814bf304d8d4eb0e6aebd67f08ac9b7015b931ae
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use crate::chain::keysinterface::{KeysManager, NodeSigner, Recipient};
21 use crate::ln::features::{InitFeatures, NodeFeatures};
22 use crate::ln::msgs;
23 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
24 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
25 use crate::util::ser::{VecWriter, Writeable, Writer};
26 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
27 use crate::ln::wire;
28 use crate::ln::wire::Encode;
29 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
30 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId};
31 use crate::util::atomic_counter::AtomicCounter;
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
33 use crate::util::logger::Logger;
34
35 use crate::prelude::*;
36 use crate::io;
37 use alloc::collections::LinkedList;
38 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
48
49 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
50 ///
51 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
52 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
53 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
54 ///
55 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
56 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
57 pub trait CustomMessageHandler: wire::CustomMessageReader {
58         /// Handles the given message sent from `sender_node_id`, possibly producing messages for
59         /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
60         /// to send.
61         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
62
63         /// Returns the list of pending messages that were generated by the handler, clearing the list
64         /// in the process. Each message is paired with the node id of the intended recipient. If no
65         /// connection to the node exists, then the message is simply not sent.
66         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
67 }
68
69 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
70 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
71 pub struct IgnoringMessageHandler{}
72 impl MessageSendEventsProvider for IgnoringMessageHandler {
73         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
74 }
75 impl RoutingMessageHandler for IgnoringMessageHandler {
76         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
77         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
78         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
79         fn get_next_channel_announcement(&self, _starting_point: u64) ->
80                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
81         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
82         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
83         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
84         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
85         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
86         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
87         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
88         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
89                 InitFeatures::empty()
90         }
91         fn processing_queue_high(&self) -> bool { false }
92 }
93 impl OnionMessageProvider for IgnoringMessageHandler {
94         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
95 }
96 impl OnionMessageHandler for IgnoringMessageHandler {
97         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
98         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
99         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
100         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
101         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
102                 InitFeatures::empty()
103         }
104 }
105 impl CustomOnionMessageHandler for IgnoringMessageHandler {
106         type CustomMessage = Infallible;
107         fn handle_custom_message(&self, _msg: Infallible) {
108                 // Since we always return `None` in the read the handle method should never be called.
109                 unreachable!();
110         }
111         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
112                 Ok(None)
113         }
114 }
115
116 impl CustomOnionMessageContents for Infallible {
117         fn tlv_type(&self) -> u64 { unreachable!(); }
118 }
119
120 impl Deref for IgnoringMessageHandler {
121         type Target = IgnoringMessageHandler;
122         fn deref(&self) -> &Self { self }
123 }
124
125 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
126 // method that takes self for it.
127 impl wire::Type for Infallible {
128         fn type_id(&self) -> u16 {
129                 unreachable!();
130         }
131 }
132 impl Writeable for Infallible {
133         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
134                 unreachable!();
135         }
136 }
137
138 impl wire::CustomMessageReader for IgnoringMessageHandler {
139         type CustomMessage = Infallible;
140         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
141                 Ok(None)
142         }
143 }
144
145 impl CustomMessageHandler for IgnoringMessageHandler {
146         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
147                 // Since we always return `None` in the read the handle method should never be called.
148                 unreachable!();
149         }
150
151         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
152 }
153
154 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
155 /// You can provide one of these as the route_handler in a MessageHandler.
156 pub struct ErroringMessageHandler {
157         message_queue: Mutex<Vec<MessageSendEvent>>
158 }
159 impl ErroringMessageHandler {
160         /// Constructs a new ErroringMessageHandler
161         pub fn new() -> Self {
162                 Self { message_queue: Mutex::new(Vec::new()) }
163         }
164         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
165                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
166                         action: msgs::ErrorAction::SendErrorMessage {
167                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
168                         },
169                         node_id: node_id.clone(),
170                 });
171         }
172 }
173 impl MessageSendEventsProvider for ErroringMessageHandler {
174         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
175                 let mut res = Vec::new();
176                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
177                 res
178         }
179 }
180 impl ChannelMessageHandler for ErroringMessageHandler {
181         // Any messages which are related to a specific channel generate an error message to let the
182         // peer know we don't care about channels.
183         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
185         }
186         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
188         }
189         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
190                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
191         }
192         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
193                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
194         }
195         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
196                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
197         }
198         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
199                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
200         }
201         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
202                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
203         }
204         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
205                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
206         }
207         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
208                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
209         }
210         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
211                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
212         }
213         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
214                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
215         }
216         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
217                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
218         }
219         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
220                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
221         }
222         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
223                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
224         }
225         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
226                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
227         }
228         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
229                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
230         }
231         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
232         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
233         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
234         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
235         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
236         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
237         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
238                 // Set a number of features which various nodes may require to talk to us. It's totally
239                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
240                 // channels.
241                 let mut features = InitFeatures::empty();
242                 features.set_data_loss_protect_optional();
243                 features.set_upfront_shutdown_script_optional();
244                 features.set_variable_length_onion_optional();
245                 features.set_static_remote_key_optional();
246                 features.set_payment_secret_optional();
247                 features.set_basic_mpp_optional();
248                 features.set_wumbo_optional();
249                 features.set_shutdown_any_segwit_optional();
250                 features.set_channel_type_optional();
251                 features.set_scid_privacy_optional();
252                 features.set_zero_conf_optional();
253                 features
254         }
255 }
256 impl Deref for ErroringMessageHandler {
257         type Target = ErroringMessageHandler;
258         fn deref(&self) -> &Self { self }
259 }
260
261 /// Provides references to trait impls which handle different types of messages.
262 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
263                 CM::Target: ChannelMessageHandler,
264                 RM::Target: RoutingMessageHandler,
265                 OM::Target: OnionMessageHandler,
266 {
267         /// A message handler which handles messages specific to channels. Usually this is just a
268         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
269         ///
270         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
271         pub chan_handler: CM,
272         /// A message handler which handles messages updating our knowledge of the network channel
273         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
274         ///
275         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
276         pub route_handler: RM,
277
278         /// A message handler which handles onion messages. For now, this can only be an
279         /// [`IgnoringMessageHandler`].
280         pub onion_message_handler: OM,
281 }
282
283 /// Provides an object which can be used to send data to and which uniquely identifies a connection
284 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
285 /// implement Hash to meet the PeerManager API.
286 ///
287 /// For efficiency, Clone should be relatively cheap for this type.
288 ///
289 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
290 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
291 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
292 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
293 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
294 /// to simply use another value which is guaranteed to be globally unique instead.
295 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
296         /// Attempts to send some data from the given slice to the peer.
297         ///
298         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
299         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
300         /// called and further write attempts may occur until that time.
301         ///
302         /// If the returned size is smaller than `data.len()`, a
303         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
304         /// written. Additionally, until a `send_data` event completes fully, no further
305         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
306         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
307         /// until then.
308         ///
309         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
310         /// (indicating that read events should be paused to prevent DoS in the send buffer),
311         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
312         /// `resume_read` of false carries no meaning, and should not cause any action.
313         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
314         /// Disconnect the socket pointed to by this SocketDescriptor.
315         ///
316         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
317         /// call (doing so is a noop).
318         fn disconnect_socket(&mut self);
319 }
320
321 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
322 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
323 /// descriptor.
324 #[derive(Clone)]
325 pub struct PeerHandleError { }
326 impl fmt::Debug for PeerHandleError {
327         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
328                 formatter.write_str("Peer Sent Invalid Data")
329         }
330 }
331 impl fmt::Display for PeerHandleError {
332         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
333                 formatter.write_str("Peer Sent Invalid Data")
334         }
335 }
336
337 #[cfg(feature = "std")]
338 impl error::Error for PeerHandleError {
339         fn description(&self) -> &str {
340                 "Peer Sent Invalid Data"
341         }
342 }
343
344 enum InitSyncTracker{
345         NoSyncRequested,
346         ChannelsSyncing(u64),
347         NodesSyncing(NodeId),
348 }
349
350 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
351 /// forwarding gossip messages to peers altogether.
352 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
353
354 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
355 /// we have fewer than this many messages in the outbound buffer again.
356 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
357 /// refilled as we send bytes.
358 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
359 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
360 /// the peer.
361 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
362
363 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
364 /// the socket receive buffer before receiving the ping.
365 ///
366 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
367 /// including any network delays, outbound traffic, or the same for messages from other peers.
368 ///
369 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
370 /// per connected peer to respond to a ping, as long as they send us at least one message during
371 /// each tick, ensuring we aren't actually just disconnected.
372 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
373 /// peer.
374 ///
375 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
376 /// two connected peers, assuming most LDK-running systems have at least two cores.
377 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
378
379 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
380 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
381 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
382 /// process before the next ping.
