]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/ln/peer_handler.rs
Persist scorer upon update based on event handling
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use crate::chain::keysinterface::{KeysManager, NodeSigner, Recipient};
21 use crate::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
22 use crate::ln::features::{InitFeatures, NodeFeatures};
23 use crate::ln::msgs;
24 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
25 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
26 use crate::util::ser::{VecWriter, Writeable, Writer};
27 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
28 use crate::ln::wire;
29 use crate::ln::wire::Encode;
30 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
31 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId, NodeAlias};
32 use crate::util::atomic_counter::AtomicCounter;
33 use crate::util::logger::Logger;
34
35 use crate::prelude::*;
36 use crate::io;
37 use alloc::collections::LinkedList;
38 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
48
49 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
50 ///
51 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
52 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
53 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
54 ///
55 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
56 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
57 pub trait CustomMessageHandler: wire::CustomMessageReader {
58         /// Handles the given message sent from `sender_node_id`, possibly producing messages for
59         /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
60         /// to send.
61         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
62
63         /// Returns the list of pending messages that were generated by the handler, clearing the list
64         /// in the process. Each message is paired with the node id of the intended recipient. If no
65         /// connection to the node exists, then the message is simply not sent.
66         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
67 }
68
69 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
70 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
71 pub struct IgnoringMessageHandler{}
72 impl MessageSendEventsProvider for IgnoringMessageHandler {
73         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
74 }
75 impl RoutingMessageHandler for IgnoringMessageHandler {
76         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
77         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
78         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
79         fn get_next_channel_announcement(&self, _starting_point: u64) ->
80                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
81         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
82         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
83         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
84         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
85         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
86         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
87         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
88         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
89                 InitFeatures::empty()
90         }
91         fn processing_queue_high(&self) -> bool { false }
92 }
93 impl OnionMessageProvider for IgnoringMessageHandler {
94         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
95 }
96 impl OnionMessageHandler for IgnoringMessageHandler {
97         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
98         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
99         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
100         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
101         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
102                 InitFeatures::empty()
103         }
104 }
105 impl CustomOnionMessageHandler for IgnoringMessageHandler {
106         type CustomMessage = Infallible;
107         fn handle_custom_message(&self, _msg: Infallible) {
108                 // Since we always return `None` in the read the handle method should never be called.
109                 unreachable!();
110         }
111         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
112                 Ok(None)
113         }
114 }
115
116 impl CustomOnionMessageContents for Infallible {
117         fn tlv_type(&self) -> u64 { unreachable!(); }
118 }
119
120 impl Deref for IgnoringMessageHandler {
121         type Target = IgnoringMessageHandler;
122         fn deref(&self) -> &Self { self }
123 }
124
125 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
126 // method that takes self for it.
127 impl wire::Type for Infallible {
128         fn type_id(&self) -> u16 {
129                 unreachable!();
130         }
131 }
132 impl Writeable for Infallible {
133         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
134                 unreachable!();
135         }
136 }
137
138 impl wire::CustomMessageReader for IgnoringMessageHandler {
139         type CustomMessage = Infallible;
140         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
141                 Ok(None)
142         }
143 }
144
145 impl CustomMessageHandler for IgnoringMessageHandler {
146         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
147                 // Since we always return `None` in the read the handle method should never be called.
148                 unreachable!();
149         }
150
151         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
152 }
153
154 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
155 /// You can provide one of these as the route_handler in a MessageHandler.
156 pub struct ErroringMessageHandler {
157         message_queue: Mutex<Vec<MessageSendEvent>>
158 }
159 impl ErroringMessageHandler {
160         /// Constructs a new ErroringMessageHandler
161         pub fn new() -> Self {
162                 Self { message_queue: Mutex::new(Vec::new()) }
163         }
164         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
165                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
166                         action: msgs::ErrorAction::SendErrorMessage {
167                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
168                         },
169                         node_id: node_id.clone(),
170                 });
171         }
172 }
173 impl MessageSendEventsProvider for ErroringMessageHandler {
174         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
175                 let mut res = Vec::new();
176                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
177                 res
178         }
179 }
180 impl ChannelMessageHandler for ErroringMessageHandler {
181         // Any messages which are related to a specific channel generate an error message to let the
182         // peer know we don't care about channels.
183         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
185         }
186         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
188         }
189         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
190                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
191         }
192         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
193                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
194         }
195         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
196                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
197         }
198         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
199                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
200         }
201         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
202                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
203         }
204         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
205                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
206         }
207         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
208                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
209         }
210         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
211                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
212         }
213         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
214                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
215         }
216         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
217                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
218         }
219         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
220                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
221         }
222         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
223                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
224         }
225         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
226                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
227         }
228         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
229                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
230         }
231         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
232         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
233         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
234         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
235         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
236         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
237         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
238                 // Set a number of features which various nodes may require to talk to us. It's totally
239                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
240                 // channels.
241                 let mut features = InitFeatures::empty();
242                 features.set_data_loss_protect_optional();
243                 features.set_upfront_shutdown_script_optional();
244                 features.set_variable_length_onion_optional();
245                 features.set_static_remote_key_optional();
246                 features.set_payment_secret_optional();
247                 features.set_basic_mpp_optional();
248                 features.set_wumbo_optional();
249                 features.set_shutdown_any_segwit_optional();
250                 features.set_channel_type_optional();
251                 features.set_scid_privacy_optional();
252                 features.set_zero_conf_optional();
253                 features
254         }
255 }
256 impl Deref for ErroringMessageHandler {
257         type Target = ErroringMessageHandler;
258         fn deref(&self) -> &Self { self }
259 }
260
261 /// Provides references to trait impls which handle different types of messages.
262 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
263                 CM::Target: ChannelMessageHandler,
264                 RM::Target: RoutingMessageHandler,
265                 OM::Target: OnionMessageHandler,
266 {
267         /// A message handler which handles messages specific to channels. Usually this is just a
268         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
269         ///
270         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
271         pub chan_handler: CM,
272         /// A message handler which handles messages updating our knowledge of the network channel
273         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
274         ///
275         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
276         pub route_handler: RM,
277
278         /// A message handler which handles onion messages. For now, this can only be an
279         /// [`IgnoringMessageHandler`].
280         pub onion_message_handler: OM,
281 }
282
283 /// Provides an object which can be used to send data to and which uniquely identifies a connection
284 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
285 /// implement Hash to meet the PeerManager API.
286 ///
287 /// For efficiency, [`Clone`] should be relatively cheap for this type.
288 ///
289 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
290 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
291 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
292 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
293 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
294 /// to simply use another value which is guaranteed to be globally unique instead.
295 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
296         /// Attempts to send some data from the given slice to the peer.
297         ///
298         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
299         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
300         /// called and further write attempts may occur until that time.
301         ///
302         /// If the returned size is smaller than `data.len()`, a
303         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
304         /// written. Additionally, until a `send_data` event completes fully, no further
305         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
306         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
307         /// until then.
308         ///
309         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
310         /// (indicating that read events should be paused to prevent DoS in the send buffer),
311         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
312         /// `resume_read` of false carries no meaning, and should not cause any action.
313         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
314         /// Disconnect the socket pointed to by this SocketDescriptor.
315         ///
316         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
317         /// call (doing so is a noop).
318         fn disconnect_socket(&mut self);
319 }
320
321 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
322 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
323 /// descriptor.
324 #[derive(Clone)]
325 pub struct PeerHandleError { }
326 impl fmt::Debug for PeerHandleError {
327         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
328                 formatter.write_str("Peer Sent Invalid Data")
329         }
330 }
331 impl fmt::Display for PeerHandleError {
332         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
333                 formatter.write_str("Peer Sent Invalid Data")
334         }
335 }
336
337 #[cfg(feature = "std")]
338 impl error::Error for PeerHandleError {
339         fn description(&self) -> &str {
340                 "Peer Sent Invalid Data"
341         }
342 }
343
344 enum InitSyncTracker{
345         NoSyncRequested,
346         ChannelsSyncing(u64),
347         NodesSyncing(NodeId),
348 }
349
350 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
351 /// forwarding gossip messages to peers altogether.
352 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
353
354 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
355 /// we have fewer than this many messages in the outbound buffer again.
356 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
357 /// refilled as we send bytes.
358 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
359 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
360 /// the peer.
361 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
362
363 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
364 /// the socket receive buffer before receiving the ping.
365 ///
366 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
367 /// including any network delays, outbound traffic, or the same for messages from other peers.
368 ///
369 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
370 /// per connected peer to respond to a ping, as long as they send us at least one message during
371 /// each tick, ensuring we aren't actually just disconnected.
372 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
373 /// peer.
374 ///
375 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
376 /// two connected peers, assuming most LDK-running systems have at least two cores.
377 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
378
379 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
380 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
381 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
382 /// process before the next ping.
383 ///
384 /// Note that we continue responding to other messages even after we've sent this many messages, so
385 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
386 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
387 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
388
389 struct Peer {
390         channel_encryptor: PeerChannelEncryptor,
391         /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
392         /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
393         their_node_id: Option<(PublicKey, NodeId)>,
394         /// The features provided in the peer's [`msgs::Init`] message.
395         ///
396         /// This is set only after we've processed the [`msgs::Init`] message and called relevant
397         /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
398         /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
399         /// check this.
400         their_features: Option<InitFeatures>,
401         their_net_address: Option<NetAddress>,
402
403         pending_outbound_buffer: LinkedList<Vec<u8>>,
404         pending_outbound_buffer_first_msg_offset: usize,
405         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
406         /// prioritize channel messages over them.
