, then the message is simply not sent.
69         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
70
71         /// Indicates a connection to the peer failed/an existing connection was lost.
72         fn peer_disconnected(&self, their_node_id: &PublicKey);
73
74         /// Handle a peer reconnecting, possibly generating `channel_reestablish` message(s).
75         ///
76         /// May return an `Err(())` if the features the peer supports are not sufficient to communicate
77         /// with us. Implementors should be somewhat conservative about doing so, however, as other
78         /// message handlers may still wish to communicate with this peer.
79         fn peer_connected(&self, their_node_id: &PublicKey, msg: &msgs::Init, inbound: bool) -> Result<(), ()>;
80
81         /// Gets the node feature flags which this handler itself supports. All available handlers are
82         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
83         /// which are broadcasted in our [`NodeAnnouncement`] message.
84         ///
85         /// [`NodeAnnouncement`]: crate::ln::msgs::NodeAnnouncement
86         fn provided_node_features(&self) -> NodeFeatures;
87
88         /// Gets the init feature flags which should be sent to the given peer. All available handlers
89         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
90         /// which are sent in our [`Init`] message.
91         ///
92         /// [`Init`]: crate::ln::msgs::Init
93         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
94 }
95
96 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
97 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
98 pub struct IgnoringMessageHandler{}
99 impl MessageSendEventsProvider for IgnoringMessageHandler {
100         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
101 }
102 impl RoutingMessageHandler for IgnoringMessageHandler {
103         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
104         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
105         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
106         fn get_next_channel_announcement(&self, _starting_point: u64) ->
107                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
108         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
109         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
110         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
111         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
112         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
113         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
114         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
115         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
116                 InitFeatures::empty()
117         }
118         fn processing_queue_high(&self) -> bool { false }
119 }
120 impl OnionMessageProvider for IgnoringMessageHandler {
121         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
122 }
123 impl OnionMessageHandler for IgnoringMessageHandler {
124         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
125         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
126         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
127         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
128         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
129                 InitFeatures::empty()
130         }
131 }
132 impl OffersMessageHandler for IgnoringMessageHandler {
133         fn handle_message(&self, _msg: OffersMessage) -> Option<OffersMessage> { None }
134 }
135 impl CustomOnionMessageHandler for IgnoringMessageHandler {
136         type CustomMessage = Infallible;
137         fn handle_custom_message(&self, _msg: Infallible) -> Option<Infallible> {
138                 // Since we always return `None` in the read the handle method should never be called.
139                 unreachable!();
140         }
141         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
142                 Ok(None)
143         }
144 }
145
146 impl CustomOnionMessageContents for Infallible {
147         fn tlv_type(&self) -> u64 { unreachable!(); }
148 }
149
150 impl Deref for IgnoringMessageHandler {
151         type Target = IgnoringMessageHandler;
152         fn deref(&self) -> &Self { self }
153 }
154
155 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
156 // method that takes self for it.
157 impl wire::Type for Infallible {
158         fn type_id(&self) -> u16 {
159                 unreachable!();
160         }
161 }
162 impl Writeable for Infallible {
163         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
164                 unreachable!();
165         }
166 }
167
168 impl wire::CustomMessageReader for IgnoringMessageHandler {
169         type CustomMessage = Infallible;
170         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
171                 Ok(None)
172         }
173 }
174
175 impl CustomMessageHandler for IgnoringMessageHandler {
176         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
177                 // Since we always return `None` in the read the handle method should never be called.
178                 unreachable!();
179         }
180
181         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
182
183         fn peer_disconnected(&self, _: &PublicKey) {}
184
185         fn peer_connected(&self, _: &PublicKey, _: &msgs::Init, _: bool) -> Result<(), ()> { Ok(()) }
186
187         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
188
189         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
190                 InitFeatures::empty()
191         }
192 }
193
194 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
195 /// You can provide one of these as the route_handler in a MessageHandler.
196 pub struct ErroringMessageHandler {
197         message_queue: Mutex<Vec<MessageSendEvent>>
198 }
199 impl ErroringMessageHandler {
200         /// Constructs a new ErroringMessageHandler
201         pub fn new() -> Self {
202                 Self { message_queue: Mutex::new(Vec::new()) }
203         }
204         fn push_error(&self, node_id: &PublicKey, channel_id: ChannelId) {
205                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
206                         action: msgs::ErrorAction::SendErrorMessage {
207                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
208                         },
209                         node_id: node_id.clone(),
210                 });
211         }
212 }
213 impl MessageSendEventsProvider for ErroringMessageHandler {
214         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
215                 let mut res = Vec::new();
216                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
217                 res
218         }
219 }
220 impl ChannelMessageHandler for ErroringMessageHandler {
221         // Any messages which are related to a specific channel generate an error message to let the
222         // peer know we don't care about channels.
223         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
224                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
225         }
226         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
227                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
228         }
229         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
230                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
231         }
232         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
233                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
234         }
235         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
236                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
237         }
238         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
239                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
240         }
241         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
242                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
243         }
244         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
245                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
246         }
247         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
248                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
249         }
250         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
251                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
252         }
253         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
254                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
255         }
256         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
257                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
258         }
259         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
260                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
261         }
262         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
263                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
264         }
265         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
266                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
267         }
268         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
269                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
270         }
271         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
272         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
273         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
274         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
275         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
276         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
277         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
278                 // Set a number of features which various nodes may require to talk to us. It's totally
279                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
280                 // channels.
281                 let mut features = InitFeatures::empty();
282                 features.set_data_loss_protect_optional();
283                 features.set_upfront_shutdown_script_optional();
284                 features.set_variable_length_onion_optional();
285                 features.set_static_remote_key_optional();
286                 features.set_payment_secret_optional();
287                 features.set_basic_mpp_optional();
288                 features.set_wumbo_optional();
289                 features.set_shutdown_any_segwit_optional();
290                 features.set_channel_type_optional();
291                 features.set_scid_privacy_optional();
292                 features.set_zero_conf_optional();
293                 features
294         }
295
296         fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
297                 // We don't enforce any chains upon peer connection for `ErroringMessageHandler` and leave it up
298                 // to users of `ErroringMessageHandler` to make decisions on network compatiblility.
299                 // There's not really any way to pull in specific networks here, and hardcoding can cause breakages.
300                 None
301         }
302
303         fn handle_open_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
304                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
305         }
306
307         fn handle_accept_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
308                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
309         }
310
311         fn handle_tx_add_input(&self, their_node_id: &PublicKey, msg: &msgs::TxAddInput) {
312                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
313         }
314
315         fn handle_tx_add_output(&self, their_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
316                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
317         }
318
319         fn handle_tx_remove_input(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
320                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
321         }
322
323         fn handle_tx_remove_output(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
324                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
325         }
326
327         fn handle_tx_complete(&self, their_node_id: &PublicKey, msg: &msgs::TxComplete) {
328                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
329         }
330
331         fn handle_tx_signatures(&self, their_node_id: &PublicKey, msg: &msgs::TxSignatures) {
332                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
333         }
334
335         fn handle_tx_init_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
336                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
337         }
338
339         fn handle_tx_ack_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
340                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
341         }
342
343         fn handle_tx_abort(&self, their_node_id: &PublicKey, msg: &msgs::TxAbort) {
344                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
345         }
346 }
347
348 impl Deref for ErroringMessageHandler {
349         type Target = ErroringMessageHandler;
350         fn deref(&self) -> &Self { self }
351 }
352
353 /// Provides references to trait impls which handle different types of messages.
354 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref, CustomM: Deref> where
355         CM::Target: ChannelMessageHandler,
356         RM::Target: RoutingMessageHandler,
357         OM::Target: OnionMessageHandler,
358         CustomM::Target: CustomMessageHandler,
359 {
360         /// A message handler which handles messages specific to channels. Usually this is just a
361         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
362         ///
363         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
364         pub chan_handler: CM,
365         /// A message handler which handles messages updating our knowledge of the network channel
366         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
367         ///
368         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
369         pub route_handler: RM,
370
371         /// A message handler which handles onion messages. This should generally be an
372         /// [`OnionMessenger`], but can also be an [`IgnoringMessageHandler`].
373         ///
374         /// [`OnionMessenger`]: crate::onion_message::OnionMessenger
375         pub onion_message_handler: OM,
376
377         /// A message handler which handles custom messages. The only LDK-provided implementation is
378         /// [`IgnoringMessageHandler`].
379         pub custom_message_handler: CustomM,
380 }
381
382 /// Provides an object which can be used to send data to and which uniquely identifies a connection
383 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
384 /// implement Hash to meet the PeerManager API.
385 ///
386 /// For efficiency, [`Clone`] should be relatively cheap for this type.
387 ///
388 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
389 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
390 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
391 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
392 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
393 /// to simply use another value which is guaranteed to be globally unique instead.
394 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
395         /// Attempts to send some data from the given slice to the peer.
396         ///
397         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
398         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
399         /// called and further write attempts may occur until that time.
400         ///
401         /// If the returned size is smaller than `data.len()`, a
402         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
403         /// written. Additionally, until a `send_data` event completes fully, no further
404         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
405         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
406         /// until then.
407         ///
408         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
409         /// (indicating that read events should be paused to prevent DoS in the send buffer),
410         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
411         /// `resume_read` of false carries no meaning, and should not cause any action.
412         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
413         /// Disconnect the socket pointed to by this SocketDescriptor.
414         ///
415         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
416         /// call (doing so is a noop).
417         fn disconnect_socket(&mut self);
418 }
419
420 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
421 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
422 /// descriptor.
423 #[derive(Clone)]
424 pub struct PeerHandleError { }
425 impl fmt::Debug for PeerHandleError {
426         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
427                 formatter.write_str("Peer Sent Invalid Data")
428         }
429 }
430 impl fmt::Display for PeerHandleError {
431         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
432                 formatter.write_str("Peer Sent Invalid Data")
433         }
434 }
435
436 #[cfg(feature = "std")]
437 impl error::Error for PeerHandleError {
438         fn description(&self) -> &str {
439                 "Peer Sent Invalid Data"
440         }
441 }
442
443 enum InitSyncTracker{
444         NoSyncRequested,
445         ChannelsSyncing(u64),
446         NodesSyncing(NodeId),
447 }
448
449 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
450 /// forwarding gossip messages to peers altogether.
451 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
452
453 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
454 /// we have fewer than this many messages in the outbound buffer again.
455 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
456 /// refilled as we send bytes.
457 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
458 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
459 /// the peer.
460 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
461
462 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
463 /// the socket receive buffer before receiving the ping.
464 ///
465 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
466 /// including any network delays, outbound traffic, or the same for messages from other peers.
467 ///
468 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
469 /// per connected peer to respond to a ping, as long as they send us at least one message during
470 /// each tick, ensuring we aren't actually just disconnected.
471 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
472 /// peer.
473 ///
474 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
475 /// two connected peers, assuming most LDK-running systems have at least two cores.
476 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
477
478 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
479 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
480 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
481 /// process before the next ping.
482 ///
483 /// Note that we continue responding to other messages even after we've sent this many messages, so
484 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
485 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
486 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
487
488 struct Peer {
489         channel_encryptor: PeerChannelEncryptor,
490         /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
491         /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
492         their_node_id: Option<(PublicKey, NodeId)>,
493         /// The features provided in the peer's [`msgs::Init`] message.
494         ///
495         /// This is set only after we've processed the [`msgs::Init`] message and called relevant
496         /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
497         /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
498         /// check this.
499         their_features: Option<InitFeatures>,
500         their_socket_address: Option<SocketAddress>,
501
502         pending_outbound_buffer: LinkedList<Vec<u8>>,
503         pending_outbound_buffer_first_msg_offset: usize,
504         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
505         /// prioritize channel messages over them.
506         ///
507         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
508         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
509         awaiting_write_event: bool,
510
511         pending_read_buffer: Vec<u8>,
512         pending_read_buffer_pos: usize,
513         pending_read_is_header: bool,
514
515         sync_status: InitSyncTracker,
516
517         msgs_sent_since_pong: usize,
518         awaiting_pong_timer_tick_intervals: i64,
519         received_message_since_timer_tick: bool,
520         sent_gossip_timestamp_filter: bool,
521
522         /// Indicates we've received a `channel_announcement` since the last time we had
523         /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
524         /// `channel_announcement` at all - we set this unconditionally but unset it every time we
525         /// check if we're gossip-processing-backlogged).
526         received_channel_announce_since_backlogged: bool,
527
528         inbound_connection: bool,
529 }
530
531 impl Peer {
532         /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
533         /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
534         /// normally.
535         fn handshake_complete(&self) -> bool {
536                 self.their_features.is_some()
537         }
538
539         /// Returns true if the channel announcements/updates for the given channel should be
540         /// forwarded to this peer.
541         /// If we are sending our routing table to this peer and we have not yet sent channel
542         /// announcements/updates for the given channel_id then we will send it when we get to that
543         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
544         /// sent the old versions, we should send the update, and so return true here.