383 ///
384 /// Note that we continue responding to other messages even after we've sent this many messages, so
385 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
386 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
387 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
388
389 struct Peer {
390         channel_encryptor: PeerChannelEncryptor,
391         /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
392         /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
393         their_node_id: Option<(PublicKey, NodeId)>,
394         /// The features provided in the peer's [`msgs::Init`] message.
395         ///
396         /// This is set only after we've processed the [`msgs::Init`] message and called relevant
397         /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
398         /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
399         /// check this.
400         their_features: Option<InitFeatures>,
401         their_net_address: Option<NetAddress>,
402
403         pending_outbound_buffer: LinkedList<Vec<u8>>,
404         pending_outbound_buffer_first_msg_offset: usize,
405         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
406         /// prioritize channel messages over them.
407         ///
408         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
409         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
410         awaiting_write_event: bool,
411
412         pending_read_buffer: Vec<u8>,
413         pending_read_buffer_pos: usize,
414         pending_read_is_header: bool,
415
416         sync_status: InitSyncTracker,
417
418         msgs_sent_since_pong: usize,
419         awaiting_pong_timer_tick_intervals: i8,
420         received_message_since_timer_tick: bool,
421         sent_gossip_timestamp_filter: bool,
422
423         /// Indicates we've received a `channel_announcement` since the last time we had
424         /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
425         /// `channel_announcement` at all - we set this unconditionally but unset it every time we
426         /// check if we're gossip-processing-backlogged).
427         received_channel_announce_since_backlogged: bool,
428 }
429
430 impl Peer {
431         /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
432         /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
433         /// normally.
434         fn handshake_complete(&self) -> bool {
435                 self.their_features.is_some()
436         }
437
438         /// Returns true if the channel announcements/updates for the given channel should be
439         /// forwarded to this peer.
440         /// If we are sending our routing table to this peer and we have not yet sent channel
441         /// announcements/updates for the given channel_id then we will send it when we get to that
442         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
443         /// sent the old versions, we should send the update, and so return true here.
444         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
445                 if !self.handshake_complete() { return false; }
446                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
447                         !self.sent_gossip_timestamp_filter {
448                                 return false;
449                         }
450                 match self.sync_status {
451                         InitSyncTracker::NoSyncRequested => true,
452                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
453                         InitSyncTracker::NodesSyncing(_) => true,
454                 }
455         }
456
457         /// Similar to the above, but for node announcements indexed by node_id.
458         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
459                 if !self.handshake_complete() { return false; }
460                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
461                         !self.sent_gossip_timestamp_filter {
462                                 return false;
463                         }
464                 match self.sync_status {
465                         InitSyncTracker::NoSyncRequested => true,
466                         InitSyncTracker::ChannelsSyncing(_) => false,
467                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
468                 }
469         }
470
471         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
472         /// buffer still has space and we don't need to pause reads to get some writes out.
473         fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
474                 if !gossip_processing_backlogged {
475                         self.received_channel_announce_since_backlogged = false;
476                 }
477                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
478                         (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
479         }
480
481         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
482         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
483         fn should_buffer_gossip_backfill(&self) -> bool {
484                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
485                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
486                         && self.handshake_complete()
487         }
488
489         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
490         /// every time the peer's buffer may have been drained.
491         fn should_buffer_onion_message(&self) -> bool {
492                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
493                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
494         }
495
496         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
497         /// buffer. This is checked every time the peer's buffer may have been drained.
498         fn should_buffer_gossip_broadcast(&self) -> bool {
499                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
500                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
501         }
502
503         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
504         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
505                 let total_outbound_buffered =
506                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
507
508                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
509                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
510         }
511
512         fn set_their_node_id(&mut self, node_id: PublicKey) {
513                 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
514         }
515 }
516
517 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
518 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
519 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
520 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
521 /// issues such as overly long function definitions.
522 ///
523 /// (C-not exported) as `Arc`s don't make sense in bindings.
524 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler, Arc<KeysManager>>;
525
526 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
527 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
528 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
529 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
530 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
531 /// helps with issues such as long function definitions.
532 ///
533 /// (C-not exported) as general type aliases don't make sense in bindings.
534 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>, &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler, &'c KeysManager>;
535
536 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
537 /// socket events into messages which it passes on to its [`MessageHandler`].
538 ///
539 /// Locks are taken internally, so you must never assume that reentrancy from a
540 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
541 ///
542 /// Calls to [`read_event`] will decode relevant messages and pass them to the
543 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
544 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
545 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
546 /// calls only after previous ones have returned.
547 ///
548 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
549 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
550 /// essentially you should default to using a SimpleRefPeerManager, and use a
551 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
552 /// you're using lightning-net-tokio.
553 ///
554 /// [`read_event`]: PeerManager::read_event
555 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
556                 CM::Target: ChannelMessageHandler,
557                 RM::Target: RoutingMessageHandler,
558                 OM::Target: OnionMessageHandler,
559                 L::Target: Logger,
560                 CMH::Target: CustomMessageHandler,
561                 NS::Target: NodeSigner {
562         message_handler: MessageHandler<CM, RM, OM>,
563         /// Connection state for each connected peer - we have an outer read-write lock which is taken
564         /// as read while we're doing processing for a peer and taken write when a peer is being added
565         /// or removed.
566         ///
567         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
568         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
569         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
570         /// the `MessageHandler`s for a given peer is already guaranteed.
571         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
572         /// Only add to this set when noise completes.
573         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
574         /// lock held. Entries may be added with only the `peers` read lock held (though the
575         /// `Descriptor` value must already exist in `peers`).
576         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
577         /// We can only have one thread processing events at once, but we don't usually need the full
578         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
579         /// `process_events`.
580         event_processing_lock: Mutex<()>,
581         /// Because event processing is global and always does all available work before returning,
582         /// there is no reason for us to have many event processors waiting on the lock at once.
583         /// Instead, we limit the total blocked event processors to always exactly one by setting this
584         /// when an event process call is waiting.
585         blocked_event_processors: AtomicBool,
586
587         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
588         /// value increases strictly since we don't assume access to a time source.
589         last_node_announcement_serial: AtomicU32,
590
591         ephemeral_key_midstate: Sha256Engine,
592         custom_message_handler: CMH,
593
594         peer_counter: AtomicCounter,
595
596         gossip_processing_backlogged: AtomicBool,
597         gossip_processing_backlog_lifted: AtomicBool,
598
599         node_signer: NS,
600
601         logger: L,
602         secp_ctx: Secp256k1<secp256k1::SignOnly>
603 }
604
605 enum MessageHandlingError {
606         PeerHandleError(PeerHandleError),
607         LightningError(LightningError),
608 }
609
610 impl From<PeerHandleError> for MessageHandlingError {
611         fn from(error: PeerHandleError) -> Self {
612                 MessageHandlingError::PeerHandleError(error)
613         }
614 }
615
616 impl From<LightningError> for MessageHandlingError {
617         fn from(error: LightningError) -> Self {
618                 MessageHandlingError::LightningError(error)
619         }
620 }
621
622 macro_rules! encode_msg {
623         ($msg: expr) => {{
624                 let mut buffer = VecWriter(Vec::new());
625                 wire::write($msg, &mut buffer).unwrap();
626                 buffer.0
627         }}
628 }
629
630 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
631                 CM::Target: ChannelMessageHandler,
632                 OM::Target: OnionMessageHandler,
633                 L::Target: Logger,
634                 NS::Target: NodeSigner {
635         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
636         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
637         /// ignored.
638         ///
639         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
640         /// cryptographically secure random bytes.
641         ///
642         /// `current_time` is used as an always-increasing counter that survives across restarts and is
643         /// incremented irregularly internally. In general it is best to simply use the current UNIX
644         /// timestamp, however if it is not available a persistent counter that increases once per
645         /// minute should suffice.
646         ///
647         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
648         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
649                 Self::new(MessageHandler {
650                         chan_handler: channel_message_handler,
651                         route_handler: IgnoringMessageHandler{},
652                         onion_message_handler,
653                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
654         }
655 }
656
657 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
658                 RM::Target: RoutingMessageHandler,
659                 L::Target: Logger,
660                 NS::Target: NodeSigner {
661         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
662         /// handler or onion message handler is used and onion and channel messages will be ignored (or
663         /// generate error messages). Note that some other lightning implementations time-out connections
664         /// after some time if no channel is built with the peer.
665         ///
666         /// `current_time` is used as an always-increasing counter that survives across restarts and is
667         /// incremented irregularly internally. In general it is best to simply use the current UNIX
668         /// timestamp, however if it is not available a persistent counter that increases once per
669         /// minute should suffice.
670         ///
671         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
672         /// cryptographically secure random bytes.
673         ///
674         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
675         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
676                 Self::new(MessageHandler {
677                         chan_handler: ErroringMessageHandler::new(),
678                         route_handler: routing_message_handler,
679                         onion_message_handler: IgnoringMessageHandler{},
680                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
681         }
682 }
683
684 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
685 /// This works around `format!()` taking a reference to each argument, preventing
686 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
687 /// due to lifetime errors.