407         ///
408         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
409         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
410         awaiting_write_event: bool,
411
412         pending_read_buffer: Vec<u8>,
413         pending_read_buffer_pos: usize,
414         pending_read_is_header: bool,
415
416         sync_status: InitSyncTracker,
417
418         msgs_sent_since_pong: usize,
419         awaiting_pong_timer_tick_intervals: i8,
420         received_message_since_timer_tick: bool,
421         sent_gossip_timestamp_filter: bool,
422
423         /// Indicates we've received a `channel_announcement` since the last time we had
424         /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
425         /// `channel_announcement` at all - we set this unconditionally but unset it every time we
426         /// check if we're gossip-processing-backlogged).
427         received_channel_announce_since_backlogged: bool,
428
429         inbound_connection: bool,
430 }
431
432 impl Peer {
433         /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
434         /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
435         /// normally.
436         fn handshake_complete(&self) -> bool {
437                 self.their_features.is_some()
438         }
439
440         /// Returns true if the channel announcements/updates for the given channel should be
441         /// forwarded to this peer.
442         /// If we are sending our routing table to this peer and we have not yet sent channel
443         /// announcements/updates for the given channel_id then we will send it when we get to that
444         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
445         /// sent the old versions, we should send the update, and so return true here.
446         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
447                 if !self.handshake_complete() { return false; }
448                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
449                         !self.sent_gossip_timestamp_filter {
450                                 return false;
451                         }
452                 match self.sync_status {
453                         InitSyncTracker::NoSyncRequested => true,
454                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
455                         InitSyncTracker::NodesSyncing(_) => true,
456                 }
457         }
458
459         /// Similar to the above, but for node announcements indexed by node_id.
460         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
461                 if !self.handshake_complete() { return false; }
462                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
463                         !self.sent_gossip_timestamp_filter {
464                                 return false;
465                         }
466                 match self.sync_status {
467                         InitSyncTracker::NoSyncRequested => true,
468                         InitSyncTracker::ChannelsSyncing(_) => false,
469                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
470                 }
471         }
472
473         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
474         /// buffer still has space and we don't need to pause reads to get some writes out.
475         fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
476                 if !gossip_processing_backlogged {
477                         self.received_channel_announce_since_backlogged = false;
478                 }
479                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
480                         (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
481         }
482
483         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
484         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
485         fn should_buffer_gossip_backfill(&self) -> bool {
486                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
487                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
488                         && self.handshake_complete()
489         }
490
491         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
492         /// every time the peer's buffer may have been drained.
493         fn should_buffer_onion_message(&self) -> bool {
494                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
495                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
496         }
497
498         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
499         /// buffer. This is checked every time the peer's buffer may have been drained.
500         fn should_buffer_gossip_broadcast(&self) -> bool {
501                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
502                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
503         }
504
505         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
506         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
507                 let total_outbound_buffered =
508                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
509
510                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
511                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
512         }
513
514         fn set_their_node_id(&mut self, node_id: PublicKey) {
515                 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
516         }
517 }
518
519 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
520 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
521 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
522 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
523 /// issues such as overly long function definitions.
524 ///
525 /// This is not exported to bindings users as `Arc`s don't make sense in bindings.
526 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler, Arc<KeysManager>>;
527
528 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
529 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
530 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
531 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
532 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
533 /// helps with issues such as long function definitions.
534 ///
535 /// This is not exported to bindings users as general type aliases don't make sense in bindings.
536 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>, &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler, &'c KeysManager>;
537
538 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
539 /// socket events into messages which it passes on to its [`MessageHandler`].
540 ///
541 /// Locks are taken internally, so you must never assume that reentrancy from a
542 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
543 ///
544 /// Calls to [`read_event`] will decode relevant messages and pass them to the
545 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
546 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
547 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
548 /// calls only after previous ones have returned.
549 ///
550 /// Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
551 /// a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
552 /// essentially you should default to using a [`SimpleRefPeerManager`], and use a
553 /// [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
554 /// you're using lightning-net-tokio.
555 ///
556 /// [`read_event`]: PeerManager::read_event
557 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
558                 CM::Target: ChannelMessageHandler,
559                 RM::Target: RoutingMessageHandler,
560                 OM::Target: OnionMessageHandler,
561                 L::Target: Logger,
562                 CMH::Target: CustomMessageHandler,
563                 NS::Target: NodeSigner {
564         message_handler: MessageHandler<CM, RM, OM>,
565         /// Connection state for each connected peer - we have an outer read-write lock which is taken
566         /// as read while we're doing processing for a peer and taken write when a peer is being added
567         /// or removed.
568         ///
569         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
570         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
571         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
572         /// the `MessageHandler`s for a given peer is already guaranteed.
573         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
574         /// Only add to this set when noise completes.
575         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
576         /// lock held. Entries may be added with only the `peers` read lock held (though the
577         /// `Descriptor` value must already exist in `peers`).
578         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
579         /// We can only have one thread processing events at once, but we don't usually need the full
580         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
581         /// `process_events`.
582         event_processing_lock: Mutex<()>,
583         /// Because event processing is global and always does all available work before returning,
584         /// there is no reason for us to have many event processors waiting on the lock at once.
585         /// Instead, we limit the total blocked event processors to always exactly one by setting this
586         /// when an event process call is waiting.
587         blocked_event_processors: AtomicBool,
588
589         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
590         /// value increases strictly since we don't assume access to a time source.
591         last_node_announcement_serial: AtomicU32,
592
593         ephemeral_key_midstate: Sha256Engine,
594         custom_message_handler: CMH,
595
596         peer_counter: AtomicCounter,
597
598         gossip_processing_backlogged: AtomicBool,
599         gossip_processing_backlog_lifted: AtomicBool,
600
601         node_signer: NS,
602
603         logger: L,
604         secp_ctx: Secp256k1<secp256k1::SignOnly>
605 }
606
607 enum MessageHandlingError {
608         PeerHandleError(PeerHandleError),
609         LightningError(LightningError),
610 }
611
612 impl From<PeerHandleError> for MessageHandlingError {
613         fn from(error: PeerHandleError) -> Self {
614                 MessageHandlingError::PeerHandleError(error)
615         }
616 }
617
618 impl From<LightningError> for MessageHandlingError {
619         fn from(error: LightningError) -> Self {
620                 MessageHandlingError::LightningError(error)
621         }
622 }
623
624 macro_rules! encode_msg {
625         ($msg: expr) => {{
626                 let mut buffer = VecWriter(Vec::new());
627                 wire::write($msg, &mut buffer).unwrap();
628                 buffer.0
629         }}
630 }
631
632 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
633                 CM::Target: ChannelMessageHandler,
634                 OM::Target: OnionMessageHandler,
635                 L::Target: Logger,
636                 NS::Target: NodeSigner {
637         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
638         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
639         /// ignored.
640         ///
641         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
642         /// cryptographically secure random bytes.
643         ///
644         /// `current_time` is used as an always-increasing counter that survives across restarts and is
645         /// incremented irregularly internally. In general it is best to simply use the current UNIX
646         /// timestamp, however if it is not available a persistent counter that increases once per
647         /// minute should suffice.
648         ///
649         /// This is not exported to bindings users as we can't export a PeerManager with a dummy route handler
650         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
651                 Self::new(MessageHandler {
652                         chan_handler: channel_message_handler,
653                         route_handler: IgnoringMessageHandler{},
654                         onion_message_handler,
655                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
656         }
657 }
658
659 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
660                 RM::Target: RoutingMessageHandler,
661                 L::Target: Logger,
662                 NS::Target: NodeSigner {
663         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
664         /// handler or onion message handler is used and onion and channel messages will be ignored (or
665         /// generate error messages). Note that some other lightning implementations time-out connections
666         /// after some time if no channel is built with the peer.
667         ///
668         /// `current_time` is used as an always-increasing counter that survives across restarts and is
669         /// incremented irregularly internally. In general it is best to simply use the current UNIX
670         /// timestamp, however if it is not available a persistent counter that increases once per
671         /// minute should suffice.
672         ///
673         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
674         /// cryptographically secure random bytes.
675         ///
676         /// This is not exported to bindings users as we can't export a PeerManager with a dummy channel handler
677         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
678                 Self::new(MessageHandler {
679                         chan_handler: ErroringMessageHandler::new(),
680                         route_handler: routing_message_handler,
681                         onion_message_handler: IgnoringMessageHandler{},
682                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
683         }
684 }
685
686 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
687 /// This works around `format!()` taking a reference to each argument, preventing
688 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
689 /// due to lifetime errors.
690 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
691 impl core::fmt::Display for OptionalFromDebugger<'_> {
692         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
693                 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
694         }
695 }
696
697 /// A function used to filter out local or private addresses
698 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
699 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
700 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
701         match ip_address{
702                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
703                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
704                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
705                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
706                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
707                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
708                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
709                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
710                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
711                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
712                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
713                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
714                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
715                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
716                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
717                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
718                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
719                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
720                 // For remaining addresses
721                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
722                 Some(..) => ip_address,
723                 None => None,
724         }
725 }
726
727 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
728                 CM::Target: ChannelMessageHandler,
729                 RM::Target: RoutingMessageHandler,
730                 OM::Target: OnionMessageHandler,
731                 L::Target: Logger,
732                 CMH::Target: CustomMessageHandler,
733                 NS::Target: NodeSigner
734 {
735         /// Constructs a new `PeerManager` with the given message handlers.
736         ///
737         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
738         /// cryptographically secure random bytes.