545         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
546                 if !self.handshake_complete() { return false; }
547                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
548                         !self.sent_gossip_timestamp_filter {
549                                 return false;
550                         }
551                 match self.sync_status {
552                         InitSyncTracker::NoSyncRequested => true,
553                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
554                         InitSyncTracker::NodesSyncing(_) => true,
555                 }
556         }
557
558         /// Similar to the above, but for node announcements indexed by node_id.
559         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
560                 if !self.handshake_complete() { return false; }
561                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
562                         !self.sent_gossip_timestamp_filter {
563                                 return false;
564                         }
565                 match self.sync_status {
566                         InitSyncTracker::NoSyncRequested => true,
567                         InitSyncTracker::ChannelsSyncing(_) => false,
568                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
569                 }
570         }
571
572         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
573         /// buffer still has space and we don't need to pause reads to get some writes out.
574         fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
575                 if !gossip_processing_backlogged {
576                         self.received_channel_announce_since_backlogged = false;
577                 }
578                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
579                         (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
580         }
581
582         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
583         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
584         fn should_buffer_gossip_backfill(&self) -> bool {
585                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
586                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
587                         && self.handshake_complete()
588         }
589
590         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
591         /// every time the peer's buffer may have been drained.
592         fn should_buffer_onion_message(&self) -> bool {
593                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
594                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
595         }
596
597         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
598         /// buffer. This is checked every time the peer's buffer may have been drained.
599         fn should_buffer_gossip_broadcast(&self) -> bool {
600                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
601                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
602         }
603
604         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
605         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
606                 let total_outbound_buffered =
607                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
608
609                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
610                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
611         }
612
613         fn set_their_node_id(&mut self, node_id: PublicKey) {
614                 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
615         }
616 }
617
618 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
619 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
620 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
621 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
622 /// issues such as overly long function definitions.
623 ///
624 /// This is not exported to bindings users as `Arc`s don't make sense in bindings.
625 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<
626         SD,
627         Arc<SimpleArcChannelManager<M, T, F, L>>,
628         Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, C, Arc<L>>>,
629         Arc<SimpleArcOnionMessenger<L>>,
630         Arc<L>,
631         IgnoringMessageHandler,
632         Arc<KeysManager>
633 >;
634
635 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
636 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
637 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
638 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
639 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
640 /// helps with issues such as long function definitions.
641 ///
642 /// This is not exported to bindings users as general type aliases don't make sense in bindings.
643 pub type SimpleRefPeerManager<
644         'a, 'b, 'c, 'd, 'e, 'f, 'logger, 'h, 'i, 'j, 'graph, SD, M, T, F, C, L
645 > = PeerManager<
646         SD,
647         &'j SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'graph, 'logger, 'i, M, T, F, L>,
648         &'f P2PGossipSync<&'graph NetworkGraph<&'logger L>, C, &'logger L>,
649         &'h SimpleRefOnionMessenger<'logger, 'i, 'j, L>,
650         &'logger L,
651         IgnoringMessageHandler,
652         &'c KeysManager
653 >;
654
655
656 /// A generic trait which is implemented for all [`PeerManager`]s. This makes bounding functions or
657 /// structs on any [`PeerManager`] much simpler as only this trait is needed as a bound, rather
658 /// than the full set of bounds on [`PeerManager`] itself.
659 ///
660 /// This is not exported to bindings users as general cover traits aren't useful in other
661 /// languages.
662 #[allow(missing_docs)]
663 pub trait APeerManager {
664         type Descriptor: SocketDescriptor;
665         type CMT: ChannelMessageHandler + ?Sized;
666         type CM: Deref<Target=Self::CMT>;
667         type RMT: RoutingMessageHandler + ?Sized;
668         type RM: Deref<Target=Self::RMT>;
669         type OMT: OnionMessageHandler + ?Sized;
670         type OM: Deref<Target=Self::OMT>;
671         type LT: Logger + ?Sized;
672         type L: Deref<Target=Self::LT>;
673         type CMHT: CustomMessageHandler + ?Sized;
674         type CMH: Deref<Target=Self::CMHT>;
675         type NST: NodeSigner + ?Sized;
676         type NS: Deref<Target=Self::NST>;
677         /// Gets a reference to the underlying [`PeerManager`].
678         fn as_ref(&self) -> &PeerManager<Self::Descriptor, Self::CM, Self::RM, Self::OM, Self::L, Self::CMH, Self::NS>;
679 }
680
681 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref>
682 APeerManager for PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
683         CM::Target: ChannelMessageHandler,
684         RM::Target: RoutingMessageHandler,
685         OM::Target: OnionMessageHandler,
686         L::Target: Logger,
687         CMH::Target: CustomMessageHandler,
688         NS::Target: NodeSigner,
689 {
690         type Descriptor = Descriptor;
691         type CMT = <CM as Deref>::Target;
692         type CM = CM;
693         type RMT = <RM as Deref>::Target;
694         type RM = RM;
695         type OMT = <OM as Deref>::Target;
696         type OM = OM;
697         type LT = <L as Deref>::Target;
698         type L = L;
699         type CMHT = <CMH as Deref>::Target;
700         type CMH = CMH;
701         type NST = <NS as Deref>::Target;
702         type NS = NS;
703         fn as_ref(&self) -> &PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> { self }
704 }
705
706 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
707 /// socket events into messages which it passes on to its [`MessageHandler`].
708 ///
709 /// Locks are taken internally, so you must never assume that reentrancy from a
710 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
711 ///
712 /// Calls to [`read_event`] will decode relevant messages and pass them to the
713 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
714 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
715 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
716 /// calls only after previous ones have returned.
717 ///
718 /// Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
719 /// a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
720 /// essentially you should default to using a [`SimpleRefPeerManager`], and use a
721 /// [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
722 /// you're using lightning-net-tokio.
723 ///
724 /// [`read_event`]: PeerManager::read_event
725 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
726                 CM::Target: ChannelMessageHandler,
727                 RM::Target: RoutingMessageHandler,
728                 OM::Target: OnionMessageHandler,
729                 L::Target: Logger,
730                 CMH::Target: CustomMessageHandler,
731                 NS::Target: NodeSigner {
732         message_handler: MessageHandler<CM, RM, OM, CMH>,
733         /// Connection state for each connected peer - we have an outer read-write lock which is taken
734         /// as read while we're doing processing for a peer and taken write when a peer is being added
735         /// or removed.
736         ///
737         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
738         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
739         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
740         /// the `MessageHandler`s for a given peer is already guaranteed.
741         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
742         /// Only add to this set when noise completes.
743         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
744         /// lock held. Entries may be added with only the `peers` read lock held (though the
745         /// `Descriptor` value must already exist in `peers`).
746         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
747         /// We can only have one thread processing events at once, but if a second call to
748         /// `process_events` happens while a first call is in progress, one of the two calls needs to
749         /// start from the top to ensure any new messages are also handled.
750         ///
751         /// Because the event handler calls into user code which may block, we don't want to block a
752         /// second thread waiting for another thread to handle events which is then blocked on user
753         /// code, so we store an atomic counter here:
754         ///  * 0 indicates no event processor is running
755         ///  * 1 indicates an event processor is running
756         ///  * > 1 indicates an event processor is running but needs to start again from the top once
757         ///        it finishes as another thread tried to start processing events but returned early.
758         event_processing_state: AtomicI32,
759
760         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
761         /// value increases strictly since we don't assume access to a time source.
762         last_node_announcement_serial: AtomicU32,
763
764         ephemeral_key_midstate: Sha256Engine,
765
766         peer_counter: AtomicCounter,
767
768         gossip_processing_backlogged: AtomicBool,
769         gossip_processing_backlog_lifted: AtomicBool,
770
771         node_signer: NS,
772
773         logger: L,
774         secp_ctx: Secp256k1<secp256k1::SignOnly>
775 }
776
777 enum MessageHandlingError {
778         PeerHandleError(PeerHandleError),
779         LightningError(LightningError),
780 }
781
782 impl From<PeerHandleError> for MessageHandlingError {
783         fn from(error: PeerHandleError) -> Self {
784                 MessageHandlingError::PeerHandleError(error)
785         }
786 }
787
788 impl From<LightningError> for MessageHandlingError {
789         fn from(error: LightningError) -> Self {
790                 MessageHandlingError::LightningError(error)
791         }
792 }
793
794 macro_rules! encode_msg {
795         ($msg: expr) => {{
796                 let mut buffer = VecWriter(Vec::new());
797                 wire::write($msg, &mut buffer).unwrap();
798                 buffer.0
799         }}
800 }
801
802 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
803                 CM::Target: ChannelMessageHandler,
804                 OM::Target: OnionMessageHandler,
805                 L::Target: Logger,
806                 NS::Target: NodeSigner {
807         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
808         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
809         /// ignored.
810         ///
811         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
812         /// cryptographically secure random bytes.
813         ///
814         /// `current_time` is used as an always-increasing counter that survives across restarts and is
815         /// incremented irregularly internally. In general it is best to simply use the current UNIX
816         /// timestamp, however if it is not available a persistent counter that increases once per
817         /// minute should suffice.
818         ///
819         /// This is not exported to bindings users as we can't export a PeerManager with a dummy route handler
820         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
821                 Self::new(MessageHandler {
822                         chan_handler: channel_message_handler,
823                         route_handler: IgnoringMessageHandler{},
824                         onion_message_handler,
825                         custom_message_handler: IgnoringMessageHandler{},
826                 }, current_time, ephemeral_random_data, logger, node_signer)
827         }
828 }
829
830 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
831                 RM::Target: RoutingMessageHandler,
832                 L::Target: Logger,
833                 NS::Target: NodeSigner {
834         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
835         /// handler or onion message handler is used and onion and channel messages will be ignored (or
836         /// generate error messages). Note that some other lightning implementations time-out connections
837         /// after some time if no channel is built with the peer.
838         ///
839         /// `current_time` is used as an always-increasing counter that survives across restarts and is
840         /// incremented irregularly internally. In general it is best to simply use the current UNIX
841         /// timestamp, however if it is not available a persistent counter that increases once per
842         /// minute should suffice.
843         ///
844         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
845         /// cryptographically secure random bytes.
846         ///
847         /// This is not exported to bindings users as we can't export a PeerManager with a dummy channel handler
848         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
849                 Self::new(MessageHandler {
850                         chan_handler: ErroringMessageHandler::new(),
851                         route_handler: routing_message_handler,
852                         onion_message_handler: IgnoringMessageHandler{},
853                         custom_message_handler: IgnoringMessageHandler{},
854                 }, current_time, ephemeral_random_data, logger, node_signer)
855         }
856 }
857
858 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
859 /// This works around `format!()` taking a reference to each argument, preventing
860 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
861 /// due to lifetime errors.
862 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
863 impl core::fmt::Display for OptionalFromDebugger<'_> {
864         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
865                 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
866         }
867 }
868
869 /// A function used to filter out local or private addresses
870 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
871 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
872 fn filter_addresses(ip_address: Option<SocketAddress>) -> Option<SocketAddress> {
873         match ip_address{
874                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
875                 Some(SocketAddress::TcpIpV4{addr: [10, _, _, _], port: _}) => None,
876                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
877                 Some(SocketAddress::TcpIpV4{addr: [0, _, _, _], port: _}) => None,
878                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
879                 Some(SocketAddress::TcpIpV4{addr: [100, 64..=127, _, _], port: _}) => None,
880                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
881                 Some(SocketAddress::TcpIpV4{addr: [127, _, _, _], port: _}) => None,
882                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
883                 Some(SocketAddress::TcpIpV4{addr: [169, 254, _, _], port: _}) => None,
884                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
885                 Some(SocketAddress::TcpIpV4{addr: [172, 16..=31, _, _], port: _}) => None,
886                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
887                 Some(SocketAddress::TcpIpV4{addr: [192, 168, _, _], port: _}) => None,
888                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
889                 Some(SocketAddress::TcpIpV4{addr: [192, 88, 99, _], port: _}) => None,
890                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
891                 Some(SocketAddress::TcpIpV6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
892                 // For remaining addresses
893                 Some(SocketAddress::TcpIpV6{addr: _, port: _}) => None,
894                 Some(..) => ip_address,
895                 None => None,
896         }
897 }
898
899 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
900                 CM::Target: ChannelMessageHandler,
901                 RM::Target: RoutingMessageHandler,
902                 OM::Target: OnionMessageHandler,
903                 L::Target: Logger,
904                 CMH::Target: CustomMessageHandler,
905                 NS::Target: NodeSigner
906 {
907         /// Constructs a new `PeerManager` with the given message handlers.
908         ///
909         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
910         /// cryptographically secure random bytes.
911         ///
912         /// `current_time` is used as an always-increasing counter that survives across restarts and is
913         /// incremented irregularly internally. In general it is best to simply use the current UNIX
914         /// timestamp, however if it is not available a persistent counter that increases once per
915         /// minute should suffice.