688 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
689 impl core::fmt::Display for OptionalFromDebugger<'_> {
690         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
691                 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
692         }
693 }
694
695 /// A function used to filter out local or private addresses
696 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
697 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
698 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
699         match ip_address{
700                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
701                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
702                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
703                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
704                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
705                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
706                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
707                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
708                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
709                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
710                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
711                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
712                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
713                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
714                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
715                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
716                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
717                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
718                 // For remaining addresses
719                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
720                 Some(..) => ip_address,
721                 None => None,
722         }
723 }
724
725 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
726                 CM::Target: ChannelMessageHandler,
727                 RM::Target: RoutingMessageHandler,
728                 OM::Target: OnionMessageHandler,
729                 L::Target: Logger,
730                 CMH::Target: CustomMessageHandler,
731                 NS::Target: NodeSigner
732 {
733         /// Constructs a new PeerManager with the given message handlers and node_id secret key
734         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
735         /// cryptographically secure random bytes.
736         ///
737         /// `current_time` is used as an always-increasing counter that survives across restarts and is
738         /// incremented irregularly internally. In general it is best to simply use the current UNIX
739         /// timestamp, however if it is not available a persistent counter that increases once per
740         /// minute should suffice.
741         pub fn new(message_handler: MessageHandler<CM, RM, OM>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH, node_signer: NS) -> Self {
742                 let mut ephemeral_key_midstate = Sha256::engine();
743                 ephemeral_key_midstate.input(ephemeral_random_data);
744
745                 let mut secp_ctx = Secp256k1::signing_only();
746                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
747                 secp_ctx.seeded_randomize(&ephemeral_hash);
748
749                 PeerManager {
750                         message_handler,
751                         peers: FairRwLock::new(HashMap::new()),
752                         node_id_to_descriptor: Mutex::new(HashMap::new()),
753                         event_processing_lock: Mutex::new(()),
754                         blocked_event_processors: AtomicBool::new(false),
755                         ephemeral_key_midstate,
756                         peer_counter: AtomicCounter::new(),
757                         gossip_processing_backlogged: AtomicBool::new(false),
758                         gossip_processing_backlog_lifted: AtomicBool::new(false),
759                         last_node_announcement_serial: AtomicU32::new(current_time),
760                         logger,
761                         custom_message_handler,
762                         node_signer,
763                         secp_ctx,
764                 }
765         }
766
767         /// Get a list of tuples mapping from node id to network addresses for peers which have
768         /// completed the initial handshake.
769         ///
770         /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
771         /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
772         /// handshake has completed and we are sure the remote peer has the private key for the given
773         /// [`PublicKey`].
774         ///
775         /// The returned `Option`s will only be `Some` if an address had been previously given via
776         /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
777         pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<NetAddress>)> {
778                 let peers = self.peers.read().unwrap();
779                 peers.values().filter_map(|peer_mutex| {
780                         let p = peer_mutex.lock().unwrap();
781                         if !p.handshake_complete() {
782                                 return None;
783                         }
784                         Some((p.their_node_id.unwrap().0, p.their_net_address.clone()))
785                 }).collect()
786         }
787
788         fn get_ephemeral_key(&self) -> SecretKey {
789                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
790                 let counter = self.peer_counter.get_increment();
791                 ephemeral_hash.input(&counter.to_le_bytes());
792                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
793         }
794
795         /// Indicates a new outbound connection has been established to a node with the given `node_id`
796         /// and an optional remote network address.
797         ///
798         /// The remote network address adds the option to report a remote IP address back to a connecting
799         /// peer using the init message.
800         /// The user should pass the remote network address of the host they are connected to.
801         ///
802         /// If an `Err` is returned here you must disconnect the connection immediately.
803         ///
804         /// Returns a small number of bytes to send to the remote node (currently always 50).
805         ///
806         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
807         /// [`socket_disconnected()`].
808         ///
809         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
810         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
811                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
812                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
813                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
814
815                 let mut peers = self.peers.write().unwrap();
816                 if peers.insert(descriptor, Mutex::new(Peer {
817                         channel_encryptor: peer_encryptor,
818                         their_node_id: None,
819                         their_features: None,
820                         their_net_address: remote_network_address,
821
822                         pending_outbound_buffer: LinkedList::new(),
823                         pending_outbound_buffer_first_msg_offset: 0,
824                         gossip_broadcast_buffer: LinkedList::new(),
825                         awaiting_write_event: false,
826
827                         pending_read_buffer,
828                         pending_read_buffer_pos: 0,
829                         pending_read_is_header: false,
830
831                         sync_status: InitSyncTracker::NoSyncRequested,
832
833                         msgs_sent_since_pong: 0,
834                         awaiting_pong_timer_tick_intervals: 0,
835                         received_message_since_timer_tick: false,
836                         sent_gossip_timestamp_filter: false,
837
838                         received_channel_announce_since_backlogged: false,
839                 })).is_some() {
840                         panic!("PeerManager driver duplicated descriptors!");
841                 };
842                 Ok(res)
843         }
844
845         /// Indicates a new inbound connection has been established to a node with an optional remote
846         /// network address.
847         ///
848         /// The remote network address adds the option to report a remote IP address back to a connecting
849         /// peer using the init message.
850         /// The user should pass the remote network address of the host they are connected to.
851         ///
852         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
853         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
854         /// the connection immediately.
855         ///
856         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
857         /// [`socket_disconnected()`].
858         ///
859         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
860         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
861                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
862                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
863
864                 let mut peers = self.peers.write().unwrap();
865                 if peers.insert(descriptor, Mutex::new(Peer {
866                         channel_encryptor: peer_encryptor,
867                         their_node_id: None,
868                         their_features: None,
869                         their_net_address: remote_network_address,
870
871                         pending_outbound_buffer: LinkedList::new(),
872                         pending_outbound_buffer_first_msg_offset: 0,
873                         gossip_broadcast_buffer: LinkedList::new(),
874                         awaiting_write_event: false,
875
876                         pending_read_buffer,
877                         pending_read_buffer_pos: 0,
878                         pending_read_is_header: false,
879
880                         sync_status: InitSyncTracker::NoSyncRequested,
881
882                         msgs_sent_since_pong: 0,
883                         awaiting_pong_timer_tick_intervals: 0,
884                         received_message_since_timer_tick: false,
885                         sent_gossip_timestamp_filter: false,
886
887                         received_channel_announce_since_backlogged: false,
888                 })).is_some() {
889                         panic!("PeerManager driver duplicated descriptors!");
890                 };
891                 Ok(())
892         }
893
894         fn peer_should_read(&self, peer: &mut Peer) -> bool {
895                 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
896         }
897
898         fn update_gossip_backlogged(&self) {
899                 let new_state = self.message_handler.route_handler.processing_queue_high();
900                 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
901                 if prev_state && !new_state {
902                         self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
903                 }
904         }
905
906         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
907                 let mut have_written = false;
908                 while !peer.awaiting_write_event {
909                         if peer.should_buffer_onion_message() {
910                                 if let Some((peer_node_id, _)) = peer.their_node_id {
911                                         if let Some(next_onion_message) =
912                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
913                                                         self.enqueue_message(peer, &next_onion_message);
914                                         }
915                                 }
916                         }
917                         if peer.should_buffer_gossip_broadcast() {
918                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
919                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
920                                 }
921                         }
922                         if peer.should_buffer_gossip_backfill() {
923                                 match peer.sync_status {
924                                         InitSyncTracker::NoSyncRequested => {},
925                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
926                                                 if let Some((announce, update_a_option, update_b_option)) =
927                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
928                                                 {
929                                                         self.enqueue_message(peer, &announce);
930                                                         if let Some(update_a) = update_a_option {
931                                                                 self.enqueue_message(peer, &update_a);
932                                                         }
933                                                         if let Some(update_b) = update_b_option {
934                                                                 self.enqueue_message(peer, &update_b);
935                                                         }
936                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
937                                                 } else {
938                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
939                                                 }
940                                         },
941                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
942                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
943                                                         self.enqueue_message(peer, &msg);
944                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
945                                                 } else {
946                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
947                                                 }
948                                         },
949                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
950                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
951                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
952                                                         self.enqueue_message(peer, &msg);
953                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
954                                                 } else {
955                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
956                                                 }
957                                         },
958                                 }
959                         }
960                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
961                                 self.maybe_send_extra_ping(peer);
962                         }
963
964                         let should_read = self.peer_should_read(peer);
965                         let next_buff = match peer.pending_outbound_buffer.front() {
966                                 None => {
967                                         if force_one_write && !have_written {
968                                                 if should_read {
969                                                         let data_sent = descriptor.send_data(&[], should_read);
970                                                         debug_assert_eq!(data_sent, 0, "Can't write more than no data");
971                                                 }
972                                         }
973                                         return
974                                 },
975                                 Some(buff) => buff,
976                         };
977
978                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
979                         let data_sent = descriptor.send_data(pending, should_read);
980                         have_written = true;
981                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
982                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
983                                 peer.pending_outbound_buffer_first_msg_offset = 0;
984                                 peer.pending_outbound_buffer.pop_front();
985                         } else {
986                                 peer.awaiting_write_event = true;
987                         }
988                 }
989         }
990
991         /// Indicates that there is room to write data to the given socket descriptor.
