80db0dc0b07e269233afaaad6058ae36aaef288a
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::{InitFeatures, NodeFeatures};
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{MaybeReadableArgs, VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
29 use routing::gossip::{NetworkGraph, P2PGossipSync};
30 use util::atomic_counter::AtomicCounter;
31 use util::crypto::sign;
32 use util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
33 use util::logger::Logger;
34
35 use prelude::*;
36 use io;
37 use alloc::collections::LinkedList;
38 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
47 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
48 use bitcoin::hashes::{HashEngine, Hash};
49
50 /// Handler for BOLT1-compliant messages.
51 pub trait CustomMessageHandler: wire::CustomMessageReader {
52         /// Called with the message type that was received and the buffer to be read.
53         /// Can return a `MessageHandlingError` if the message could not be handled.
54         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
55
56         /// Gets the list of pending messages which were generated by the custom message
57         /// handler, clearing the list in the process. The first tuple element must
58         /// correspond to the intended recipients node ids. If no connection to one of the
59         /// specified node does not exist, the message is simply not sent to it.
60         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
61 }
62
63 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
64 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
65 pub struct IgnoringMessageHandler{}
66 impl MessageSendEventsProvider for IgnoringMessageHandler {
67         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
68 }
69 impl RoutingMessageHandler for IgnoringMessageHandler {
70         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
72         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
73         fn get_next_channel_announcement(&self, _starting_point: u64) ->
74                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
75         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
76         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
77         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
78         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
80         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
81         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
82         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
83                 InitFeatures::empty()
84         }
85 }
86 impl OnionMessageProvider for IgnoringMessageHandler {
87         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
88 }
89 impl OnionMessageHandler for IgnoringMessageHandler {
90         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
91         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
92         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
93         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
94         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
95                 InitFeatures::empty()
96         }
97 }
98 impl CustomOnionMessageHandler for IgnoringMessageHandler {
99         type CustomMessage = Infallible;
100         fn handle_custom_message(&self, _msg: Self::CustomMessage) {
101                 // Since we always return `None` in the read the handle method should never be called.
102                 unreachable!();
103         }
104 }
105 impl MaybeReadableArgs<u64> for Infallible {
106         fn read<R: io::Read>(_buffer: &mut R, _msg_type: u64) -> Result<Option<Self>, msgs::DecodeError> where Self: Sized {
107                 Ok(None)
108         }
109 }
110
111 impl CustomOnionMessageContents for Infallible {
112         fn tlv_type(&self) -> u64 { unreachable!(); }
113 }
114
115 impl Deref for IgnoringMessageHandler {
116         type Target = IgnoringMessageHandler;
117         fn deref(&self) -> &Self { self }
118 }
119
120 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
121 // method that takes self for it.
122 impl wire::Type for Infallible {
123         fn type_id(&self) -> u16 {
124                 unreachable!();
125         }
126 }
127 impl Writeable for Infallible {
128         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
129                 unreachable!();
130         }
131 }
132
133 impl wire::CustomMessageReader for IgnoringMessageHandler {
134         type CustomMessage = Infallible;
135         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
136                 Ok(None)
137         }
138 }
139
140 impl CustomMessageHandler for IgnoringMessageHandler {
141         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
142                 // Since we always return `None` in the read the handle method should never be called.
143                 unreachable!();
144         }
145
146         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
147 }
148
149 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
150 /// You can provide one of these as the route_handler in a MessageHandler.
151 pub struct ErroringMessageHandler {
152         message_queue: Mutex<Vec<MessageSendEvent>>
153 }
154 impl ErroringMessageHandler {
155         /// Constructs a new ErroringMessageHandler
156         pub fn new() -> Self {
157                 Self { message_queue: Mutex::new(Vec::new()) }
158         }
159         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
160                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
161                         action: msgs::ErrorAction::SendErrorMessage {
162                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
163                         },
164                         node_id: node_id.clone(),
165                 });
166         }
167 }
168 impl MessageSendEventsProvider for ErroringMessageHandler {
169         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
170                 let mut res = Vec::new();
171                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
172                 res
173         }
174 }
175 impl ChannelMessageHandler for ErroringMessageHandler {
176         // Any messages which are related to a specific channel generate an error message to let the
177         // peer know we don't care about channels.
178         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
180         }
181         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
183         }
184         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
186         }
187         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
191                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
192         }
193         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
194                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
195         }
196         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
197                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
198         }
199         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
200                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
201         }
202         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
203                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
204         }
205         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
206                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
207         }
208         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
209                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
210         }
211         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
212                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
213         }
214         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
215                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
216         }
217         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
218                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
219         }
220         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
221                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
222         }
223         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
224                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
225         }
226         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
227         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
228         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
229         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
230         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
231         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
232         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
233                 // Set a number of features which various nodes may require to talk to us. It's totally
234                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
235                 // channels.
236                 let mut features = InitFeatures::empty();
237                 features.set_data_loss_protect_optional();
238                 features.set_upfront_shutdown_script_optional();
239                 features.set_variable_length_onion_optional();
240                 features.set_static_remote_key_optional();
241                 features.set_payment_secret_optional();
242                 features.set_basic_mpp_optional();
243                 features.set_wumbo_optional();
244                 features.set_shutdown_any_segwit_optional();
245                 features.set_channel_type_optional();
246                 features.set_scid_privacy_optional();
247                 features.set_zero_conf_optional();
248                 features
249         }
250 }
251 impl Deref for ErroringMessageHandler {
252         type Target = ErroringMessageHandler;
253         fn deref(&self) -> &Self { self }
254 }
255
256 /// Provides references to trait impls which handle different types of messages.
257 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
258                 CM::Target: ChannelMessageHandler,
259                 RM::Target: RoutingMessageHandler,
260                 OM::Target: OnionMessageHandler,
261 {
262         /// A message handler which handles messages specific to channels. Usually this is just a
263         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
264         ///
265         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
266         pub chan_handler: CM,
267         /// A message handler which handles messages updating our knowledge of the network channel
268         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
269         ///
270         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
271         pub route_handler: RM,
272
273         /// A message handler which handles onion messages. For now, this can only be an
274         /// [`IgnoringMessageHandler`].
275         pub onion_message_handler: OM,
276 }
277
278 /// Provides an object which can be used to send data to and which uniquely identifies a connection
279 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
280 /// implement Hash to meet the PeerManager API.
281 ///
282 /// For efficiency, Clone should be relatively cheap for this type.
283 ///
284 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
285 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
286 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
287 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
288 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
289 /// to simply use another value which is guaranteed to be globally unique instead.
290 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
291         /// Attempts to send some data from the given slice to the peer.
292         ///
293         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
294         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
295         /// called and further write attempts may occur until that time.
296         ///
297         /// If the returned size is smaller than `data.len()`, a
298         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
299         /// written. Additionally, until a `send_data` event completes fully, no further
300         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
301         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
302         /// until then.
303         ///
304         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
305         /// (indicating that read events should be paused to prevent DoS in the send buffer),
306         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
307         /// `resume_read` of false carries no meaning, and should not cause any action.
308         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
309         /// Disconnect the socket pointed to by this SocketDescriptor.
310         ///
311         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
312         /// call (doing so is a noop).
313         fn disconnect_socket(&mut self);
314 }
315
316 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
317 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
318 /// descriptor.
319 #[derive(Clone)]
320 pub struct PeerHandleError {
321         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
322         /// because we required features that our peer was missing, or vice versa).
323         ///
324         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
325         /// any channels with this peer or check for new versions of LDK.
326         ///
327         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
328         pub no_connection_possible: bool,
329 }
330 impl fmt::Debug for PeerHandleError {
331         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
332                 formatter.write_str("Peer Sent Invalid Data")
333         }
334 }
335 impl fmt::Display for PeerHandleError {
336         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
337                 formatter.write_str("Peer Sent Invalid Data")
338         }
339 }
340
341 #[cfg(feature = "std")]
342 impl error::Error for PeerHandleError {
343         fn description(&self) -> &str {
344                 "Peer Sent Invalid Data"
345         }
346 }
347
348 enum InitSyncTracker{
349         NoSyncRequested,
350         ChannelsSyncing(u64),
351         NodesSyncing(PublicKey),
352 }
353
354 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
355 /// forwarding gossip messages to peers altogether.