739         ///
740         /// `current_time` is used as an always-increasing counter that survives across restarts and is
741         /// incremented irregularly internally. In general it is best to simply use the current UNIX
742         /// timestamp, however if it is not available a persistent counter that increases once per
743         /// minute should suffice.
744         pub fn new(message_handler: MessageHandler<CM, RM, OM>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH, node_signer: NS) -> Self {
745                 let mut ephemeral_key_midstate = Sha256::engine();
746                 ephemeral_key_midstate.input(ephemeral_random_data);
747
748                 let mut secp_ctx = Secp256k1::signing_only();
749                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
750                 secp_ctx.seeded_randomize(&ephemeral_hash);
751
752                 PeerManager {
753                         message_handler,
754                         peers: FairRwLock::new(HashMap::new()),
755                         node_id_to_descriptor: Mutex::new(HashMap::new()),
756                         event_processing_lock: Mutex::new(()),
757                         blocked_event_processors: AtomicBool::new(false),
758                         ephemeral_key_midstate,
759                         peer_counter: AtomicCounter::new(),
760                         gossip_processing_backlogged: AtomicBool::new(false),
761                         gossip_processing_backlog_lifted: AtomicBool::new(false),
762                         last_node_announcement_serial: AtomicU32::new(current_time),
763                         logger,
764                         custom_message_handler,
765                         node_signer,
766                         secp_ctx,
767                 }
768         }
769
770         /// Get a list of tuples mapping from node id to network addresses for peers which have
771         /// completed the initial handshake.
772         ///
773         /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
774         /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
775         /// handshake has completed and we are sure the remote peer has the private key for the given
776         /// [`PublicKey`].
777         ///
778         /// The returned `Option`s will only be `Some` if an address had been previously given via
779         /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
780         pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<NetAddress>)> {
781                 let peers = self.peers.read().unwrap();
782                 peers.values().filter_map(|peer_mutex| {
783                         let p = peer_mutex.lock().unwrap();
784                         if !p.handshake_complete() {
785                                 return None;
786                         }
787                         Some((p.their_node_id.unwrap().0, p.their_net_address.clone()))
788                 }).collect()
789         }
790
791         fn get_ephemeral_key(&self) -> SecretKey {
792                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
793                 let counter = self.peer_counter.get_increment();
794                 ephemeral_hash.input(&counter.to_le_bytes());
795                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
796         }
797
798         /// Indicates a new outbound connection has been established to a node with the given `node_id`
799         /// and an optional remote network address.
800         ///
801         /// The remote network address adds the option to report a remote IP address back to a connecting
802         /// peer using the init message.
803         /// The user should pass the remote network address of the host they are connected to.
804         ///
805         /// If an `Err` is returned here you must disconnect the connection immediately.
806         ///
807         /// Returns a small number of bytes to send to the remote node (currently always 50).
808         ///
809         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
810         /// [`socket_disconnected`].
811         ///
812         /// [`socket_disconnected`]: PeerManager::socket_disconnected
813         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
814                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
815                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
816                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
817
818                 let mut peers = self.peers.write().unwrap();
819                 match peers.entry(descriptor) {
820                         hash_map::Entry::Occupied(_) => {
821                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
822                                 Err(PeerHandleError {})
823                         },
824                         hash_map::Entry::Vacant(e) => {
825                                 e.insert(Mutex::new(Peer {
826                                         channel_encryptor: peer_encryptor,
827                                         their_node_id: None,
828                                         their_features: None,
829                                         their_net_address: remote_network_address,
830
831                                         pending_outbound_buffer: LinkedList::new(),
832                                         pending_outbound_buffer_first_msg_offset: 0,
833                                         gossip_broadcast_buffer: LinkedList::new(),
834                                         awaiting_write_event: false,
835
836                                         pending_read_buffer,
837                                         pending_read_buffer_pos: 0,
838                                         pending_read_is_header: false,
839
840                                         sync_status: InitSyncTracker::NoSyncRequested,
841
842                                         msgs_sent_since_pong: 0,
843                                         awaiting_pong_timer_tick_intervals: 0,
844                                         received_message_since_timer_tick: false,
845                                         sent_gossip_timestamp_filter: false,
846
847                                         received_channel_announce_since_backlogged: false,
848                                         inbound_connection: false,
849                                 }));
850                                 Ok(res)
851                         }
852                 }
853         }
854
855         /// Indicates a new inbound connection has been established to a node with an optional remote
856         /// network address.
857         ///
858         /// The remote network address adds the option to report a remote IP address back to a connecting
859         /// peer using the init message.
860         /// The user should pass the remote network address of the host they are connected to.
861         ///
862         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
863         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
864         /// the connection immediately.
865         ///
866         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
867         /// [`socket_disconnected`].
868         ///
869         /// [`socket_disconnected`]: PeerManager::socket_disconnected
870         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
871                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
872                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
873
874                 let mut peers = self.peers.write().unwrap();
875                 match peers.entry(descriptor) {
876                         hash_map::Entry::Occupied(_) => {
877                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
878                                 Err(PeerHandleError {})
879                         },
880                         hash_map::Entry::Vacant(e) => {
881                                 e.insert(Mutex::new(Peer {
882                                         channel_encryptor: peer_encryptor,
883                                         their_node_id: None,
884                                         their_features: None,
885                                         their_net_address: remote_network_address,
886
887                                         pending_outbound_buffer: LinkedList::new(),
888                                         pending_outbound_buffer_first_msg_offset: 0,
889                                         gossip_broadcast_buffer: LinkedList::new(),
890                                         awaiting_write_event: false,
891
892                                         pending_read_buffer,
893                                         pending_read_buffer_pos: 0,
894                                         pending_read_is_header: false,
895
896                                         sync_status: InitSyncTracker::NoSyncRequested,
897
898                                         msgs_sent_since_pong: 0,
899                                         awaiting_pong_timer_tick_intervals: 0,
900                                         received_message_since_timer_tick: false,
901                                         sent_gossip_timestamp_filter: false,
902
903                                         received_channel_announce_since_backlogged: false,
904                                         inbound_connection: true,
905                                 }));
906                                 Ok(())
907                         }
908                 }
909         }
910
911         fn peer_should_read(&self, peer: &mut Peer) -> bool {
912                 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
913         }
914
915         fn update_gossip_backlogged(&self) {
916                 let new_state = self.message_handler.route_handler.processing_queue_high();
917                 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
918                 if prev_state && !new_state {
919                         self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
920                 }
921         }
922
923         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
924                 let mut have_written = false;
925                 while !peer.awaiting_write_event {
926                         if peer.should_buffer_onion_message() {
927                                 if let Some((peer_node_id, _)) = peer.their_node_id {
928                                         if let Some(next_onion_message) =
929                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
930                                                         self.enqueue_message(peer, &next_onion_message);
931                                         }
932                                 }
933                         }
934                         if peer.should_buffer_gossip_broadcast() {
935                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
936                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
937                                 }
938                         }
939                         if peer.should_buffer_gossip_backfill() {
940                                 match peer.sync_status {
941                                         InitSyncTracker::NoSyncRequested => {},
942                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
943                                                 if let Some((announce, update_a_option, update_b_option)) =
944                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
945                                                 {
946                                                         self.enqueue_message(peer, &announce);
947                                                         if let Some(update_a) = update_a_option {
948                                                                 self.enqueue_message(peer, &update_a);
949                                                         }
950                                                         if let Some(update_b) = update_b_option {
951                                                                 self.enqueue_message(peer, &update_b);
952                                                         }
953                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
954                                                 } else {
955                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
956                                                 }
957                                         },
958                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
959                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
960                                                         self.enqueue_message(peer, &msg);
961                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
962                                                 } else {
963                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
964                                                 }
965                                         },
966                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
967                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
968                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
969                                                         self.enqueue_message(peer, &msg);
970                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
971                                                 } else {
972                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
973                                                 }
974                                         },
975                                 }
976                         }
977                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
978                                 self.maybe_send_extra_ping(peer);
979                         }
980
981                         let should_read = self.peer_should_read(peer);
982                         let next_buff = match peer.pending_outbound_buffer.front() {
983                                 None => {
984                                         if force_one_write && !have_written {
985                                                 if should_read {
986                                                         let data_sent = descriptor.send_data(&[], should_read);
987                                                         debug_assert_eq!(data_sent, 0, "Can't write more than no data");
988                                                 }
989                                         }
990                                         return
991                                 },
992                                 Some(buff) => buff,
993                         };
994
995                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
996                         let data_sent = descriptor.send_data(pending, should_read);
997                         have_written = true;
998                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
999                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
1000                                 peer.pending_outbound_buffer_first_msg_offset = 0;
1001                                 peer.pending_outbound_buffer.pop_front();
1002                         } else {
1003                                 peer.awaiting_write_event = true;
1004                         }
1005                 }
1006         }
1007
1008         /// Indicates that there is room to write data to the given socket descriptor.
1009         ///
1010         /// May return an Err to indicate that the connection should be closed.
1011         ///
1012         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
1013         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
1014         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
1015         /// ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
1016         /// sufficient!
1017         ///
1018         /// [`send_data`]: SocketDescriptor::send_data
1019         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1020         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1021                 let peers = self.peers.read().unwrap();
1022                 match peers.get(descriptor) {
1023                         None => {
1024                                 // This is most likely a simple race condition where the user found that the socket
1025                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
1026                                 // this method. Return an error to make sure we get disconnected.
1027                                 return Err(PeerHandleError { });
1028                         },
1029                         Some(peer_mutex) => {
1030                                 let mut peer = peer_mutex.lock().unwrap();
1031                                 peer.awaiting_write_event = false;
1032                                 self.do_attempt_write_data(descriptor, &mut peer, false);
1033                         }
1034                 };
1035                 Ok(())
1036         }
1037
1038         /// Indicates that data was read from the given socket descriptor.