992         ///
993         /// May return an Err to indicate that the connection should be closed.
994         ///
995         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
996         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
997         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
998         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
999         /// sufficient!
1000         ///
1001         /// [`send_data`]: SocketDescriptor::send_data
1002         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1003         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1004                 let peers = self.peers.read().unwrap();
1005                 match peers.get(descriptor) {
1006                         None => {
1007                                 // This is most likely a simple race condition where the user found that the socket
1008                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
1009                                 // this method. Return an error to make sure we get disconnected.
1010                                 return Err(PeerHandleError { });
1011                         },
1012                         Some(peer_mutex) => {
1013                                 let mut peer = peer_mutex.lock().unwrap();
1014                                 peer.awaiting_write_event = false;
1015                                 self.do_attempt_write_data(descriptor, &mut peer, false);
1016                         }
1017                 };
1018                 Ok(())
1019         }
1020
1021         /// Indicates that data was read from the given socket descriptor.
1022         ///
1023         /// May return an Err to indicate that the connection should be closed.
1024         ///
1025         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1026         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1027         /// [`send_data`] calls to handle responses.
1028         ///
1029         /// If `Ok(true)` is returned, further read_events should not be triggered until a
1030         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1031         /// send buffer).
1032         ///
1033         /// In order to avoid processing too many messages at once per peer, `data` should be on the
1034         /// order of 4KiB.
1035         ///
1036         /// [`send_data`]: SocketDescriptor::send_data
1037         /// [`process_events`]: PeerManager::process_events
1038         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1039                 match self.do_read_event(peer_descriptor, data) {
1040                         Ok(res) => Ok(res),
1041                         Err(e) => {
1042                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
1043                                 self.disconnect_event_internal(peer_descriptor);
1044                                 Err(e)
1045                         }
1046                 }
1047         }
1048
1049         /// Append a message to a peer's pending outbound/write buffer
1050         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1051                 if is_gossip_msg(message.type_id()) {
1052                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1053                 } else {
1054                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1055                 }
1056                 peer.msgs_sent_since_pong += 1;
1057                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1058         }
1059
1060         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1061         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1062                 peer.msgs_sent_since_pong += 1;
1063                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1064         }
1065
1066         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1067                 let mut pause_read = false;
1068                 let peers = self.peers.read().unwrap();
1069                 let mut msgs_to_forward = Vec::new();
1070                 let mut peer_node_id = None;
1071                 match peers.get(peer_descriptor) {
1072                         None => {
1073                                 // This is most likely a simple race condition where the user read some bytes
1074                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1075                                 // called this method. Return an error to make sure we get disconnected.
1076                                 return Err(PeerHandleError { });
1077                         },
1078                         Some(peer_mutex) => {
1079                                 let mut read_pos = 0;
1080                                 while read_pos < data.len() {
1081                                         macro_rules! try_potential_handleerror {
1082                                                 ($peer: expr, $thing: expr) => {
1083                                                         match $thing {
1084                                                                 Ok(x) => x,
1085                                                                 Err(e) => {
1086                                                                         match e.action {
1087                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1088                                                                                         //TODO: Try to push msg
1089                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1090                                                                                         return Err(PeerHandleError { });
1091                                                                                 },
1092                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1093                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1094                                                                                         continue
1095                                                                                 },
1096                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1097                                                                                 msgs::ErrorAction::IgnoreError => {
1098                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1099                                                                                         continue;
1100                                                                                 },
1101                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1102                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1103                                                                                         self.enqueue_message($peer, &msg);
1104                                                                                         continue;
1105                                                                                 },
1106                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1107                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1108                                                                                         self.enqueue_message($peer, &msg);
1109                                                                                         continue;
1110                                                                                 },
1111                                                                         }
1112                                                                 }
1113                                                         }
1114                                                 }
1115                                         }
1116
1117                                         let mut peer_lock = peer_mutex.lock().unwrap();
1118                                         let peer = &mut *peer_lock;
1119                                         let mut msg_to_handle = None;
1120                                         if peer_node_id.is_none() {
1121                                                 peer_node_id = peer.their_node_id.clone();
1122                                         }
1123
1124                                         assert!(peer.pending_read_buffer.len() > 0);
1125                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1126
1127                                         {
1128                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1129                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1130                                                 read_pos += data_to_copy;
1131                                                 peer.pending_read_buffer_pos += data_to_copy;
1132                                         }
1133
1134                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1135                                                 peer.pending_read_buffer_pos = 0;
1136
1137                                                 macro_rules! insert_node_id {
1138                                                         () => {
1139                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1140                                                                         hash_map::Entry::Occupied(_) => {
1141                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1142                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1143                                                                                 return Err(PeerHandleError { })
1144                                                                         },
1145                                                                         hash_map::Entry::Vacant(entry) => {
1146                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1147                                                                                 entry.insert(peer_descriptor.clone())
1148                                                                         },
1149                                                                 };
1150                                                         }
1151                                                 }
1152
1153                                                 let next_step = peer.channel_encryptor.get_noise_step();
1154                                                 match next_step {
1155                                                         NextNoiseStep::ActOne => {
1156                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1157                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1158                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1159                                                                 peer.pending_outbound_buffer.push_back(act_two);
1160                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1161                                                         },
1162                                                         NextNoiseStep::ActTwo => {
1163                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1164                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1165                                                                                 &self.node_signer));
1166                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1167                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1168                                                                 peer.pending_read_is_header = true;
1169
1170                                                                 peer.set_their_node_id(their_node_id);
1171                                                                 insert_node_id!();
1172                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1173                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1174                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1175                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1176                                                                 self.enqueue_message(peer, &resp);
1177                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1178                                                         },
1179                                                         NextNoiseStep::ActThree => {
1180                                                                 let their_node_id = try_potential_handleerror!(peer,
1181                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1182                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1183                                                                 peer.pending_read_is_header = true;
1184                                                                 peer.set_their_node_id(their_node_id);
1185                                                                 insert_node_id!();
1186                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1187                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1188                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1189                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1190                                                                 self.enqueue_message(peer, &resp);
1191                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1192                                                         },
1193                                                         NextNoiseStep::NoiseComplete => {
1194                                                                 if peer.pending_read_is_header {
1195                                                                         let msg_len = try_potential_handleerror!(peer,
1196                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1197                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1198                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1199                                                                         if msg_len < 2 { // Need at least the message type tag
1200                                                                                 return Err(PeerHandleError { });
1201                                                                         }
1202                                                                         peer.pending_read_is_header = false;
1203                                                                 } else {
1204                                                                         let msg_data = try_potential_handleerror!(peer,
1205                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1206                                                                         assert!(msg_data.len() >= 2);
1207
1208                                                                         // Reset read buffer
1209                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1210                                                                         peer.pending_read_buffer.resize(18, 0);
1211                                                                         peer.pending_read_is_header = true;
1212
1213                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1214                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1215                                                                         let message = match message_result {
1216                                                                                 Ok(x) => x,
1217                                                                                 Err(e) => {
1218                                                                                         match e {
1219                                                                                                 // Note that to avoid recursion we never call
1220                                                                                                 // `do_attempt_write_data` from here, causing
1221                                                                                                 // the messages enqueued here to not actually
1222                                                                                                 // be sent before the peer is disconnected.
1223                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1224                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1225                                                                                                         continue;
1226                                                                                                 }
1227                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1228                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1229                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1230                                                                                                         continue;
1231                                                                                                 }
1232                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1233                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1234                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1235                                                                                                                 channel_id: [0; 32],
1236                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1237                                                                                                         });
1238                                                                                                         continue;
1239                                                                                                 }
1240                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1241                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1242                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1243                                                                                                         return Err(PeerHandleError { });
1244                                                                                                 }
1245                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1246                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1247                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1248                                                                                                         return Err(PeerHandleError { });
1249                                                                                                 }
1250                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1251                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1252                                                                                                         return Err(PeerHandleError { });
1253                                                                                                 }
1254                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1255                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1256                                                                                         }
1257                                                                                 }
1258                                                                         };
1259
1260                                                                         msg_to_handle = Some(message);
1261                                                                 }
1262                                                         }
1263                                                 }
1264                                         }
1265                                         pause_read = !self.peer_should_read(peer);
1266
1267                                         if let Some(message) = msg_to_handle {
1268                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1269                                                         Err(handling_error) => match handling_error {
1270                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1271                                                                 MessageHandlingError::LightningError(e) => {
1272                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1273                                                                 },
1274                                                         },
1275                                                         Ok(Some(msg)) => {
1276                                                                 msgs_to_forward.push(msg);
1277                                                         },
1278                                                         Ok(None) => {},
1279                                                 }
1280                                         }
1281                                 }
1282                         }
1283                 }
1284
1285                 for msg in msgs_to_forward.drain(..) {
1286                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1287                 }
1288
1289                 Ok(pause_read)
1290         }
1291
1292         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1293         /// Returns the message back if it needs to be broadcasted to all other peers.
