Clean up at least some lifetimes on `SimpleRefPeerManager`
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::blockdata::constants::ChainHash;
19 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
20
21 use crate::sign::{KeysManager, NodeSigner, Recipient};
22 use crate::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
23 use crate::ln::ChannelId;
24 use crate::ln::features::{InitFeatures, NodeFeatures};
25 use crate::ln::msgs;
26 use crate::ln::msgs::{ChannelMessageHandler, LightningError, SocketAddress, OnionMessageHandler, RoutingMessageHandler};
27 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
28 use crate::util::ser::{VecWriter, Writeable, Writer};
29 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
30 use crate::ln::wire;
31 use crate::ln::wire::{Encode, Type};
32 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, OffersMessage, OffersMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
33 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId, NodeAlias};
34 use crate::util::atomic_counter::AtomicCounter;
35 use crate::util::logger::Logger;
36 use crate::util::string::PrintableString;
37
38 use crate::prelude::*;
39 use crate::io;
40 use alloc::collections::LinkedList;
41 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
42 use core::sync::atomic::{AtomicBool, AtomicU32, AtomicI32, Ordering};
43 use core::{cmp, hash, fmt, mem};
44 use core::ops::Deref;
45 use core::convert::Infallible;
46 #[cfg(feature = "std")] use std::error;
47
48 use bitcoin::hashes::sha256::Hash as Sha256;
49 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
50 use bitcoin::hashes::{HashEngine, Hash};
51
52 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
53 ///
54 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
55 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
56 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
57 ///
58 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
59 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
60 pub trait CustomMessageHandler: wire::CustomMessageReader {
61         /// Handles the given message sent from `sender_node_id`, possibly producing messages for
62         /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
63         /// to send.
64         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
65
66         /// Returns the list of pending messages that were generated by the handler, clearing the list
67         /// in the process. Each message is paired with the node id of the intended recipient. If no
68         /// connection to the node exists, then the message is simply not sent.
69         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
70
71         /// Gets the node feature flags which this handler itself supports. All available handlers are
72         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
73         /// which are broadcasted in our [`NodeAnnouncement`] message.
74         ///
75         /// [`NodeAnnouncement`]: crate::ln::msgs::NodeAnnouncement
76         fn provided_node_features(&self) -> NodeFeatures;
77
78         /// Gets the init feature flags which should be sent to the given peer. All available handlers
79         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
80         /// which are sent in our [`Init`] message.
81         ///
82         /// [`Init`]: crate::ln::msgs::Init
83         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
84 }
85
86 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
87 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
88 pub struct IgnoringMessageHandler{}
89 impl MessageSendEventsProvider for IgnoringMessageHandler {
90         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
91 }
92 impl RoutingMessageHandler for IgnoringMessageHandler {
93         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
94         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
95         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
96         fn get_next_channel_announcement(&self, _starting_point: u64) ->
97                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
98         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
99         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
100         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
101         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
102         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
103         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
104         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
105         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
106                 InitFeatures::empty()
107         }
108         fn processing_queue_high(&self) -> bool { false }
109 }
110 impl OnionMessageProvider for IgnoringMessageHandler {
111         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
112 }
113 impl OnionMessageHandler for IgnoringMessageHandler {
114         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
115         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
116         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
117         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
118         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
119                 InitFeatures::empty()
120         }
121 }
122 impl OffersMessageHandler for IgnoringMessageHandler {
123         fn handle_message(&self, _msg: OffersMessage) -> Option<OffersMessage> { None }
124 }
125 impl CustomOnionMessageHandler for IgnoringMessageHandler {
126         type CustomMessage = Infallible;
127         fn handle_custom_message(&self, _msg: Infallible) -> Option<Infallible> {
128                 // Since we always return `None` in the read the handle method should never be called.
129                 unreachable!();
130         }
131         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
132                 Ok(None)
133         }
134 }
135
136 impl CustomOnionMessageContents for Infallible {
137         fn tlv_type(&self) -> u64 { unreachable!(); }
138 }
139
140 impl Deref for IgnoringMessageHandler {
141         type Target = IgnoringMessageHandler;
142         fn deref(&self) -> &Self { self }
143 }
144
145 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
146 // method that takes self for it.
147 impl wire::Type for Infallible {
148         fn type_id(&self) -> u16 {
149                 unreachable!();
150         }
151 }
152 impl Writeable for Infallible {
153         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
154                 unreachable!();
155         }
156 }
157
158 impl wire::CustomMessageReader for IgnoringMessageHandler {
159         type CustomMessage = Infallible;
160         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
161                 Ok(None)
162         }
163 }
164
165 impl CustomMessageHandler for IgnoringMessageHandler {
166         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
167                 // Since we always return `None` in the read the handle method should never be called.
168                 unreachable!();
169         }
170
171         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
172
173         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
174
175         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
176                 InitFeatures::empty()
177         }
178 }
179
180 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
181 /// You can provide one of these as the route_handler in a MessageHandler.
182 pub struct ErroringMessageHandler {
183         message_queue: Mutex<Vec<MessageSendEvent>>
184 }
185 impl ErroringMessageHandler {
186         /// Constructs a new ErroringMessageHandler
187         pub fn new() -> Self {
188                 Self { message_queue: Mutex::new(Vec::new()) }
189         }
190         fn push_error(&self, node_id: &PublicKey, channel_id: ChannelId) {
191                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
192                         action: msgs::ErrorAction::SendErrorMessage {
193                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
194                         },
195                         node_id: node_id.clone(),
196                 });
197         }
198 }
199 impl MessageSendEventsProvider for ErroringMessageHandler {
200         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
201                 let mut res = Vec::new();
202                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
203                 res
204         }
205 }
206 impl ChannelMessageHandler for ErroringMessageHandler {
207         // Any messages which are related to a specific channel generate an error message to let the
208         // peer know we don't care about channels.
209         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
210                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
211         }
212         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
213                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
214         }
215         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
216                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
217         }
218         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
219                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
220         }
221         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
222                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
223         }
224         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
225                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
226         }
227         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
228                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
229         }
230         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
231                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
232         }
233         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
234                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
235         }
236         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
237                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
238         }
239         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
240                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
241         }
242         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
243                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
244         }
245         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
246                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
247         }
248         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
249                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
250         }
251         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
252                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
253         }
254         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
255                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
256         }
257         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
258         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
259         fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
260         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
261         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
262         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
263         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
264                 // Set a number of features which various nodes may require to talk to us. It's totally
265                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
266                 // channels.
267                 let mut features = InitFeatures::empty();
268                 features.set_data_loss_protect_optional();
269                 features.set_upfront_shutdown_script_optional();
270                 features.set_variable_length_onion_optional();
271                 features.set_static_remote_key_optional();
272                 features.set_payment_secret_optional();
273                 features.set_basic_mpp_optional();
274                 features.set_wumbo_optional();
275                 features.set_shutdown_any_segwit_optional();
276                 features.set_channel_type_optional();
277                 features.set_scid_privacy_optional();
278                 features.set_zero_conf_optional();
279                 features
280         }
281
282         fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
283                 // We don't enforce any chains upon peer connection for `ErroringMessageHandler` and leave it up
284                 // to users of `ErroringMessageHandler` to make decisions on network compatiblility.
285                 // There's not really any way to pull in specific networks here, and hardcoding can cause breakages.
286                 None
287         }
288
289         fn handle_open_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
290                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
291         }
292
293         fn handle_accept_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
294                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
295         }
296
297         fn handle_tx_add_input(&self, their_node_id: &PublicKey, msg: &msgs::TxAddInput) {
298                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
299         }
300
301         fn handle_tx_add_output(&self, their_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
302                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
303         }
304
305         fn handle_tx_remove_input(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
306                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
307         }
308
309         fn handle_tx_remove_output(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
310                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
311         }
312
313         fn handle_tx_complete(&self, their_node_id: &PublicKey, msg: &msgs::TxComplete) {
314                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
315         }
316
317         fn handle_tx_signatures(&self, their_node_id: &PublicKey, msg: &msgs::TxSignatures) {
318                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
319         }
320
321         fn handle_tx_init_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
322                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
323         }
324
325         fn handle_tx_ack_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
326                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
327         }
328
329         fn handle_tx_abort(&self, their_node_id: &PublicKey, msg: &msgs::TxAbort) {
330                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
331         }
332 }
333
334 impl Deref for ErroringMessageHandler {
335         type Target = ErroringMessageHandler;
336         fn deref(&self) -> &Self { self }
337 }
338
339 /// Provides references to trait impls which handle different types of messages.