916         pub fn new(message_handler: MessageHandler<CM, RM, OM, CMH>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
917                 let mut ephemeral_key_midstate = Sha256::engine();
918                 ephemeral_key_midstate.input(ephemeral_random_data);
919
920                 let mut secp_ctx = Secp256k1::signing_only();
921                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
922                 secp_ctx.seeded_randomize(&ephemeral_hash);
923
924                 PeerManager {
925                         message_handler,
926                         peers: FairRwLock::new(HashMap::new()),
927                         node_id_to_descriptor: Mutex::new(HashMap::new()),
928                         event_processing_state: AtomicI32::new(0),
929                         ephemeral_key_midstate,
930                         peer_counter: AtomicCounter::new(),
931                         gossip_processing_backlogged: AtomicBool::new(false),
932                         gossip_processing_backlog_lifted: AtomicBool::new(false),
933                         last_node_announcement_serial: AtomicU32::new(current_time),
934                         logger,
935                         node_signer,
936                         secp_ctx,
937                 }
938         }
939
940         /// Get a list of tuples mapping from node id to network addresses for peers which have
941         /// completed the initial handshake.
942         ///
943         /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
944         /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
945         /// handshake has completed and we are sure the remote peer has the private key for the given
946         /// [`PublicKey`].
947         ///
948         /// The returned `Option`s will only be `Some` if an address had been previously given via
949         /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
950         pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<SocketAddress>)> {
951                 let peers = self.peers.read().unwrap();
952                 peers.values().filter_map(|peer_mutex| {
953                         let p = peer_mutex.lock().unwrap();
954                         if !p.handshake_complete() {
955                                 return None;
956                         }
957                         Some((p.their_node_id.unwrap().0, p.their_socket_address.clone()))
958                 }).collect()
959         }
960
961         fn get_ephemeral_key(&self) -> SecretKey {
962                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
963                 let counter = self.peer_counter.get_increment();
964                 ephemeral_hash.input(&counter.to_le_bytes());
965                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
966         }
967
968         fn init_features(&self, their_node_id: &PublicKey) -> InitFeatures {
969                 self.message_handler.chan_handler.provided_init_features(their_node_id)
970                         | self.message_handler.route_handler.provided_init_features(their_node_id)
971                         | self.message_handler.onion_message_handler.provided_init_features(their_node_id)
972                         | self.message_handler.custom_message_handler.provided_init_features(their_node_id)
973         }
974
975         /// Indicates a new outbound connection has been established to a node with the given `node_id`
976         /// and an optional remote network address.
977         ///
978         /// The remote network address adds the option to report a remote IP address back to a connecting
979         /// peer using the init message.
980         /// The user should pass the remote network address of the host they are connected to.
981         ///
982         /// If an `Err` is returned here you must disconnect the connection immediately.
983         ///
984         /// Returns a small number of bytes to send to the remote node (currently always 50).
985         ///
986         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
987         /// [`socket_disconnected`].
988         ///
989         /// [`socket_disconnected`]: PeerManager::socket_disconnected
990         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<SocketAddress>) -> Result<Vec<u8>, PeerHandleError> {
991                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
992                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
993                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
994
995                 let mut peers = self.peers.write().unwrap();
996                 match peers.entry(descriptor) {
997                         hash_map::Entry::Occupied(_) => {
998                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
999                                 Err(PeerHandleError {})
1000                         },
1001                         hash_map::Entry::Vacant(e) => {
1002                                 e.insert(Mutex::new(Peer {
1003                                         channel_encryptor: peer_encryptor,
1004                                         their_node_id: None,
1005                                         their_features: None,
1006                                         their_socket_address: remote_network_address,
1007
1008                                         pending_outbound_buffer: LinkedList::new(),
1009                                         pending_outbound_buffer_first_msg_offset: 0,
1010                                         gossip_broadcast_buffer: LinkedList::new(),
1011                                         awaiting_write_event: false,
1012
1013                                         pending_read_buffer,
1014                                         pending_read_buffer_pos: 0,
1015                                         pending_read_is_header: false,
1016
1017                                         sync_status: InitSyncTracker::NoSyncRequested,
1018
1019                                         msgs_sent_since_pong: 0,
1020                                         awaiting_pong_timer_tick_intervals: 0,
1021                                         received_message_since_timer_tick: false,
1022                                         sent_gossip_timestamp_filter: false,
1023
1024                                         received_channel_announce_since_backlogged: false,
1025                                         inbound_connection: false,
1026                                 }));
1027                                 Ok(res)
1028                         }
1029                 }
1030         }
1031
1032         /// Indicates a new inbound connection has been established to a node with an optional remote
1033         /// network address.
1034         ///
1035         /// The remote network address adds the option to report a remote IP address back to a connecting
1036         /// peer using the init message.
1037         /// The user should pass the remote network address of the host they are connected to.
1038         ///
1039         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
1040         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
1041         /// the connection immediately.
1042         ///
1043         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
1044         /// [`socket_disconnected`].
1045         ///
1046         /// [`socket_disconnected`]: PeerManager::socket_disconnected
1047         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<SocketAddress>) -> Result<(), PeerHandleError> {
1048                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
1049                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
1050
1051                 let mut peers = self.peers.write().unwrap();
1052                 match peers.entry(descriptor) {
1053                         hash_map::Entry::Occupied(_) => {
1054                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
1055                                 Err(PeerHandleError {})
1056                         },
1057                         hash_map::Entry::Vacant(e) => {
1058                                 e.insert(Mutex::new(Peer {
1059                                         channel_encryptor: peer_encryptor,
1060                                         their_node_id: None,
1061                                         their_features: None,
1062                                         their_socket_address: remote_network_address,
1063
1064                                         pending_outbound_buffer: LinkedList::new(),
1065                                         pending_outbound_buffer_first_msg_offset: 0,
1066                                         gossip_broadcast_buffer: LinkedList::new(),
1067                                         awaiting_write_event: false,
1068
1069                                         pending_read_buffer,
1070                                         pending_read_buffer_pos: 0,
1071                                         pending_read_is_header: false,
1072
1073                                         sync_status: InitSyncTracker::NoSyncRequested,
1074
1075                                         msgs_sent_since_pong: 0,
1076                                         awaiting_pong_timer_tick_intervals: 0,
1077                                         received_message_since_timer_tick: false,
1078                                         sent_gossip_timestamp_filter: false,
1079
1080                                         received_channel_announce_since_backlogged: false,
1081                                         inbound_connection: true,
1082                                 }));
1083                                 Ok(())
1084                         }
1085                 }
1086         }
1087
1088         fn peer_should_read(&self, peer: &mut Peer) -> bool {
1089                 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
1090         }
1091
1092         fn update_gossip_backlogged(&self) {
1093                 let new_state = self.message_handler.route_handler.processing_queue_high();
1094                 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
1095                 if prev_state && !new_state {
1096                         self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
1097                 }
1098         }
1099
1100         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
1101                 let mut have_written = false;
1102                 while !peer.awaiting_write_event {
1103                         if peer.should_buffer_onion_message() {
1104                                 if let Some((peer_node_id, _)) = peer.their_node_id {
1105                                         if let Some(next_onion_message) =
1106                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
1107                                                         self.enqueue_message(peer, &next_onion_message);
1108                                         }
1109                                 }
1110                         }
1111                         if peer.should_buffer_gossip_broadcast() {
1112                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
1113                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
1114                                 }
1115                         }
1116                         if peer.should_buffer_gossip_backfill() {
1117                                 match peer.sync_status {
1118                                         InitSyncTracker::NoSyncRequested => {},
1119                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
1120                                                 if let Some((announce, update_a_option, update_b_option)) =
1121                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
1122                                                 {
1123                                                         self.enqueue_message(peer, &announce);
1124                                                         if let Some(update_a) = update_a_option {
1125                                                                 self.enqueue_message(peer, &update_a);
1126                                                         }
1127                                                         if let Some(update_b) = update_b_option {
1128                                                                 self.enqueue_message(peer, &update_b);
1129                                                         }
1130                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
1131                                                 } else {
1132                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
1133                                                 }
1134                                         },
1135                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
1136                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
1137                                                         self.enqueue_message(peer, &msg);
1138                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1139                                                 } else {
1140                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
1141                                                 }
1142                                         },
1143                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
1144                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
1145                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
1146                                                         self.enqueue_message(peer, &msg);
1147                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1148                                                 } else {
1149                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
1150                                                 }
1151                                         },
1152                                 }
1153                         }
1154                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
1155                                 self.maybe_send_extra_ping(peer);
1156                         }
1157
1158                         let should_read = self.peer_should_read(peer);
1159                         let next_buff = match peer.pending_outbound_buffer.front() {
1160                                 None => {
1161                                         if force_one_write && !have_written {
1162                                                 if should_read {
1163                                                         let data_sent = descriptor.send_data(&[], should_read);
1164                                                         debug_assert_eq!(data_sent, 0, "Can't write more than no data");
1165                                                 }
1166                                         }
1167                                         return
1168                                 },
1169                                 Some(buff) => buff,
1170                         };
1171
1172                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
1173                         let data_sent = descriptor.send_data(pending, should_read);
1174                         have_written = true;
1175                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
1176                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
1177                                 peer.pending_outbound_buffer_first_msg_offset = 0;
1178                                 peer.pending_outbound_buffer.pop_front();
1179                         } else {
1180                                 peer.awaiting_write_event = true;
1181                         }
1182                 }
1183         }
1184
1185         /// Indicates that there is room to write data to the given socket descriptor.
1186         ///
1187         /// May return an Err to indicate that the connection should be closed.
1188         ///
1189         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
1190         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
1191         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
1192         /// ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
1193         /// sufficient!
1194         ///
1195         /// [`send_data`]: SocketDescriptor::send_data
1196         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1197         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1198                 let peers = self.peers.read().unwrap();
1199                 match peers.get(descriptor) {
1200                         None => {
1201                                 // This is most likely a simple race condition where the user found that the socket
1202                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
1203                                 // this method. Return an error to make sure we get disconnected.
1204                                 return Err(PeerHandleError { });
1205                         },
1206                         Some(peer_mutex) => {
1207                                 let mut peer = peer_mutex.lock().unwrap();
1208                                 peer.awaiting_write_event = false;
1209                                 self.do_attempt_write_data(descriptor, &mut peer, false);
1210                         }
1211                 };
1212                 Ok(())
1213         }
1214
1215         /// Indicates that data was read from the given socket descriptor.
1216         ///
1217         /// May return an Err to indicate that the connection should be closed.
1218         ///
1219         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1220         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1221         /// [`send_data`] calls to handle responses.
1222         ///
1223         /// If `Ok(true)` is returned, further read_events should not be triggered until a
1224         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1225         /// send buffer).
1226         ///
1227         /// In order to avoid processing too many messages at once per peer, `data` should be on the
1228         /// order of 4KiB.
1229         ///
1230         /// [`send_data`]: SocketDescriptor::send_data
1231         /// [`process_events`]: PeerManager::process_events
1232         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1233                 match self.do_read_event(peer_descriptor, data) {
1234                         Ok(res) => Ok(res),
1235                         Err(e) => {
1236                                 log_trace!(self.logger, "Disconnecting peer due to a protocol error (usually a duplicate connection).");
1237                                 self.disconnect_event_internal(peer_descriptor);
1238                                 Err(e)
1239                         }
1240                 }
1241         }
1242
1243         /// Append a message to a peer's pending outbound/write buffer
1244         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1245                 if is_gossip_msg(message.type_id()) {
1246                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1247                 } else {
1248                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1249                 }
1250                 peer.msgs_sent_since_pong += 1;
1251                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1252         }
1253
1254         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1255         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1256                 peer.msgs_sent_since_pong += 1;
1257                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1258         }
1259
1260         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1261                 let mut pause_read = false;
1262                 let peers = self.peers.read().unwrap();
1263                 let mut msgs_to_forward = Vec::new();
1264                 let mut peer_node_id = None;
1265                 match peers.get(peer_descriptor) {
1266                         None => {
1267                                 // This is most likely a simple race condition where the user read some bytes
1268                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1269                                 // called this method. Return an error to make sure we get disconnected.
1270                                 return Err(PeerHandleError { });
1271                         },
1272                         Some(peer_mutex) => {
1273                                 let mut read_pos = 0;
1274                                 while read_pos < data.len() {
1275                                         macro_rules! try_potential_handleerror {
1276                                                 ($peer: expr, $thing: expr) => {
1277                                                         match $thing {
1278                                                                 Ok(x) => x,
1279                                                                 Err(e) => {
1280                                                                         match e.action {
1281                                                                                 msgs::ErrorAction::DisconnectPeer { .. } => {
1282                                                                                         // We may have an `ErrorMessage` to send to the peer,
1283                                                                                         // but writing to the socket while reading can lead to
1284                                                                                         // re-entrant code and possibly unexpected behavior. The
1285                                                                                         // message send is optimistic anyway, and in this case
1286                                                                                         // we immediately disconnect the peer.