356 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
357
358 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
359 /// we have fewer than this many messages in the outbound buffer again.
360 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
361 /// refilled as we send bytes.
362 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
363 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
364 /// the peer.
365 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
366
367 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
368 /// the socket receive buffer before receiving the ping.
369 ///
370 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
371 /// including any network delays, outbound traffic, or the same for messages from other peers.
372 ///
373 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
374 /// per connected peer to respond to a ping, as long as they send us at least one message during
375 /// each tick, ensuring we aren't actually just disconnected.
376 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
377 /// peer.
378 ///
379 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
380 /// two connected peers, assuming most LDK-running systems have at least two cores.
381 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
382
383 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
384 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
385 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
386 /// process before the next ping.
387 ///
388 /// Note that we continue responding to other messages even after we've sent this many messages, so
389 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
390 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
391 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
392
393 struct Peer {
394         channel_encryptor: PeerChannelEncryptor,
395         their_node_id: Option<PublicKey>,
396         their_features: Option<InitFeatures>,
397         their_net_address: Option<NetAddress>,
398
399         pending_outbound_buffer: LinkedList<Vec<u8>>,
400         pending_outbound_buffer_first_msg_offset: usize,
401         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
402         /// prioritize channel messages over them.
403         ///
404         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
405         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
406         awaiting_write_event: bool,
407
408         pending_read_buffer: Vec<u8>,
409         pending_read_buffer_pos: usize,
410         pending_read_is_header: bool,
411
412         sync_status: InitSyncTracker,
413
414         msgs_sent_since_pong: usize,
415         awaiting_pong_timer_tick_intervals: i8,
416         received_message_since_timer_tick: bool,
417         sent_gossip_timestamp_filter: bool,
418 }
419
420 impl Peer {
421         /// Returns true if the channel announcements/updates for the given channel should be
422         /// forwarded to this peer.
423         /// If we are sending our routing table to this peer and we have not yet sent channel
424         /// announcements/updates for the given channel_id then we will send it when we get to that
425         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
426         /// sent the old versions, we should send the update, and so return true here.
427         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
428                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
429                         !self.sent_gossip_timestamp_filter {
430                                 return false;
431                         }
432                 match self.sync_status {
433                         InitSyncTracker::NoSyncRequested => true,
434                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
435                         InitSyncTracker::NodesSyncing(_) => true,
436                 }
437         }
438
439         /// Similar to the above, but for node announcements indexed by node_id.
440         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
441                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
442                         !self.sent_gossip_timestamp_filter {
443                                 return false;
444                         }
445                 match self.sync_status {
446                         InitSyncTracker::NoSyncRequested => true,
447                         InitSyncTracker::ChannelsSyncing(_) => false,
448                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
449                 }
450         }
451
452         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
453         /// buffer still has space and we don't need to pause reads to get some writes out.
454         fn should_read(&self) -> bool {
455                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
456         }
457
458         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
459         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
460         fn should_buffer_gossip_backfill(&self) -> bool {
461                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
462                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
463         }
464
465         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
466         /// every time the peer's buffer may have been drained.
467         fn should_buffer_onion_message(&self) -> bool {
468                 self.pending_outbound_buffer.is_empty()
469                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
470         }
471
472         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
473         /// buffer. This is checked every time the peer's buffer may have been drained.
474         fn should_buffer_gossip_broadcast(&self) -> bool {
475                 self.pending_outbound_buffer.is_empty()
476                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
477         }
478
479         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
480         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
481                 let total_outbound_buffered =
482                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
483
484                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
485                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
486         }
487 }
488
489 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
490 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
491 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
492 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
493 /// issues such as overly long function definitions.
494 ///
495 /// (C-not exported) as `Arc`s don't make sense in bindings.
496 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler>;
497
498 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
499 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
500 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
501 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
502 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
503 /// helps with issues such as long function definitions.
504 ///
505 /// (C-not exported) as general type aliases don't make sense in bindings.
506 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler>;
507
508 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
509 /// socket events into messages which it passes on to its [`MessageHandler`].
510 ///
511 /// Locks are taken internally, so you must never assume that reentrancy from a
512 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
513 ///
514 /// Calls to [`read_event`] will decode relevant messages and pass them to the
515 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
516 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
517 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
518 /// calls only after previous ones have returned.
519 ///
520 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
521 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
522 /// essentially you should default to using a SimpleRefPeerManager, and use a
523 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
524 /// you're using lightning-net-tokio.
525 ///
526 /// [`read_event`]: PeerManager::read_event
527 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> where
528                 CM::Target: ChannelMessageHandler,
529                 RM::Target: RoutingMessageHandler,
530                 OM::Target: OnionMessageHandler,
531                 L::Target: Logger,
532                 CMH::Target: CustomMessageHandler {
533         message_handler: MessageHandler<CM, RM, OM>,
534         /// Connection state for each connected peer - we have an outer read-write lock which is taken
535         /// as read while we're doing processing for a peer and taken write when a peer is being added
536         /// or removed.
537         ///
538         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
539         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
540         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
541         /// the `MessageHandler`s for a given peer is already guaranteed.
542         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
543         /// Only add to this set when noise completes.
544         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
545         /// lock held. Entries may be added with only the `peers` read lock held (though the
546         /// `Descriptor` value must already exist in `peers`).
547         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
548         /// We can only have one thread processing events at once, but we don't usually need the full
549         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
550         /// `process_events`.
551         event_processing_lock: Mutex<()>,
552         /// Because event processing is global and always does all available work before returning,
553         /// there is no reason for us to have many event processors waiting on the lock at once.
554         /// Instead, we limit the total blocked event processors to always exactly one by setting this
555         /// when an event process call is waiting.
556         blocked_event_processors: AtomicBool,
557
558         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
559         /// value increases strictly since we don't assume access to a time source.
560         last_node_announcement_serial: AtomicU32,
561
562         our_node_secret: SecretKey,
563         ephemeral_key_midstate: Sha256Engine,
564         custom_message_handler: CMH,
565
566         peer_counter: AtomicCounter,
567
568         logger: L,
569         secp_ctx: Secp256k1<secp256k1::SignOnly>
570 }
571
572 enum MessageHandlingError {
573         PeerHandleError(PeerHandleError),
574         LightningError(LightningError),
575 }
576
577 impl From<PeerHandleError> for MessageHandlingError {
578         fn from(error: PeerHandleError) -> Self {
579                 MessageHandlingError::PeerHandleError(error)
580         }
581 }
582
583 impl From<LightningError> for MessageHandlingError {
584         fn from(error: LightningError) -> Self {
585                 MessageHandlingError::LightningError(error)
586         }
587 }
588
589 macro_rules! encode_msg {
590         ($msg: expr) => {{
591                 let mut buffer = VecWriter(Vec::new());
592                 wire::write($msg, &mut buffer).unwrap();
593                 buffer.0
594         }}
595 }
596
597 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler> where
598                 CM::Target: ChannelMessageHandler,
599                 OM::Target: OnionMessageHandler,
600                 L::Target: Logger {
601         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
602         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
603         /// ignored.
604         ///
605         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
606         /// cryptographically secure random bytes.
607         ///
608         /// `current_time` is used as an always-increasing counter that survives across restarts and is
609         /// incremented irregularly internally. In general it is best to simply use the current UNIX
610         /// timestamp, however if it is not available a persistent counter that increases once per
611         /// minute should suffice.
612         ///
613         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
614         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
615                 Self::new(MessageHandler {
616                         chan_handler: channel_message_handler,
617                         route_handler: IgnoringMessageHandler{},
618                         onion_message_handler,
619                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
620         }
621 }
622
623 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
624                 RM::Target: RoutingMessageHandler,
625                 L::Target: Logger {
626         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
627         /// handler or onion message handler is used and onion and channel messages will be ignored (or
628         /// generate error messages). Note that some other lightning implementations time-out connections
629         /// after some time if no channel is built with the peer.