340 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref, CustomM: Deref> where
341         CM::Target: ChannelMessageHandler,
342         RM::Target: RoutingMessageHandler,
343         OM::Target: OnionMessageHandler,
344         CustomM::Target: CustomMessageHandler,
345 {
346         /// A message handler which handles messages specific to channels. Usually this is just a
347         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
348         ///
349         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
350         pub chan_handler: CM,
351         /// A message handler which handles messages updating our knowledge of the network channel
352         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
353         ///
354         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
355         pub route_handler: RM,
356
357         /// A message handler which handles onion messages. This should generally be an
358         /// [`OnionMessenger`], but can also be an [`IgnoringMessageHandler`].
359         ///
360         /// [`OnionMessenger`]: crate::onion_message::OnionMessenger
361         pub onion_message_handler: OM,
362
363         /// A message handler which handles custom messages. The only LDK-provided implementation is
364         /// [`IgnoringMessageHandler`].
365         pub custom_message_handler: CustomM,
366 }
367
368 /// Provides an object which can be used to send data to and which uniquely identifies a connection
369 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
370 /// implement Hash to meet the PeerManager API.
371 ///
372 /// For efficiency, [`Clone`] should be relatively cheap for this type.
373 ///
374 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
375 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
376 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
377 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
378 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
379 /// to simply use another value which is guaranteed to be globally unique instead.
380 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
381         /// Attempts to send some data from the given slice to the peer.
382         ///
383         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
384         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
385         /// called and further write attempts may occur until that time.
386         ///
387         /// If the returned size is smaller than `data.len()`, a
388         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
389         /// written. Additionally, until a `send_data` event completes fully, no further
390         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
391         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
392         /// until then.
393         ///
394         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
395         /// (indicating that read events should be paused to prevent DoS in the send buffer),
396         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
397         /// `resume_read` of false carries no meaning, and should not cause any action.
398         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
399         /// Disconnect the socket pointed to by this SocketDescriptor.
400         ///
401         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
402         /// call (doing so is a noop).
403         fn disconnect_socket(&mut self);
404 }
405
406 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
407 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
408 /// descriptor.
409 #[derive(Clone)]
410 pub struct PeerHandleError { }
411 impl fmt::Debug for PeerHandleError {
412         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
413                 formatter.write_str("Peer Sent Invalid Data")
414         }
415 }
416 impl fmt::Display for PeerHandleError {
417         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
418                 formatter.write_str("Peer Sent Invalid Data")
419         }
420 }
421
422 #[cfg(feature = "std")]
423 impl error::Error for PeerHandleError {
424         fn description(&self) -> &str {
425                 "Peer Sent Invalid Data"
426         }
427 }
428
429 enum InitSyncTracker{
430         NoSyncRequested,
431         ChannelsSyncing(u64),
432         NodesSyncing(NodeId),
433 }
434
435 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
436 /// forwarding gossip messages to peers altogether.
437 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
438
439 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
440 /// we have fewer than this many messages in the outbound buffer again.
441 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
442 /// refilled as we send bytes.
443 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
444 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
445 /// the peer.
446 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
447
448 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
449 /// the socket receive buffer before receiving the ping.
450 ///
451 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
452 /// including any network delays, outbound traffic, or the same for messages from other peers.
453 ///
454 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
455 /// per connected peer to respond to a ping, as long as they send us at least one message during
456 /// each tick, ensuring we aren't actually just disconnected.
457 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
458 /// peer.
459 ///
460 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
461 /// two connected peers, assuming most LDK-running systems have at least two cores.
462 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
463
464 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
465 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
466 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
467 /// process before the next ping.
468 ///
469 /// Note that we continue responding to other messages even after we've sent this many messages, so
470 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
471 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
472 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
473
474 struct Peer {
475         channel_encryptor: PeerChannelEncryptor,
476         /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
477         /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
478         their_node_id: Option<(PublicKey, NodeId)>,
479         /// The features provided in the peer's [`msgs::Init`] message.
480         ///
481         /// This is set only after we've processed the [`msgs::Init`] message and called relevant
482         /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
483         /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
484         /// check this.
485         their_features: Option<InitFeatures>,
486         their_socket_address: Option<SocketAddress>,
487
488         pending_outbound_buffer: LinkedList<Vec<u8>>,
489         pending_outbound_buffer_first_msg_offset: usize,
490         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
491         /// prioritize channel messages over them.
492         ///
493         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
494         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
495         awaiting_write_event: bool,
496
497         pending_read_buffer: Vec<u8>,
498         pending_read_buffer_pos: usize,
499         pending_read_is_header: bool,
500
501         sync_status: InitSyncTracker,
502
503         msgs_sent_since_pong: usize,
504         awaiting_pong_timer_tick_intervals: i64,
505         received_message_since_timer_tick: bool,
506         sent_gossip_timestamp_filter: bool,
507
508         /// Indicates we've received a `channel_announcement` since the last time we had
509         /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
510         /// `channel_announcement` at all - we set this unconditionally but unset it every time we
511         /// check if we're gossip-processing-backlogged).
512         received_channel_announce_since_backlogged: bool,
513
514         inbound_connection: bool,
515 }
516
517 impl Peer {
518         /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
519         /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
520         /// normally.
521         fn handshake_complete(&self) -> bool {
522                 self.their_features.is_some()
523         }
524
525         /// Returns true if the channel announcements/updates for the given channel should be
526         /// forwarded to this peer.
527         /// If we are sending our routing table to this peer and we have not yet sent channel
528         /// announcements/updates for the given channel_id then we will send it when we get to that
529         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
530         /// sent the old versions, we should send the update, and so return true here.
531         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
532                 if !self.handshake_complete() { return false; }
533                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
534                         !self.sent_gossip_timestamp_filter {
535                                 return false;
536                         }
537                 match self.sync_status {
538                         InitSyncTracker::NoSyncRequested => true,
539                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
540                         InitSyncTracker::NodesSyncing(_) => true,
541                 }
542         }
543
544         /// Similar to the above, but for node announcements indexed by node_id.
545         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
546                 if !self.handshake_complete() { return false; }
547                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
548                         !self.sent_gossip_timestamp_filter {
549                                 return false;
550                         }
551                 match self.sync_status {
552                         InitSyncTracker::NoSyncRequested => true,
553                         InitSyncTracker::ChannelsSyncing(_) => false,
554                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
555                 }
556         }
557
558         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
559         /// buffer still has space and we don't need to pause reads to get some writes out.
560         fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
561                 if !gossip_processing_backlogged {
562                         self.received_channel_announce_since_backlogged = false;
563                 }
564                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
565                         (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
566         }
567
568         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
569         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
570         fn should_buffer_gossip_backfill(&self) -> bool {
571                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
572                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
573                         && self.handshake_complete()
574         }
575
576         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
577         /// every time the peer's buffer may have been drained.
578         fn should_buffer_onion_message(&self) -> bool {
579                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
580                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
581         }
582
583         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
584         /// buffer. This is checked every time the peer's buffer may have been drained.
585         fn should_buffer_gossip_broadcast(&self) -> bool {
586                 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
587                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
588         }
589
590         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
591         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
592                 let total_outbound_buffered =
593                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
594
595                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
596                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
597         }
598
599         fn set_their_node_id(&mut self, node_id: PublicKey) {
600                 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
601         }
602 }
603
604 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
605 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
606 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
607 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
608 /// issues such as overly long function definitions.