1287                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1288                                                                                         return Err(PeerHandleError { });
1289                                                                                 },
1290                                                                                 msgs::ErrorAction::DisconnectPeerWithWarning { .. } => {
1291                                                                                         // We have a `WarningMessage` to send to the peer, but
1292                                                                                         // writing to the socket while reading can lead to
1293                                                                                         // re-entrant code and possibly unexpected behavior. The
1294                                                                                         // message send is optimistic anyway, and in this case
1295                                                                                         // we immediately disconnect the peer.
1296                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1297                                                                                         return Err(PeerHandleError { });
1298                                                                                 },
1299                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1300                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1301                                                                                         continue
1302                                                                                 },
1303                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1304                                                                                 msgs::ErrorAction::IgnoreError => {
1305                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1306                                                                                         continue;
1307                                                                                 },
1308                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1309                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1310                                                                                         self.enqueue_message($peer, &msg);
1311                                                                                         continue;
1312                                                                                 },
1313                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1314                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1315                                                                                         self.enqueue_message($peer, &msg);
1316                                                                                         continue;
1317                                                                                 },
1318                                                                         }
1319                                                                 }
1320                                                         }
1321                                                 }
1322                                         }
1323
1324                                         let mut peer_lock = peer_mutex.lock().unwrap();
1325                                         let peer = &mut *peer_lock;
1326                                         let mut msg_to_handle = None;
1327                                         if peer_node_id.is_none() {
1328                                                 peer_node_id = peer.their_node_id.clone();
1329                                         }
1330
1331                                         assert!(peer.pending_read_buffer.len() > 0);
1332                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1333
1334                                         {
1335                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1336                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1337                                                 read_pos += data_to_copy;
1338                                                 peer.pending_read_buffer_pos += data_to_copy;
1339                                         }
1340
1341                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1342                                                 peer.pending_read_buffer_pos = 0;
1343
1344                                                 macro_rules! insert_node_id {
1345                                                         () => {
1346                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1347                                                                         hash_map::Entry::Occupied(e) => {
1348                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1349                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1350                                                                                 // Check that the peers map is consistent with the
1351                                                                                 // node_id_to_descriptor map, as this has been broken
1352                                                                                 // before.
1353                                                                                 debug_assert!(peers.get(e.get()).is_some());
1354                                                                                 return Err(PeerHandleError { })
1355                                                                         },
1356                                                                         hash_map::Entry::Vacant(entry) => {
1357                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1358                                                                                 entry.insert(peer_descriptor.clone())
1359                                                                         },
1360                                                                 };
1361                                                         }
1362                                                 }
1363
1364                                                 let next_step = peer.channel_encryptor.get_noise_step();
1365                                                 match next_step {
1366                                                         NextNoiseStep::ActOne => {
1367                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1368                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1369                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1370                                                                 peer.pending_outbound_buffer.push_back(act_two);
1371                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1372                                                         },
1373                                                         NextNoiseStep::ActTwo => {
1374                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1375                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1376                                                                                 &self.node_signer));
1377                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1378                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1379                                                                 peer.pending_read_is_header = true;
1380
1381                                                                 peer.set_their_node_id(their_node_id);
1382                                                                 insert_node_id!();
1383                                                                 let features = self.init_features(&their_node_id);
1384                                                                 let networks = self.message_handler.chan_handler.get_chain_hashes();
1385                                                                 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_socket_address.clone()) };
1386                                                                 self.enqueue_message(peer, &resp);
1387                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1388                                                         },
1389                                                         NextNoiseStep::ActThree => {
1390                                                                 let their_node_id = try_potential_handleerror!(peer,
1391                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1392                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1393                                                                 peer.pending_read_is_header = true;
1394                                                                 peer.set_their_node_id(their_node_id);
1395                                                                 insert_node_id!();
1396                                                                 let features = self.init_features(&their_node_id);
1397                                                                 let networks = self.message_handler.chan_handler.get_chain_hashes();
1398                                                                 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_socket_address.clone()) };
1399                                                                 self.enqueue_message(peer, &resp);
1400                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1401                                                         },
1402                                                         NextNoiseStep::NoiseComplete => {
1403                                                                 if peer.pending_read_is_header {
1404                                                                         let msg_len = try_potential_handleerror!(peer,
1405                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1406                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1407                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1408                                                                         if msg_len < 2 { // Need at least the message type tag
1409                                                                                 return Err(PeerHandleError { });
1410                                                                         }
1411                                                                         peer.pending_read_is_header = false;
1412                                                                 } else {
1413                                                                         let msg_data = try_potential_handleerror!(peer,
1414                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1415                                                                         assert!(msg_data.len() >= 2);
1416
1417                                                                         // Reset read buffer
1418                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1419                                                                         peer.pending_read_buffer.resize(18, 0);
1420                                                                         peer.pending_read_is_header = true;
1421
1422                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1423                                                                         let message_result = wire::read(&mut reader, &*self.message_handler.custom_message_handler);
1424                                                                         let message = match message_result {
1425                                                                                 Ok(x) => x,
1426                                                                                 Err(e) => {
1427                                                                                         match e {
1428                                                                                                 // Note that to avoid re-entrancy we never call
1429                                                                                                 // `do_attempt_write_data` from here, causing
1430                                                                                                 // the messages enqueued here to not actually
1431                                                                                                 // be sent before the peer is disconnected.
1432                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1433                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1434                                                                                                         continue;
1435                                                                                                 }
1436                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1437                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1438                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: ChannelId::new_zero(), data: "Unsupported message compression: zlib".to_owned() });
1439                                                                                                         continue;
1440                                                                                                 }
1441                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1442                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1443                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1444                                                                                                                 channel_id: ChannelId::new_zero(),
1445                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1446                                                                                                         });
1447                                                                                                         continue;
1448                                                                                                 }
1449                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, _) => {
1450                                                                                                         log_debug!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1451                                                                                                         return Err(PeerHandleError { });
1452                                                                                                 }
1453                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1454                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1455                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1456                                                                                                         return Err(PeerHandleError { });
1457                                                                                                 }
1458                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1459                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1460                                                                                                         return Err(PeerHandleError { });
1461                                                                                                 }
1462                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1463                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1464                                                                                         }
1465                                                                                 }
1466                                                                         };
1467
1468                                                                         msg_to_handle = Some(message);
1469                                                                 }
1470                                                         }
1471                                                 }
1472                                         }
1473                                         pause_read = !self.peer_should_read(peer);
1474
1475                                         if let Some(message) = msg_to_handle {
1476                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1477                                                         Err(handling_error) => match handling_error {
1478                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1479                                                                 MessageHandlingError::LightningError(e) => {
1480                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1481                                                                 },
1482                                                         },
1483                                                         Ok(Some(msg)) => {
1484                                                                 msgs_to_forward.push(msg);
1485                                                         },
1486                                                         Ok(None) => {},
1487                                                 }
1488                                         }
1489                                 }
1490                         }
1491                 }
1492
1493                 for msg in msgs_to_forward.drain(..) {
1494                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1495                 }
1496
1497                 Ok(pause_read)
1498         }
1499
1500         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1501         /// Returns the message back if it needs to be broadcasted to all other peers.
1502         fn handle_message(
1503                 &self,
1504                 peer_mutex: &Mutex<Peer>,
1505                 mut peer_lock: MutexGuard<Peer>,
1506                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1507         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1508                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1509                 peer_lock.received_message_since_timer_tick = true;
1510
1511                 // Need an Init as first message
1512                 if let wire::Message::Init(msg) = message {
1513                         // Check if we have any compatible chains if the `networks` field is specified.
1514                         if let Some(networks) = &msg.networks {
1515                                 if let Some(our_chains) = self.message_handler.chan_handler.get_chain_hashes() {
1516                                         let mut have_compatible_chains = false;
1517                                         'our_chains: for our_chain in our_chains.iter() {
1518                                                 for their_chain in networks {
1519                                                         if our_chain == their_chain {
1520                                                                 have_compatible_chains = true;
1521                                                                 break 'our_chains;
1522                                                         }
1523                                                 }
1524                                         }
1525                                         if !have_compatible_chains {
1526                                                 log_debug!(self.logger, "Peer does not support any of our supported chains");
1527                                                 return Err(PeerHandleError { }.into());
1528                                         }
1529                                 }
1530                         }
1531
1532                         let our_features = self.init_features(&their_node_id);
1533                         if msg.features.requires_unknown_bits_from(&our_features) {
1534                                 log_debug!(self.logger, "Peer requires features unknown to us");
1535                                 return Err(PeerHandleError { }.into());
1536                         }
1537
1538                         if our_features.requires_unknown_bits_from(&msg.features) {
1539                                 log_debug!(self.logger, "We require features unknown to our peer");
1540                                 return Err(PeerHandleError { }.into());
1541                         }
1542
1543                         if peer_lock.their_features.is_some() {
1544                                 return Err(PeerHandleError { }.into());
1545                         }
1546
1547                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1548
1549                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1550                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1551                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1552                         }
1553
1554                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1555                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1556                                 return Err(PeerHandleError { }.into());
1557                         }
1558                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1559                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1560                                 return Err(PeerHandleError { }.into());
1561                         }
1562                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1563                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1564                                 return Err(PeerHandleError { }.into());
1565                         }
1566                         if let Err(()) = self.message_handler.custom_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1567                                 log_debug!(self.logger, "Custom Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1568                                 return Err(PeerHandleError { }.into());
1569                         }
1570
1571                         peer_lock.their_features = Some(msg.features);
1572                         return Ok(None);
1573                 } else if peer_lock.their_features.is_none() {
1574                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1575                         return Err(PeerHandleError { }.into());
1576                 }
1577
1578                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1579                         // When supporting gossip messages, start inital gossip sync only after we receive
1580                         // a GossipTimestampFilter
1581                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1582                                 !peer_lock.sent_gossip_timestamp_filter {
1583                                 peer_lock.sent_gossip_timestamp_filter = true;
1584                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1585                         }
1586                         return Ok(None);
1587                 }
1588
1589                 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1590                         peer_lock.received_channel_announce_since_backlogged = true;
1591                 }
1592
1593                 mem::drop(peer_lock);
1594
1595                 if is_gossip_msg(message.type_id()) {
1596                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1597                 } else {
1598                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1599                 }
1600
1601                 let mut should_forward = None;
1602
1603                 match message {
1604                         // Setup and Control messages:
1605                         wire::Message::Init(_) => {
1606                                 // Handled above
1607                         },
1608                         wire::Message::GossipTimestampFilter(_) => {
1609                                 // Handled above
1610                         },
1611                         wire::Message::Error(msg) => {
1612                                 log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1613                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1614                                 if msg.channel_id.is_zero() {
1615                                         return Err(PeerHandleError { }.into());
1616                                 }
1617                         },
1618                         wire::Message::Warning(msg) => {
1619                                 log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1620                         },
1621
1622                         wire::Message::Ping(msg) => {
1623                                 if msg.ponglen < 65532 {
1624                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1625                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1626                                 }
1627                         },
1628                         wire::Message::Pong(_msg) => {
1629                                 let mut peer_lock = peer_mutex.lock().unwrap();
1630                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1631                                 peer_lock.msgs_sent_since_pong = 0;
1632                         },
1633
1634                         // Channel messages:
1635                         wire::Message::OpenChannel(msg) => {
1636                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1637                         },
1638                         wire::Message::OpenChannelV2(msg) => {
1639                                 self.message_handler.chan_handler.handle_open_channel_v2(&their_node_id, &msg);
1640                         },
1641                         wire::Message::AcceptChannel(msg) => {
1642                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1643                         },
1644                         wire::Message::AcceptChannelV2(msg) => {
1645                                 self.message_handler.chan_handler.handle_accept_channel_v2(&their_node_id, &msg);
1646                         },
1647
1648                         wire::Message::FundingCreated(msg) => {
1649                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1650                         },
1651                         wire::Message::FundingSigned(msg) => {
1652                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1653                         },
1654                         wire::Message::ChannelReady(msg) => {
1655                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1656                         },
1657
1658                         // Interactive transaction construction messages:
1659                         wire::Message::TxAddInput(msg) => {
1660                                 self.message_handler.chan_handler.handle_tx_add_input(&their_node_id, &msg);
1661                         },
1662                         wire::Message::TxAddOutput(msg) => {
1663                                 self.message_handler.chan_handler.handle_tx_add_output(&their_node_id, &msg);
1664                         },
1665                         wire::Message::TxRemoveInput(msg) => {
1666                                 self.message_handler.chan_handler.handle_tx_remove_input(&their_node_id, &msg);
1667                         },
1668                         wire::Message::TxRemoveOutput(msg) => {
1669                                 self.message_handler.chan_handler.handle_tx_remove_output(&their_node_id, &msg);
1670                         },
1671                         wire::Message::TxComplete(msg) => {
1672                                 self.message_handler.chan_handler.handle_tx_complete(&their_node_id, &msg);
1673                         },
1674                         wire::Message::TxSignatures(msg) => {
1675                                 self.message_handler.chan_handler.handle_tx_signatures(&their_node_id, &msg);
1676                         },
1677                         wire::Message::TxInitRbf(msg) => {
1678                                 self.message_handler.chan_handler.handle_tx_init_rbf(&their_node_id, &msg);
1679                         },
1680                         wire::Message::TxAckRbf(msg) => {
1681                                 self.message_handler.chan_handler.handle_tx_ack_rbf(&their_node_id, &msg);
1682                         },
1683                         wire::Message::TxAbort(msg) => {
1684                                 self.message_handler.chan_handler.handle_tx_abort(&their_node_id, &msg);
1685                         }
1686
1687                         wire::Message::Shutdown(msg) => {
1688                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1689                         },
1690                         wire::Message::ClosingSigned(msg) => {
1691                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1692                         },
1693
1694                         // Commitment messages:
1695                         wire::Message::UpdateAddHTLC(msg) => {
1696                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1697                         },
1698                         wire::Message::UpdateFulfillHTLC(msg) => {
1699                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1700                         },
1701                         wire::Message::UpdateFailHTLC(msg) => {
1702                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1703                         },
1704                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1705                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1706                         },
1707
1708                         wire::Message::CommitmentSigned(msg) => {
1709                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1710                         },
1711                         wire::Message::RevokeAndACK(msg) => {
1712                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1713                         },
1714                         wire::Message::UpdateFee(msg) => {
1715                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1716                         },
1717                         wire::Message::ChannelReestablish(msg) => {
1718                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1719                         },
1720
1721                         // Routing messages:
1722                         wire::Message::AnnouncementSignatures(msg) => {
1723                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1724                         },
1725                         wire::Message::ChannelAnnouncement(msg) => {
1726                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1727                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1728                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1729                                 }
1730                                 self.update_gossip_backlogged();
1731                         },
1732                         wire::Message::NodeAnnouncement(msg) => {
1733                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1734                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1735                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1736                                 }
1737                                 self.update_gossip_backlogged();
1738                         },