1039         ///
1040         /// May return an Err to indicate that the connection should be closed.
1041         ///
1042         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1043         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1044         /// [`send_data`] calls to handle responses.
1045         ///
1046         /// If `Ok(true)` is returned, further read_events should not be triggered until a
1047         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1048         /// send buffer).
1049         ///
1050         /// In order to avoid processing too many messages at once per peer, `data` should be on the
1051         /// order of 4KiB.
1052         ///
1053         /// [`send_data`]: SocketDescriptor::send_data
1054         /// [`process_events`]: PeerManager::process_events
1055         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1056                 match self.do_read_event(peer_descriptor, data) {
1057                         Ok(res) => Ok(res),
1058                         Err(e) => {
1059                                 log_trace!(self.logger, "Disconnecting peer due to a protocol error (usually a duplicate connection).");
1060                                 self.disconnect_event_internal(peer_descriptor);
1061                                 Err(e)
1062                         }
1063                 }
1064         }
1065
1066         /// Append a message to a peer's pending outbound/write buffer
1067         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1068                 if is_gossip_msg(message.type_id()) {
1069                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1070                 } else {
1071                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1072                 }
1073                 peer.msgs_sent_since_pong += 1;
1074                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1075         }
1076
1077         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1078         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1079                 peer.msgs_sent_since_pong += 1;
1080                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1081         }
1082
1083         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1084                 let mut pause_read = false;
1085                 let peers = self.peers.read().unwrap();
1086                 let mut msgs_to_forward = Vec::new();
1087                 let mut peer_node_id = None;
1088                 match peers.get(peer_descriptor) {
1089                         None => {
1090                                 // This is most likely a simple race condition where the user read some bytes
1091                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1092                                 // called this method. Return an error to make sure we get disconnected.
1093                                 return Err(PeerHandleError { });
1094                         },
1095                         Some(peer_mutex) => {
1096                                 let mut read_pos = 0;
1097                                 while read_pos < data.len() {
1098                                         macro_rules! try_potential_handleerror {
1099                                                 ($peer: expr, $thing: expr) => {
1100                                                         match $thing {
1101                                                                 Ok(x) => x,
1102                                                                 Err(e) => {
1103                                                                         match e.action {
1104                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1105                                                                                         //TODO: Try to push msg
1106                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1107                                                                                         return Err(PeerHandleError { });
1108                                                                                 },
1109                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1110                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1111                                                                                         continue
1112                                                                                 },
1113                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1114                                                                                 msgs::ErrorAction::IgnoreError => {
1115                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1116                                                                                         continue;
1117                                                                                 },
1118                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1119                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1120                                                                                         self.enqueue_message($peer, &msg);
1121                                                                                         continue;
1122                                                                                 },
1123                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1124                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1125                                                                                         self.enqueue_message($peer, &msg);
1126                                                                                         continue;
1127                                                                                 },
1128                                                                         }
1129                                                                 }
1130                                                         }
1131                                                 }
1132                                         }
1133
1134                                         let mut peer_lock = peer_mutex.lock().unwrap();
1135                                         let peer = &mut *peer_lock;
1136                                         let mut msg_to_handle = None;
1137                                         if peer_node_id.is_none() {
1138                                                 peer_node_id = peer.their_node_id.clone();
1139                                         }
1140
1141                                         assert!(peer.pending_read_buffer.len() > 0);
1142                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1143
1144                                         {
1145                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1146                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1147                                                 read_pos += data_to_copy;
1148                                                 peer.pending_read_buffer_pos += data_to_copy;
1149                                         }
1150
1151                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1152                                                 peer.pending_read_buffer_pos = 0;
1153
1154                                                 macro_rules! insert_node_id {
1155                                                         () => {
1156                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1157                                                                         hash_map::Entry::Occupied(e) => {
1158                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1159                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1160                                                                                 // Check that the peers map is consistent with the
1161                                                                                 // node_id_to_descriptor map, as this has been broken
1162                                                                                 // before.
1163                                                                                 debug_assert!(peers.get(e.get()).is_some());
1164                                                                                 return Err(PeerHandleError { })
1165                                                                         },
1166                                                                         hash_map::Entry::Vacant(entry) => {
1167                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1168                                                                                 entry.insert(peer_descriptor.clone())
1169                                                                         },
1170                                                                 };
1171                                                         }
1172                                                 }
1173
1174                                                 let next_step = peer.channel_encryptor.get_noise_step();
1175                                                 match next_step {
1176                                                         NextNoiseStep::ActOne => {
1177                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1178                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1179                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1180                                                                 peer.pending_outbound_buffer.push_back(act_two);
1181                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1182                                                         },
1183                                                         NextNoiseStep::ActTwo => {
1184                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1185                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1186                                                                                 &self.node_signer));
1187                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1188                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1189                                                                 peer.pending_read_is_header = true;
1190
1191                                                                 peer.set_their_node_id(their_node_id);
1192                                                                 insert_node_id!();
1193                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1194                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1195                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1196                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1197                                                                 self.enqueue_message(peer, &resp);
1198                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1199                                                         },
1200                                                         NextNoiseStep::ActThree => {
1201                                                                 let their_node_id = try_potential_handleerror!(peer,
1202                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1203                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1204                                                                 peer.pending_read_is_header = true;
1205                                                                 peer.set_their_node_id(their_node_id);
1206                                                                 insert_node_id!();
1207                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1208                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1209                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1210                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1211                                                                 self.enqueue_message(peer, &resp);
1212                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1213                                                         },
1214                                                         NextNoiseStep::NoiseComplete => {
1215                                                                 if peer.pending_read_is_header {
1216                                                                         let msg_len = try_potential_handleerror!(peer,
1217                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1218                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1219                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1220                                                                         if msg_len < 2 { // Need at least the message type tag
1221                                                                                 return Err(PeerHandleError { });
1222                                                                         }
1223                                                                         peer.pending_read_is_header = false;
1224                                                                 } else {
1225                                                                         let msg_data = try_potential_handleerror!(peer,
1226                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1227                                                                         assert!(msg_data.len() >= 2);
1228
1229                                                                         // Reset read buffer
1230                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1231                                                                         peer.pending_read_buffer.resize(18, 0);
1232                                                                         peer.pending_read_is_header = true;
1233
1234                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1235                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1236                                                                         let message = match message_result {
1237                                                                                 Ok(x) => x,
1238                                                                                 Err(e) => {
1239                                                                                         match e {
1240                                                                                                 // Note that to avoid recursion we never call
1241                                                                                                 // `do_attempt_write_data` from here, causing
1242                                                                                                 // the messages enqueued here to not actually
1243                                                                                                 // be sent before the peer is disconnected.
1244                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1245                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1246                                                                                                         continue;
1247                                                                                                 }
1248                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1249                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1250                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1251                                                                                                         continue;
1252                                                                                                 }
1253                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1254                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1255                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1256                                                                                                                 channel_id: [0; 32],
1257                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1258                                                                                                         });
1259                                                                                                         continue;
1260                                                                                                 }
1261                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1262                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1263                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1264                                                                                                         return Err(PeerHandleError { });
1265                                                                                                 }
1266                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1267                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1268                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1269                                                                                                         return Err(PeerHandleError { });
1270                                                                                                 }
1271                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1272                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1273                                                                                                         return Err(PeerHandleError { });
1274                                                                                                 }
1275                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1276                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1277                                                                                         }
1278                                                                                 }
1279                                                                         };
1280
1281                                                                         msg_to_handle = Some(message);
1282                                                                 }
1283                                                         }
1284                                                 }
1285                                         }
1286                                         pause_read = !self.peer_should_read(peer);
1287
1288                                         if let Some(message) = msg_to_handle {
1289                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1290                                                         Err(handling_error) => match handling_error {
1291                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1292                                                                 MessageHandlingError::LightningError(e) => {
1293                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1294                                                                 },
1295                                                         },
1296                                                         Ok(Some(msg)) => {
1297                                                                 msgs_to_forward.push(msg);
1298                                                         },
1299                                                         Ok(None) => {},
1300                                                 }
1301                                         }
1302                                 }
1303                         }
1304                 }
1305
1306                 for msg in msgs_to_forward.drain(..) {
1307                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1308                 }
1309
1310                 Ok(pause_read)
1311         }
1312
1313         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1314         /// Returns the message back if it needs to be broadcasted to all other peers.