609 ///
610 /// This is not exported to bindings users as `Arc`s don't make sense in bindings.
611 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<
612         SD,
613         Arc<SimpleArcChannelManager<M, T, F, L>>,
614         Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, C, Arc<L>>>,
615         Arc<SimpleArcOnionMessenger<L>>,
616         Arc<L>,
617         IgnoringMessageHandler,
618         Arc<KeysManager>
619 >;
620
621 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
622 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
623 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
624 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
625 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
626 /// helps with issues such as long function definitions.
627 ///
628 /// This is not exported to bindings users as general type aliases don't make sense in bindings.
629 pub type SimpleRefPeerManager<
630         'a, 'b, 'c, 'd, 'e, 'f, 'logger, 'h, 'i, 'j, 'graph, SD, M, T, F, C, L
631 > = PeerManager<
632         SD,
633         &'j SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'graph, 'logger, 'i, M, T, F, L>,
634         &'f P2PGossipSync<&'graph NetworkGraph<&'logger L>, C, &'logger L>,
635         &'h SimpleRefOnionMessenger<'logger, 'i, 'j, L>,
636         &'logger L,
637         IgnoringMessageHandler,
638         &'c KeysManager
639 >;
640
641
642 /// A generic trait which is implemented for all [`PeerManager`]s. This makes bounding functions or
643 /// structs on any [`PeerManager`] much simpler as only this trait is needed as a bound, rather
644 /// than the full set of bounds on [`PeerManager`] itself.
645 ///
646 /// This is not exported to bindings users as general cover traits aren't useful in other
647 /// languages.
648 #[allow(missing_docs)]
649 pub trait APeerManager {
650         type Descriptor: SocketDescriptor;
651         type CMT: ChannelMessageHandler + ?Sized;
652         type CM: Deref<Target=Self::CMT>;
653         type RMT: RoutingMessageHandler + ?Sized;
654         type RM: Deref<Target=Self::RMT>;
655         type OMT: OnionMessageHandler + ?Sized;
656         type OM: Deref<Target=Self::OMT>;
657         type LT: Logger + ?Sized;
658         type L: Deref<Target=Self::LT>;
659         type CMHT: CustomMessageHandler + ?Sized;
660         type CMH: Deref<Target=Self::CMHT>;
661         type NST: NodeSigner + ?Sized;
662         type NS: Deref<Target=Self::NST>;
663         /// Gets a reference to the underlying [`PeerManager`].
664         fn as_ref(&self) -> &PeerManager<Self::Descriptor, Self::CM, Self::RM, Self::OM, Self::L, Self::CMH, Self::NS>;
665 }
666
667 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref>
668 APeerManager for PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
669         CM::Target: ChannelMessageHandler,
670         RM::Target: RoutingMessageHandler,
671         OM::Target: OnionMessageHandler,
672         L::Target: Logger,
673         CMH::Target: CustomMessageHandler,
674         NS::Target: NodeSigner,
675 {
676         type Descriptor = Descriptor;
677         type CMT = <CM as Deref>::Target;
678         type CM = CM;
679         type RMT = <RM as Deref>::Target;
680         type RM = RM;
681         type OMT = <OM as Deref>::Target;
682         type OM = OM;
683         type LT = <L as Deref>::Target;
684         type L = L;
685         type CMHT = <CMH as Deref>::Target;
686         type CMH = CMH;
687         type NST = <NS as Deref>::Target;
688         type NS = NS;
689         fn as_ref(&self) -> &PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> { self }
690 }
691
692 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
693 /// socket events into messages which it passes on to its [`MessageHandler`].
694 ///
695 /// Locks are taken internally, so you must never assume that reentrancy from a
696 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
697 ///
698 /// Calls to [`read_event`] will decode relevant messages and pass them to the
699 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
700 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
701 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
702 /// calls only after previous ones have returned.
703 ///
704 /// Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
705 /// a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
706 /// essentially you should default to using a [`SimpleRefPeerManager`], and use a
707 /// [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
708 /// you're using lightning-net-tokio.
709 ///
710 /// [`read_event`]: PeerManager::read_event
711 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
712                 CM::Target: ChannelMessageHandler,
713                 RM::Target: RoutingMessageHandler,
714                 OM::Target: OnionMessageHandler,
715                 L::Target: Logger,
716                 CMH::Target: CustomMessageHandler,
717                 NS::Target: NodeSigner {
718         message_handler: MessageHandler<CM, RM, OM, CMH>,
719         /// Connection state for each connected peer - we have an outer read-write lock which is taken
720         /// as read while we're doing processing for a peer and taken write when a peer is being added
721         /// or removed.
722         ///
723         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
724         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
725         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
726         /// the `MessageHandler`s for a given peer is already guaranteed.
727         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
728         /// Only add to this set when noise completes.
729         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
730         /// lock held. Entries may be added with only the `peers` read lock held (though the
731         /// `Descriptor` value must already exist in `peers`).
732         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
733         /// We can only have one thread processing events at once, but if a second call to
734         /// `process_events` happens while a first call is in progress, one of the two calls needs to
735         /// start from the top to ensure any new messages are also handled.
736         ///
737         /// Because the event handler calls into user code which may block, we don't want to block a
738         /// second thread waiting for another thread to handle events which is then blocked on user
739         /// code, so we store an atomic counter here:
740         ///  * 0 indicates no event processor is running
741         ///  * 1 indicates an event processor is running
742         ///  * > 1 indicates an event processor is running but needs to start again from the top once
743         ///        it finishes as another thread tried to start processing events but returned early.
744         event_processing_state: AtomicI32,
745
746         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
747         /// value increases strictly since we don't assume access to a time source.
748         last_node_announcement_serial: AtomicU32,
749
750         ephemeral_key_midstate: Sha256Engine,
751
752         peer_counter: AtomicCounter,
753
754         gossip_processing_backlogged: AtomicBool,
755         gossip_processing_backlog_lifted: AtomicBool,
756
757         node_signer: NS,
758
759         logger: L,
760         secp_ctx: Secp256k1<secp256k1::SignOnly>
761 }
762
763 enum MessageHandlingError {
764         PeerHandleError(PeerHandleError),
765         LightningError(LightningError),
766 }
767
768 impl From<PeerHandleError> for MessageHandlingError {
769         fn from(error: PeerHandleError) -> Self {
770                 MessageHandlingError::PeerHandleError(error)
771         }
772 }
773
774 impl From<LightningError> for MessageHandlingError {
775         fn from(error: LightningError) -> Self {
776                 MessageHandlingError::LightningError(error)
777         }
778 }
779
780 macro_rules! encode_msg {
781         ($msg: expr) => {{
782                 let mut buffer = VecWriter(Vec::new());
783                 wire::write($msg, &mut buffer).unwrap();
784                 buffer.0
785         }}
786 }
787
788 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
789                 CM::Target: ChannelMessageHandler,
790                 OM::Target: OnionMessageHandler,
791                 L::Target: Logger,
792                 NS::Target: NodeSigner {
793         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
794         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
795         /// ignored.
796         ///
797         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
798         /// cryptographically secure random bytes.
799         ///
800         /// `current_time` is used as an always-increasing counter that survives across restarts and is
801         /// incremented irregularly internally. In general it is best to simply use the current UNIX
802         /// timestamp, however if it is not available a persistent counter that increases once per
803         /// minute should suffice.
804         ///
805         /// This is not exported to bindings users as we can't export a PeerManager with a dummy route handler
806         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
807                 Self::new(MessageHandler {
808                         chan_handler: channel_message_handler,
809                         route_handler: IgnoringMessageHandler{},
810                         onion_message_handler,
811                         custom_message_handler: IgnoringMessageHandler{},
812                 }, current_time, ephemeral_random_data, logger, node_signer)
813         }
814 }
815
816 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
817                 RM::Target: RoutingMessageHandler,
818                 L::Target: Logger,
819                 NS::Target: NodeSigner {
820         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
821         /// handler or onion message handler is used and onion and channel messages will be ignored (or
822         /// generate error messages). Note that some other lightning implementations time-out connections
823         /// after some time if no channel is built with the peer.