1739                         wire::Message::ChannelUpdate(msg) => {
1740                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1741                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1742                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1743                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1744                                 }
1745                                 self.update_gossip_backlogged();
1746                         },
1747                         wire::Message::QueryShortChannelIds(msg) => {
1748                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1749                         },
1750                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1751                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1752                         },
1753                         wire::Message::QueryChannelRange(msg) => {
1754                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1755                         },
1756                         wire::Message::ReplyChannelRange(msg) => {
1757                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1758                         },
1759
1760                         // Onion message:
1761                         wire::Message::OnionMessage(msg) => {
1762                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1763                         },
1764
1765                         // Unknown messages:
1766                         wire::Message::Unknown(type_id) if message.is_even() => {
1767                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1768                                 return Err(PeerHandleError { }.into());
1769                         },
1770                         wire::Message::Unknown(type_id) => {
1771                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1772                         },
1773                         wire::Message::Custom(custom) => {
1774                                 self.message_handler.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1775                         },
1776                 };
1777                 Ok(should_forward)
1778         }
1779
1780         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1781                 match msg {
1782                         wire::Message::ChannelAnnouncement(ref msg) => {
1783                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1784                                 let encoded_msg = encode_msg!(msg);
1785
1786                                 for (_, peer_mutex) in peers.iter() {
1787                                         let mut peer = peer_mutex.lock().unwrap();
1788                                         if !peer.handshake_complete() ||
1789                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1790                                                 continue
1791                                         }
1792                                         debug_assert!(peer.their_node_id.is_some());
1793                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1794                                         if peer.buffer_full_drop_gossip_broadcast() {
1795                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1796                                                 continue;
1797                                         }
1798                                         if let Some((_, their_node_id)) = peer.their_node_id {
1799                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1800                                                         continue;
1801                                                 }
1802                                         }
1803                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1804                                                 continue;
1805                                         }
1806                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1807                                 }
1808                         },
1809                         wire::Message::NodeAnnouncement(ref msg) => {
1810                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1811                                 let encoded_msg = encode_msg!(msg);
1812
1813                                 for (_, peer_mutex) in peers.iter() {
1814                                         let mut peer = peer_mutex.lock().unwrap();
1815                                         if !peer.handshake_complete() ||
1816                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1817                                                 continue
1818                                         }
1819                                         debug_assert!(peer.their_node_id.is_some());
1820                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1821                                         if peer.buffer_full_drop_gossip_broadcast() {
1822                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1823                                                 continue;
1824                                         }
1825                                         if let Some((_, their_node_id)) = peer.their_node_id {
1826                                                 if their_node_id == msg.contents.node_id {
1827                                                         continue;
1828                                                 }
1829                                         }
1830                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1831                                                 continue;
1832                                         }
1833                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1834                                 }
1835                         },
1836                         wire::Message::ChannelUpdate(ref msg) => {
1837                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1838                                 let encoded_msg = encode_msg!(msg);
1839
1840                                 for (_, peer_mutex) in peers.iter() {
1841                                         let mut peer = peer_mutex.lock().unwrap();
1842                                         if !peer.handshake_complete() ||
1843                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1844                                                 continue
1845                                         }
1846                                         debug_assert!(peer.their_node_id.is_some());
1847                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1848                                         if peer.buffer_full_drop_gossip_broadcast() {
1849                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1850                                                 continue;
1851                                         }
1852                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1853                                                 continue;
1854                                         }
1855                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1856                                 }
1857                         },
1858                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1859                 }
1860         }
1861
1862         /// Checks for any events generated by our handlers and processes them. Includes sending most
1863         /// response messages as well as messages generated by calls to handler functions directly (eg
1864         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1865         ///
1866         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1867         /// issues!
1868         ///
1869         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1870         /// or one of the other clients provided in our language bindings.
1871         ///
1872         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1873         /// without doing any work. All available events that need handling will be handled before the
1874         /// other calls return.
1875         ///
1876         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1877         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1878         /// [`send_data`]: SocketDescriptor::send_data
1879         pub fn process_events(&self) {
1880                 if self.event_processing_state.fetch_add(1, Ordering::AcqRel) > 0 {
1881                         // If we're not the first event processor to get here, just return early, the increment
1882                         // we just did will be treated as "go around again" at the end.
1883                         return;
1884                 }
1885
1886                 loop {
1887                         self.update_gossip_backlogged();
1888                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1889
1890                         let mut peers_to_disconnect = HashMap::new();
1891
1892                         {
1893                                 let peers_lock = self.peers.read().unwrap();
1894
1895                                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1896                                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1897
1898                                 let peers = &*peers_lock;
1899                                 macro_rules! get_peer_for_forwarding {
1900                                         ($node_id: expr) => {
1901                                                 {
1902                                                         if peers_to_disconnect.get($node_id).is_some() {
1903                                                                 // If we've "disconnected" this peer, do not send to it.
1904                                                                 continue;
1905                                                         }
1906                                                         let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1907                                                         match descriptor_opt {
1908                                                                 Some(descriptor) => match peers.get(&descriptor) {
1909                                                                         Some(peer_mutex) => {
1910                                                                                 let peer_lock = peer_mutex.lock().unwrap();
1911                                                                                 if !peer_lock.handshake_complete() {
1912                                                                                         continue;
1913                                                                                 }
1914                                                                                 peer_lock
1915                                                                         },
1916                                                                         None => {
1917                                                                                 debug_assert!(false, "Inconsistent peers set state!");
1918                                                                                 continue;
1919                                                                         }
1920                                                                 },
1921                                                                 None => {
1922                                                                         continue;
1923                                                                 },
1924                                                         }
1925                                                 }
1926                                         }
1927                                 }
1928                                 for event in events_generated.drain(..) {
1929                                         match event {
1930                                                 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1931                                                         log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1932                                                                         log_pubkey!(node_id),
1933                                                                         &msg.temporary_channel_id);
1934                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1935                                                 },
1936                                                 MessageSendEvent::SendAcceptChannelV2 { ref node_id, ref msg } => {
1937                                                         log_debug!(self.logger, "Handling SendAcceptChannelV2 event in peer_handler for node {} for channel {}",
1938                                                                         log_pubkey!(node_id),
1939                                                                         &msg.temporary_channel_id);
1940                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1941                                                 },
1942                                                 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1943                                                         log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1944                                                                         log_pubkey!(node_id),
1945                                                                         &msg.temporary_channel_id);
1946                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1947                                                 },
1948                                                 MessageSendEvent::SendOpenChannelV2 { ref node_id, ref msg } => {
1949                                                         log_debug!(self.logger, "Handling SendOpenChannelV2 event in peer_handler for node {} for channel {}",
1950                                                                         log_pubkey!(node_id),
1951                                                                         &msg.temporary_channel_id);
1952                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1953                                                 },
1954                                                 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1955                                                         log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1956                                                                         log_pubkey!(node_id),
1957                                                                         &msg.temporary_channel_id,
1958                                                                         log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1959                                                         // TODO: If the peer is gone we should generate a DiscardFunding event
1960                                                         // indicating to the wallet that they should just throw away this funding transaction
1961                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1962                                                 },
1963                                                 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1964                                                         log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1965                                                                         log_pubkey!(node_id),
1966                                                                         &msg.channel_id);
1967                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1968                                                 },
1969                                                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1970                                                         log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1971                                                                         log_pubkey!(node_id),
1972                                                                         &msg.channel_id);
1973                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1974                                                 },
1975                                                 MessageSendEvent::SendTxAddInput { ref node_id, ref msg } => {
1976                                                         log_debug!(self.logger, "Handling SendTxAddInput event in peer_handler for node {} for channel {}",
1977                                                                         log_pubkey!(node_id),
1978                                                                         &msg.channel_id);
1979                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1980                                                 },
1981                                                 MessageSendEvent::SendTxAddOutput { ref node_id, ref msg } => {
1982                                                         log_debug!(self.logger, "Handling SendTxAddOutput event in peer_handler for node {} for channel {}",
1983                                                                         log_pubkey!(node_id),
1984                                                                         &msg.channel_id);
1985                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1986                                                 },
1987                                                 MessageSendEvent::SendTxRemoveInput { ref node_id, ref msg } => {
1988                                                         log_debug!(self.logger, "Handling SendTxRemoveInput event in peer_handler for node {} for channel {}",
1989                                                                         log_pubkey!(node_id),
1990                                                                         &msg.channel_id);
1991                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1992                                                 },
1993                                                 MessageSendEvent::SendTxRemoveOutput { ref node_id, ref msg } => {
1994                                                         log_debug!(self.logger, "Handling SendTxRemoveOutput event in peer_handler for node {} for channel {}",
1995                                                                         log_pubkey!(node_id),
1996                                                                         &msg.channel_id);
1997                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1998                                                 },
1999                                                 MessageSendEvent::SendTxComplete { ref node_id, ref msg } => {
2000                                                         log_debug!(self.logger, "Handling SendTxComplete event in peer_handler for node {} for channel {}",
2001                                                                         log_pubkey!(node_id),
2002                                                                         &msg.channel_id);
2003                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2004                                                 },
2005                                                 MessageSendEvent::SendTxSignatures { ref node_id, ref msg } => {
2006                                                         log_debug!(self.logger, "Handling SendTxSignatures event in peer_handler for node {} for channel {}",
2007                                                                         log_pubkey!(node_id),
2008                                                                         &msg.channel_id);
2009                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2010                                                 },
2011                                                 MessageSendEvent::SendTxInitRbf { ref node_id, ref msg } => {
2012                                                         log_debug!(self.logger, "Handling SendTxInitRbf event in peer_handler for node {} for channel {}",
2013                                                                         log_pubkey!(node_id),
2014                                                                         &msg.channel_id);
2015                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2016                                                 },
2017                                                 MessageSendEvent::SendTxAckRbf { ref node_id, ref msg } => {
2018                                                         log_debug!(self.logger, "Handling SendTxAckRbf event in peer_handler for node {} for channel {}",
2019                                                                         log_pubkey!(node_id),
2020                                                                         &msg.channel_id);
2021                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2022                                                 },
2023                                                 MessageSendEvent::SendTxAbort { ref node_id, ref msg } => {
2024                                                         log_debug!(self.logger, "Handling SendTxAbort event in peer_handler for node {} for channel {}",
2025                                                                         log_pubkey!(node_id),
2026                                                                         &msg.channel_id);
2027                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2028                                                 },
2029                                                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
2030                                                         log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
2031                                                                         log_pubkey!(node_id),
2032                                                                         &msg.channel_id);
2033                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2034                                                 },
2035                                                 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
2036                                                         log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
2037                                                                         log_pubkey!(node_id),
2038                                                                         update_add_htlcs.len(),
2039                                                                         update_fulfill_htlcs.len(),
2040                                                                         update_fail_htlcs.len(),
2041                                                                         &commitment_signed.channel_id);
2042                                                         let mut peer = get_peer_for_forwarding!(node_id);
2043                                                         for msg in update_add_htlcs {
2044                                                                 self.enqueue_message(&mut *peer, msg);
2045                                                         }
2046                                                         for msg in update_fulfill_htlcs {
2047                                                                 self.enqueue_message(&mut *peer, msg);
2048                                                         }
2049                                                         for msg in update_fail_htlcs {
2050                                                                 self.enqueue_message(&mut *peer, msg);
2051                                                         }
2052                                                         for msg in update_fail_malformed_htlcs {
2053                                                                 self.enqueue_message(&mut *peer, msg);
2054                                                         }
2055                                                         if let &Some(ref msg) = update_fee {
2056                                                                 self.enqueue_message(&mut *peer, msg);
2057                                                         }
2058                                                         self.enqueue_message(&mut *peer, commitment_signed);
2059                                                 },
2060                                                 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
2061                                                         log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
2062                                                                         log_pubkey!(node_id),
2063                                                                         &msg.channel_id);
2064                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2065                                                 },
2066                                                 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
2067                                                         log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
2068                                                                         log_pubkey!(node_id),
2069                                                                         &msg.channel_id);
2070                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2071                                                 },
2072                                                 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
2073                                                         log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
2074                                                                         log_pubkey!(node_id),
2075                                                                         &msg.channel_id);
2076                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2077                                                 },
2078                                                 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
2079                                                         log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
2080                                                                         log_pubkey!(node_id),
2081                                                                         &msg.channel_id);
2082                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2083                                                 },
2084                                                 MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
2085                                                         log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
2086                                                                         log_pubkey!(node_id),
2087                                                                         msg.contents.short_channel_id);
2088                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2089                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
2090                                                 },
2091                                                 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
2092                                                         log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2093                                                         match self.message_handler.route_handler.handle_channel_announcement(&msg) {
2094                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2095                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
2096                                                                 _ => {},
2097                                                         }
2098                                                         if let Some(msg) = update_msg {
2099                                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
2100                                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2101                                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2102                                                                         _ => {},
2103                                                                 }
2104                                                         }
2105                                                 },
2106                                                 MessageSendEvent::BroadcastChannelUpdate { msg } => {
2107                                                         log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for contents {:?}", msg.contents);
2108                                                         match self.message_handler.route_handler.handle_channel_update(&msg) {
2109                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2110                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2111                                                                 _ => {},
2112                                                         }
2113                                                 },
2114                                                 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
2115                                                         log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
2116                                                         match self.message_handler.route_handler.handle_node_announcement(&msg) {
2117                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2118                                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
2119                                                                 _ => {},
2120                                                         }
2121                                                 },
2122                                                 MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
2123                                                         log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
2124                                                                         log_pubkey!(node_id), msg.contents.short_channel_id);
2125                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2126                                                 },
2127                                                 MessageSendEvent::HandleError { node_id, action } => {
2128                                                         match action {
2129                                                                 msgs::ErrorAction::DisconnectPeer { msg } => {
2130                                                                         if let Some(msg) = msg.as_ref() {
2131                                                                                 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2132                                                                                         log_pubkey!(node_id), msg.data);
2133                                                                         } else {
2134                                                                                 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {}",
2135                                                                                         log_pubkey!(node_id));
2136                                                                         }
2137                                                                         // We do not have the peers write lock, so we just store that we're
2138                                                                         // about to disconenct the peer and do it after we finish
2139                                                                         // processing most messages.