630         ///
631         /// `current_time` is used as an always-increasing counter that survives across restarts and is
632         /// incremented irregularly internally. In general it is best to simply use the current UNIX
633         /// timestamp, however if it is not available a persistent counter that increases once per
634         /// minute should suffice.
635         ///
636         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
637         /// cryptographically secure random bytes.
638         ///
639         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
640         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
641                 Self::new(MessageHandler {
642                         chan_handler: ErroringMessageHandler::new(),
643                         route_handler: routing_message_handler,
644                         onion_message_handler: IgnoringMessageHandler{},
645                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
646         }
647 }
648
649 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
650 /// This works around `format!()` taking a reference to each argument, preventing
651 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
652 /// due to lifetime errors.
653 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
654 impl core::fmt::Display for OptionalFromDebugger<'_> {
655         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
656                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
657         }
658 }
659
660 /// A function used to filter out local or private addresses
661 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
662 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
663 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
664         match ip_address{
665                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
666                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
667                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
668                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
669                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
670                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
671                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
672                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
673                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
674                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
675                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
676                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
677                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
678                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
679                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
680                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
681                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
682                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
683                 // For remaining addresses
684                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
685                 Some(..) => ip_address,
686                 None => None,
687         }
688 }
689
690 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH> where
691                 CM::Target: ChannelMessageHandler,
692                 RM::Target: RoutingMessageHandler,
693                 OM::Target: OnionMessageHandler,
694                 L::Target: Logger,
695                 CMH::Target: CustomMessageHandler {
696         /// Constructs a new PeerManager with the given message handlers and node_id secret key
697         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
698         /// cryptographically secure random bytes.
699         ///
700         /// `current_time` is used as an always-increasing counter that survives across restarts and is
701         /// incremented irregularly internally. In general it is best to simply use the current UNIX
702         /// timestamp, however if it is not available a persistent counter that increases once per
703         /// minute should suffice.
704         pub fn new(message_handler: MessageHandler<CM, RM, OM>, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
705                 let mut ephemeral_key_midstate = Sha256::engine();
706                 ephemeral_key_midstate.input(ephemeral_random_data);
707
708                 let mut secp_ctx = Secp256k1::signing_only();
709                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
710                 secp_ctx.seeded_randomize(&ephemeral_hash);
711
712                 PeerManager {
713                         message_handler,
714                         peers: FairRwLock::new(HashMap::new()),
715                         node_id_to_descriptor: Mutex::new(HashMap::new()),
716                         event_processing_lock: Mutex::new(()),
717                         blocked_event_processors: AtomicBool::new(false),
718                         our_node_secret,
719                         ephemeral_key_midstate,
720                         peer_counter: AtomicCounter::new(),
721                         last_node_announcement_serial: AtomicU32::new(current_time),
722                         logger,
723                         custom_message_handler,
724                         secp_ctx,
725                 }
726         }
727
728         /// Get the list of node ids for peers which have completed the initial handshake.
729         ///
730         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
731         /// new_outbound_connection, however entries will only appear once the initial handshake has
732         /// completed and we are sure the remote peer has the private key for the given node_id.
733         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
734                 let peers = self.peers.read().unwrap();
735                 peers.values().filter_map(|peer_mutex| {
736                         let p = peer_mutex.lock().unwrap();
737                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
738                                 return None;
739                         }
740                         p.their_node_id
741                 }).collect()
742         }
743
744         fn get_ephemeral_key(&self) -> SecretKey {
745                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
746                 let counter = self.peer_counter.get_increment();
747                 ephemeral_hash.input(&counter.to_le_bytes());
748                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
749         }
750
751         /// Indicates a new outbound connection has been established to a node with the given node_id
752         /// and an optional remote network address.
753         ///
754         /// The remote network address adds the option to report a remote IP address back to a connecting
755         /// peer using the init message.
756         /// The user should pass the remote network address of the host they are connected to.
757         ///
758         /// If an `Err` is returned here you must disconnect the connection immediately.
759         ///
760         /// Returns a small number of bytes to send to the remote node (currently always 50).
761         ///
762         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
763         /// [`socket_disconnected()`].
764         ///
765         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
766         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
767                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
768                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
769                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
770
771                 let mut peers = self.peers.write().unwrap();
772                 if peers.insert(descriptor, Mutex::new(Peer {
773                         channel_encryptor: peer_encryptor,
774                         their_node_id: None,
775                         their_features: None,
776                         their_net_address: remote_network_address,
777
778                         pending_outbound_buffer: LinkedList::new(),
779                         pending_outbound_buffer_first_msg_offset: 0,
780                         gossip_broadcast_buffer: LinkedList::new(),
781                         awaiting_write_event: false,
782
783                         pending_read_buffer,
784                         pending_read_buffer_pos: 0,
785                         pending_read_is_header: false,
786
787                         sync_status: InitSyncTracker::NoSyncRequested,
788
789                         msgs_sent_since_pong: 0,
790                         awaiting_pong_timer_tick_intervals: 0,
791                         received_message_since_timer_tick: false,
792                         sent_gossip_timestamp_filter: false,
793                 })).is_some() {
794                         panic!("PeerManager driver duplicated descriptors!");
795                 };
796                 Ok(res)
797         }
798
799         /// Indicates a new inbound connection has been established to a node with an optional remote
800         /// network address.
801         ///
802         /// The remote network address adds the option to report a remote IP address back to a connecting
803         /// peer using the init message.
804         /// The user should pass the remote network address of the host they are connected to.
805         ///
806         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
807         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
808         /// the connection immediately.
809         ///
810         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
811         /// [`socket_disconnected()`].
812         ///
813         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
814         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
815                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
816                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
817
818                 let mut peers = self.peers.write().unwrap();
819                 if peers.insert(descriptor, Mutex::new(Peer {
820                         channel_encryptor: peer_encryptor,
821                         their_node_id: None,
822                         their_features: None,
823                         their_net_address: remote_network_address,
824
825                         pending_outbound_buffer: LinkedList::new(),
826                         pending_outbound_buffer_first_msg_offset: 0,
827                         gossip_broadcast_buffer: LinkedList::new(),
828                         awaiting_write_event: false,
829
830                         pending_read_buffer,
831                         pending_read_buffer_pos: 0,
832                         pending_read_is_header: false,
833
834                         sync_status: InitSyncTracker::NoSyncRequested,
835
836                         msgs_sent_since_pong: 0,
837                         awaiting_pong_timer_tick_intervals: 0,
838                         received_message_since_timer_tick: false,
839                         sent_gossip_timestamp_filter: false,
840                 })).is_some() {
841                         panic!("PeerManager driver duplicated descriptors!");
842                 };
843                 Ok(())
844         }
845
846         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
847                 while !peer.awaiting_write_event {
848                         if peer.should_buffer_onion_message() {
849                                 if let Some(peer_node_id) = peer.their_node_id {
850                                         if let Some(next_onion_message) =
851                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
852                                                         self.enqueue_message(peer, &next_onion_message);
853                                         }
854                                 }
855                         }
856                         if peer.should_buffer_gossip_broadcast() {
857                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
858                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
859                                 }
860                         }
861                         if peer.should_buffer_gossip_backfill() {
862                                 match peer.sync_status {
863                                         InitSyncTracker::NoSyncRequested => {},
864                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
865                                                 if let Some((announce, update_a_option, update_b_option)) =
866                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
867                                                 {
868                                                         self.enqueue_message(peer, &announce);
869                                                         if let Some(update_a) = update_a_option {
870                                                                 self.enqueue_message(peer, &update_a);
871                                                         }
872                                                         if let Some(update_b) = update_b_option {
873                                                                 self.enqueue_message(peer, &update_b);
874                                                         }
875                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
876                                                 } else {
877                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
878                                                 }
879                                         },
880                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
881                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
882                                                         self.enqueue_message(peer, &msg);
883                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
884                                                 } else {
885                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
886                                                 }
887                                         },
888                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
889                                         InitSyncTracker::NodesSyncing(key) => {
890                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
891                                                         self.enqueue_message(peer, &msg);
892                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
893                                                 } else {
894                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
895                                                 }
896                                         },
897                                 }
898                         }
899                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
900                                 self.maybe_send_extra_ping(peer);
901                         }
902
903                         let next_buff = match peer.pending_outbound_buffer.front() {
904                                 None => return,
905                                 Some(buff) => buff,
906                         };
907
908                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
909                         let data_sent = descriptor.send_data(pending, peer.should_read());
910                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
911                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
912                                 peer.pending_outbound_buffer_first_msg_offset = 0;
913                                 peer.pending_outbound_buffer.pop_front();
914                         } else {
915                                 peer.awaiting_write_event = true;
916                         }
917                 }
918         }
919
920         /// Indicates that there is room to write data to the given socket descriptor.