1315         fn handle_message(
1316                 &self,
1317                 peer_mutex: &Mutex<Peer>,
1318                 mut peer_lock: MutexGuard<Peer>,
1319                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1320         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1321                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1322                 peer_lock.received_message_since_timer_tick = true;
1323
1324                 // Need an Init as first message
1325                 if let wire::Message::Init(msg) = message {
1326                         if msg.features.requires_unknown_bits() {
1327                                 log_debug!(self.logger, "Peer features required unknown version bits");
1328                                 return Err(PeerHandleError { }.into());
1329                         }
1330                         if peer_lock.their_features.is_some() {
1331                                 return Err(PeerHandleError { }.into());
1332                         }
1333
1334                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1335
1336                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1337                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1338                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1339                         }
1340
1341                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1342                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1343                                 return Err(PeerHandleError { }.into());
1344                         }
1345                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1346                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1347                                 return Err(PeerHandleError { }.into());
1348                         }
1349                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1350                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1351                                 return Err(PeerHandleError { }.into());
1352                         }
1353
1354                         peer_lock.their_features = Some(msg.features);
1355                         return Ok(None);
1356                 } else if peer_lock.their_features.is_none() {
1357                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1358                         return Err(PeerHandleError { }.into());
1359                 }
1360
1361                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1362                         // When supporting gossip messages, start inital gossip sync only after we receive
1363                         // a GossipTimestampFilter
1364                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1365                                 !peer_lock.sent_gossip_timestamp_filter {
1366                                 peer_lock.sent_gossip_timestamp_filter = true;
1367                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1368                         }
1369                         return Ok(None);
1370                 }
1371
1372                 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1373                         peer_lock.received_channel_announce_since_backlogged = true;
1374                 }
1375
1376                 mem::drop(peer_lock);
1377
1378                 if is_gossip_msg(message.type_id()) {
1379                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1380                 } else {
1381                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1382                 }
1383
1384                 let mut should_forward = None;
1385
1386                 match message {
1387                         // Setup and Control messages:
1388                         wire::Message::Init(_) => {
1389                                 // Handled above
1390                         },
1391                         wire::Message::GossipTimestampFilter(_) => {
1392                                 // Handled above
1393                         },
1394                         wire::Message::Error(msg) => {
1395                                 let mut data_is_printable = true;
1396                                 for b in msg.data.bytes() {
1397                                         if b < 32 || b > 126 {
1398                                                 data_is_printable = false;
1399                                                 break;
1400                                         }
1401                                 }
1402
1403                                 if data_is_printable {
1404                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1405                                 } else {
1406                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1407                                 }
1408                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1409                                 if msg.channel_id == [0; 32] {
1410                                         return Err(PeerHandleError { }.into());
1411                                 }
1412                         },
1413                         wire::Message::Warning(msg) => {
1414                                 let mut data_is_printable = true;
1415                                 for b in msg.data.bytes() {
1416                                         if b < 32 || b > 126 {
1417                                                 data_is_printable = false;
1418                                                 break;
1419                                         }
1420                                 }
1421
1422                                 if data_is_printable {
1423                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1424                                 } else {
1425                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1426                                 }
1427                         },
1428
1429                         wire::Message::Ping(msg) => {
1430                                 if msg.ponglen < 65532 {
1431                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1432                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1433                                 }
1434                         },
1435                         wire::Message::Pong(_msg) => {
1436                                 let mut peer_lock = peer_mutex.lock().unwrap();
1437                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1438                                 peer_lock.msgs_sent_since_pong = 0;
1439                         },
1440
1441                         // Channel messages:
1442                         wire::Message::OpenChannel(msg) => {
1443                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1444                         },
1445                         wire::Message::AcceptChannel(msg) => {
1446                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1447                         },
1448
1449                         wire::Message::FundingCreated(msg) => {
1450                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1451                         },
1452                         wire::Message::FundingSigned(msg) => {
1453                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1454                         },
1455                         wire::Message::ChannelReady(msg) => {
1456                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1457                         },
1458
1459                         wire::Message::Shutdown(msg) => {
1460                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1461                         },
1462                         wire::Message::ClosingSigned(msg) => {
1463                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1464                         },
1465
1466                         // Commitment messages:
1467                         wire::Message::UpdateAddHTLC(msg) => {
1468                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1469                         },
1470                         wire::Message::UpdateFulfillHTLC(msg) => {
1471                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1472                         },
1473                         wire::Message::UpdateFailHTLC(msg) => {
1474                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1475                         },
1476                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1477                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1478                         },
1479
1480                         wire::Message::CommitmentSigned(msg) => {
1481                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1482                         },
1483                         wire::Message::RevokeAndACK(msg) => {
1484                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1485                         },
1486                         wire::Message::UpdateFee(msg) => {
1487                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1488                         },
1489                         wire::Message::ChannelReestablish(msg) => {
1490                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1491                         },
1492
1493                         // Routing messages:
1494                         wire::Message::AnnouncementSignatures(msg) => {
1495                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1496                         },
1497                         wire::Message::ChannelAnnouncement(msg) => {
1498                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1499                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1500                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1501                                 }
1502                                 self.update_gossip_backlogged();
1503                         },
1504                         wire::Message::NodeAnnouncement(msg) => {
1505                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1506                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1507                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1508                                 }
1509                                 self.update_gossip_backlogged();
1510                         },
1511                         wire::Message::ChannelUpdate(msg) => {
1512                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1513                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1514                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1515                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1516                                 }
1517                                 self.update_gossip_backlogged();
1518                         },
1519                         wire::Message::QueryShortChannelIds(msg) => {
1520                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1521                         },
1522                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1523                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1524                         },
1525                         wire::Message::QueryChannelRange(msg) => {
1526                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1527                         },
1528                         wire::Message::ReplyChannelRange(msg) => {
1529                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1530                         },
1531
1532                         // Onion message:
1533                         wire::Message::OnionMessage(msg) => {
1534                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1535                         },
1536
1537                         // Unknown messages:
1538                         wire::Message::Unknown(type_id) if message.is_even() => {
1539                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1540                                 return Err(PeerHandleError { }.into());
1541                         },
1542                         wire::Message::Unknown(type_id) => {
1543                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1544                         },
1545                         wire::Message::Custom(custom) => {
1546                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1547                         },
1548                 };
1549                 Ok(should_forward)
1550         }
1551
1552         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1553                 match msg {
1554                         wire::Message::ChannelAnnouncement(ref msg) => {
1555                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1556                                 let encoded_msg = encode_msg!(msg);
1557
1558                                 for (_, peer_mutex) in peers.iter() {
1559                                         let mut peer = peer_mutex.lock().unwrap();
1560                                         if !peer.handshake_complete() ||
1561                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1562                                                 continue
1563                                         }
1564                                         debug_assert!(peer.their_node_id.is_some());
1565                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1566                                         if peer.buffer_full_drop_gossip_broadcast() {
1567                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1568                                                 continue;
1569                                         }
1570                                         if let Some((_, their_node_id)) = peer.their_node_id {
1571                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1572                                                         continue;
1573                                                 }
1574                                         }
1575                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1576                                                 continue;
1577                                         }
1578                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1579                                 }
1580                         },
1581                         wire::Message::NodeAnnouncement(ref msg) => {
1582                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1583                                 let encoded_msg = encode_msg!(msg);
1584
1585                                 for (_, peer_mutex) in peers.iter() {
1586                                         let mut peer = peer_mutex.lock().unwrap();
1587                                         if !peer.handshake_complete() ||
1588                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1589                                                 continue
1590                                         }
1591                                         debug_assert!(peer.their_node_id.is_some());
1592                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1593                                         if peer.buffer_full_drop_gossip_broadcast() {
1594                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1595                                                 continue;
1596                                         }
1597                                         if let Some((_, their_node_id)) = peer.their_node_id {
1598                                                 if their_node_id == msg.contents.node_id {
1599                                                         continue;
1600                                                 }
1601                                         }
1602                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1603                                                 continue;
1604                                         }
1605                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1606                                 }
1607                         },
1608                         wire::Message::ChannelUpdate(ref msg) => {
1609                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1610                                 let encoded_msg = encode_msg!(msg);
1611
1612                                 for (_, peer_mutex) in peers.iter() {
1613                                         let mut peer = peer_mutex.lock().unwrap();
1614                                         if !peer.handshake_complete() ||
1615                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1616                                                 continue
1617                                         }
1618                                         debug_assert!(peer.their_node_id.is_some());
1619                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1620                                         if peer.buffer_full_drop_gossip_broadcast() {
1621                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1622                                                 continue;
1623                                         }
1624                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1625                                                 continue;
1626                                         }
1627                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1628                                 }
1629                         },
1630                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1631                 }
1632         }
1633
1634         /// Checks for any events generated by our handlers and processes them. Includes sending most
1635         /// response messages as well as messages generated by calls to handler functions directly (eg
1636         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1637         ///
1638         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1639         /// issues!
1640         ///
1641         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1642         /// or one of the other clients provided in our language bindings.
1643         ///
1644         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1645         /// without doing any work. All available events that need handling will be handled before the
1646         /// other calls return.
1647         ///
1648         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1649         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1650         /// [`send_data`]: SocketDescriptor::send_data
1651         pub fn process_events(&self) {
1652                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1653                 if _single_processor_lock.is_err() {
1654                         // While we could wake the older sleeper here with a CV and make more even waiting
1655                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1656                         // count" goal.
1657                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1658                                 Err(val) => {
1659                                         debug_assert!(val, "compare_exchange failed spuriously?");
1660                                         return;
1661                                 },
1662                                 Ok(val) => {
1663                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1664                                         // We're the only waiter, as the running process_events may have emptied the
1665                                         // pending events "long" ago and there are new events for us to process, wait until
1666                                         // its done and process any leftover events before returning.
1667                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1668                                         self.blocked_event_processors.store(false, Ordering::Release);
1669                                 }
1670                         }
1671                 }
1672
1673                 self.update_gossip_backlogged();
1674                 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1675
1676                 let mut peers_to_disconnect = HashMap::new();
1677                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1678                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1679
1680                 {
1681                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1682                         // buffer by doing things like announcing channels on another node. We should be willing to
1683                         // drop optional-ish messages when send buffers get full!
1684
1685                         let peers_lock = self.peers.read().unwrap();
1686                         let peers = &*peers_lock;
1687                         macro_rules! get_peer_for_forwarding {
1688                                 ($node_id: expr) => {
1689                                         {
1690                                                 if peers_to_disconnect.get($node_id).is_some() {
1691                                                         // If we've "disconnected" this peer, do not send to it.