2140                                                                         let msg = msg.map(|msg| wire::Message::<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>::Error(msg));
2141                                                                         peers_to_disconnect.insert(node_id, msg);
2142                                                                 },
2143                                                                 msgs::ErrorAction::DisconnectPeerWithWarning { msg } => {
2144                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2145                                                                                 log_pubkey!(node_id), msg.data);
2146                                                                         // We do not have the peers write lock, so we just store that we're
2147                                                                         // about to disconenct the peer and do it after we finish
2148                                                                         // processing most messages.
2149                                                                         peers_to_disconnect.insert(node_id, Some(wire::Message::Warning(msg)));
2150                                                                 },
2151                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
2152                                                                         log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2153                                                                 },
2154                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => {},
2155                                                                 msgs::ErrorAction::IgnoreError => {
2156                                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2157                                                                         },
2158                                                                 msgs::ErrorAction::SendErrorMessage { ref msg } => {
2159                                                                         log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
2160                                                                                         log_pubkey!(node_id),
2161                                                                                         msg.data);
2162                                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2163                                                                 },
2164                                                                 msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
2165                                                                         log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
2166                                                                                         log_pubkey!(node_id),
2167                                                                                         msg.data);
2168                                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2169                                                                 },
2170                                                         }
2171                                                 },
2172                                                 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
2173                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2174                                                 },
2175                                                 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
2176                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2177                                                 }
2178                                                 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
2179                                                         log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
2180                                                                 log_pubkey!(node_id),
2181                                                                 msg.short_channel_ids.len(),
2182                                                                 msg.first_blocknum,
2183                                                                 msg.number_of_blocks,
2184                                                                 msg.sync_complete);
2185                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2186                                                 }
2187                                                 MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
2188                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2189                                                 }
2190                                         }
2191                                 }
2192
2193                                 for (node_id, msg) in self.message_handler.custom_message_handler.get_and_clear_pending_msg() {
2194                                         if peers_to_disconnect.get(&node_id).is_some() { continue; }
2195                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
2196                                 }
2197
2198                                 for (descriptor, peer_mutex) in peers.iter() {
2199                                         let mut peer = peer_mutex.lock().unwrap();
2200                                         if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2201                                         self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
2202                                 }
2203                         }
2204                         if !peers_to_disconnect.is_empty() {
2205                                 let mut peers_lock = self.peers.write().unwrap();
2206                                 let peers = &mut *peers_lock;
2207                                 for (node_id, msg) in peers_to_disconnect.drain() {
2208                                         // Note that since we are holding the peers *write* lock we can
2209                                         // remove from node_id_to_descriptor immediately (as no other
2210                                         // thread can be holding the peer lock if we have the global write
2211                                         // lock).
2212
2213                                         let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2214                                         if let Some(mut descriptor) = descriptor_opt {
2215                                                 if let Some(peer_mutex) = peers.remove(&descriptor) {
2216                                                         let mut peer = peer_mutex.lock().unwrap();
2217                                                         if let Some(msg) = msg {
2218                                                                 self.enqueue_message(&mut *peer, &msg);
2219                                                                 // This isn't guaranteed to work, but if there is enough free
2220                                                                 // room in the send buffer, put the error message there...
2221                                                                 self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
2222                                                         }
2223                                                         self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
2224                                                 } else { debug_assert!(false, "Missing connection for peer"); }
2225                                         }
2226                                 }
2227                         }
2228
2229                         if self.event_processing_state.fetch_sub(1, Ordering::AcqRel) != 1 {
2230                                 // If another thread incremented the state while we were running we should go
2231                                 // around again, but only once.
2232                                 self.event_processing_state.store(1, Ordering::Release);
2233                                 continue;
2234                         }
2235                         break;
2236                 }
2237         }
2238
2239         /// Indicates that the given socket descriptor's connection is now closed.
2240         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
2241                 self.disconnect_event_internal(descriptor);
2242         }
2243
2244         fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
2245                 if !peer.handshake_complete() {
2246                         log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
2247                         descriptor.disconnect_socket();
2248                         return;
2249                 }
2250
2251                 debug_assert!(peer.their_node_id.is_some());
2252                 if let Some((node_id, _)) = peer.their_node_id {
2253                         log_trace!(self.logger, "Disconnecting peer with id {} due to {}", node_id, reason);
2254                         self.message_handler.chan_handler.peer_disconnected(&node_id);
2255                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2256                         self.message_handler.custom_message_handler.peer_disconnected(&node_id);
2257                 }
2258                 descriptor.disconnect_socket();
2259         }
2260
2261         fn disconnect_event_internal(&self, descriptor: &Descriptor) {
2262                 let mut peers = self.peers.write().unwrap();
2263                 let peer_option = peers.remove(descriptor);
2264                 match peer_option {
2265                         None => {
2266                                 // This is most likely a simple race condition where the user found that the socket
2267                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
2268                                 // called this method. Either way we're disconnected, return.
2269                         },
2270                         Some(peer_lock) => {
2271                                 let peer = peer_lock.lock().unwrap();
2272                                 if let Some((node_id, _)) = peer.their_node_id {
2273                                         log_trace!(self.logger, "Handling disconnection of peer {}", log_pubkey!(node_id));
2274                                         let removed = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2275                                         debug_assert!(removed.is_some(), "descriptor maps should be consistent");
2276                                         if !peer.handshake_complete() { return; }
2277                                         self.message_handler.chan_handler.peer_disconnected(&node_id);
2278                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2279                                         self.message_handler.custom_message_handler.peer_disconnected(&node_id);
2280                                 }
2281                         }
2282                 };
2283         }
2284
2285         /// Disconnect a peer given its node id.
2286         ///
2287         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
2288         /// peer. Thus, be very careful about reentrancy issues.
2289         ///
2290         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
2291         pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
2292                 let mut peers_lock = self.peers.write().unwrap();
2293                 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
2294                         let peer_opt = peers_lock.remove(&descriptor);
2295                         if let Some(peer_mutex) = peer_opt {
2296                                 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
2297                         } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
2298                 }
2299         }
2300
2301         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
2302         /// an indication that TCP sockets have stalled even if we weren't around to time them out
2303         /// using regular ping/pongs.
2304         pub fn disconnect_all_peers(&self) {
2305                 let mut peers_lock = self.peers.write().unwrap();
2306                 self.node_id_to_descriptor.lock().unwrap().clear();
2307                 let peers = &mut *peers_lock;
2308                 for (descriptor, peer_mutex) in peers.drain() {
2309                         self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
2310                 }
2311         }
2312
2313         /// This is called when we're blocked on sending additional gossip messages until we receive a
2314         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
2315         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
2316         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
2317                 if peer.awaiting_pong_timer_tick_intervals == 0 {
2318                         peer.awaiting_pong_timer_tick_intervals = -1;
2319                         let ping = msgs::Ping {
2320                                 ponglen: 0,
2321                                 byteslen: 64,
2322                         };
2323                         self.enqueue_message(peer, &ping);
2324                 }
2325         }
2326
2327         /// Send pings to each peer and disconnect those which did not respond to the last round of
2328         /// pings.
2329         ///
2330         /// This may be called on any timescale you want, however, roughly once every ten seconds is
2331         /// preferred. The call rate determines both how often we send a ping to our peers and how much
2332         /// time they have to respond before we disconnect them.
2333         ///
2334         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2335         /// issues!
2336         ///
2337         /// [`send_data`]: SocketDescriptor::send_data
2338         pub fn timer_tick_occurred(&self) {
2339                 let mut descriptors_needing_disconnect = Vec::new();
2340                 {
2341                         let peers_lock = self.peers.read().unwrap();
2342
2343                         self.update_gossip_backlogged();
2344                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2345
2346                         for (descriptor, peer_mutex) in peers_lock.iter() {
2347                                 let mut peer = peer_mutex.lock().unwrap();
2348                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2349
2350                                 if !peer.handshake_complete() {
2351                                         // The peer needs to complete its handshake before we can exchange messages. We
2352                                         // give peers one timer tick to complete handshake, reusing
2353                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2354                                         // for handshake completion.
2355                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
2356                                                 descriptors_needing_disconnect.push(descriptor.clone());
2357                                         } else {
2358                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2359                                         }
2360                                         continue;
2361                                 }
2362                                 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2363                                 debug_assert!(peer.their_node_id.is_some());
2364
2365                                 loop { // Used as a `goto` to skip writing a Ping message.
2366                                         if peer.awaiting_pong_timer_tick_intervals == -1 {
2367                                                 // Magic value set in `maybe_send_extra_ping`.