921         ///
922         /// May return an Err to indicate that the connection should be closed.
923         ///
924         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
925         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
926         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
927         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
928         /// sufficient!
929         ///
930         /// [`send_data`]: SocketDescriptor::send_data
931         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
932         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
933                 let peers = self.peers.read().unwrap();
934                 match peers.get(descriptor) {
935                         None => {
936                                 // This is most likely a simple race condition where the user found that the socket
937                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
938                                 // this method. Return an error to make sure we get disconnected.
939                                 return Err(PeerHandleError { no_connection_possible: false });
940                         },
941                         Some(peer_mutex) => {
942                                 let mut peer = peer_mutex.lock().unwrap();
943                                 peer.awaiting_write_event = false;
944                                 self.do_attempt_write_data(descriptor, &mut peer);
945                         }
946                 };
947                 Ok(())
948         }
949
950         /// Indicates that data was read from the given socket descriptor.
951         ///
952         /// May return an Err to indicate that the connection should be closed.
953         ///
954         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
955         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
956         /// [`send_data`] calls to handle responses.
957         ///
958         /// If `Ok(true)` is returned, further read_events should not be triggered until a
959         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
960         /// send buffer).
961         ///
962         /// [`send_data`]: SocketDescriptor::send_data
963         /// [`process_events`]: PeerManager::process_events
964         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
965                 match self.do_read_event(peer_descriptor, data) {
966                         Ok(res) => Ok(res),
967                         Err(e) => {
968                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
969                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
970                                 Err(e)
971                         }
972                 }
973         }
974
975         /// Append a message to a peer's pending outbound/write buffer
976         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
977                 if is_gossip_msg(message.type_id()) {
978                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
979                 } else {
980                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
981                 }
982                 peer.msgs_sent_since_pong += 1;
983                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
984         }
985
986         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
987         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
988                 peer.msgs_sent_since_pong += 1;
989                 peer.gossip_broadcast_buffer.push_back(encoded_message);
990         }
991
992         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
993                 let mut pause_read = false;
994                 let peers = self.peers.read().unwrap();
995                 let mut msgs_to_forward = Vec::new();
996                 let mut peer_node_id = None;
997                 match peers.get(peer_descriptor) {
998                         None => {
999                                 // This is most likely a simple race condition where the user read some bytes
1000                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1001                                 // called this method. Return an error to make sure we get disconnected.
1002                                 return Err(PeerHandleError { no_connection_possible: false });
1003                         },
1004                         Some(peer_mutex) => {
1005                                 let mut read_pos = 0;
1006                                 while read_pos < data.len() {
1007                                         macro_rules! try_potential_handleerror {
1008                                                 ($peer: expr, $thing: expr) => {
1009                                                         match $thing {
1010                                                                 Ok(x) => x,
1011                                                                 Err(e) => {
1012                                                                         match e.action {
1013                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1014                                                                                         //TODO: Try to push msg
1015                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1016                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
1017                                                                                 },
1018                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1019                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1020                                                                                         continue
1021                                                                                 },
1022                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1023                                                                                 msgs::ErrorAction::IgnoreError => {
1024                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1025                                                                                         continue;
1026                                                                                 },
1027                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1028                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1029                                                                                         self.enqueue_message($peer, &msg);
1030                                                                                         continue;
1031                                                                                 },
1032                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1033                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1034                                                                                         self.enqueue_message($peer, &msg);
1035                                                                                         continue;
1036                                                                                 },
1037                                                                         }
1038                                                                 }
1039                                                         }
1040                                                 }
1041                                         }
1042
1043                                         let mut peer_lock = peer_mutex.lock().unwrap();
1044                                         let peer = &mut *peer_lock;
1045                                         let mut msg_to_handle = None;
1046                                         if peer_node_id.is_none() {
1047                                                 peer_node_id = peer.their_node_id.clone();
1048                                         }
1049
1050                                         assert!(peer.pending_read_buffer.len() > 0);
1051                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1052
1053                                         {
1054                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1055                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1056                                                 read_pos += data_to_copy;
1057                                                 peer.pending_read_buffer_pos += data_to_copy;
1058                                         }
1059
1060                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1061                                                 peer.pending_read_buffer_pos = 0;
1062
1063                                                 macro_rules! insert_node_id {
1064                                                         () => {
1065                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
1066                                                                         hash_map::Entry::Occupied(_) => {
1067                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
1068                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1069                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1070                                                                         },
1071                                                                         hash_map::Entry::Vacant(entry) => {
1072                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
1073                                                                                 entry.insert(peer_descriptor.clone())
1074                                                                         },
1075                                                                 };
1076                                                         }
1077                                                 }
1078
1079                                                 let next_step = peer.channel_encryptor.get_noise_step();
1080                                                 match next_step {
1081                                                         NextNoiseStep::ActOne => {
1082                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1083                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1084                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1085                                                                 peer.pending_outbound_buffer.push_back(act_two);
1086                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1087                                                         },
1088                                                         NextNoiseStep::ActTwo => {
1089                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1090                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1091                                                                                 &self.our_node_secret, &self.secp_ctx));
1092                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1093                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1094                                                                 peer.pending_read_is_header = true;
1095
1096                                                                 peer.their_node_id = Some(their_node_id);
1097                                                                 insert_node_id!();
1098                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1099                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1100                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1101                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1102                                                                 self.enqueue_message(peer, &resp);
1103                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1104                                                         },
1105                                                         NextNoiseStep::ActThree => {
1106                                                                 let their_node_id = try_potential_handleerror!(peer,
1107                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1108                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1109                                                                 peer.pending_read_is_header = true;
1110                                                                 peer.their_node_id = Some(their_node_id);
1111                                                                 insert_node_id!();
1112                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1113                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1114                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1115                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1116                                                                 self.enqueue_message(peer, &resp);
1117                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1118                                                         },
1119                                                         NextNoiseStep::NoiseComplete => {
1120                                                                 if peer.pending_read_is_header {
1121                                                                         let msg_len = try_potential_handleerror!(peer,
1122                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1123                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1124                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1125                                                                         if msg_len < 2 { // Need at least the message type tag
1126                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1127                                                                         }
1128                                                                         peer.pending_read_is_header = false;
1129                                                                 } else {
1130                                                                         let msg_data = try_potential_handleerror!(peer,
1131                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1132                                                                         assert!(msg_data.len() >= 2);
1133
1134                                                                         // Reset read buffer
1135                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1136                                                                         peer.pending_read_buffer.resize(18, 0);
1137                                                                         peer.pending_read_is_header = true;
1138
1139                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1140                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1141                                                                         let message = match message_result {
1142                                                                                 Ok(x) => x,
1143                                                                                 Err(e) => {
1144                                                                                         match e {
1145                                                                                                 // Note that to avoid recursion we never call
1146                                                                                                 // `do_attempt_write_data` from here, causing
1147                                                                                                 // the messages enqueued here to not actually
1148                                                                                                 // be sent before the peer is disconnected.