1692                                                         continue;
1693                                                 }
1694                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1695                                                 match descriptor_opt {
1696                                                         Some(descriptor) => match peers.get(&descriptor) {
1697                                                                 Some(peer_mutex) => {
1698                                                                         let peer_lock = peer_mutex.lock().unwrap();
1699                                                                         if !peer_lock.handshake_complete() {
1700                                                                                 continue;
1701                                                                         }
1702                                                                         peer_lock
1703                                                                 },
1704                                                                 None => {
1705                                                                         debug_assert!(false, "Inconsistent peers set state!");
1706                                                                         continue;
1707                                                                 }
1708                                                         },
1709                                                         None => {
1710                                                                 continue;
1711                                                         },
1712                                                 }
1713                                         }
1714                                 }
1715                         }
1716                         for event in events_generated.drain(..) {
1717                                 match event {
1718                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1719                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1720                                                                 log_pubkey!(node_id),
1721                                                                 log_bytes!(msg.temporary_channel_id));
1722                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1723                                         },
1724                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1725                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1726                                                                 log_pubkey!(node_id),
1727                                                                 log_bytes!(msg.temporary_channel_id));
1728                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1729                                         },
1730                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1731                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1732                                                                 log_pubkey!(node_id),
1733                                                                 log_bytes!(msg.temporary_channel_id),
1734                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1735                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1736                                                 // indicating to the wallet that they should just throw away this funding transaction
1737                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1738                                         },
1739                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1740                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1741                                                                 log_pubkey!(node_id),
1742                                                                 log_bytes!(msg.channel_id));
1743                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1744                                         },
1745                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1746                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1747                                                                 log_pubkey!(node_id),
1748                                                                 log_bytes!(msg.channel_id));
1749                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1750                                         },
1751                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1752                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1753                                                                 log_pubkey!(node_id),
1754                                                                 log_bytes!(msg.channel_id));
1755                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1756                                         },
1757                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1758                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1759                                                                 log_pubkey!(node_id),
1760                                                                 update_add_htlcs.len(),
1761                                                                 update_fulfill_htlcs.len(),
1762                                                                 update_fail_htlcs.len(),
1763                                                                 log_bytes!(commitment_signed.channel_id));
1764                                                 let mut peer = get_peer_for_forwarding!(node_id);
1765                                                 for msg in update_add_htlcs {
1766                                                         self.enqueue_message(&mut *peer, msg);
1767                                                 }
1768                                                 for msg in update_fulfill_htlcs {
1769                                                         self.enqueue_message(&mut *peer, msg);
1770                                                 }
1771                                                 for msg in update_fail_htlcs {
1772                                                         self.enqueue_message(&mut *peer, msg);
1773                                                 }
1774                                                 for msg in update_fail_malformed_htlcs {
1775                                                         self.enqueue_message(&mut *peer, msg);
1776                                                 }
1777                                                 if let &Some(ref msg) = update_fee {
1778                                                         self.enqueue_message(&mut *peer, msg);
1779                                                 }
1780                                                 self.enqueue_message(&mut *peer, commitment_signed);
1781                                         },
1782                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1783                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1784                                                                 log_pubkey!(node_id),
1785                                                                 log_bytes!(msg.channel_id));
1786                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1787                                         },
1788                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1789                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1790                                                                 log_pubkey!(node_id),
1791                                                                 log_bytes!(msg.channel_id));
1792                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1793                                         },
1794                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1795                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1796                                                                 log_pubkey!(node_id),
1797                                                                 log_bytes!(msg.channel_id));
1798                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1799                                         },
1800                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1801                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1802                                                                 log_pubkey!(node_id),
1803                                                                 log_bytes!(msg.channel_id));
1804                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1805                                         },
1806                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1807                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1808                                                                 log_pubkey!(node_id),
1809                                                                 msg.contents.short_channel_id);
1810                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1811                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1812                                         },
1813                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1814                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1815                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1816                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1817                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1818                                                         _ => {},
1819                                                 }
1820                                                 if let Some(msg) = update_msg {
1821                                                         match self.message_handler.route_handler.handle_channel_update(&msg) {
1822                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1823                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1824                                                                 _ => {},
1825                                                         }
1826                                                 }
1827                                         },
1828                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1829                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1830                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1831                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1832                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1833                                                         _ => {},
1834                                                 }
1835                                         },
1836                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1837                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
1838                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1839                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1840                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1841                                                         _ => {},
1842                                                 }
1843                                         },
1844                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1845                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1846                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1847                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1848                                         },
1849                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1850                                                 match *action {
1851                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1852                                                                 // We do not have the peers write lock, so we just store that we're
1853                                                                 // about to disconenct the peer and do it after we finish
1854                                                                 // processing most messages.
1855                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1856                                                         },
1857                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1858                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1859                                                         },
1860                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1861                                                         msgs::ErrorAction::IgnoreError => {
1862                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1863                                                         },
1864                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1865                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1866                                                                                 log_pubkey!(node_id),
1867                                                                                 msg.data);
1868                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1869                                                         },
1870                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1871                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1872                                                                                 log_pubkey!(node_id),
1873                                                                                 msg.data);
1874                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1875                                                         },
1876                                                 }
1877                                         },
1878                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1879                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1880                                         },
1881                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1882                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1883                                         }
1884                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1885                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1886                                                         log_pubkey!(node_id),
1887                                                         msg.short_channel_ids.len(),
1888                                                         msg.first_blocknum,
1889                                                         msg.number_of_blocks,
1890                                                         msg.sync_complete);
1891                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1892                                         }
1893                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1894                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1895                                         }
1896                                 }
1897                         }
1898
1899                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1900                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1901                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1902                         }
1903
1904                         for (descriptor, peer_mutex) in peers.iter() {
1905                                 let mut peer = peer_mutex.lock().unwrap();
1906                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
1907                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
1908                         }
1909                 }
1910                 if !peers_to_disconnect.is_empty() {
1911                         let mut peers_lock = self.peers.write().unwrap();
1912                         let peers = &mut *peers_lock;
1913                         for (node_id, msg) in peers_to_disconnect.drain() {
1914                                 // Note that since we are holding the peers *write* lock we can
1915                                 // remove from node_id_to_descriptor immediately (as no other
1916                                 // thread can be holding the peer lock if we have the global write
1917                                 // lock).
1918
1919                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1920                                 if let Some(mut descriptor) = descriptor_opt {
1921                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1922                                                 let mut peer = peer_mutex.lock().unwrap();
1923                                                 if let Some(msg) = msg {
1924                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1925                                                                         log_pubkey!(node_id),
1926                                                                         msg.data);
1927                                                         self.enqueue_message(&mut *peer, &msg);
1928                                                         // This isn't guaranteed to work, but if there is enough free
1929                                                         // room in the send buffer, put the error message there...
1930                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
1931                                                 }
1932                                                 self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
1933                                         } else { debug_assert!(false, "Missing connection for peer"); }
1934                                 }
1935                         }
1936                 }
1937         }
1938
1939         /// Indicates that the given socket descriptor's connection is now closed.
1940         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1941                 self.disconnect_event_internal(descriptor);
1942         }
1943
1944         fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
1945                 if !peer.handshake_complete() {
1946                         log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
1947                         descriptor.disconnect_socket();
1948                         return;
1949                 }
1950
1951                 debug_assert!(peer.their_node_id.is_some());
1952                 if let Some((node_id, _)) = peer.their_node_id {
1953                         log_trace!(self.logger, "Disconnecting peer with id {} due to {}", node_id, reason);
1954                         self.message_handler.chan_handler.peer_disconnected(&node_id);
1955                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
1956                 }
1957                 descriptor.disconnect_socket();
1958         }
1959
1960         fn disconnect_event_internal(&self, descriptor: &Descriptor) {
1961                 let mut peers = self.peers.write().unwrap();
1962                 let peer_option = peers.remove(descriptor);
1963                 match peer_option {
1964                         None => {
1965                                 // This is most likely a simple race condition where the user found that the socket
1966                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1967                                 // called this method. Either way we're disconnected, return.
1968                         },
1969                         Some(peer_lock) => {
1970                                 let peer = peer_lock.lock().unwrap();
1971                                 if let Some((node_id, _)) = peer.their_node_id {
1972                                         log_trace!(self.logger, "Handling disconnection of peer {}", log_pubkey!(node_id));
1973                                         let removed = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1974                                         debug_assert!(removed.is_some(), "descriptor maps should be consistent");
1975                                         if !peer.handshake_complete() { return; }
1976                                         self.message_handler.chan_handler.peer_disconnected(&node_id);
1977                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
1978                                 }
1979                         }
1980                 };
1981         }
1982
1983         /// Disconnect a peer given its node id.
1984         ///
1985         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1986         /// peer. Thus, be very careful about reentrancy issues.
1987         ///
1988         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1989         pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
1990                 let mut peers_lock = self.peers.write().unwrap();
1991                 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1992                         let peer_opt = peers_lock.remove(&descriptor);
1993                         if let Some(peer_mutex) = peer_opt {
1994                                 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
1995                         } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
1996                 }
1997         }
1998
1999         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
2000         /// an indication that TCP sockets have stalled even if we weren't around to time them out
2001         /// using regular ping/pongs.