2368                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2369                                                 peer.received_message_since_timer_tick = false;
2370                                                 break;
2371                                         }
2372
2373                                         if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2374                                                 || peer.awaiting_pong_timer_tick_intervals as u64 >
2375                                                         MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2376                                         {
2377                                                 descriptors_needing_disconnect.push(descriptor.clone());
2378                                                 break;
2379                                         }
2380                                         peer.received_message_since_timer_tick = false;
2381
2382                                         if peer.awaiting_pong_timer_tick_intervals > 0 {
2383                                                 peer.awaiting_pong_timer_tick_intervals += 1;
2384                                                 break;
2385                                         }
2386
2387                                         peer.awaiting_pong_timer_tick_intervals = 1;
2388                                         let ping = msgs::Ping {
2389                                                 ponglen: 0,
2390                                                 byteslen: 64,
2391                                         };
2392                                         self.enqueue_message(&mut *peer, &ping);
2393                                         break;
2394                                 }
2395                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2396                         }
2397                 }
2398
2399                 if !descriptors_needing_disconnect.is_empty() {
2400                         {
2401                                 let mut peers_lock = self.peers.write().unwrap();
2402                                 for descriptor in descriptors_needing_disconnect {
2403                                         if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2404                                                 let peer = peer_mutex.lock().unwrap();
2405                                                 if let Some((node_id, _)) = peer.their_node_id {
2406                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2407                                                 }
2408                                                 self.do_disconnect(descriptor, &*peer, "ping/handshake timeout");
2409                                         }
2410                                 }
2411                         }
2412                 }
2413         }
2414
2415         #[allow(dead_code)]
2416         // Messages of up to 64KB should never end up more than half full with addresses, as that would
2417         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2418         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2419         // message...
2420         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (SocketAddress::MAX_LEN as u32 + 1) / 2;
2421         #[deny(const_err)]
2422         #[allow(dead_code)]
2423         // ...by failing to compile if the number of addresses that would be half of a message is
2424         // smaller than 100:
2425         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2426
2427         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2428         /// peers. Note that peers will likely ignore this message unless we have at least one public
2429         /// channel which has at least six confirmations on-chain.
2430         ///
2431         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2432         /// node to humans. They carry no in-protocol meaning.
2433         ///
2434         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2435         /// accepts incoming connections. These will be included in the node_announcement, publicly
2436         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2437         /// addresses should likely contain only Tor Onion addresses.
2438         ///
2439         /// Panics if `addresses` is absurdly large (more than 100).
2440         ///
2441         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2442         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<SocketAddress>) {
2443                 if addresses.len() > 100 {
2444                         panic!("More than half the message size was taken up by public addresses!");
2445                 }
2446
2447                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2448                 // addresses be sorted for future compatibility.
2449                 addresses.sort_by_key(|addr| addr.get_id());
2450
2451                 let features = self.message_handler.chan_handler.provided_node_features()
2452                         | self.message_handler.route_handler.provided_node_features()
2453                         | self.message_handler.onion_message_handler.provided_node_features()
2454                         | self.message_handler.custom_message_handler.provided_node_features();
2455                 let announcement = msgs::UnsignedNodeAnnouncement {
2456                         features,
2457                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2458                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2459                         rgb,
2460                         alias: NodeAlias(alias),
2461                         addresses,
2462                         excess_address_data: Vec::new(),
2463                         excess_data: Vec::new(),
2464                 };
2465                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2466                         msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2467                 ) {
2468                         Ok(sig) => sig,
2469                         Err(_) => {
2470                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2471                                 return;
2472                         },
2473                 };
2474
2475                 let msg = msgs::NodeAnnouncement {
2476                         signature: node_announce_sig,
2477                         contents: announcement
2478                 };
2479
2480                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2481                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2482                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2483         }
2484 }
2485
2486 fn is_gossip_msg(type_id: u16) -> bool {
2487         match type_id {
2488                 msgs::ChannelAnnouncement::TYPE |
2489                 msgs::ChannelUpdate::TYPE |
2490                 msgs::NodeAnnouncement::TYPE |
2491                 msgs::QueryChannelRange::TYPE |
2492                 msgs::ReplyChannelRange::TYPE |
2493                 msgs::QueryShortChannelIds::TYPE |
2494                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2495                 _ => false
2496         }
2497 }
2498
2499 #[cfg(test)]
2500 mod tests {
2501         use crate::sign::{NodeSigner, Recipient};
2502         use crate::events;
2503         use crate::io;
2504         use crate::ln::ChannelId;
2505         use crate::ln::features::{InitFeatures, NodeFeatures};
2506         use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2507         use crate::ln::peer_handler::{CustomMessageHandler, PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2508         use crate::ln::{msgs, wire};
2509         use crate::ln::msgs::{LightningError, SocketAddress};
2510         use crate::util::test_utils;
2511
2512         use bitcoin::Network;
2513         use bitcoin::blockdata::constants::ChainHash;
2514         use bitcoin::secp256k1::{PublicKey, SecretKey};
2515
2516         use crate::prelude::*;
2517         use crate::sync::{Arc, Mutex};
2518         use core::convert::Infallible;
2519         use core::sync::atomic::{AtomicBool, Ordering};
2520
2521         #[derive(Clone)]
2522         struct FileDescriptor {
2523                 fd: u16,
2524                 outbound_data: Arc<Mutex<Vec<u8>>>,
2525                 disconnect: Arc<AtomicBool>,
2526         }
2527         impl PartialEq for FileDescriptor {
2528                 fn eq(&self, other: &Self) -> bool {
2529                         self.fd == other.fd
2530                 }
2531         }
2532         impl Eq for FileDescriptor { }
2533         impl core::hash::Hash for FileDescriptor {
2534                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2535                         self.fd.hash(hasher)
2536                 }
2537         }
2538
2539         impl SocketDescriptor for FileDescriptor {
2540                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2541                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2542                         data.len()
2543                 }
2544
2545                 fn disconnect_socket(&mut self) { self.disconnect.store(true, Ordering::Release); }
2546         }
2547
2548         struct PeerManagerCfg {
2549                 chan_handler: test_utils::TestChannelMessageHandler,
2550                 routing_handler: test_utils::TestRoutingMessageHandler,
2551                 custom_handler: TestCustomMessageHandler,
2552                 logger: test_utils::TestLogger,
2553                 node_signer: test_utils::TestNodeSigner,
2554         }
2555
2556         struct TestCustomMessageHandler {
2557                 features: InitFeatures,
2558         }
2559
2560         impl wire::CustomMessageReader for TestCustomMessageHandler {
2561                 type CustomMessage = Infallible;
2562                 fn read<R: io::Read>(&self, _: u16, _: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
2563                         Ok(None)
2564                 }
2565         }
2566
2567         impl CustomMessageHandler for TestCustomMessageHandler {
2568                 fn handle_custom_message(&self, _: Infallible, _: &PublicKey) -> Result<(), LightningError> {
2569                         unreachable!();
2570                 }
2571
2572                 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
2573
2574                 fn peer_disconnected(&self, _: &PublicKey) {}
2575                 fn peer_connected(&self, _: &PublicKey, _: &msgs::Init, _: bool) -> Result<(), ()> { Ok(()) }
2576
2577                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
2578
2579                 fn provided_init_features(&self, _: &PublicKey) -> InitFeatures {
2580                         self.features.clone()
2581                 }
2582         }
2583
2584         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2585                 let mut cfgs = Vec::new();
2586                 for i in 0..peer_count {
2587                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2588                         let features = {
2589                                 let mut feature_bits = vec![0u8; 33];
2590                                 feature_bits[32] = 0b00000001;
2591                                 InitFeatures::from_le_bytes(feature_bits)
2592                         };
2593                         cfgs.push(
2594                                 PeerManagerCfg{
2595                                         chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2596                                         logger: test_utils::TestLogger::new(),
2597                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2598                                         custom_handler: TestCustomMessageHandler { features },
2599                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2600                                 }
2601                         );
2602                 }
2603
2604                 cfgs
2605         }
2606
2607         fn create_feature_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2608                 let mut cfgs = Vec::new();
2609                 for i in 0..peer_count {
2610                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2611                         let features = {
2612                                 let mut feature_bits = vec![0u8; 33 + i + 1];
2613                                 feature_bits[33 + i] = 0b00000001;
2614                                 InitFeatures::from_le_bytes(feature_bits)
2615                         };
2616                         cfgs.push(
2617                                 PeerManagerCfg{
2618                                         chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2619                                         logger: test_utils::TestLogger::new(),
2620                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2621                                         custom_handler: TestCustomMessageHandler { features },
2622                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2623                                 }
2624                         );
2625                 }
2626
2627                 cfgs
2628         }
2629
2630         fn create_chain_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2631                 let mut cfgs = Vec::new();
2632                 for i in 0..peer_count {
2633                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2634                         let features = InitFeatures::from_le_bytes(vec![0u8; 33]);
2635                         let network = ChainHash::from(&[i as u8; 32][..]);
2636                         cfgs.push(
2637                                 PeerManagerCfg{
2638                                         chan_handler: test_utils::TestChannelMessageHandler::new(network),
2639                                         logger: test_utils::TestLogger::new(),
2640                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2641                                         custom_handler: TestCustomMessageHandler { features },
2642                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2643                                 }
2644                         );
2645                 }
2646
2647                 cfgs
2648         }
2649
2650         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>> {
2651                 let mut peers = Vec::new();
2652                 for i in 0..peer_count {
2653                         let ephemeral_bytes = [i as u8; 32];
2654                         let msg_handler = MessageHandler {
2655                                 chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler,
2656                                 onion_message_handler: IgnoringMessageHandler {}, custom_message_handler: &cfgs[i].custom_handler
2657                         };
2658                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, &cfgs[i].node_signer);
2659                         peers.push(peer);
2660                 }
2661
2662                 peers
2663         }
2664
2665         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2666                 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2667                 let mut fd_a = FileDescriptor {
2668                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2669                         disconnect: Arc::new(AtomicBool::new(false)),
2670                 };
2671                 let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2672                 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2673                 let mut fd_b = FileDescriptor {
2674                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2675                         disconnect: Arc::new(AtomicBool::new(false)),
2676                 };
2677                 let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2678                 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2679                 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2680                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2681                 peer_a.process_events();
2682
2683                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2684                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2685
2686                 peer_b.process_events();
2687                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2688                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2689
2690                 peer_a.process_events();
2691                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2692                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2693
2694                 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2695                 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2696
2697                 (fd_a.clone(), fd_b.clone())
2698         }
2699
2700         #[test]
2701         #[cfg(feature = "std")]
2702         fn fuzz_threaded_connections() {
2703                 // Spawn two threads which repeatedly connect two peers together, leading to "got second
2704                 // connection with peer" disconnections and rapid reconnect. This previously found an issue
2705                 // with our internal map consistency, and is a generally good smoke test of disconnection.