1149                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1150                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1151                                                                                                         continue;
1152                                                                                                 }
1153                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1154                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1155                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1156                                                                                                         continue;
1157                                                                                                 }
1158                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1159                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1160                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1161                                                                                                                 channel_id: [0; 32],
1162                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1163                                                                                                         });
1164                                                                                                         continue;
1165                                                                                                 }
1166                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1167                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1168                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1169                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1170                                                                                                 }
1171                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1172                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1173                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1174                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1175                                                                                                 }
1176                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1177                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1178                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1179                                                                                                 }
1180                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1181                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1182                                                                                         }
1183                                                                                 }
1184                                                                         };
1185
1186                                                                         msg_to_handle = Some(message);
1187                                                                 }
1188                                                         }
1189                                                 }
1190                                         }
1191                                         pause_read = !peer.should_read();
1192
1193                                         if let Some(message) = msg_to_handle {
1194                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1195                                                         Err(handling_error) => match handling_error {
1196                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1197                                                                 MessageHandlingError::LightningError(e) => {
1198                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1199                                                                 },
1200                                                         },
1201                                                         Ok(Some(msg)) => {
1202                                                                 msgs_to_forward.push(msg);
1203                                                         },
1204                                                         Ok(None) => {},
1205                                                 }
1206                                         }
1207                                 }
1208                         }
1209                 }
1210
1211                 for msg in msgs_to_forward.drain(..) {
1212                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1213                 }
1214
1215                 Ok(pause_read)
1216         }
1217
1218         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1219         /// Returns the message back if it needs to be broadcasted to all other peers.
1220         fn handle_message(
1221                 &self,
1222                 peer_mutex: &Mutex<Peer>,
1223                 mut peer_lock: MutexGuard<Peer>,
1224                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1225         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1226                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1227                 peer_lock.received_message_since_timer_tick = true;
1228
1229                 // Need an Init as first message
1230                 if let wire::Message::Init(msg) = message {
1231                         if msg.features.requires_unknown_bits() {
1232                                 log_debug!(self.logger, "Peer features required unknown version bits");
1233                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1234                         }
1235                         if peer_lock.their_features.is_some() {
1236                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1237                         }
1238
1239                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1240
1241                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1242                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1243                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1244                         }
1245
1246                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg) {
1247                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1248                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1249                         }
1250                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg) {
1251                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1252                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1253                         }
1254                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg) {
1255                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1256                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1257                         }
1258
1259                         peer_lock.their_features = Some(msg.features);
1260                         return Ok(None);
1261                 } else if peer_lock.their_features.is_none() {
1262                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1263                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1264                 }
1265
1266                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1267                         // When supporting gossip messages, start inital gossip sync only after we receive
1268                         // a GossipTimestampFilter
1269                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1270                                 !peer_lock.sent_gossip_timestamp_filter {
1271                                 peer_lock.sent_gossip_timestamp_filter = true;
1272                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1273                         }
1274                         return Ok(None);
1275                 }
1276
1277                 let their_features = peer_lock.their_features.clone();
1278                 mem::drop(peer_lock);
1279
1280                 if is_gossip_msg(message.type_id()) {
1281                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1282                 } else {
1283                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1284                 }
1285
1286                 let mut should_forward = None;
1287
1288                 match message {
1289                         // Setup and Control messages:
1290                         wire::Message::Init(_) => {
1291                                 // Handled above
1292                         },
1293                         wire::Message::GossipTimestampFilter(_) => {
1294                                 // Handled above
1295                         },
1296                         wire::Message::Error(msg) => {
1297                                 let mut data_is_printable = true;
1298                                 for b in msg.data.bytes() {
1299                                         if b < 32 || b > 126 {
1300                                                 data_is_printable = false;
1301                                                 break;
1302                                         }
1303                                 }
1304
1305                                 if data_is_printable {
1306                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1307                                 } else {
1308                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1309                                 }
1310                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1311                                 if msg.channel_id == [0; 32] {
1312                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1313                                 }
1314                         },
1315                         wire::Message::Warning(msg) => {
1316                                 let mut data_is_printable = true;
1317                                 for b in msg.data.bytes() {
1318                                         if b < 32 || b > 126 {
1319                                                 data_is_printable = false;
1320                                                 break;
1321                                         }
1322                                 }
1323
1324                                 if data_is_printable {
1325                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1326                                 } else {
1327                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1328                                 }
1329                         },
1330
1331                         wire::Message::Ping(msg) => {
1332                                 if msg.ponglen < 65532 {
1333                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1334                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1335                                 }
1336                         },
1337                         wire::Message::Pong(_msg) => {
1338                                 let mut peer_lock = peer_mutex.lock().unwrap();
1339                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1340                                 peer_lock.msgs_sent_since_pong = 0;
1341                         },
1342
1343                         // Channel messages:
1344                         wire::Message::OpenChannel(msg) => {
1345                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1346                         },
1347                         wire::Message::AcceptChannel(msg) => {
1348                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1349                         },
1350
1351                         wire::Message::FundingCreated(msg) => {
1352                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1353                         },
1354                         wire::Message::FundingSigned(msg) => {
1355                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1356                         },
1357                         wire::Message::ChannelReady(msg) => {
1358                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1359                         },
1360
1361                         wire::Message::Shutdown(msg) => {
1362                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1363                         },
1364                         wire::Message::ClosingSigned(msg) => {
1365                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1366                         },
1367
1368                         // Commitment messages:
1369                         wire::Message::UpdateAddHTLC(msg) => {
1370                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1371                         },
1372                         wire::Message::UpdateFulfillHTLC(msg) => {
1373                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1374                         },
1375                         wire::Message::UpdateFailHTLC(msg) => {
1376                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1377                         },
1378                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1379                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1380                         },
1381
1382                         wire::Message::CommitmentSigned(msg) => {
1383                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1384                         },
1385                         wire::Message::RevokeAndACK(msg) => {
1386                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1387                         },
1388                         wire::Message::UpdateFee(msg) => {
1389                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1390                         },
1391                         wire::Message::ChannelReestablish(msg) => {
1392                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1393                         },
1394
1395                         // Routing messages:
1396                         wire::Message::AnnouncementSignatures(msg) => {
1397                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1398                         },
1399                         wire::Message::ChannelAnnouncement(msg) => {
1400                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1401                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1402                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1403                                 }
1404                         },
1405                         wire::Message::NodeAnnouncement(msg) => {
1406                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1407                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1408                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1409                                 }
1410                         },
1411                         wire::Message::ChannelUpdate(msg) => {
1412                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1413                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1414                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1415                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1416                                 }
1417                         },
1418                         wire::Message::QueryShortChannelIds(msg) => {
1419                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1420                         },
1421                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1422                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1423                         },
1424                         wire::Message::QueryChannelRange(msg) => {
1425                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1426                         },
1427                         wire::Message::ReplyChannelRange(msg) => {
1428                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1429                         },
1430
1431                         // Onion message:
1432                         wire::Message::OnionMessage(msg) => {
1433                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1434                         },
1435
1436                         // Unknown messages:
1437                         wire::Message::Unknown(type_id) if message.is_even() => {
1438                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1439                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1440                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1441                         },
1442                         wire::Message::Unknown(type_id) => {
1443                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1444                         },
1445                         wire::Message::Custom(custom) => {
1446                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1447                         },
1448                 };
1449                 Ok(should_forward)
1450         }
1451
1452         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1453                 match msg {
1454                         wire::Message::ChannelAnnouncement(ref msg) => {
1455                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1456                                 let encoded_msg = encode_msg!(msg);
1457
1458                                 for (_, peer_mutex) in peers.iter() {
1459                                         let mut peer = peer_mutex.lock().unwrap();
1460                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1461                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1462                                                 continue
1463                                         }
1464                                         if peer.buffer_full_drop_gossip_broadcast() {
1465                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1466                                                 continue;
1467                                         }
1468                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1469                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1470                                                 continue;
1471                                         }
1472                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1473                                                 continue;
1474                                         }
1475                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1476                                 }
1477                         },
1478                         wire::Message::NodeAnnouncement(ref msg) => {
1479                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1480                                 let encoded_msg = encode_msg!(msg);
1481
1482                                 for (_, peer_mutex) in peers.iter() {
1483                                         let mut peer = peer_mutex.lock().unwrap();
1484                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1485                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1486                                                 continue
1487                                         }
1488                                         if peer.buffer_full_drop_gossip_broadcast() {
1489                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1490                                                 continue;
1491                                         }
1492                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1493                                                 continue;
1494                                         }
1495                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1496                                                 continue;
1497                                         }
1498                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1499                                 }
1500                         },
1501                         wire::Message::ChannelUpdate(ref msg) => {
1502                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1503                                 let encoded_msg = encode_msg!(msg);
1504
1505                                 for (_, peer_mutex) in peers.iter() {
1506                                         let mut peer = peer_mutex.lock().unwrap();
1507                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1508                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1509                                                 continue
1510                                         }
1511                                         if peer.buffer_full_drop_gossip_broadcast() {
1512                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1513                                                 continue;
1514                                         }
1515                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1516                                                 continue;
1517                                         }
1518                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1519                                 }
1520                         },
1521                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1522                 }
1523         }
1524
1525         /// Checks for any events generated by our handlers and processes them. Includes sending most
1526         /// response messages as well as messages generated by calls to handler functions directly (eg
1527         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1528         ///
1529         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1530         /// issues!