824         ///
825         /// `current_time` is used as an always-increasing counter that survives across restarts and is
826         /// incremented irregularly internally. In general it is best to simply use the current UNIX
827         /// timestamp, however if it is not available a persistent counter that increases once per
828         /// minute should suffice.
829         ///
830         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
831         /// cryptographically secure random bytes.
832         ///
833         /// This is not exported to bindings users as we can't export a PeerManager with a dummy channel handler
834         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
835                 Self::new(MessageHandler {
836                         chan_handler: ErroringMessageHandler::new(),
837                         route_handler: routing_message_handler,
838                         onion_message_handler: IgnoringMessageHandler{},
839                         custom_message_handler: IgnoringMessageHandler{},
840                 }, current_time, ephemeral_random_data, logger, node_signer)
841         }
842 }
843
844 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
845 /// This works around `format!()` taking a reference to each argument, preventing
846 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
847 /// due to lifetime errors.
848 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
849 impl core::fmt::Display for OptionalFromDebugger<'_> {
850         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
851                 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
852         }
853 }
854
855 /// A function used to filter out local or private addresses
856 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
857 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
858 fn filter_addresses(ip_address: Option<SocketAddress>) -> Option<SocketAddress> {
859         match ip_address{
860                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
861                 Some(SocketAddress::TcpIpV4{addr: [10, _, _, _], port: _}) => None,
862                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
863                 Some(SocketAddress::TcpIpV4{addr: [0, _, _, _], port: _}) => None,
864                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
865                 Some(SocketAddress::TcpIpV4{addr: [100, 64..=127, _, _], port: _}) => None,
866                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
867                 Some(SocketAddress::TcpIpV4{addr: [127, _, _, _], port: _}) => None,
868                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
869                 Some(SocketAddress::TcpIpV4{addr: [169, 254, _, _], port: _}) => None,
870                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
871                 Some(SocketAddress::TcpIpV4{addr: [172, 16..=31, _, _], port: _}) => None,
872                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
873                 Some(SocketAddress::TcpIpV4{addr: [192, 168, _, _], port: _}) => None,
874                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
875                 Some(SocketAddress::TcpIpV4{addr: [192, 88, 99, _], port: _}) => None,
876                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
877                 Some(SocketAddress::TcpIpV6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
878                 // For remaining addresses
879                 Some(SocketAddress::TcpIpV6{addr: _, port: _}) => None,
880                 Some(..) => ip_address,
881                 None => None,
882         }
883 }
884
885 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
886                 CM::Target: ChannelMessageHandler,
887                 RM::Target: RoutingMessageHandler,
888                 OM::Target: OnionMessageHandler,
889                 L::Target: Logger,
890                 CMH::Target: CustomMessageHandler,
891                 NS::Target: NodeSigner
892 {
893         /// Constructs a new `PeerManager` with the given message handlers.
894         ///
895         /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
896         /// cryptographically secure random bytes.
897         ///
898         /// `current_time` is used as an always-increasing counter that survives across restarts and is
899         /// incremented irregularly internally. In general it is best to simply use the current UNIX
900         /// timestamp, however if it is not available a persistent counter that increases once per
901         /// minute should suffice.
902         pub fn new(message_handler: MessageHandler<CM, RM, OM, CMH>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
903                 let mut ephemeral_key_midstate = Sha256::engine();
904                 ephemeral_key_midstate.input(ephemeral_random_data);
905
906                 let mut secp_ctx = Secp256k1::signing_only();
907                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
908                 secp_ctx.seeded_randomize(&ephemeral_hash);
909
910                 PeerManager {
911                         message_handler,
912                         peers: FairRwLock::new(HashMap::new()),
913                         node_id_to_descriptor: Mutex::new(HashMap::new()),
914                         event_processing_state: AtomicI32::new(0),
915                         ephemeral_key_midstate,
916                         peer_counter: AtomicCounter::new(),
917                         gossip_processing_backlogged: AtomicBool::new(false),
918                         gossip_processing_backlog_lifted: AtomicBool::new(false),
919                         last_node_announcement_serial: AtomicU32::new(current_time),
920                         logger,
921                         node_signer,
922                         secp_ctx,
923                 }
924         }
925
926         /// Get a list of tuples mapping from node id to network addresses for peers which have
927         /// completed the initial handshake.
928         ///
929         /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
930         /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
931         /// handshake has completed and we are sure the remote peer has the private key for the given
932         /// [`PublicKey`].
933         ///
934         /// The returned `Option`s will only be `Some` if an address had been previously given via
935         /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
936         pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<SocketAddress>)> {
937                 let peers = self.peers.read().unwrap();
938                 peers.values().filter_map(|peer_mutex| {
939                         let p = peer_mutex.lock().unwrap();
940                         if !p.handshake_complete() {
941                                 return None;
942                         }
943                         Some((p.their_node_id.unwrap().0, p.their_socket_address.clone()))
944                 }).collect()
945         }
946
947         fn get_ephemeral_key(&self) -> SecretKey {
948                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
949                 let counter = self.peer_counter.get_increment();
950                 ephemeral_hash.input(&counter.to_le_bytes());
951                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
952         }
953
954         fn init_features(&self, their_node_id: &PublicKey) -> InitFeatures {
955                 self.message_handler.chan_handler.provided_init_features(their_node_id)
956                         | self.message_handler.route_handler.provided_init_features(their_node_id)
957                         | self.message_handler.onion_message_handler.provided_init_features(their_node_id)
958                         | self.message_handler.custom_message_handler.provided_init_features(their_node_id)
959         }
960
961         /// Indicates a new outbound connection has been established to a node with the given `node_id`
962         /// and an optional remote network address.
963         ///
964         /// The remote network address adds the option to report a remote IP address back to a connecting
965         /// peer using the init message.
966         /// The user should pass the remote network address of the host they are connected to.
967         ///
968         /// If an `Err` is returned here you must disconnect the connection immediately.
969         ///
970         /// Returns a small number of bytes to send to the remote node (currently always 50).
971         ///
972         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
973         /// [`socket_disconnected`].
974         ///
975         /// [`socket_disconnected`]: PeerManager::socket_disconnected
976         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<SocketAddress>) -> Result<Vec<u8>, PeerHandleError> {
977                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
978                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
979                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
980
981                 let mut peers = self.peers.write().unwrap();
982                 match peers.entry(descriptor) {
983                         hash_map::Entry::Occupied(_) => {
984                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
985                                 Err(PeerHandleError {})
986                         },
987                         hash_map::Entry::Vacant(e) => {
988                                 e.insert(Mutex::new(Peer {
989                                         channel_encryptor: peer_encryptor,
990                                         their_node_id: None,
991                                         their_features: None,
992                                         their_socket_address: remote_network_address,
993
994                                         pending_outbound_buffer: LinkedList::new(),
995                                         pending_outbound_buffer_first_msg_offset: 0,
996                                         gossip_broadcast_buffer: LinkedList::new(),
997                                         awaiting_write_event: false,
998
999                                         pending_read_buffer,
1000                                         pending_read_buffer_pos: 0,
1001                                         pending_read_is_header: false,
1002
1003                                         sync_status: InitSyncTracker::NoSyncRequested,
1004
1005                                         msgs_sent_since_pong: 0,
1006                                         awaiting_pong_timer_tick_intervals: 0,
1007                                         received_message_since_timer_tick: false,
1008                                         sent_gossip_timestamp_filter: false,
1009
1010                                         received_channel_announce_since_backlogged: false,
1011                                         inbound_connection: false,
1012                                 }));
1013                                 Ok(res)
1014                         }
1015                 }
1016         }
1017
1018         /// Indicates a new inbound connection has been established to a node with an optional remote
1019         /// network address.
1020         ///
1021         /// The remote network address adds the option to report a remote IP address back to a connecting
1022         /// peer using the init message.
1023         /// The user should pass the remote network address of the host they are connected to.