2706                 let cfgs = Arc::new(create_peermgr_cfgs(2));
2707                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
2708                 let peers = Arc::new(create_network(2, unsafe { &*(&*cfgs as *const _) as &'static _ }));
2709
2710                 let start_time = std::time::Instant::now();
2711                 macro_rules! spawn_thread { ($id: expr) => { {
2712                         let peers = Arc::clone(&peers);
2713                         let cfgs = Arc::clone(&cfgs);
2714                         std::thread::spawn(move || {
2715                                 let mut ctr = 0;
2716                                 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2717                                         let id_a = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2718                                         let mut fd_a = FileDescriptor {
2719                                                 fd: $id  + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2720                                                 disconnect: Arc::new(AtomicBool::new(false)),
2721                                         };
2722                                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2723                                         let mut fd_b = FileDescriptor {
2724                                                 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2725                                                 disconnect: Arc::new(AtomicBool::new(false)),
2726                                         };
2727                                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2728                                         let initial_data = peers[1].new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2729                                         peers[0].new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2730                                         if peers[0].read_event(&mut fd_a, &initial_data).is_err() { break; }
2731
2732                                         while start_time.elapsed() < std::time::Duration::from_secs(1) {
2733                                                 peers[0].process_events();
2734                                                 if fd_a.disconnect.load(Ordering::Acquire) { break; }
2735                                                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2736                                                 if peers[1].read_event(&mut fd_b, &a_data).is_err() { break; }
2737
2738                                                 peers[1].process_events();
2739                                                 if fd_b.disconnect.load(Ordering::Acquire) { break; }
2740                                                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2741                                                 if peers[0].read_event(&mut fd_a, &b_data).is_err() { break; }
2742
2743                                                 cfgs[0].chan_handler.pending_events.lock().unwrap()
2744                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2745                                                                 node_id: peers[1].node_signer.get_node_id(Recipient::Node).unwrap(),
2746                                                                 msg: msgs::Shutdown {
2747                                                                         channel_id: ChannelId::new_zero(),
2748                                                                         scriptpubkey: bitcoin::Script::new(),
2749                                                                 },
2750                                                         });
2751                                                 cfgs[1].chan_handler.pending_events.lock().unwrap()
2752                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2753                                                                 node_id: peers[0].node_signer.get_node_id(Recipient::Node).unwrap(),
2754                                                                 msg: msgs::Shutdown {
2755                                                                         channel_id: ChannelId::new_zero(),
2756                                                                         scriptpubkey: bitcoin::Script::new(),
2757                                                                 },
2758                                                         });
2759
2760                                                 if ctr % 2 == 0 {
2761                                                         peers[0].timer_tick_occurred();
2762                                                         peers[1].timer_tick_occurred();
2763                                                 }
2764                                         }
2765
2766                                         peers[0].socket_disconnected(&fd_a);
2767                                         peers[1].socket_disconnected(&fd_b);
2768                                         ctr += 1;
2769                                         std::thread::sleep(std::time::Duration::from_micros(1));
2770                                 }
2771                         })
2772                 } } }
2773                 let thrd_a = spawn_thread!(1);
2774                 let thrd_b = spawn_thread!(2);
2775
2776                 thrd_a.join().unwrap();
2777                 thrd_b.join().unwrap();
2778         }
2779
2780         #[test]
2781         fn test_feature_incompatible_peers() {
2782                 let cfgs = create_peermgr_cfgs(2);
2783                 let incompatible_cfgs = create_feature_incompatible_peermgr_cfgs(2);
2784
2785                 let peers = create_network(2, &cfgs);
2786                 let incompatible_peers = create_network(2, &incompatible_cfgs);
2787                 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2788                 for (peer_a, peer_b) in peer_pairs.iter() {
2789                         let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2790                         let mut fd_a = FileDescriptor {
2791                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2792                                 disconnect: Arc::new(AtomicBool::new(false)),
2793                         };
2794                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2795                         let mut fd_b = FileDescriptor {
2796                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2797                                 disconnect: Arc::new(AtomicBool::new(false)),
2798                         };
2799                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2800                         let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2801                         peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2802                         assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2803                         peer_a.process_events();
2804
2805                         let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2806                         assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2807
2808                         peer_b.process_events();
2809                         let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2810
2811                         // Should fail because of unknown required features
2812                         assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2813                 }
2814         }
2815
2816         #[test]
2817         fn test_chain_incompatible_peers() {
2818                 let cfgs = create_peermgr_cfgs(2);
2819                 let incompatible_cfgs = create_chain_incompatible_peermgr_cfgs(2);
2820
2821                 let peers = create_network(2, &cfgs);
2822                 let incompatible_peers = create_network(2, &incompatible_cfgs);
2823                 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2824                 for (peer_a, peer_b) in peer_pairs.iter() {
2825                         let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2826                         let mut fd_a = FileDescriptor {
2827                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2828                                 disconnect: Arc::new(AtomicBool::new(false)),
2829                         };
2830                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2831                         let mut fd_b = FileDescriptor {
2832                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2833                                 disconnect: Arc::new(AtomicBool::new(false)),
2834                         };
2835                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2836                         let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2837                         peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2838                         assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2839                         peer_a.process_events();
2840
2841                         let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2842                         assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2843
2844                         peer_b.process_events();
2845                         let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2846
2847                         // Should fail because of incompatible chains
2848                         assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2849                 }
2850         }
2851
2852         #[test]
2853         fn test_disconnect_peer() {
2854                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2855                 // push a DisconnectPeer event to remove the node flagged by id
2856                 let cfgs = create_peermgr_cfgs(2);
2857                 let peers = create_network(2, &cfgs);
2858                 establish_connection(&peers[0], &peers[1]);
2859                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2860
2861                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2862                 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2863                         node_id: their_id,
2864                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2865                 });
2866
2867                 peers[0].process_events();
2868                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2869         }
2870
2871         #[test]
2872         fn test_send_simple_msg() {
2873                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2874                 // push a message from one peer to another.
2875                 let cfgs = create_peermgr_cfgs(2);
2876                 let a_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2877                 let b_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2878                 let mut peers = create_network(2, &cfgs);
2879                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2880                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2881
2882                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2883
2884                 let msg = msgs::Shutdown { channel_id: ChannelId::from_bytes([42; 32]), scriptpubkey: bitcoin::Script::new() };
2885                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2886                         node_id: their_id, msg: msg.clone()
2887                 });
2888                 peers[0].message_handler.chan_handler = &a_chan_handler;
2889
2890                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2891                 peers[1].message_handler.chan_handler = &b_chan_handler;
2892
2893                 peers[0].process_events();
2894
2895                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2896                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2897         }
2898
2899         #[test]
2900         fn test_non_init_first_msg() {
2901                 // Simple test of the first message received over a connection being something other than
2902                 // Init. This results in an immediate disconnection, which previously included a spurious
2903                 // peer_disconnected event handed to event handlers (which would panic in
2904                 // `TestChannelMessageHandler` here).
2905                 let cfgs = create_peermgr_cfgs(2);
2906                 let peers = create_network(2, &cfgs);
2907
2908                 let mut fd_dup = FileDescriptor {
2909                         fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2910                         disconnect: Arc::new(AtomicBool::new(false)),
2911                 };
2912                 let addr_dup = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1003};
2913                 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2914                 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2915
2916                 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2917                 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2918                 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2919                 peers[0].process_events();
2920
2921                 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2922                 let (act_three, _) =
2923                         dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
2924                 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
2925
2926                 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
2927                 let msg_bytes = dup_encryptor.encrypt_message(&not_init_msg);
2928                 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
2929         }
2930
2931         #[test]
2932         fn test_disconnect_all_peer() {
2933                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2934                 // then calls disconnect_all_peers
2935                 let cfgs = create_peermgr_cfgs(2);
2936                 let peers = create_network(2, &cfgs);
2937                 establish_connection(&peers[0], &peers[1]);
2938                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2939
2940                 peers[0].disconnect_all_peers();
2941                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2942         }
2943
2944         #[test]
2945         fn test_timer_tick_occurred() {
2946                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2947                 let cfgs = create_peermgr_cfgs(2);
2948                 let peers = create_network(2, &cfgs);
2949                 establish_connection(&peers[0], &peers[1]);
2950                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2951
2952                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2953                 peers[0].timer_tick_occurred();
2954                 peers[0].process_events();
2955                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2956
2957                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2958                 peers[0].timer_tick_occurred();
2959                 peers[0].process_events();
2960                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2961         }
2962
2963         #[test]
2964         fn test_do_attempt_write_data() {
2965                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2966                 let cfgs = create_peermgr_cfgs(2);
2967                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2968                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2969                 let peers = create_network(2, &cfgs);
2970
2971                 // By calling establish_connect, we trigger do_attempt_write_data between
2972                 // the peers. Previously this function would mistakenly enter an infinite loop
2973                 // when there were more channel messages available than could fit into a peer's
2974                 // buffer. This issue would now be detected by this test (because we use custom
2975                 // RoutingMessageHandlers that intentionally return more channel messages
2976                 // than can fit into a peer's buffer).
2977                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2978
2979                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2980                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2981                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2982                         peers[1].process_events();
2983                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2984                         assert!(!a_read_data.is_empty());
2985
2986                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2987                         peers[0].process_events();
2988
2989                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2990                         assert!(!b_read_data.is_empty());
2991                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2992
2993                         peers[0].process_events();
2994                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2995                 }
2996
2997                 // Check that each peer has received the expected number of channel updates and channel
2998                 // announcements.
2999                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
3000                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
3001                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
3002                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
3003         }
3004
3005         #[test]
3006         fn test_handshake_timeout() {
3007                 // Tests that we time out a peer still waiting on handshake completion after a full timer
3008                 // tick.
3009                 let cfgs = create_peermgr_cfgs(2);
3010                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
3011                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
3012                 let peers = create_network(2, &cfgs);
3013
3014                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
3015                 let mut fd_a = FileDescriptor {
3016                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
3017                         disconnect: Arc::new(AtomicBool::new(false)),
3018                 };
3019                 let mut fd_b = FileDescriptor {
3020                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
3021                         disconnect: Arc::new(AtomicBool::new(false)),
3022                 };
3023                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
3024                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
3025
3026                 // If we get a single timer tick before completion, that's fine
3027                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3028                 peers[0].timer_tick_occurred();
3029                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3030
3031                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
3032                 peers[0].process_events();
3033                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
3034                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
3035                 peers[1].process_events();
3036
3037                 // ...but if we get a second timer tick, we should disconnect the peer
3038                 peers[0].timer_tick_occurred();
3039                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
3040
3041                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
3042                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
3043         }
3044
3045         #[test]
3046         fn test_filter_addresses(){
3047                 // Tests the filter_addresses function.
3048
3049                 // For (10/8)
3050                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 0, 0, 0], port: 1000};
3051                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3052                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 0, 255, 201], port: 1000};
3053                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3054                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 255, 255, 255], port: 1000};
3055                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3056
3057                 // For (0/8)
3058                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 0, 0, 0], port: 1000};
3059                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3060                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 0, 255, 187], port: 1000};
3061                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3062                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 255, 255, 255], port: 1000};
3063                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3064
3065                 // For (100.64/10)
3066                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 64, 0, 0], port: 1000};
3067                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3068                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 78, 255, 0], port: 1000};
3069                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3070                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 127, 255, 255], port: 1000};
3071                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3072
3073                 // For (127/8)
3074                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 0, 0, 0], port: 1000};
3075                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3076                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 65, 73, 0], port: 1000};
3077                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3078                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 255, 255, 255], port: 1000};
3079                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3080
3081                 // For (169.254/16)
3082                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 0, 0], port: 1000};
3083                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3084                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 221, 101], port: 1000};
3085                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3086                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 255, 255], port: 1000};
3087                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3088
3089                 // For (172.16/12)
3090                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 16, 0, 0], port: 1000};
3091                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3092                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 27, 101, 23], port: 1000};
3093                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3094                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 31, 255, 255], port: 1000};
3095                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3096
3097                 // For (192.168/16)
3098                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 0, 0], port: 1000};
3099                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3100                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 205, 159], port: 1000};
3101                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3102                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 255, 255], port: 1000};
3103                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3104
3105                 // For (192.88.99/24)
3106                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 0], port: 1000};
3107                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3108                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 140], port: 1000};
3109                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3110                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 255], port: 1000};
3111                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3112
3113                 // For other IPv4 addresses
3114                 let ip_address = SocketAddress::TcpIpV4{addr: [188, 255, 99, 0], port: 1000};
3115                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3116                 let ip_address = SocketAddress::TcpIpV4{addr: [123, 8, 129, 14], port: 1000};
3117                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3118                 let ip_address = SocketAddress::TcpIpV4{addr: [2, 88, 9, 255], port: 1000};
3119                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3120
3121                 // For (2000::/3)
3122                 let ip_address = SocketAddress::TcpIpV6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
3123                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3124                 let ip_address = SocketAddress::TcpIpV6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
3125                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3126                 let ip_address = SocketAddress::TcpIpV6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
3127                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3128
3129                 // For other IPv6 addresses
3130                 let ip_address = SocketAddress::TcpIpV6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
3131                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3132                 let ip_address = SocketAddress::TcpIpV6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
3133                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3134                 let ip_address = SocketAddress::TcpIpV6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
3135                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3136
3137                 // For (None)
3138                 assert_eq!(filter_addresses(None), None);
3139         }
3140
3141         #[test]
3142         #[cfg(feature = "std")]
3143         fn test_process_events_multithreaded() {
3144                 use std::time::{Duration, Instant};
3145                 // Test that `process_events` getting called on multiple threads doesn't generate too many
3146                 // loop iterations.
3147                 // Each time `process_events` goes around the loop we call
3148                 // `get_and_clear_pending_msg_events`, which we count using the `TestMessageHandler`.
3149                 // Because the loop should go around once more after a call which fails to take the
3150                 // single-threaded lock, if we write zero to the counter before calling `process_events` we
3151                 // should never observe there having been more than 2 loop iterations.
3152                 // Further, because the last thread to exit will call `process_events` before returning, we
3153                 // should always have at least one count at the end.
3154                 let cfg = Arc::new(create_peermgr_cfgs(1));
3155                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
3156                 let peer = Arc::new(create_network(1, unsafe { &*(&*cfg as *const _) as &'static _ }).pop().unwrap());
3157
3158                 let exit_flag = Arc::new(AtomicBool::new(false));
3159                 macro_rules! spawn_thread { () => { {
3160                         let thread_cfg = Arc::clone(&cfg);
3161                         let thread_peer = Arc::clone(&peer);
3162                         let thread_exit = Arc::clone(&exit_flag);
3163                         std::thread::spawn(move || {
3164                                 while !thread_exit.load(Ordering::Acquire) {
3165                                         thread_cfg[0].chan_handler.message_fetch_counter.store(0, Ordering::Release);
3166                                         thread_peer.process_events();
3167                                         std::thread::sleep(Duration::from_micros(1));
3168                                 }
3169                         })
3170                 } } }
3171
3172                 let thread_a = spawn_thread!();
3173                 let thread_b = spawn_thread!();
3174                 let thread_c = spawn_thread!();
3175
3176                 let start_time = Instant::now();
3177                 while start_time.elapsed() < Duration::from_millis(100) {
3178                         let val = cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire);
3179                         assert!(val <= 2);
3180                         std::thread::yield_now(); // Winblowz seemingly doesn't ever interrupt threads?!
3181                 }
3182
3183                 exit_flag.store(true, Ordering::Release);
3184                 thread_a.join().unwrap();
3185                 thread_b.join().unwrap();
3186                 thread_c.join().unwrap();
3187                 assert!(cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire) >= 1);
3188         }
3189 }