2002         pub fn disconnect_all_peers(&self) {
2003                 let mut peers_lock = self.peers.write().unwrap();
2004                 self.node_id_to_descriptor.lock().unwrap().clear();
2005                 let peers = &mut *peers_lock;
2006                 for (descriptor, peer_mutex) in peers.drain() {
2007                         self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
2008                 }
2009         }
2010
2011         /// This is called when we're blocked on sending additional gossip messages until we receive a
2012         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
2013         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
2014         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
2015                 if peer.awaiting_pong_timer_tick_intervals == 0 {
2016                         peer.awaiting_pong_timer_tick_intervals = -1;
2017                         let ping = msgs::Ping {
2018                                 ponglen: 0,
2019                                 byteslen: 64,
2020                         };
2021                         self.enqueue_message(peer, &ping);
2022                 }
2023         }
2024
2025         /// Send pings to each peer and disconnect those which did not respond to the last round of
2026         /// pings.
2027         ///
2028         /// This may be called on any timescale you want, however, roughly once every ten seconds is
2029         /// preferred. The call rate determines both how often we send a ping to our peers and how much
2030         /// time they have to respond before we disconnect them.
2031         ///
2032         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2033         /// issues!
2034         ///
2035         /// [`send_data`]: SocketDescriptor::send_data
2036         pub fn timer_tick_occurred(&self) {
2037                 let mut descriptors_needing_disconnect = Vec::new();
2038                 {
2039                         let peers_lock = self.peers.read().unwrap();
2040
2041                         self.update_gossip_backlogged();
2042                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2043
2044                         for (descriptor, peer_mutex) in peers_lock.iter() {
2045                                 let mut peer = peer_mutex.lock().unwrap();
2046                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2047
2048                                 if !peer.handshake_complete() {
2049                                         // The peer needs to complete its handshake before we can exchange messages. We
2050                                         // give peers one timer tick to complete handshake, reusing
2051                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2052                                         // for handshake completion.
2053                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
2054                                                 descriptors_needing_disconnect.push(descriptor.clone());
2055                                         } else {
2056                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2057                                         }
2058                                         continue;
2059                                 }
2060                                 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2061                                 debug_assert!(peer.their_node_id.is_some());
2062
2063                                 loop { // Used as a `goto` to skip writing a Ping message.
2064                                         if peer.awaiting_pong_timer_tick_intervals == -1 {
2065                                                 // Magic value set in `maybe_send_extra_ping`.
2066                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2067                                                 peer.received_message_since_timer_tick = false;
2068                                                 break;
2069                                         }
2070
2071                                         if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2072                                                 || peer.awaiting_pong_timer_tick_intervals as u64 >
2073                                                         MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2074                                         {
2075                                                 descriptors_needing_disconnect.push(descriptor.clone());
2076                                                 break;
2077                                         }
2078                                         peer.received_message_since_timer_tick = false;
2079
2080                                         if peer.awaiting_pong_timer_tick_intervals > 0 {
2081                                                 peer.awaiting_pong_timer_tick_intervals += 1;
2082                                                 break;
2083                                         }
2084
2085                                         peer.awaiting_pong_timer_tick_intervals = 1;
2086                                         let ping = msgs::Ping {
2087                                                 ponglen: 0,
2088                                                 byteslen: 64,
2089                                         };
2090                                         self.enqueue_message(&mut *peer, &ping);
2091                                         break;
2092                                 }
2093                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2094                         }
2095                 }
2096
2097                 if !descriptors_needing_disconnect.is_empty() {
2098                         {
2099                                 let mut peers_lock = self.peers.write().unwrap();
2100                                 for descriptor in descriptors_needing_disconnect {
2101                                         if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2102                                                 let peer = peer_mutex.lock().unwrap();
2103                                                 if let Some((node_id, _)) = peer.their_node_id {
2104                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2105                                                 }
2106                                                 self.do_disconnect(descriptor, &*peer, "ping/handshake timeout");
2107                                         }
2108                                 }
2109                         }
2110                 }
2111         }
2112
2113         #[allow(dead_code)]
2114         // Messages of up to 64KB should never end up more than half full with addresses, as that would
2115         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2116         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2117         // message...
2118         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2119         #[deny(const_err)]
2120         #[allow(dead_code)]
2121         // ...by failing to compile if the number of addresses that would be half of a message is
2122         // smaller than 100:
2123         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2124
2125         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2126         /// peers. Note that peers will likely ignore this message unless we have at least one public
2127         /// channel which has at least six confirmations on-chain.
2128         ///
2129         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2130         /// node to humans. They carry no in-protocol meaning.
2131         ///
2132         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2133         /// accepts incoming connections. These will be included in the node_announcement, publicly
2134         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2135         /// addresses should likely contain only Tor Onion addresses.
2136         ///
2137         /// Panics if `addresses` is absurdly large (more than 100).
2138         ///
2139         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2140         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2141                 if addresses.len() > 100 {
2142                         panic!("More than half the message size was taken up by public addresses!");
2143                 }
2144
2145                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2146                 // addresses be sorted for future compatibility.
2147                 addresses.sort_by_key(|addr| addr.get_id());
2148
2149                 let features = self.message_handler.chan_handler.provided_node_features()
2150                         .or(self.message_handler.route_handler.provided_node_features())
2151                         .or(self.message_handler.onion_message_handler.provided_node_features());
2152                 let announcement = msgs::UnsignedNodeAnnouncement {
2153                         features,
2154                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2155                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2156                         rgb,
2157                         alias: NodeAlias(alias),
2158                         addresses,
2159                         excess_address_data: Vec::new(),
2160                         excess_data: Vec::new(),
2161                 };
2162                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2163                         msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2164                 ) {
2165                         Ok(sig) => sig,
2166                         Err(_) => {
2167                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2168                                 return;
2169                         },
2170                 };
2171
2172                 let msg = msgs::NodeAnnouncement {
2173                         signature: node_announce_sig,
2174                         contents: announcement
2175                 };
2176
2177                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2178                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2179                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2180         }
2181 }
2182
2183 fn is_gossip_msg(type_id: u16) -> bool {
2184         match type_id {
2185                 msgs::ChannelAnnouncement::TYPE |
2186                 msgs::ChannelUpdate::TYPE |
2187                 msgs::NodeAnnouncement::TYPE |
2188                 msgs::QueryChannelRange::TYPE |
2189                 msgs::ReplyChannelRange::TYPE |
2190                 msgs::QueryShortChannelIds::TYPE |
2191                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2192                 _ => false
2193         }
2194 }
2195
2196 #[cfg(test)]
2197 mod tests {
2198         use crate::chain::keysinterface::{NodeSigner, Recipient};
2199         use crate::events;
2200         use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2201         use crate::ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2202         use crate::ln::{msgs, wire};
2203         use crate::ln::msgs::NetAddress;
2204         use crate::util::test_utils;
2205
2206         use bitcoin::secp256k1::SecretKey;
2207
2208         use crate::prelude::*;
2209         use crate::sync::{Arc, Mutex};
2210         use core::sync::atomic::{AtomicBool, Ordering};
2211
2212         #[derive(Clone)]
2213         struct FileDescriptor {
2214                 fd: u16,
2215                 outbound_data: Arc<Mutex<Vec<u8>>>,
2216                 disconnect: Arc<AtomicBool>,
2217         }
2218         impl PartialEq for FileDescriptor {
2219                 fn eq(&self, other: &Self) -> bool {
2220                         self.fd == other.fd
2221                 }
2222         }
2223         impl Eq for FileDescriptor { }
2224         impl core::hash::Hash for FileDescriptor {
2225                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2226                         self.fd.hash(hasher)
2227                 }
2228         }
2229
2230         impl SocketDescriptor for FileDescriptor {
2231                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2232                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2233                         data.len()
2234                 }
2235
2236                 fn disconnect_socket(&mut self) { self.disconnect.store(true, Ordering::Release); }
2237         }
2238
2239         struct PeerManagerCfg {
2240                 chan_handler: test_utils::TestChannelMessageHandler,
2241                 routing_handler: test_utils::TestRoutingMessageHandler,
2242                 logger: test_utils::TestLogger,
2243                 node_signer: test_utils::TestNodeSigner,
2244         }
2245
2246         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2247                 let mut cfgs = Vec::new();
2248                 for i in 0..peer_count {
2249                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2250                         cfgs.push(
2251                                 PeerManagerCfg{
2252                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2253                                         logger: test_utils::TestLogger::new(),
2254                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2255                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2256                                 }
2257                         );
2258                 }
2259
2260                 cfgs
2261         }
2262
2263         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>> {
2264                 let mut peers = Vec::new();
2265                 for i in 0..peer_count {
2266                         let ephemeral_bytes = [i as u8; 32];
2267                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2268                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {}, &cfgs[i].node_signer);
2269                         peers.push(peer);
2270                 }
2271
2272                 peers
2273         }
2274
2275         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2276                 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2277                 let mut fd_a = FileDescriptor {
2278                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2279                         disconnect: Arc::new(AtomicBool::new(false)),
2280                 };
2281                 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2282                 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2283                 let mut fd_b = FileDescriptor {
2284                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2285                         disconnect: Arc::new(AtomicBool::new(false)),
2286                 };
2287                 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2288                 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2289                 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2290                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2291                 peer_a.process_events();
2292
2293                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2294                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2295
2296                 peer_b.process_events();
2297                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2298                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2299
2300                 peer_a.process_events();
2301                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2302                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2303
2304                 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2305                 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2306
2307                 (fd_a.clone(), fd_b.clone())
2308         }
2309
2310         #[test]
2311         #[cfg(feature = "std")]
2312         fn fuzz_threaded_connections() {
2313                 // Spawn two threads which repeatedly connect two peers together, leading to "got second
2314                 // connection with peer" disconnections and rapid reconnect. This previously found an issue
2315                 // with our internal map consistency, and is a generally good smoke test of disconnection.