1294         fn handle_message(
1295                 &self,
1296                 peer_mutex: &Mutex<Peer>,
1297                 mut peer_lock: MutexGuard<Peer>,
1298                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1299         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1300                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1301                 peer_lock.received_message_since_timer_tick = true;
1302
1303                 // Need an Init as first message
1304                 if let wire::Message::Init(msg) = message {
1305                         if msg.features.requires_unknown_bits() {
1306                                 log_debug!(self.logger, "Peer features required unknown version bits");
1307                                 return Err(PeerHandleError { }.into());
1308                         }
1309                         if peer_lock.their_features.is_some() {
1310                                 return Err(PeerHandleError { }.into());
1311                         }
1312
1313                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1314
1315                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1316                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1317                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1318                         }
1319
1320                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg) {
1321                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1322                                 return Err(PeerHandleError { }.into());
1323                         }
1324                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg) {
1325                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1326                                 return Err(PeerHandleError { }.into());
1327                         }
1328                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg) {
1329                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1330                                 return Err(PeerHandleError { }.into());
1331                         }
1332
1333                         peer_lock.their_features = Some(msg.features);
1334                         return Ok(None);
1335                 } else if peer_lock.their_features.is_none() {
1336                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1337                         return Err(PeerHandleError { }.into());
1338                 }
1339
1340                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1341                         // When supporting gossip messages, start inital gossip sync only after we receive
1342                         // a GossipTimestampFilter
1343                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1344                                 !peer_lock.sent_gossip_timestamp_filter {
1345                                 peer_lock.sent_gossip_timestamp_filter = true;
1346                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1347                         }
1348                         return Ok(None);
1349                 }
1350
1351                 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1352                         peer_lock.received_channel_announce_since_backlogged = true;
1353                 }
1354
1355                 mem::drop(peer_lock);
1356
1357                 if is_gossip_msg(message.type_id()) {
1358                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1359                 } else {
1360                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1361                 }
1362
1363                 let mut should_forward = None;
1364
1365                 match message {
1366                         // Setup and Control messages:
1367                         wire::Message::Init(_) => {
1368                                 // Handled above
1369                         },
1370                         wire::Message::GossipTimestampFilter(_) => {
1371                                 // Handled above
1372                         },
1373                         wire::Message::Error(msg) => {
1374                                 let mut data_is_printable = true;
1375                                 for b in msg.data.bytes() {
1376                                         if b < 32 || b > 126 {
1377                                                 data_is_printable = false;
1378                                                 break;
1379                                         }
1380                                 }
1381
1382                                 if data_is_printable {
1383                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1384                                 } else {
1385                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1386                                 }
1387                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1388                                 if msg.channel_id == [0; 32] {
1389                                         return Err(PeerHandleError { }.into());
1390                                 }
1391                         },
1392                         wire::Message::Warning(msg) => {
1393                                 let mut data_is_printable = true;
1394                                 for b in msg.data.bytes() {
1395                                         if b < 32 || b > 126 {
1396                                                 data_is_printable = false;
1397                                                 break;
1398                                         }
1399                                 }
1400
1401                                 if data_is_printable {
1402                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1403                                 } else {
1404                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1405                                 }
1406                         },
1407
1408                         wire::Message::Ping(msg) => {
1409                                 if msg.ponglen < 65532 {
1410                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1411                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1412                                 }
1413                         },
1414                         wire::Message::Pong(_msg) => {
1415                                 let mut peer_lock = peer_mutex.lock().unwrap();
1416                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1417                                 peer_lock.msgs_sent_since_pong = 0;
1418                         },
1419
1420                         // Channel messages:
1421                         wire::Message::OpenChannel(msg) => {
1422                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1423                         },
1424                         wire::Message::AcceptChannel(msg) => {
1425                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1426                         },
1427
1428                         wire::Message::FundingCreated(msg) => {
1429                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1430                         },
1431                         wire::Message::FundingSigned(msg) => {
1432                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1433                         },
1434                         wire::Message::ChannelReady(msg) => {
1435                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1436                         },
1437
1438                         wire::Message::Shutdown(msg) => {
1439                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1440                         },
1441                         wire::Message::ClosingSigned(msg) => {
1442                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1443                         },
1444
1445                         // Commitment messages:
1446                         wire::Message::UpdateAddHTLC(msg) => {
1447                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1448                         },
1449                         wire::Message::UpdateFulfillHTLC(msg) => {
1450                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1451                         },
1452                         wire::Message::UpdateFailHTLC(msg) => {
1453                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1454                         },
1455                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1456                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1457                         },
1458
1459                         wire::Message::CommitmentSigned(msg) => {
1460                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1461                         },
1462                         wire::Message::RevokeAndACK(msg) => {
1463                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1464                         },
1465                         wire::Message::UpdateFee(msg) => {
1466                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1467                         },
1468                         wire::Message::ChannelReestablish(msg) => {
1469                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1470                         },
1471
1472                         // Routing messages:
1473                         wire::Message::AnnouncementSignatures(msg) => {
1474                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1475                         },
1476                         wire::Message::ChannelAnnouncement(msg) => {
1477                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1478                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1479                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1480                                 }
1481                                 self.update_gossip_backlogged();
1482                         },
1483                         wire::Message::NodeAnnouncement(msg) => {
1484                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1485                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1486                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1487                                 }
1488                                 self.update_gossip_backlogged();
1489                         },
1490                         wire::Message::ChannelUpdate(msg) => {
1491                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1492                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1493                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1494                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1495                                 }
1496                                 self.update_gossip_backlogged();
1497                         },
1498                         wire::Message::QueryShortChannelIds(msg) => {
1499                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1500                         },
1501                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1502                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1503                         },
1504                         wire::Message::QueryChannelRange(msg) => {
1505                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1506                         },
1507                         wire::Message::ReplyChannelRange(msg) => {
1508                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1509                         },
1510
1511                         // Onion message:
1512                         wire::Message::OnionMessage(msg) => {
1513                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1514                         },
1515
1516                         // Unknown messages:
1517                         wire::Message::Unknown(type_id) if message.is_even() => {
1518                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1519                                 return Err(PeerHandleError { }.into());
1520                         },
1521                         wire::Message::Unknown(type_id) => {
1522                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1523                         },
1524                         wire::Message::Custom(custom) => {
1525                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1526                         },
1527                 };
1528                 Ok(should_forward)
1529         }
1530
1531         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1532                 match msg {
1533                         wire::Message::ChannelAnnouncement(ref msg) => {
1534                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1535                                 let encoded_msg = encode_msg!(msg);
1536
1537                                 for (_, peer_mutex) in peers.iter() {
1538                                         let mut peer = peer_mutex.lock().unwrap();
1539                                         if !peer.handshake_complete() ||
1540                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1541                                                 continue
1542                                         }
1543                                         debug_assert!(peer.their_node_id.is_some());
1544                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1545                                         if peer.buffer_full_drop_gossip_broadcast() {
1546                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1547                                                 continue;
1548                                         }
1549                                         if let Some((_, their_node_id)) = peer.their_node_id {
1550                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1551                                                         continue;
1552                                                 }
1553                                         }
1554                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1555                                                 continue;
1556                                         }
1557                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1558                                 }
1559                         },
1560                         wire::Message::NodeAnnouncement(ref msg) => {
1561                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1562                                 let encoded_msg = encode_msg!(msg);
1563
1564                                 for (_, peer_mutex) in peers.iter() {
1565                                         let mut peer = peer_mutex.lock().unwrap();
1566                                         if !peer.handshake_complete() ||
1567                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1568                                                 continue
1569                                         }
1570                                         debug_assert!(peer.their_node_id.is_some());
1571                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1572                                         if peer.buffer_full_drop_gossip_broadcast() {
1573                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1574                                                 continue;
1575                                         }
1576                                         if let Some((_, their_node_id)) = peer.their_node_id {
1577                                                 if their_node_id == msg.contents.node_id {
1578                                                         continue;
1579                                                 }
1580                                         }
1581                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1582                                                 continue;
1583                                         }
1584                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1585                                 }
1586                         },
1587                         wire::Message::ChannelUpdate(ref msg) => {
1588                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1589                                 let encoded_msg = encode_msg!(msg);
1590
1591                                 for (_, peer_mutex) in peers.iter() {
1592                                         let mut peer = peer_mutex.lock().unwrap();
1593                                         if !peer.handshake_complete() ||
1594                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1595                                                 continue
1596                                         }
1597                                         debug_assert!(peer.their_node_id.is_some());
1598                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1599                                         if peer.buffer_full_drop_gossip_broadcast() {
1600                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1601                                                 continue;
1602                                         }
1603                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1604                                                 continue;
1605                                         }
1606                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1607                                 }
1608                         },
1609                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1610                 }
1611         }
1612
1613         /// Checks for any events generated by our handlers and processes them. Includes sending most
1614         /// response messages as well as messages generated by calls to handler functions directly (eg
1615         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1616         ///
1617         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1618         /// issues!