1024         ///
1025         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
1026         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
1027         /// the connection immediately.
1028         ///
1029         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
1030         /// [`socket_disconnected`].
1031         ///
1032         /// [`socket_disconnected`]: PeerManager::socket_disconnected
1033         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<SocketAddress>) -> Result<(), PeerHandleError> {
1034                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
1035                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
1036
1037                 let mut peers = self.peers.write().unwrap();
1038                 match peers.entry(descriptor) {
1039                         hash_map::Entry::Occupied(_) => {
1040                                 debug_assert!(false, "PeerManager driver duplicated descriptors!");
1041                                 Err(PeerHandleError {})
1042                         },
1043                         hash_map::Entry::Vacant(e) => {
1044                                 e.insert(Mutex::new(Peer {
1045                                         channel_encryptor: peer_encryptor,
1046                                         their_node_id: None,
1047                                         their_features: None,
1048                                         their_socket_address: remote_network_address,
1049
1050                                         pending_outbound_buffer: LinkedList::new(),
1051                                         pending_outbound_buffer_first_msg_offset: 0,
1052                                         gossip_broadcast_buffer: LinkedList::new(),
1053                                         awaiting_write_event: false,
1054
1055                                         pending_read_buffer,
1056                                         pending_read_buffer_pos: 0,
1057                                         pending_read_is_header: false,
1058
1059                                         sync_status: InitSyncTracker::NoSyncRequested,
1060
1061                                         msgs_sent_since_pong: 0,
1062                                         awaiting_pong_timer_tick_intervals: 0,
1063                                         received_message_since_timer_tick: false,
1064                                         sent_gossip_timestamp_filter: false,
1065
1066                                         received_channel_announce_since_backlogged: false,
1067                                         inbound_connection: true,
1068                                 }));
1069                                 Ok(())
1070                         }
1071                 }
1072         }
1073
1074         fn peer_should_read(&self, peer: &mut Peer) -> bool {
1075                 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
1076         }
1077
1078         fn update_gossip_backlogged(&self) {
1079                 let new_state = self.message_handler.route_handler.processing_queue_high();
1080                 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
1081                 if prev_state && !new_state {
1082                         self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
1083                 }
1084         }
1085
1086         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
1087                 let mut have_written = false;
1088                 while !peer.awaiting_write_event {
1089                         if peer.should_buffer_onion_message() {
1090                                 if let Some((peer_node_id, _)) = peer.their_node_id {
1091                                         if let Some(next_onion_message) =
1092                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
1093                                                         self.enqueue_message(peer, &next_onion_message);
1094                                         }
1095                                 }
1096                         }
1097                         if peer.should_buffer_gossip_broadcast() {
1098                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
1099                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
1100                                 }
1101                         }
1102                         if peer.should_buffer_gossip_backfill() {
1103                                 match peer.sync_status {
1104                                         InitSyncTracker::NoSyncRequested => {},
1105                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
1106                                                 if let Some((announce, update_a_option, update_b_option)) =
1107                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
1108                                                 {
1109                                                         self.enqueue_message(peer, &announce);
1110                                                         if let Some(update_a) = update_a_option {
1111                                                                 self.enqueue_message(peer, &update_a);
1112                                                         }
1113                                                         if let Some(update_b) = update_b_option {
1114                                                                 self.enqueue_message(peer, &update_b);
1115                                                         }
1116                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
1117                                                 } else {
1118                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
1119                                                 }
1120                                         },
1121                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
1122                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
1123                                                         self.enqueue_message(peer, &msg);
1124                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1125                                                 } else {
1126                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
1127                                                 }
1128                                         },
1129                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
1130                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
1131                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
1132                                                         self.enqueue_message(peer, &msg);
1133                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1134                                                 } else {
1135                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
1136                                                 }
1137                                         },
1138                                 }
1139                         }
1140                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
1141                                 self.maybe_send_extra_ping(peer);
1142                         }
1143
1144                         let should_read = self.peer_should_read(peer);
1145                         let next_buff = match peer.pending_outbound_buffer.front() {
1146                                 None => {
1147                                         if force_one_write && !have_written {
1148                                                 if should_read {
1149                                                         let data_sent = descriptor.send_data(&[], should_read);
1150                                                         debug_assert_eq!(data_sent, 0, "Can't write more than no data");
1151                                                 }
1152                                         }
1153                                         return
1154                                 },
1155                                 Some(buff) => buff,
1156                         };
1157
1158                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
1159                         let data_sent = descriptor.send_data(pending, should_read);
1160                         have_written = true;
1161                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
1162                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
1163                                 peer.pending_outbound_buffer_first_msg_offset = 0;
1164                                 peer.pending_outbound_buffer.pop_front();
1165                         } else {
1166                                 peer.awaiting_write_event = true;
1167                         }
1168                 }
1169         }
1170
1171         /// Indicates that there is room to write data to the given socket descriptor.
1172         ///
1173         /// May return an Err to indicate that the connection should be closed.
1174         ///
1175         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
1176         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
1177         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
1178         /// ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
1179         /// sufficient!
1180         ///
1181         /// [`send_data`]: SocketDescriptor::send_data
1182         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1183         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1184                 let peers = self.peers.read().unwrap();
1185                 match peers.get(descriptor) {
1186                         None => {
1187                                 // This is most likely a simple race condition where the user found that the socket
1188                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
1189                                 // this method. Return an error to make sure we get disconnected.
1190                                 return Err(PeerHandleError { });
1191                         },
1192                         Some(peer_mutex) => {
1193                                 let mut peer = peer_mutex.lock().unwrap();
1194                                 peer.awaiting_write_event = false;
1195                                 self.do_attempt_write_data(descriptor, &mut peer, false);
1196                         }
1197                 };
1198                 Ok(())
1199         }
1200
1201         /// Indicates that data was read from the given socket descriptor.
1202         ///
1203         /// May return an Err to indicate that the connection should be closed.
1204         ///
1205         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1206         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1207         /// [`send_data`] calls to handle responses.
1208         ///
1209         /// If `Ok(true)` is returned, further read_events should not be triggered until a
1210         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1211         /// send buffer).
1212         ///
1213         /// In order to avoid processing too many messages at once per peer, `data` should be on the
1214         /// order of 4KiB.
1215         ///
1216         /// [`send_data`]: SocketDescriptor::send_data
1217         /// [`process_events`]: PeerManager::process_events
1218         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1219                 match self.do_read_event(peer_descriptor, data) {
1220                         Ok(res) => Ok(res),
1221                         Err(e) => {
1222                                 log_trace!(self.logger, "Disconnecting peer due to a protocol error (usually a duplicate connection).");
1223                                 self.disconnect_event_internal(peer_descriptor);
1224                                 Err(e)
1225                         }
1226                 }
1227         }
1228
1229         /// Append a message to a peer's pending outbound/write buffer
1230         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1231                 if is_gossip_msg(message.type_id()) {
1232                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1233                 } else {
1234                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1235                 }
1236                 peer.msgs_sent_since_pong += 1;
1237                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1238         }
1239
1240         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1241         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1242                 peer.msgs_sent_since_pong += 1;
1243                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1244         }
1245
1246         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1247                 let mut pause_read = false;
1248                 let peers = self.peers.read().unwrap();
1249                 let mut msgs_to_forward = Vec::new();
1250                 let mut peer_node_id = None;
1251                 match peers.get(peer_descriptor) {
1252                         None => {
1253                                 // This is most likely a simple race condition where the user read some bytes
1254                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1255                                 // called this method. Return an error to make sure we get disconnected.
1256                                 return Err(PeerHandleError { });
1257                         },
1258                         Some(peer_mutex) => {
1259                                 let mut read_pos = 0;
1260                                 while read_pos < data.len() {
1261                                         macro_rules! try_potential_handleerror {
1262                                                 ($peer: expr, $thing: expr) => {
1263                                                         match $thing {
1264                                                                 Ok(x) => x,
1265                                                                 Err(e) => {
1266                                                                         match e.action {
1267                                                                                 msgs::ErrorAction::DisconnectPeer { .. } => {
1268                                                                                         // We may have an `ErrorMessage` to send to the peer,
1269                                                                                         // but writing to the socket while reading can lead to
1270                                                                                         // re-entrant code and possibly unexpected behavior. The
1271                                                                                         // message send is optimistic anyway, and in this case
1272                                                                                         // we immediately disconnect the peer.