1531         ///
1532         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1533         /// or one of the other clients provided in our language bindings.
1534         ///
1535         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1536         /// without doing any work. All available events that need handling will be handled before the
1537         /// other calls return.
1538         ///
1539         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1540         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1541         /// [`send_data`]: SocketDescriptor::send_data
1542         pub fn process_events(&self) {
1543                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1544                 if _single_processor_lock.is_err() {
1545                         // While we could wake the older sleeper here with a CV and make more even waiting
1546                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1547                         // count" goal.
1548                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1549                                 Err(val) => {
1550                                         debug_assert!(val, "compare_exchange failed spuriously?");
1551                                         return;
1552                                 },
1553                                 Ok(val) => {
1554                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1555                                         // We're the only waiter, as the running process_events may have emptied the
1556                                         // pending events "long" ago and there are new events for us to process, wait until
1557                                         // its done and process any leftover events before returning.
1558                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1559                                         self.blocked_event_processors.store(false, Ordering::Release);
1560                                 }
1561                         }
1562                 }
1563
1564                 let mut peers_to_disconnect = HashMap::new();
1565                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1566                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1567
1568                 {
1569                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1570                         // buffer by doing things like announcing channels on another node. We should be willing to
1571                         // drop optional-ish messages when send buffers get full!
1572
1573                         let peers_lock = self.peers.read().unwrap();
1574                         let peers = &*peers_lock;
1575                         macro_rules! get_peer_for_forwarding {
1576                                 ($node_id: expr) => {
1577                                         {
1578                                                 if peers_to_disconnect.get($node_id).is_some() {
1579                                                         // If we've "disconnected" this peer, do not send to it.
1580                                                         continue;
1581                                                 }
1582                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1583                                                 match descriptor_opt {
1584                                                         Some(descriptor) => match peers.get(&descriptor) {
1585                                                                 Some(peer_mutex) => {
1586                                                                         let peer_lock = peer_mutex.lock().unwrap();
1587                                                                         if peer_lock.their_features.is_none() {
1588                                                                                 continue;
1589                                                                         }
1590                                                                         peer_lock
1591                                                                 },
1592                                                                 None => {
1593                                                                         debug_assert!(false, "Inconsistent peers set state!");
1594                                                                         continue;
1595                                                                 }
1596                                                         },
1597                                                         None => {
1598                                                                 continue;
1599                                                         },
1600                                                 }
1601                                         }
1602                                 }
1603                         }
1604                         for event in events_generated.drain(..) {
1605                                 match event {
1606                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1607                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1608                                                                 log_pubkey!(node_id),
1609                                                                 log_bytes!(msg.temporary_channel_id));
1610                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1611                                         },
1612                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1613                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1614                                                                 log_pubkey!(node_id),
1615                                                                 log_bytes!(msg.temporary_channel_id));
1616                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1617                                         },
1618                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1619                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1620                                                                 log_pubkey!(node_id),
1621                                                                 log_bytes!(msg.temporary_channel_id),
1622                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1623                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1624                                                 // indicating to the wallet that they should just throw away this funding transaction
1625                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1626                                         },
1627                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1628                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1629                                                                 log_pubkey!(node_id),
1630                                                                 log_bytes!(msg.channel_id));
1631                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1632                                         },
1633                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1634                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1635                                                                 log_pubkey!(node_id),
1636                                                                 log_bytes!(msg.channel_id));
1637                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1638                                         },
1639                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1640                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1641                                                                 log_pubkey!(node_id),
1642                                                                 log_bytes!(msg.channel_id));
1643                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1644                                         },
1645                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1646                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1647                                                                 log_pubkey!(node_id),
1648                                                                 update_add_htlcs.len(),
1649                                                                 update_fulfill_htlcs.len(),
1650                                                                 update_fail_htlcs.len(),
1651                                                                 log_bytes!(commitment_signed.channel_id));
1652                                                 let mut peer = get_peer_for_forwarding!(node_id);
1653                                                 for msg in update_add_htlcs {
1654                                                         self.enqueue_message(&mut *peer, msg);
1655                                                 }
1656                                                 for msg in update_fulfill_htlcs {
1657                                                         self.enqueue_message(&mut *peer, msg);
1658                                                 }
1659                                                 for msg in update_fail_htlcs {
1660                                                         self.enqueue_message(&mut *peer, msg);
1661                                                 }
1662                                                 for msg in update_fail_malformed_htlcs {
1663                                                         self.enqueue_message(&mut *peer, msg);
1664                                                 }
1665                                                 if let &Some(ref msg) = update_fee {
1666                                                         self.enqueue_message(&mut *peer, msg);
1667                                                 }
1668                                                 self.enqueue_message(&mut *peer, commitment_signed);
1669                                         },
1670                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1671                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1672                                                                 log_pubkey!(node_id),
1673                                                                 log_bytes!(msg.channel_id));
1674                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1675                                         },
1676                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1677                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1678                                                                 log_pubkey!(node_id),
1679                                                                 log_bytes!(msg.channel_id));
1680                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1681                                         },
1682                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1683                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1684                                                                 log_pubkey!(node_id),
1685                                                                 log_bytes!(msg.channel_id));
1686                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1687                                         },
1688                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1689                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1690                                                                 log_pubkey!(node_id),
1691                                                                 log_bytes!(msg.channel_id));
1692                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1693                                         },
1694                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1695                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1696                                                                 log_pubkey!(node_id),
1697                                                                 msg.contents.short_channel_id);
1698                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1699                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1700                                         },
1701                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1702                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1703                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1704                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1705                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1706                                                         _ => {},
1707                                                 }
1708                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1709                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1710                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1711                                                         _ => {},
1712                                                 }
1713                                         },
1714                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1715                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1716                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1717                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1718                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1719                                                         _ => {},
1720                                                 }
1721                                         },
1722                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1723                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1724                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1725                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1726                                         },
1727                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1728                                                 match *action {
1729                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1730                                                                 // We do not have the peers write lock, so we just store that we're
1731                                                                 // about to disconenct the peer and do it after we finish
1732                                                                 // processing most messages.
1733                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1734                                                         },
1735                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1736                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1737                                                         },
1738                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1739                                                         msgs::ErrorAction::IgnoreError => {
1740                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1741                                                         },
1742                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1743                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1744                                                                                 log_pubkey!(node_id),
1745                                                                                 msg.data);
1746                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1747                                                         },
1748                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1749                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1750                                                                                 log_pubkey!(node_id),
1751                                                                                 msg.data);
1752                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1753                                                         },
1754                                                 }
1755                                         },
1756                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1757                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1758                                         },
1759                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1760                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1761                                         }
1762                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1763                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1764                                                         log_pubkey!(node_id),
1765                                                         msg.short_channel_ids.len(),
1766                                                         msg.first_blocknum,
1767                                                         msg.number_of_blocks,
1768                                                         msg.sync_complete);
1769                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1770                                         }
1771                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1772                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1773                                         }
1774                                 }
1775                         }
1776
1777                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1778                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1779                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1780                         }
1781
1782                         for (descriptor, peer_mutex) in peers.iter() {
1783                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1784                         }
1785                 }
1786                 if !peers_to_disconnect.is_empty() {
1787                         let mut peers_lock = self.peers.write().unwrap();
1788                         let peers = &mut *peers_lock;
1789                         for (node_id, msg) in peers_to_disconnect.drain() {
1790                                 // Note that since we are holding the peers *write* lock we can
1791                                 // remove from node_id_to_descriptor immediately (as no other
1792                                 // thread can be holding the peer lock if we have the global write
1793                                 // lock).