1619         ///
1620         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1621         /// or one of the other clients provided in our language bindings.
1622         ///
1623         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1624         /// without doing any work. All available events that need handling will be handled before the
1625         /// other calls return.
1626         ///
1627         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1628         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1629         /// [`send_data`]: SocketDescriptor::send_data
1630         pub fn process_events(&self) {
1631                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1632                 if _single_processor_lock.is_err() {
1633                         // While we could wake the older sleeper here with a CV and make more even waiting
1634                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1635                         // count" goal.
1636                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1637                                 Err(val) => {
1638                                         debug_assert!(val, "compare_exchange failed spuriously?");
1639                                         return;
1640                                 },
1641                                 Ok(val) => {
1642                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1643                                         // We're the only waiter, as the running process_events may have emptied the
1644                                         // pending events "long" ago and there are new events for us to process, wait until
1645                                         // its done and process any leftover events before returning.
1646                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1647                                         self.blocked_event_processors.store(false, Ordering::Release);
1648                                 }
1649                         }
1650                 }
1651
1652                 self.update_gossip_backlogged();
1653                 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1654
1655                 let mut peers_to_disconnect = HashMap::new();
1656                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1657                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1658
1659                 {
1660                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1661                         // buffer by doing things like announcing channels on another node. We should be willing to
1662                         // drop optional-ish messages when send buffers get full!
1663
1664                         let peers_lock = self.peers.read().unwrap();
1665                         let peers = &*peers_lock;
1666                         macro_rules! get_peer_for_forwarding {
1667                                 ($node_id: expr) => {
1668                                         {
1669                                                 if peers_to_disconnect.get($node_id).is_some() {
1670                                                         // If we've "disconnected" this peer, do not send to it.
1671                                                         continue;
1672                                                 }
1673                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1674                                                 match descriptor_opt {
1675                                                         Some(descriptor) => match peers.get(&descriptor) {
1676                                                                 Some(peer_mutex) => {
1677                                                                         let peer_lock = peer_mutex.lock().unwrap();
1678                                                                         if !peer_lock.handshake_complete() {
1679                                                                                 continue;
1680                                                                         }
1681                                                                         peer_lock
1682                                                                 },
1683                                                                 None => {
1684                                                                         debug_assert!(false, "Inconsistent peers set state!");
1685                                                                         continue;
1686                                                                 }
1687                                                         },
1688                                                         None => {
1689                                                                 continue;
1690                                                         },
1691                                                 }
1692                                         }
1693                                 }
1694                         }
1695                         for event in events_generated.drain(..) {
1696                                 match event {
1697                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1698                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1699                                                                 log_pubkey!(node_id),
1700                                                                 log_bytes!(msg.temporary_channel_id));
1701                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1702                                         },
1703                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1704                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1705                                                                 log_pubkey!(node_id),
1706                                                                 log_bytes!(msg.temporary_channel_id));
1707                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1708                                         },
1709                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1710                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1711                                                                 log_pubkey!(node_id),
1712                                                                 log_bytes!(msg.temporary_channel_id),
1713                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1714                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1715                                                 // indicating to the wallet that they should just throw away this funding transaction
1716                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1717                                         },
1718                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1719                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1720                                                                 log_pubkey!(node_id),
1721                                                                 log_bytes!(msg.channel_id));
1722                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1723                                         },
1724                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1725                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1726                                                                 log_pubkey!(node_id),
1727                                                                 log_bytes!(msg.channel_id));
1728                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1729                                         },
1730                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1731                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1732                                                                 log_pubkey!(node_id),
1733                                                                 log_bytes!(msg.channel_id));
1734                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1735                                         },
1736                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1737                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1738                                                                 log_pubkey!(node_id),
1739                                                                 update_add_htlcs.len(),
1740                                                                 update_fulfill_htlcs.len(),
1741                                                                 update_fail_htlcs.len(),
1742                                                                 log_bytes!(commitment_signed.channel_id));
1743                                                 let mut peer = get_peer_for_forwarding!(node_id);
1744                                                 for msg in update_add_htlcs {
1745                                                         self.enqueue_message(&mut *peer, msg);
1746                                                 }
1747                                                 for msg in update_fulfill_htlcs {
1748                                                         self.enqueue_message(&mut *peer, msg);
1749                                                 }
1750                                                 for msg in update_fail_htlcs {
1751                                                         self.enqueue_message(&mut *peer, msg);
1752                                                 }
1753                                                 for msg in update_fail_malformed_htlcs {
1754                                                         self.enqueue_message(&mut *peer, msg);
1755                                                 }
1756                                                 if let &Some(ref msg) = update_fee {
1757                                                         self.enqueue_message(&mut *peer, msg);
1758                                                 }
1759                                                 self.enqueue_message(&mut *peer, commitment_signed);
1760                                         },
1761                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1762                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1763                                                                 log_pubkey!(node_id),
1764                                                                 log_bytes!(msg.channel_id));
1765                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1766                                         },
1767                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1768                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1769                                                                 log_pubkey!(node_id),
1770                                                                 log_bytes!(msg.channel_id));
1771                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1772                                         },
1773                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1774                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1775                                                                 log_pubkey!(node_id),
1776                                                                 log_bytes!(msg.channel_id));
1777                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1778                                         },
1779                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1780                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1781                                                                 log_pubkey!(node_id),
1782                                                                 log_bytes!(msg.channel_id));
1783                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1784                                         },
1785                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1786                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1787                                                                 log_pubkey!(node_id),
1788                                                                 msg.contents.short_channel_id);
1789                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1790                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1791                                         },
1792                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1793                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1794                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1795                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1796                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1797                                                         _ => {},
1798                                                 }
1799                                                 if let Some(msg) = update_msg {
1800                                                         match self.message_handler.route_handler.handle_channel_update(&msg) {
1801                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1802                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1803                                                                 _ => {},
1804                                                         }
1805                                                 }
1806                                         },
1807                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1808                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1809                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1810                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1811                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1812                                                         _ => {},
1813                                                 }
1814                                         },
1815                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1816                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
1817                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1818                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1819                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1820                                                         _ => {},
1821                                                 }
1822                                         },
1823                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1824                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1825                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1826                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1827                                         },
1828                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1829                                                 match *action {
1830                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1831                                                                 // We do not have the peers write lock, so we just store that we're
1832                                                                 // about to disconenct the peer and do it after we finish
1833                                                                 // processing most messages.
1834                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1835                                                         },
1836                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1837                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1838                                                         },
1839                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1840                                                         msgs::ErrorAction::IgnoreError => {
1841                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1842                                                         },
1843                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1844                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1845                                                                                 log_pubkey!(node_id),
1846                                                                                 msg.data);
1847                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1848                                                         },
1849                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1850                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1851                                                                                 log_pubkey!(node_id),
1852                                                                                 msg.data);
1853                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1854                                                         },
1855                                                 }
1856                                         },
1857                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1858                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1859                                         },
1860                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1861                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1862                                         }
1863                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1864                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1865                                                         log_pubkey!(node_id),
1866                                                         msg.short_channel_ids.len(),
1867                                                         msg.first_blocknum,
1868                                                         msg.number_of_blocks,
1869                                                         msg.sync_complete);
1870                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1871                                         }
1872                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1873                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1874                                         }
1875                                 }
1876                         }
1877
1878                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1879                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1880                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1881                         }
1882
1883                         for (descriptor, peer_mutex) in peers.iter() {
1884                                 let mut peer = peer_mutex.lock().unwrap();
1885                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
1886                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
1887                         }
1888                 }
1889                 if !peers_to_disconnect.is_empty() {
1890                         let mut peers_lock = self.peers.write().unwrap();
1891                         let peers = &mut *peers_lock;
1892                         for (node_id, msg) in peers_to_disconnect.drain() {
1893                                 // Note that since we are holding the peers *write* lock we can
1894                                 // remove from node_id_to_descriptor immediately (as no other
1895                                 // thread can be holding the peer lock if we have the global write
1896                                 // lock).