1273                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1274                                                                                         return Err(PeerHandleError { });
1275                                                                                 },
1276                                                                                 msgs::ErrorAction::DisconnectPeerWithWarning { .. } => {
1277                                                                                         // We have a `WarningMessage` to send to the peer, but
1278                                                                                         // writing to the socket while reading can lead to
1279                                                                                         // re-entrant code and possibly unexpected behavior. The
1280                                                                                         // message send is optimistic anyway, and in this case
1281                                                                                         // we immediately disconnect the peer.
1282                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1283                                                                                         return Err(PeerHandleError { });
1284                                                                                 },
1285                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1286                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1287                                                                                         continue
1288                                                                                 },
1289                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1290                                                                                 msgs::ErrorAction::IgnoreError => {
1291                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1292                                                                                         continue;
1293                                                                                 },
1294                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1295                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1296                                                                                         self.enqueue_message($peer, &msg);
1297                                                                                         continue;
1298                                                                                 },
1299                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1300                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1301                                                                                         self.enqueue_message($peer, &msg);
1302                                                                                         continue;
1303                                                                                 },
1304                                                                         }
1305                                                                 }
1306                                                         }
1307                                                 }
1308                                         }
1309
1310                                         let mut peer_lock = peer_mutex.lock().unwrap();
1311                                         let peer = &mut *peer_lock;
1312                                         let mut msg_to_handle = None;
1313                                         if peer_node_id.is_none() {
1314                                                 peer_node_id = peer.their_node_id.clone();
1315                                         }
1316
1317                                         assert!(peer.pending_read_buffer.len() > 0);
1318                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1319
1320                                         {
1321                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1322                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1323                                                 read_pos += data_to_copy;
1324                                                 peer.pending_read_buffer_pos += data_to_copy;
1325                                         }
1326
1327                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1328                                                 peer.pending_read_buffer_pos = 0;
1329
1330                                                 macro_rules! insert_node_id {
1331                                                         () => {
1332                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1333                                                                         hash_map::Entry::Occupied(e) => {
1334                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1335                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1336                                                                                 // Check that the peers map is consistent with the
1337                                                                                 // node_id_to_descriptor map, as this has been broken
1338                                                                                 // before.
1339                                                                                 debug_assert!(peers.get(e.get()).is_some());
1340                                                                                 return Err(PeerHandleError { })
1341                                                                         },
1342                                                                         hash_map::Entry::Vacant(entry) => {
1343                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1344                                                                                 entry.insert(peer_descriptor.clone())
1345                                                                         },
1346                                                                 };
1347                                                         }
1348                                                 }
1349
1350                                                 let next_step = peer.channel_encryptor.get_noise_step();
1351                                                 match next_step {
1352                                                         NextNoiseStep::ActOne => {
1353                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1354                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1355                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1356                                                                 peer.pending_outbound_buffer.push_back(act_two);
1357                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1358                                                         },
1359                                                         NextNoiseStep::ActTwo => {
1360                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1361                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1362                                                                                 &self.node_signer));
1363                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1364                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1365                                                                 peer.pending_read_is_header = true;
1366
1367                                                                 peer.set_their_node_id(their_node_id);
1368                                                                 insert_node_id!();
1369                                                                 let features = self.init_features(&their_node_id);
1370                                                                 let networks = self.message_handler.chan_handler.get_genesis_hashes();
1371                                                                 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_socket_address.clone()) };
1372                                                                 self.enqueue_message(peer, &resp);
1373                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1374                                                         },
1375                                                         NextNoiseStep::ActThree => {
1376                                                                 let their_node_id = try_potential_handleerror!(peer,
1377                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1378                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1379                                                                 peer.pending_read_is_header = true;
1380                                                                 peer.set_their_node_id(their_node_id);
1381                                                                 insert_node_id!();
1382                                                                 let features = self.init_features(&their_node_id);
1383                                                                 let networks = self.message_handler.chan_handler.get_genesis_hashes();
1384                                                                 let resp = msgs::Init { features, networks, remote_network_address: filter_addresses(peer.their_socket_address.clone()) };
1385                                                                 self.enqueue_message(peer, &resp);
1386                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1387                                                         },
1388                                                         NextNoiseStep::NoiseComplete => {
1389                                                                 if peer.pending_read_is_header {
1390                                                                         let msg_len = try_potential_handleerror!(peer,
1391                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1392                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1393                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1394                                                                         if msg_len < 2 { // Need at least the message type tag
1395                                                                                 return Err(PeerHandleError { });
1396                                                                         }
1397                                                                         peer.pending_read_is_header = false;
1398                                                                 } else {
1399                                                                         let msg_data = try_potential_handleerror!(peer,
1400                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1401                                                                         assert!(msg_data.len() >= 2);
1402
1403                                                                         // Reset read buffer
1404                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1405                                                                         peer.pending_read_buffer.resize(18, 0);
1406                                                                         peer.pending_read_is_header = true;
1407
1408                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1409                                                                         let message_result = wire::read(&mut reader, &*self.message_handler.custom_message_handler);
1410                                                                         let message = match message_result {
1411                                                                                 Ok(x) => x,
1412                                                                                 Err(e) => {
1413                                                                                         match e {
1414                                                                                                 // Note that to avoid re-entrancy we never call
1415                                                                                                 // `do_attempt_write_data` from here, causing
1416                                                                                                 // the messages enqueued here to not actually
1417                                                                                                 // be sent before the peer is disconnected.
1418                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1419                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1420                                                                                                         continue;
1421                                                                                                 }
1422                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1423                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1424                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: ChannelId::new_zero(), data: "Unsupported message compression: zlib".to_owned() });
1425                                                                                                         continue;
1426                                                                                                 }
1427                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1428                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1429                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1430                                                                                                                 channel_id: ChannelId::new_zero(),
1431                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1432                                                                                                         });
1433                                                                                                         continue;
1434                                                                                                 }
1435                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, _) => {
1436                                                                                                         log_debug!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1437                                                                                                         return Err(PeerHandleError { });
1438                                                                                                 }
1439                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1440                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1441                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1442                                                                                                         return Err(PeerHandleError { });
1443                                                                                                 }
1444                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1445                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1446                                                                                                         return Err(PeerHandleError { });
1447                                                                                                 }
1448                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1449                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1450                                                                                         }
1451                                                                                 }
1452                                                                         };
1453
1454                                                                         msg_to_handle = Some(message);
1455                                                                 }
1456                                                         }
1457                                                 }
1458                                         }
1459                                         pause_read = !self.peer_should_read(peer);
1460
1461                                         if let Some(message) = msg_to_handle {
1462                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1463                                                         Err(handling_error) => match handling_error {
1464                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1465                                                                 MessageHandlingError::LightningError(e) => {
1466                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1467                                                                 },
1468                                                         },
1469                                                         Ok(Some(msg)) => {
1470                                                                 msgs_to_forward.push(msg);
1471                                                         },
1472                                                         Ok(None) => {},
1473                                                 }
1474                                         }
1475                                 }
1476                         }
1477                 }
1478
1479                 for msg in msgs_to_forward.drain(..) {
1480                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1481                 }
1482
1483                 Ok(pause_read)
1484         }
1485
1486         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1487         /// Returns the message back if it needs to be broadcasted to all other peers.
1488         fn handle_message(
1489                 &self,
1490                 peer_mutex: &Mutex<Peer>,
1491                 mut peer_lock: MutexGuard<Peer>,
1492                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1493         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1494                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1495                 peer_lock.received_message_since_timer_tick = true;
1496
1497                 // Need an Init as first message
1498                 if let wire::Message::Init(msg) = message {
1499                         // Check if we have any compatible chains if the `networks` field is specified.