1794
1795                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1796                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1797                                                 if let Some(msg) = msg {
1798                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1799                                                                         log_pubkey!(node_id),
1800                                                                         msg.data);
1801                                                         let mut peer = peer_mutex.lock().unwrap();
1802                                                         self.enqueue_message(&mut *peer, &msg);
1803                                                         // This isn't guaranteed to work, but if there is enough free
1804                                                         // room in the send buffer, put the error message there...
1805                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1806                                                 } else {
1807                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1808                                                 }
1809                                         }
1810                                         descriptor.disconnect_socket();
1811                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1812                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1813                                 }
1814                         }
1815                 }
1816         }
1817
1818         /// Indicates that the given socket descriptor's connection is now closed.
1819         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1820                 self.disconnect_event_internal(descriptor, false);
1821         }
1822
1823         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1824                 let mut peers = self.peers.write().unwrap();
1825                 let peer_option = peers.remove(descriptor);
1826                 match peer_option {
1827                         None => {
1828                                 // This is most likely a simple race condition where the user found that the socket
1829                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1830                                 // called this method. Either way we're disconnected, return.
1831                         },
1832                         Some(peer_lock) => {
1833                                 let peer = peer_lock.lock().unwrap();
1834                                 if let Some(node_id) = peer.their_node_id {
1835                                         log_trace!(self.logger,
1836                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1837                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1838                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1839                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1840                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1841                                 }
1842                         }
1843                 };
1844         }
1845
1846         /// Disconnect a peer given its node id.
1847         ///
1848         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1849         /// force-closing any channels we have with it.
1850         ///
1851         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1852         /// peer. Thus, be very careful about reentrancy issues.
1853         ///
1854         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1855         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1856                 let mut peers_lock = self.peers.write().unwrap();
1857                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1858                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1859                         peers_lock.remove(&descriptor);
1860                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1861                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1862                         descriptor.disconnect_socket();
1863                 }
1864         }
1865
1866         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1867         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1868         /// using regular ping/pongs.
1869         pub fn disconnect_all_peers(&self) {
1870                 let mut peers_lock = self.peers.write().unwrap();
1871                 self.node_id_to_descriptor.lock().unwrap().clear();
1872                 let peers = &mut *peers_lock;
1873                 for (mut descriptor, peer) in peers.drain() {
1874                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1875                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1876                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1877                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1878                         }
1879                         descriptor.disconnect_socket();
1880                 }
1881         }
1882
1883         /// This is called when we're blocked on sending additional gossip messages until we receive a
1884         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1885         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1886         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1887                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1888                         peer.awaiting_pong_timer_tick_intervals = -1;
1889                         let ping = msgs::Ping {
1890                                 ponglen: 0,
1891                                 byteslen: 64,
1892                         };
1893                         self.enqueue_message(peer, &ping);
1894                 }
1895         }
1896
1897         /// Send pings to each peer and disconnect those which did not respond to the last round of
1898         /// pings.
1899         ///
1900         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1901         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1902         /// time they have to respond before we disconnect them.
1903         ///
1904         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1905         /// issues!
1906         ///
1907         /// [`send_data`]: SocketDescriptor::send_data
1908         pub fn timer_tick_occurred(&self) {
1909                 let mut descriptors_needing_disconnect = Vec::new();
1910                 {
1911                         let peers_lock = self.peers.read().unwrap();
1912
1913                         for (descriptor, peer_mutex) in peers_lock.iter() {
1914                                 let mut peer = peer_mutex.lock().unwrap();
1915                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1916                                         // The peer needs to complete its handshake before we can exchange messages. We
1917                                         // give peers one timer tick to complete handshake, reusing
1918                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1919                                         // for handshake completion.
1920                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1921                                                 descriptors_needing_disconnect.push(descriptor.clone());
1922                                         } else {
1923                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1924                                         }
1925                                         continue;
1926                                 }
1927
1928                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1929                                         // Magic value set in `maybe_send_extra_ping`.
1930                                         peer.awaiting_pong_timer_tick_intervals = 1;
1931                                         peer.received_message_since_timer_tick = false;
1932                                         continue;
1933                                 }
1934
1935                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1936                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1937                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1938                                 {
1939                                         descriptors_needing_disconnect.push(descriptor.clone());
1940                                         continue;
1941                                 }
1942                                 peer.received_message_since_timer_tick = false;
1943
1944                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1945                                         peer.awaiting_pong_timer_tick_intervals += 1;
1946                                         continue;
1947                                 }
1948
1949                                 peer.awaiting_pong_timer_tick_intervals = 1;
1950                                 let ping = msgs::Ping {
1951                                         ponglen: 0,
1952                                         byteslen: 64,
1953                                 };
1954                                 self.enqueue_message(&mut *peer, &ping);
1955                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1956                         }
1957                 }
1958
1959                 if !descriptors_needing_disconnect.is_empty() {
1960                         {
1961                                 let mut peers_lock = self.peers.write().unwrap();
1962                                 for descriptor in descriptors_needing_disconnect.iter() {
1963                                         if let Some(peer) = peers_lock.remove(descriptor) {
1964                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1965                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1966                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1967                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1968                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1969                                                 }
1970                                         }
1971                                 }
1972                         }
1973
1974                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1975                                 descriptor.disconnect_socket();
1976                         }
1977                 }
1978         }
1979
1980         #[allow(dead_code)]
1981         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1982         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
1983         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1984         // message...
1985         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1986         #[deny(const_err)]
1987         #[allow(dead_code)]
1988         // ...by failing to compile if the number of addresses that would be half of a message is
1989         // smaller than 100:
1990         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
1991
1992         /// Generates a signed node_announcement from the given arguments, sending it to all connected
1993         /// peers. Note that peers will likely ignore this message unless we have at least one public
1994         /// channel which has at least six confirmations on-chain.
1995         ///
1996         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1997         /// node to humans. They carry no in-protocol meaning.
1998         ///
1999         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2000         /// accepts incoming connections. These will be included in the node_announcement, publicly
2001         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2002         /// addresses should likely contain only Tor Onion addresses.
2003         ///
2004         /// Panics if `addresses` is absurdly large (more than 100).
2005         ///
2006         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2007         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2008                 if addresses.len() > 100 {
2009                         panic!("More than half the message size was taken up by public addresses!");
2010                 }
2011
2012                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2013                 // addresses be sorted for future compatibility.