1897
1898                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1899                                 if let Some(mut descriptor) = descriptor_opt {
1900                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1901                                                 let mut peer = peer_mutex.lock().unwrap();
1902                                                 if let Some(msg) = msg {
1903                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1904                                                                         log_pubkey!(node_id),
1905                                                                         msg.data);
1906                                                         self.enqueue_message(&mut *peer, &msg);
1907                                                         // This isn't guaranteed to work, but if there is enough free
1908                                                         // room in the send buffer, put the error message there...
1909                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
1910                                                 }
1911                                                 self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
1912                                         }
1913                                 }
1914                         }
1915                 }
1916         }
1917
1918         /// Indicates that the given socket descriptor's connection is now closed.
1919         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1920                 self.disconnect_event_internal(descriptor);
1921         }
1922
1923         fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
1924                 if !peer.handshake_complete() {
1925                         log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
1926                         descriptor.disconnect_socket();
1927                         return;
1928                 }
1929
1930                 debug_assert!(peer.their_node_id.is_some());
1931                 if let Some((node_id, _)) = peer.their_node_id {
1932                         log_trace!(self.logger, "Disconnecting peer with id {} due to {}", node_id, reason);
1933                         self.message_handler.chan_handler.peer_disconnected(&node_id);
1934                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
1935                 }
1936                 descriptor.disconnect_socket();
1937         }
1938
1939         fn disconnect_event_internal(&self, descriptor: &Descriptor) {
1940                 let mut peers = self.peers.write().unwrap();
1941                 let peer_option = peers.remove(descriptor);
1942                 match peer_option {
1943                         None => {
1944                                 // This is most likely a simple race condition where the user found that the socket
1945                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1946                                 // called this method. Either way we're disconnected, return.
1947                         },
1948                         Some(peer_lock) => {
1949                                 let peer = peer_lock.lock().unwrap();
1950                                 if !peer.handshake_complete() { return; }
1951                                 debug_assert!(peer.their_node_id.is_some());
1952                                 if let Some((node_id, _)) = peer.their_node_id {
1953                                         log_trace!(self.logger, "Handling disconnection of peer {}", log_pubkey!(node_id));
1954                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1955                                         self.message_handler.chan_handler.peer_disconnected(&node_id);
1956                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
1957                                 }
1958                         }
1959                 };
1960         }
1961
1962         /// Disconnect a peer given its node id.
1963         ///
1964         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1965         /// peer. Thus, be very careful about reentrancy issues.
1966         ///
1967         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1968         pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
1969                 let mut peers_lock = self.peers.write().unwrap();
1970                 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1971                         let peer_opt = peers_lock.remove(&descriptor);
1972                         if let Some(peer_mutex) = peer_opt {
1973                                 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
1974                         } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
1975                 }
1976         }
1977
1978         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1979         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1980         /// using regular ping/pongs.
1981         pub fn disconnect_all_peers(&self) {
1982                 let mut peers_lock = self.peers.write().unwrap();
1983                 self.node_id_to_descriptor.lock().unwrap().clear();
1984                 let peers = &mut *peers_lock;
1985                 for (descriptor, peer_mutex) in peers.drain() {
1986                         self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
1987                 }
1988         }
1989
1990         /// This is called when we're blocked on sending additional gossip messages until we receive a
1991         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1992         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1993         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1994                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1995                         peer.awaiting_pong_timer_tick_intervals = -1;
1996                         let ping = msgs::Ping {
1997                                 ponglen: 0,
1998                                 byteslen: 64,
1999                         };
2000                         self.enqueue_message(peer, &ping);
2001                 }
2002         }
2003
2004         /// Send pings to each peer and disconnect those which did not respond to the last round of
2005         /// pings.
2006         ///
2007         /// This may be called on any timescale you want, however, roughly once every ten seconds is
2008         /// preferred. The call rate determines both how often we send a ping to our peers and how much
2009         /// time they have to respond before we disconnect them.
2010         ///
2011         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2012         /// issues!
2013         ///
2014         /// [`send_data`]: SocketDescriptor::send_data
2015         pub fn timer_tick_occurred(&self) {
2016                 let mut descriptors_needing_disconnect = Vec::new();
2017                 {
2018                         let peers_lock = self.peers.read().unwrap();
2019
2020                         self.update_gossip_backlogged();
2021                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2022
2023                         for (descriptor, peer_mutex) in peers_lock.iter() {
2024                                 let mut peer = peer_mutex.lock().unwrap();
2025                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2026
2027                                 if !peer.handshake_complete() {
2028                                         // The peer needs to complete its handshake before we can exchange messages. We
2029                                         // give peers one timer tick to complete handshake, reusing
2030                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2031                                         // for handshake completion.
2032                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
2033                                                 descriptors_needing_disconnect.push(descriptor.clone());
2034                                         } else {
2035                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2036                                         }
2037                                         continue;
2038                                 }
2039                                 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2040                                 debug_assert!(peer.their_node_id.is_some());
2041
2042                                 loop { // Used as a `goto` to skip writing a Ping message.
2043                                         if peer.awaiting_pong_timer_tick_intervals == -1 {
2044                                                 // Magic value set in `maybe_send_extra_ping`.
2045                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2046                                                 peer.received_message_since_timer_tick = false;
2047                                                 break;
2048                                         }
2049
2050                                         if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2051                                                 || peer.awaiting_pong_timer_tick_intervals as u64 >
2052                                                         MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2053                                         {
2054                                                 descriptors_needing_disconnect.push(descriptor.clone());
2055                                                 break;
2056                                         }
2057                                         peer.received_message_since_timer_tick = false;
2058
2059                                         if peer.awaiting_pong_timer_tick_intervals > 0 {
2060                                                 peer.awaiting_pong_timer_tick_intervals += 1;
2061                                                 break;
2062                                         }
2063
2064                                         peer.awaiting_pong_timer_tick_intervals = 1;
2065                                         let ping = msgs::Ping {
2066                                                 ponglen: 0,
2067                                                 byteslen: 64,
2068                                         };
2069                                         self.enqueue_message(&mut *peer, &ping);
2070                                         break;
2071                                 }
2072                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2073                         }
2074                 }
2075
2076                 if !descriptors_needing_disconnect.is_empty() {
2077                         {
2078                                 let mut peers_lock = self.peers.write().unwrap();
2079                                 for descriptor in descriptors_needing_disconnect {
2080                                         if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2081                                                 let peer = peer_mutex.lock().unwrap();
2082                                                 if let Some((node_id, _)) = peer.their_node_id {
2083                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2084                                                 }
2085                                                 self.do_disconnect(descriptor, &*peer, "ping timeout");
2086                                         }
2087                                 }
2088                         }
2089                 }
2090         }
2091
2092         #[allow(dead_code)]
2093         // Messages of up to 64KB should never end up more than half full with addresses, as that would
2094         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2095         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2096         // message...
2097         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2098         #[deny(const_err)]
2099         #[allow(dead_code)]
2100         // ...by failing to compile if the number of addresses that would be half of a message is
2101         // smaller than 100:
2102         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2103
2104         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2105         /// peers. Note that peers will likely ignore this message unless we have at least one public
2106         /// channel which has at least six confirmations on-chain.
2107         ///
2108         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2109         /// node to humans. They carry no in-protocol meaning.
2110         ///
2111         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2112         /// accepts incoming connections. These will be included in the node_announcement, publicly
2113         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2114         /// addresses should likely contain only Tor Onion addresses.
2115         ///
2116         /// Panics if `addresses` is absurdly large (more than 100).
2117         ///
2118         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2119         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2120                 if addresses.len() > 100 {
2121                         panic!("More than half the message size was taken up by public addresses!");
2122                 }
2123
2124                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2125                 // addresses be sorted for future compatibility.