1500                         if let Some(networks) = &msg.networks {
1501                                 if let Some(our_chains) = self.message_handler.chan_handler.get_genesis_hashes() {
1502                                         let mut have_compatible_chains = false;
1503                                         'our_chains: for our_chain in our_chains.iter() {
1504                                                 for their_chain in networks {
1505                                                         if our_chain == their_chain {
1506                                                                 have_compatible_chains = true;
1507                                                                 break 'our_chains;
1508                                                         }
1509                                                 }
1510                                         }
1511                                         if !have_compatible_chains {
1512                                                 log_debug!(self.logger, "Peer does not support any of our supported chains");
1513                                                 return Err(PeerHandleError { }.into());
1514                                         }
1515                                 }
1516                         }
1517
1518                         let our_features = self.init_features(&their_node_id);
1519                         if msg.features.requires_unknown_bits_from(&our_features) {
1520                                 log_debug!(self.logger, "Peer requires features unknown to us");
1521                                 return Err(PeerHandleError { }.into());
1522                         }
1523
1524                         if our_features.requires_unknown_bits_from(&msg.features) {
1525                                 log_debug!(self.logger, "We require features unknown to our peer");
1526                                 return Err(PeerHandleError { }.into());
1527                         }
1528
1529                         if peer_lock.their_features.is_some() {
1530                                 return Err(PeerHandleError { }.into());
1531                         }
1532
1533                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1534
1535                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1536                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1537                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1538                         }
1539
1540                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1541                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1542                                 return Err(PeerHandleError { }.into());
1543                         }
1544                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1545                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1546                                 return Err(PeerHandleError { }.into());
1547                         }
1548                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1549                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1550                                 return Err(PeerHandleError { }.into());
1551                         }
1552
1553                         peer_lock.their_features = Some(msg.features);
1554                         return Ok(None);
1555                 } else if peer_lock.their_features.is_none() {
1556                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1557                         return Err(PeerHandleError { }.into());
1558                 }
1559
1560                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1561                         // When supporting gossip messages, start inital gossip sync only after we receive
1562                         // a GossipTimestampFilter
1563                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1564                                 !peer_lock.sent_gossip_timestamp_filter {
1565                                 peer_lock.sent_gossip_timestamp_filter = true;
1566                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1567                         }
1568                         return Ok(None);
1569                 }
1570
1571                 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1572                         peer_lock.received_channel_announce_since_backlogged = true;
1573                 }
1574
1575                 mem::drop(peer_lock);
1576
1577                 if is_gossip_msg(message.type_id()) {
1578                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1579                 } else {
1580                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1581                 }
1582
1583                 let mut should_forward = None;
1584
1585                 match message {
1586                         // Setup and Control messages:
1587                         wire::Message::Init(_) => {
1588                                 // Handled above
1589                         },
1590                         wire::Message::GossipTimestampFilter(_) => {
1591                                 // Handled above
1592                         },
1593                         wire::Message::Error(msg) => {
1594                                 log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1595                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1596                                 if msg.channel_id.is_zero() {
1597                                         return Err(PeerHandleError { }.into());
1598                                 }
1599                         },
1600                         wire::Message::Warning(msg) => {
1601                                 log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), PrintableString(&msg.data));
1602                         },
1603
1604                         wire::Message::Ping(msg) => {
1605                                 if msg.ponglen < 65532 {
1606                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1607                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1608                                 }
1609                         },
1610                         wire::Message::Pong(_msg) => {
1611                                 let mut peer_lock = peer_mutex.lock().unwrap();
1612                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1613                                 peer_lock.msgs_sent_since_pong = 0;
1614                         },
1615
1616                         // Channel messages:
1617                         wire::Message::OpenChannel(msg) => {
1618                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1619                         },
1620                         wire::Message::OpenChannelV2(msg) => {
1621                                 self.message_handler.chan_handler.handle_open_channel_v2(&their_node_id, &msg);
1622                         },
1623                         wire::Message::AcceptChannel(msg) => {
1624                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1625                         },
1626                         wire::Message::AcceptChannelV2(msg) => {
1627                                 self.message_handler.chan_handler.handle_accept_channel_v2(&their_node_id, &msg);
1628                         },
1629
1630                         wire::Message::FundingCreated(msg) => {
1631                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1632                         },
1633                         wire::Message::FundingSigned(msg) => {
1634                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1635                         },
1636                         wire::Message::ChannelReady(msg) => {
1637                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1638                         },
1639
1640                         // Interactive transaction construction messages:
1641                         wire::Message::TxAddInput(msg) => {
1642                                 self.message_handler.chan_handler.handle_tx_add_input(&their_node_id, &msg);
1643                         },
1644                         wire::Message::TxAddOutput(msg) => {
1645                                 self.message_handler.chan_handler.handle_tx_add_output(&their_node_id, &msg);
1646                         },
1647                         wire::Message::TxRemoveInput(msg) => {
1648                                 self.message_handler.chan_handler.handle_tx_remove_input(&their_node_id, &msg);
1649                         },
1650                         wire::Message::TxRemoveOutput(msg) => {
1651                                 self.message_handler.chan_handler.handle_tx_remove_output(&their_node_id, &msg);
1652                         },
1653                         wire::Message::TxComplete(msg) => {
1654                                 self.message_handler.chan_handler.handle_tx_complete(&their_node_id, &msg);
1655                         },
1656                         wire::Message::TxSignatures(msg) => {
1657                                 self.message_handler.chan_handler.handle_tx_signatures(&their_node_id, &msg);
1658                         },
1659                         wire::Message::TxInitRbf(msg) => {
1660                                 self.message_handler.chan_handler.handle_tx_init_rbf(&their_node_id, &msg);
1661                         },
1662                         wire::Message::TxAckRbf(msg) => {
1663                                 self.message_handler.chan_handler.handle_tx_ack_rbf(&their_node_id, &msg);
1664                         },
1665                         wire::Message::TxAbort(msg) => {
1666                                 self.message_handler.chan_handler.handle_tx_abort(&their_node_id, &msg);
1667                         }
1668
1669                         wire::Message::Shutdown(msg) => {
1670                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1671                         },
1672                         wire::Message::ClosingSigned(msg) => {
1673                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1674                         },
1675
1676                         // Commitment messages:
1677                         wire::Message::UpdateAddHTLC(msg) => {
1678                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1679                         },
1680                         wire::Message::UpdateFulfillHTLC(msg) => {
1681                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1682                         },
1683                         wire::Message::UpdateFailHTLC(msg) => {
1684                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1685                         },
1686                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1687                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1688                         },
1689
1690                         wire::Message::CommitmentSigned(msg) => {
1691                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1692                         },
1693                         wire::Message::RevokeAndACK(msg) => {
1694                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1695                         },
1696                         wire::Message::UpdateFee(msg) => {
1697                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1698                         },
1699                         wire::Message::ChannelReestablish(msg) => {
1700                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1701                         },
1702
1703                         // Routing messages:
1704                         wire::Message::AnnouncementSignatures(msg) => {
1705                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1706                         },
1707                         wire::Message::ChannelAnnouncement(msg) => {
1708                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1709                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1710                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1711                                 }
1712                                 self.update_gossip_backlogged();
1713                         },
1714                         wire::Message::NodeAnnouncement(msg) => {
1715                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1716                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1717                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1718                                 }
1719                                 self.update_gossip_backlogged();
1720                         },
1721                         wire::Message::ChannelUpdate(msg) => {
1722                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1723                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1724                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1725                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1726                                 }
1727                                 self.update_gossip_backlogged();
1728                         },
1729                         wire::Message::QueryShortChannelIds(msg) => {
1730                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1731                         },
1732                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1733                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1734                         },
1735                         wire::Message::QueryChannelRange(msg) => {
1736                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1737                         },
1738                         wire::Message::ReplyChannelRange(msg) => {
1739                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1740                         },
1741
1742                         // Onion message:
1743                         wire::Message::OnionMessage(msg) => {
1744                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1745                         },
1746
1747                         // Unknown messages:
1748                         wire::Message::Unknown(type_id) if message.is_even() => {
1749                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1750                                 return Err(PeerHandleError { }.into());
1751                         },
1752                         wire::Message::Unknown(type_id) => {
1753                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1754                         },
1755                         wire::Message::Custom(custom) => {
1756                                 self.message_handler.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1757                         },
1758                 };
1759                 Ok(should_forward)
1760         }
1761
1762         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1763                 match msg {
1764                         wire::Message::ChannelAnnouncement(ref msg) => {
1765                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1766                                 let encoded_msg = encode_msg!(msg);
1767
1768                                 for (_, peer_mutex) in peers.iter() {
1769                                         let mut peer = peer_mutex.lock().unwrap();
1770                                         if !peer.handshake_complete() ||