2316                 let cfgs = Arc::new(create_peermgr_cfgs(2));
2317                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
2318                 let peers = Arc::new(create_network(2, unsafe { &*(&*cfgs as *const _) as &'static _ }));
2319
2320                 let start_time = std::time::Instant::now();
2321                 macro_rules! spawn_thread { ($id: expr) => { {
2322                         let peers = Arc::clone(&peers);
2323                         let cfgs = Arc::clone(&cfgs);
2324                         std::thread::spawn(move || {
2325                                 let mut ctr = 0;
2326                                 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2327                                         let id_a = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2328                                         let mut fd_a = FileDescriptor {
2329                                                 fd: $id  + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2330                                                 disconnect: Arc::new(AtomicBool::new(false)),
2331                                         };
2332                                         let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2333                                         let mut fd_b = FileDescriptor {
2334                                                 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2335                                                 disconnect: Arc::new(AtomicBool::new(false)),
2336                                         };
2337                                         let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2338                                         let initial_data = peers[1].new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2339                                         peers[0].new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2340                                         if peers[0].read_event(&mut fd_a, &initial_data).is_err() { break; }
2341
2342                                         while start_time.elapsed() < std::time::Duration::from_secs(1) {
2343                                                 peers[0].process_events();
2344                                                 if fd_a.disconnect.load(Ordering::Acquire) { break; }
2345                                                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2346                                                 if peers[1].read_event(&mut fd_b, &a_data).is_err() { break; }
2347
2348                                                 peers[1].process_events();
2349                                                 if fd_b.disconnect.load(Ordering::Acquire) { break; }
2350                                                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2351                                                 if peers[0].read_event(&mut fd_a, &b_data).is_err() { break; }
2352
2353                                                 cfgs[0].chan_handler.pending_events.lock().unwrap()
2354                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2355                                                                 node_id: peers[1].node_signer.get_node_id(Recipient::Node).unwrap(),
2356                                                                 msg: msgs::Shutdown {
2357                                                                         channel_id: [0; 32],
2358                                                                         scriptpubkey: bitcoin::Script::new(),
2359                                                                 },
2360                                                         });
2361                                                 cfgs[1].chan_handler.pending_events.lock().unwrap()
2362                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2363                                                                 node_id: peers[0].node_signer.get_node_id(Recipient::Node).unwrap(),
2364                                                                 msg: msgs::Shutdown {
2365                                                                         channel_id: [0; 32],
2366                                                                         scriptpubkey: bitcoin::Script::new(),
2367                                                                 },
2368                                                         });
2369
2370                                                 if ctr % 2 == 0 {
2371                                                         peers[0].timer_tick_occurred();
2372                                                         peers[1].timer_tick_occurred();
2373                                                 }
2374                                         }
2375
2376                                         peers[0].socket_disconnected(&fd_a);
2377                                         peers[1].socket_disconnected(&fd_b);
2378                                         ctr += 1;
2379                                         std::thread::sleep(std::time::Duration::from_micros(1));
2380                                 }
2381                         })
2382                 } } }
2383                 let thrd_a = spawn_thread!(1);
2384                 let thrd_b = spawn_thread!(2);
2385
2386                 thrd_a.join().unwrap();
2387                 thrd_b.join().unwrap();
2388         }
2389
2390         #[test]
2391         fn test_disconnect_peer() {
2392                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2393                 // push a DisconnectPeer event to remove the node flagged by id
2394                 let cfgs = create_peermgr_cfgs(2);
2395                 let peers = create_network(2, &cfgs);
2396                 establish_connection(&peers[0], &peers[1]);
2397                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2398
2399                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2400                 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2401                         node_id: their_id,
2402                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2403                 });
2404
2405                 peers[0].process_events();
2406                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2407         }
2408
2409         #[test]
2410         fn test_send_simple_msg() {
2411                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2412                 // push a message from one peer to another.
2413                 let cfgs = create_peermgr_cfgs(2);
2414                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2415                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2416                 let mut peers = create_network(2, &cfgs);
2417                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2418                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2419
2420                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2421
2422                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2423                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2424                         node_id: their_id, msg: msg.clone()
2425                 });
2426                 peers[0].message_handler.chan_handler = &a_chan_handler;
2427
2428                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2429                 peers[1].message_handler.chan_handler = &b_chan_handler;
2430
2431                 peers[0].process_events();
2432
2433                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2434                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2435         }
2436
2437         #[test]
2438         fn test_non_init_first_msg() {
2439                 // Simple test of the first message received over a connection being something other than
2440                 // Init. This results in an immediate disconnection, which previously included a spurious
2441                 // peer_disconnected event handed to event handlers (which would panic in
2442                 // `TestChannelMessageHandler` here).
2443                 let cfgs = create_peermgr_cfgs(2);
2444                 let peers = create_network(2, &cfgs);
2445
2446                 let mut fd_dup = FileDescriptor {
2447                         fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2448                         disconnect: Arc::new(AtomicBool::new(false)),
2449                 };
2450                 let addr_dup = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1003};
2451                 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2452                 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2453
2454                 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2455                 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2456                 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2457                 peers[0].process_events();
2458
2459                 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2460                 let (act_three, _) =
2461                         dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
2462                 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
2463
2464                 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
2465                 let msg_bytes = dup_encryptor.encrypt_message(&not_init_msg);
2466                 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
2467         }
2468
2469         #[test]
2470         fn test_disconnect_all_peer() {
2471                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2472                 // then calls disconnect_all_peers
2473                 let cfgs = create_peermgr_cfgs(2);
2474                 let peers = create_network(2, &cfgs);
2475                 establish_connection(&peers[0], &peers[1]);
2476                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2477
2478                 peers[0].disconnect_all_peers();
2479                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2480         }
2481
2482         #[test]
2483         fn test_timer_tick_occurred() {
2484                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2485                 let cfgs = create_peermgr_cfgs(2);
2486                 let peers = create_network(2, &cfgs);
2487                 establish_connection(&peers[0], &peers[1]);
2488                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2489
2490                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2491                 peers[0].timer_tick_occurred();
2492                 peers[0].process_events();
2493                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2494
2495                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2496                 peers[0].timer_tick_occurred();
2497                 peers[0].process_events();
2498                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2499         }
2500
2501         #[test]
2502         fn test_do_attempt_write_data() {
2503                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2504                 let cfgs = create_peermgr_cfgs(2);
2505                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2506                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2507                 let peers = create_network(2, &cfgs);
2508
2509                 // By calling establish_connect, we trigger do_attempt_write_data between
2510                 // the peers. Previously this function would mistakenly enter an infinite loop
2511                 // when there were more channel messages available than could fit into a peer's
2512                 // buffer. This issue would now be detected by this test (because we use custom
2513                 // RoutingMessageHandlers that intentionally return more channel messages
2514                 // than can fit into a peer's buffer).
2515                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2516
2517                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2518                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2519                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2520                         peers[1].process_events();
2521                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2522                         assert!(!a_read_data.is_empty());
2523
2524                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2525                         peers[0].process_events();
2526
2527                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2528                         assert!(!b_read_data.is_empty());
2529                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2530
2531                         peers[0].process_events();
2532                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2533                 }
2534
2535                 // Check that each peer has received the expected number of channel updates and channel
2536                 // announcements.
2537                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2538                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2539                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2540                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2541         }
2542
2543         #[test]
2544         fn test_handshake_timeout() {
2545                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2546                 // tick.
2547                 let cfgs = create_peermgr_cfgs(2);
2548                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2549                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2550                 let peers = create_network(2, &cfgs);
2551
2552                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2553                 let mut fd_a = FileDescriptor {
2554                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2555                         disconnect: Arc::new(AtomicBool::new(false)),
2556                 };
2557                 let mut fd_b = FileDescriptor {
2558                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2559                         disconnect: Arc::new(AtomicBool::new(false)),
2560                 };
2561                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2562                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2563
2564                 // If we get a single timer tick before completion, that's fine
2565                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2566                 peers[0].timer_tick_occurred();
2567                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2568
2569                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2570                 peers[0].process_events();
2571                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2572                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2573                 peers[1].process_events();
2574
2575                 // ...but if we get a second timer tick, we should disconnect the peer
2576                 peers[0].timer_tick_occurred();
2577                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2578
2579                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2580                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2581         }
2582
2583         #[test]
2584         fn test_filter_addresses(){
2585                 // Tests the filter_addresses function.
2586
2587                 // For (10/8)
2588                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2589                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2590                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2591                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2592                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2593                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2594
2595                 // For (0/8)
2596                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2597                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2598                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2599                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2600                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2601                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2602
2603                 // For (100.64/10)
2604                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2605                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2606                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2607                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2608                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2609                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2610
2611                 // For (127/8)
2612                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2613                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2614                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2615                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2616                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2617                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2618
2619                 // For (169.254/16)
2620                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2621                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2622                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2623                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2624                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2625                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2626
2627                 // For (172.16/12)
2628                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2629                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2630                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2631                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2632                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2633                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2634
2635                 // For (192.168/16)
2636                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2637                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2638                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2639                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2640                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2641                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2642
2643                 // For (192.88.99/24)
2644                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2645                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2646                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2647                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2648                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2649                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2650
2651                 // For other IPv4 addresses
2652                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2653                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2654                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2655                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2656                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2657                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2658
2659                 // For (2000::/3)
2660                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2661                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2662                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2663                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2664                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2665                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2666
2667                 // For other IPv6 addresses
2668                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2669                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2670                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2671                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2672                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2673                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2674
2675                 // For (None)
2676                 assert_eq!(filter_addresses(None), None);
2677         }
2678 }