2126                 addresses.sort_by_key(|addr| addr.get_id());
2127
2128                 let features = self.message_handler.chan_handler.provided_node_features()
2129                         .or(self.message_handler.route_handler.provided_node_features())
2130                         .or(self.message_handler.onion_message_handler.provided_node_features());
2131                 let announcement = msgs::UnsignedNodeAnnouncement {
2132                         features,
2133                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2134                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2135                         rgb, alias, addresses,
2136                         excess_address_data: Vec::new(),
2137                         excess_data: Vec::new(),
2138                 };
2139                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2140                         msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2141                 ) {
2142                         Ok(sig) => sig,
2143                         Err(_) => {
2144                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2145                                 return;
2146                         },
2147                 };
2148
2149                 let msg = msgs::NodeAnnouncement {
2150                         signature: node_announce_sig,
2151                         contents: announcement
2152                 };
2153
2154                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2155                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2156                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2157         }
2158 }
2159
2160 fn is_gossip_msg(type_id: u16) -> bool {
2161         match type_id {
2162                 msgs::ChannelAnnouncement::TYPE |
2163                 msgs::ChannelUpdate::TYPE |
2164                 msgs::NodeAnnouncement::TYPE |
2165                 msgs::QueryChannelRange::TYPE |
2166                 msgs::ReplyChannelRange::TYPE |
2167                 msgs::QueryShortChannelIds::TYPE |
2168                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2169                 _ => false
2170         }
2171 }
2172
2173 #[cfg(test)]
2174 mod tests {
2175         use crate::chain::keysinterface::{NodeSigner, Recipient};
2176         use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2177         use crate::ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2178         use crate::ln::{msgs, wire};
2179         use crate::ln::msgs::NetAddress;
2180         use crate::util::events;
2181         use crate::util::test_utils;
2182
2183         use bitcoin::secp256k1::SecretKey;
2184
2185         use crate::prelude::*;
2186         use crate::sync::{Arc, Mutex};
2187         use core::sync::atomic::Ordering;
2188
2189         #[derive(Clone)]
2190         struct FileDescriptor {
2191                 fd: u16,
2192                 outbound_data: Arc<Mutex<Vec<u8>>>,
2193         }
2194         impl PartialEq for FileDescriptor {
2195                 fn eq(&self, other: &Self) -> bool {
2196                         self.fd == other.fd
2197                 }
2198         }
2199         impl Eq for FileDescriptor { }
2200         impl core::hash::Hash for FileDescriptor {
2201                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2202                         self.fd.hash(hasher)
2203                 }
2204         }
2205
2206         impl SocketDescriptor for FileDescriptor {
2207                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2208                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2209                         data.len()
2210                 }
2211
2212                 fn disconnect_socket(&mut self) {}
2213         }
2214
2215         struct PeerManagerCfg {
2216                 chan_handler: test_utils::TestChannelMessageHandler,
2217                 routing_handler: test_utils::TestRoutingMessageHandler,
2218                 logger: test_utils::TestLogger,
2219                 node_signer: test_utils::TestNodeSigner,
2220         }
2221
2222         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2223                 let mut cfgs = Vec::new();
2224                 for i in 0..peer_count {
2225                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2226                         cfgs.push(
2227                                 PeerManagerCfg{
2228                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2229                                         logger: test_utils::TestLogger::new(),
2230                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2231                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2232                                 }
2233                         );
2234                 }
2235
2236                 cfgs
2237         }
2238
2239         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>> {
2240                 let mut peers = Vec::new();
2241                 for i in 0..peer_count {
2242                         let ephemeral_bytes = [i as u8; 32];
2243                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2244                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {}, &cfgs[i].node_signer);
2245                         peers.push(peer);
2246                 }
2247
2248                 peers
2249         }
2250
2251         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2252                 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2253                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2254                 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2255                 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2256                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2257                 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2258                 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2259                 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2260                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2261                 peer_a.process_events();
2262
2263                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2264                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2265
2266                 peer_b.process_events();
2267                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2268                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2269
2270                 peer_a.process_events();
2271                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2272                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2273
2274                 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2275                 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2276
2277                 (fd_a.clone(), fd_b.clone())
2278         }
2279
2280         #[test]
2281         fn test_disconnect_peer() {
2282                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2283                 // push a DisconnectPeer event to remove the node flagged by id
2284                 let cfgs = create_peermgr_cfgs(2);
2285                 let peers = create_network(2, &cfgs);
2286                 establish_connection(&peers[0], &peers[1]);
2287                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2288
2289                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2290                 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2291                         node_id: their_id,
2292                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2293                 });
2294
2295                 peers[0].process_events();
2296                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2297         }
2298
2299         #[test]
2300         fn test_send_simple_msg() {
2301                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2302                 // push a message from one peer to another.
2303                 let cfgs = create_peermgr_cfgs(2);
2304                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2305                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2306                 let mut peers = create_network(2, &cfgs);
2307                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2308                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2309
2310                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2311
2312                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2313                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2314                         node_id: their_id, msg: msg.clone()
2315                 });
2316                 peers[0].message_handler.chan_handler = &a_chan_handler;
2317
2318                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2319                 peers[1].message_handler.chan_handler = &b_chan_handler;
2320
2321                 peers[0].process_events();
2322
2323                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2324                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2325         }
2326
2327         #[test]
2328         fn test_non_init_first_msg() {
2329                 // Simple test of the first message received over a connection being something other than
2330                 // Init. This results in an immediate disconnection, which previously included a spurious
2331                 // peer_disconnected event handed to event handlers (which would panic in
2332                 // `TestChannelMessageHandler` here).
2333                 let cfgs = create_peermgr_cfgs(2);
2334                 let peers = create_network(2, &cfgs);
2335
2336                 let mut fd_dup = FileDescriptor { fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2337                 let addr_dup = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1003};
2338                 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2339                 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2340
2341                 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2342                 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2343                 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2344                 peers[0].process_events();
2345
2346                 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2347                 let (act_three, _) =
2348                         dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
2349                 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
2350
2351                 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
2352                 let msg_bytes = dup_encryptor.encrypt_message(&not_init_msg);
2353                 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
2354         }
2355
2356         #[test]
2357         fn test_disconnect_all_peer() {
2358                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2359                 // then calls disconnect_all_peers
2360                 let cfgs = create_peermgr_cfgs(2);
2361                 let peers = create_network(2, &cfgs);
2362                 establish_connection(&peers[0], &peers[1]);
2363                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2364
2365                 peers[0].disconnect_all_peers();
2366                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2367         }
2368
2369         #[test]
2370         fn test_timer_tick_occurred() {
2371                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2372                 let cfgs = create_peermgr_cfgs(2);
2373                 let peers = create_network(2, &cfgs);
2374                 establish_connection(&peers[0], &peers[1]);
2375                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2376
2377                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2378                 peers[0].timer_tick_occurred();
2379                 peers[0].process_events();
2380                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2381
2382                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2383                 peers[0].timer_tick_occurred();
2384                 peers[0].process_events();
2385                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2386         }
2387
2388         #[test]
2389         fn test_do_attempt_write_data() {
2390                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2391                 let cfgs = create_peermgr_cfgs(2);
2392                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2393                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2394                 let peers = create_network(2, &cfgs);
2395
2396                 // By calling establish_connect, we trigger do_attempt_write_data between
2397                 // the peers. Previously this function would mistakenly enter an infinite loop
2398                 // when there were more channel messages available than could fit into a peer's
2399                 // buffer. This issue would now be detected by this test (because we use custom
2400                 // RoutingMessageHandlers that intentionally return more channel messages
2401                 // than can fit into a peer's buffer).
2402                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2403
2404                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2405                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2406                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2407                         peers[1].process_events();
2408                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2409                         assert!(!a_read_data.is_empty());
2410
2411                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2412                         peers[0].process_events();
2413
2414                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2415                         assert!(!b_read_data.is_empty());
2416                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2417
2418                         peers[0].process_events();
2419                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2420                 }
2421
2422                 // Check that each peer has received the expected number of channel updates and channel
2423                 // announcements.
2424                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2425                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2426                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2427                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2428         }
2429
2430         #[test]
2431         fn test_handshake_timeout() {
2432                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2433                 // tick.
2434                 let cfgs = create_peermgr_cfgs(2);
2435                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2436                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2437                 let peers = create_network(2, &cfgs);
2438
2439                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2440                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2441                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2442                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2443                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2444
2445                 // If we get a single timer tick before completion, that's fine
2446                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2447                 peers[0].timer_tick_occurred();
2448                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2449
2450                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2451                 peers[0].process_events();
2452                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2453                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2454                 peers[1].process_events();
2455
2456                 // ...but if we get a second timer tick, we should disconnect the peer
2457                 peers[0].timer_tick_occurred();
2458                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2459
2460                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2461                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2462         }
2463
2464         #[test]
2465         fn test_filter_addresses(){
2466                 // Tests the filter_addresses function.
2467
2468                 // For (10/8)
2469                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2470                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2471                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2472                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2473                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2474                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2475
2476                 // For (0/8)
2477                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2478                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2479                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2480                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2481                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2482                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2483
2484                 // For (100.64/10)
2485                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2486                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2487                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2488                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2489                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2490                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2491
2492                 // For (127/8)
2493                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2494                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2495                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2496                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2497                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2498                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2499
2500                 // For (169.254/16)
2501                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2502                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2503                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2504                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2505                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2506                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2507
2508                 // For (172.16/12)
2509                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2510                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2511                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2512                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2513                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2514                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2515
2516                 // For (192.168/16)
2517                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2518                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2519                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2520                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2521                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2522                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2523
2524                 // For (192.88.99/24)
2525                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2526                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2527                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2528                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2529                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2530                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2531
2532                 // For other IPv4 addresses
2533                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2534                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2535                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2536                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2537                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2538                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2539
2540                 // For (2000::/3)
2541                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2542                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2543                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2544                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2545                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2546                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2547
2548                 // For other IPv6 addresses
2549                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2550                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2551                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2552                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2553                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2554                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2555
2556                 // For (None)
2557                 assert_eq!(filter_addresses(None), None);
2558         }
2559 }