2014                 addresses.sort_by_key(|addr| addr.get_id());
2015
2016                 let features = self.message_handler.chan_handler.provided_node_features()
2017                         .or(self.message_handler.route_handler.provided_node_features())
2018                         .or(self.message_handler.onion_message_handler.provided_node_features());
2019                 let announcement = msgs::UnsignedNodeAnnouncement {
2020                         features,
2021                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2022                         node_id: PublicKey::from_secret_key(&self.secp_ctx, &self.our_node_secret),
2023                         rgb, alias, addresses,
2024                         excess_address_data: Vec::new(),
2025                         excess_data: Vec::new(),
2026                 };
2027                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2028                 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_node_secret);
2029
2030                 let msg = msgs::NodeAnnouncement {
2031                         signature: node_announce_sig,
2032                         contents: announcement
2033                 };
2034
2035                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2036                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2037                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2038         }
2039 }
2040
2041 fn is_gossip_msg(type_id: u16) -> bool {
2042         match type_id {
2043                 msgs::ChannelAnnouncement::TYPE |
2044                 msgs::ChannelUpdate::TYPE |
2045                 msgs::NodeAnnouncement::TYPE |
2046                 msgs::QueryChannelRange::TYPE |
2047                 msgs::ReplyChannelRange::TYPE |
2048                 msgs::QueryShortChannelIds::TYPE |
2049                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2050                 _ => false
2051         }
2052 }
2053
2054 #[cfg(test)]
2055 mod tests {
2056         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2057         use ln::{msgs, wire};
2058         use ln::msgs::NetAddress;
2059         use util::events;
2060         use util::test_utils;
2061
2062         use bitcoin::secp256k1::Secp256k1;
2063         use bitcoin::secp256k1::{SecretKey, PublicKey};
2064
2065         use prelude::*;
2066         use sync::{Arc, Mutex};
2067         use core::sync::atomic::Ordering;
2068
2069         #[derive(Clone)]
2070         struct FileDescriptor {
2071                 fd: u16,
2072                 outbound_data: Arc<Mutex<Vec<u8>>>,
2073         }
2074         impl PartialEq for FileDescriptor {
2075                 fn eq(&self, other: &Self) -> bool {
2076                         self.fd == other.fd
2077                 }
2078         }
2079         impl Eq for FileDescriptor { }
2080         impl core::hash::Hash for FileDescriptor {
2081                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2082                         self.fd.hash(hasher)
2083                 }
2084         }
2085
2086         impl SocketDescriptor for FileDescriptor {
2087                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2088                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2089                         data.len()
2090                 }
2091
2092                 fn disconnect_socket(&mut self) {}
2093         }
2094
2095         struct PeerManagerCfg {
2096                 chan_handler: test_utils::TestChannelMessageHandler,
2097                 routing_handler: test_utils::TestRoutingMessageHandler,
2098                 logger: test_utils::TestLogger,
2099         }
2100
2101         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2102                 let mut cfgs = Vec::new();
2103                 for _ in 0..peer_count {
2104                         cfgs.push(
2105                                 PeerManagerCfg{
2106                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2107                                         logger: test_utils::TestLogger::new(),
2108                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2109                                 }
2110                         );
2111                 }
2112
2113                 cfgs
2114         }
2115
2116         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
2117                 let mut peers = Vec::new();
2118                 for i in 0..peer_count {
2119                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2120                         let ephemeral_bytes = [i as u8; 32];
2121                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2122                         let peer = PeerManager::new(msg_handler, node_secret, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
2123                         peers.push(peer);
2124                 }
2125
2126                 peers
2127         }
2128
2129         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
2130                 let secp_ctx = Secp256k1::new();
2131                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
2132                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2133                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2134                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2135                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2136                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2137                 peer_a.process_events();
2138
2139                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2140                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2141
2142                 peer_b.process_events();
2143                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2144                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2145
2146                 peer_a.process_events();
2147                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2148                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2149
2150                 (fd_a.clone(), fd_b.clone())
2151         }
2152
2153         #[test]
2154         fn test_disconnect_peer() {
2155                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2156                 // push a DisconnectPeer event to remove the node flagged by id
2157                 let cfgs = create_peermgr_cfgs(2);
2158                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2159                 let mut peers = create_network(2, &cfgs);
2160                 establish_connection(&peers[0], &peers[1]);
2161                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2162
2163                 let secp_ctx = Secp256k1::new();
2164                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2165
2166                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2167                         node_id: their_id,
2168                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2169                 });
2170                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2171                 peers[0].message_handler.chan_handler = &chan_handler;
2172
2173                 peers[0].process_events();
2174                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2175         }
2176
2177         #[test]
2178         fn test_send_simple_msg() {
2179                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2180                 // push a message from one peer to another.
2181                 let cfgs = create_peermgr_cfgs(2);
2182                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2183                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2184                 let mut peers = create_network(2, &cfgs);
2185                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2186                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2187
2188                 let secp_ctx = Secp256k1::new();
2189                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2190
2191                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2192                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2193                         node_id: their_id, msg: msg.clone()
2194                 });
2195                 peers[0].message_handler.chan_handler = &a_chan_handler;
2196
2197                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2198                 peers[1].message_handler.chan_handler = &b_chan_handler;
2199
2200                 peers[0].process_events();
2201
2202                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2203                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2204         }
2205
2206         #[test]
2207         fn test_disconnect_all_peer() {
2208                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2209                 // then calls disconnect_all_peers
2210                 let cfgs = create_peermgr_cfgs(2);
2211                 let peers = create_network(2, &cfgs);
2212                 establish_connection(&peers[0], &peers[1]);
2213                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2214
2215                 peers[0].disconnect_all_peers();
2216                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2217         }
2218
2219         #[test]
2220         fn test_timer_tick_occurred() {
2221                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2222                 let cfgs = create_peermgr_cfgs(2);
2223                 let peers = create_network(2, &cfgs);
2224                 establish_connection(&peers[0], &peers[1]);
2225                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2226
2227                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2228                 peers[0].timer_tick_occurred();
2229                 peers[0].process_events();
2230                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2231
2232                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2233                 peers[0].timer_tick_occurred();
2234                 peers[0].process_events();
2235                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2236         }
2237
2238         #[test]
2239         fn test_do_attempt_write_data() {
2240                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2241                 let cfgs = create_peermgr_cfgs(2);
2242                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2243                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2244                 let peers = create_network(2, &cfgs);
2245
2246                 // By calling establish_connect, we trigger do_attempt_write_data between
2247                 // the peers. Previously this function would mistakenly enter an infinite loop
2248                 // when there were more channel messages available than could fit into a peer's
2249                 // buffer. This issue would now be detected by this test (because we use custom
2250                 // RoutingMessageHandlers that intentionally return more channel messages
2251                 // than can fit into a peer's buffer).
2252                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2253
2254                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2255                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2256                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2257                         peers[1].process_events();
2258                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2259                         assert!(!a_read_data.is_empty());
2260
2261                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2262                         peers[0].process_events();
2263
2264                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2265                         assert!(!b_read_data.is_empty());
2266                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2267
2268                         peers[0].process_events();
2269                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2270                 }
2271
2272                 // Check that each peer has received the expected number of channel updates and channel
2273                 // announcements.
2274                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2275                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2276                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2277                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2278         }
2279
2280         #[test]
2281         fn test_handshake_timeout() {
2282                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2283                 // tick.
2284                 let cfgs = create_peermgr_cfgs(2);
2285                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2286                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2287                 let peers = create_network(2, &cfgs);
2288
2289                 let secp_ctx = Secp256k1::new();
2290                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2291                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2292                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2293                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2294                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2295
2296                 // If we get a single timer tick before completion, that's fine
2297                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2298                 peers[0].timer_tick_occurred();
2299                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2300
2301                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2302                 peers[0].process_events();
2303                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2304                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2305                 peers[1].process_events();
2306
2307                 // ...but if we get a second timer tick, we should disconnect the peer
2308                 peers[0].timer_tick_occurred();
2309                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2310
2311                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2312                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2313         }
2314
2315         #[test]
2316         fn test_filter_addresses(){
2317                 // Tests the filter_addresses function.
2318
2319                 // For (10/8)
2320                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2321                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2322                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2323                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2324                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2325                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2326
2327                 // For (0/8)
2328                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2329                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2330                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2331                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2332                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2333                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2334
2335                 // For (100.64/10)
2336                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2337                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2338                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2339                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2340                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2341                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2342
2343                 // For (127/8)
2344                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2345                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2346                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2347                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2348                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2349                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2350
2351                 // For (169.254/16)
2352                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2353                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2354                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2355                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2356                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2357                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2358
2359                 // For (172.16/12)
2360                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2361                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2362                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2363                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2364                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2365                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2366
2367                 // For (192.168/16)
2368                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2369                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2370                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2371                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2372                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2373                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2374
2375                 // For (192.88.99/24)
2376                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2377                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2378                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2379                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2380                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2381                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2382
2383                 // For other IPv4 addresses
2384                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2385                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2386                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2387                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2388                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2389                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2390
2391                 // For (2000::/3)
2392                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2393                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2394                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2395                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2396                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2397                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2398
2399                 // For other IPv6 addresses
2400                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2401                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2402                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2403                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2404                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2405                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2406
2407                 // For (None)
2408                 assert_eq!(filter_addresses(None), None);
2409         }
2410 }