1771                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1772                                                 continue
1773                                         }
1774                                         debug_assert!(peer.their_node_id.is_some());
1775                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1776                                         if peer.buffer_full_drop_gossip_broadcast() {
1777                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1778                                                 continue;
1779                                         }
1780                                         if let Some((_, their_node_id)) = peer.their_node_id {
1781                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1782                                                         continue;
1783                                                 }
1784                                         }
1785                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1786                                                 continue;
1787                                         }
1788                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1789                                 }
1790                         },
1791                         wire::Message::NodeAnnouncement(ref msg) => {
1792                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1793                                 let encoded_msg = encode_msg!(msg);
1794
1795                                 for (_, peer_mutex) in peers.iter() {
1796                                         let mut peer = peer_mutex.lock().unwrap();
1797                                         if !peer.handshake_complete() ||
1798                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1799                                                 continue
1800                                         }
1801                                         debug_assert!(peer.their_node_id.is_some());
1802                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1803                                         if peer.buffer_full_drop_gossip_broadcast() {
1804                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1805                                                 continue;
1806                                         }
1807                                         if let Some((_, their_node_id)) = peer.their_node_id {
1808                                                 if their_node_id == msg.contents.node_id {
1809                                                         continue;
1810                                                 }
1811                                         }
1812                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1813                                                 continue;
1814                                         }
1815                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1816                                 }
1817                         },
1818                         wire::Message::ChannelUpdate(ref msg) => {
1819                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1820                                 let encoded_msg = encode_msg!(msg);
1821
1822                                 for (_, peer_mutex) in peers.iter() {
1823                                         let mut peer = peer_mutex.lock().unwrap();
1824                                         if !peer.handshake_complete() ||
1825                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1826                                                 continue
1827                                         }
1828                                         debug_assert!(peer.their_node_id.is_some());
1829                                         debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1830                                         if peer.buffer_full_drop_gossip_broadcast() {
1831                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1832                                                 continue;
1833                                         }
1834                                         if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1835                                                 continue;
1836                                         }
1837                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1838                                 }
1839                         },
1840                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1841                 }
1842         }
1843
1844         /// Checks for any events generated by our handlers and processes them. Includes sending most
1845         /// response messages as well as messages generated by calls to handler functions directly (eg
1846         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1847         ///
1848         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1849         /// issues!
1850         ///
1851         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1852         /// or one of the other clients provided in our language bindings.
1853         ///
1854         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1855         /// without doing any work. All available events that need handling will be handled before the
1856         /// other calls return.
1857         ///
1858         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1859         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1860         /// [`send_data`]: SocketDescriptor::send_data
1861         pub fn process_events(&self) {
1862                 if self.event_processing_state.fetch_add(1, Ordering::AcqRel) > 0 {
1863                         // If we're not the first event processor to get here, just return early, the increment
1864                         // we just did will be treated as "go around again" at the end.
1865                         return;
1866                 }
1867
1868                 loop {
1869                         self.update_gossip_backlogged();
1870                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1871
1872                         let mut peers_to_disconnect = HashMap::new();
1873                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1874                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1875
1876                         {
1877                                 // TODO: There are some DoS attacks here where you can flood someone's outbound send
1878                                 // buffer by doing things like announcing channels on another node. We should be willing to
1879                                 // drop optional-ish messages when send buffers get full!
1880
1881                                 let peers_lock = self.peers.read().unwrap();
1882                                 let peers = &*peers_lock;
1883                                 macro_rules! get_peer_for_forwarding {
1884                                         ($node_id: expr) => {
1885                                                 {
1886                                                         if peers_to_disconnect.get($node_id).is_some() {
1887                                                                 // If we've "disconnected" this peer, do not send to it.
1888                                                                 continue;
1889                                                         }
1890                                                         let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1891                                                         match descriptor_opt {
1892                                                                 Some(descriptor) => match peers.get(&descriptor) {
1893                                                                         Some(peer_mutex) => {
1894                                                                                 let peer_lock = peer_mutex.lock().unwrap();
1895                                                                                 if !peer_lock.handshake_complete() {
1896                                                                                         continue;
1897                                                                                 }
1898                                                                                 peer_lock
1899                                                                         },
1900                                                                         None => {
1901                                                                                 debug_assert!(false, "Inconsistent peers set state!");
1902                                                                                 continue;
1903                                                                         }
1904                                                                 },
1905                                                                 None => {
1906                                                                         continue;
1907                                                                 },
1908                                                         }
1909                                                 }
1910                                         }
1911                                 }
1912                                 for event in events_generated.drain(..) {
1913                                         match event {
1914                                                 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1915                                                         log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1916                                                                         log_pubkey!(node_id),
1917                                                                         &msg.temporary_channel_id);
1918                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1919                                                 },
1920                                                 MessageSendEvent::SendAcceptChannelV2 { ref node_id, ref msg } => {
1921                                                         log_debug!(self.logger, "Handling SendAcceptChannelV2 event in peer_handler for node {} for channel {}",
1922                                                                         log_pubkey!(node_id),
1923                                                                         &msg.temporary_channel_id);
1924                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1925                                                 },
1926                                                 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1927                                                         log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1928                                                                         log_pubkey!(node_id),
1929                                                                         &msg.temporary_channel_id);
1930                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1931                                                 },
1932                                                 MessageSendEvent::SendOpenChannelV2 { ref node_id, ref msg } => {
1933                                                         log_debug!(self.logger, "Handling SendOpenChannelV2 event in peer_handler for node {} for channel {}",
1934                                                                         log_pubkey!(node_id),
1935                                                                         &msg.temporary_channel_id);
1936                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1937                                                 },
1938                                                 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1939                                                         log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1940                                                                         log_pubkey!(node_id),
1941                                                                         &msg.temporary_channel_id,
1942                                                                         log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1943                                                         // TODO: If the peer is gone we should generate a DiscardFunding event
1944                                                         // indicating to the wallet that they should just throw away this funding transaction
1945                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1946                                                 },
1947                                                 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1948                                                         log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1949                                                                         log_pubkey!(node_id),
1950                                                                         &msg.channel_id);
1951                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1952                                                 },
1953                                                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1954                                                         log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1955                                                                         log_pubkey!(node_id),
1956                                                                         &msg.channel_id);
1957                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1958                                                 },
1959                                                 MessageSendEvent::SendTxAddInput { ref node_id, ref msg } => {
1960                                                         log_debug!(self.logger, "Handling SendTxAddInput event in peer_handler for node {} for channel {}",
1961                                                                         log_pubkey!(node_id),
1962                                                                         &msg.channel_id);
1963                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1964                                                 },
1965                                                 MessageSendEvent::SendTxAddOutput { ref node_id, ref msg } => {
1966                                                         log_debug!(self.logger, "Handling SendTxAddOutput event in peer_handler for node {} for channel {}",
1967                                                                         log_pubkey!(node_id),
1968                                                                         &msg.channel_id);
1969                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1970                                                 },
1971                                                 MessageSendEvent::SendTxRemoveInput { ref node_id, ref msg } => {
1972                                                         log_debug!(self.logger, "Handling SendTxRemoveInput event in peer_handler for node {} for channel {}",
1973                                                                         log_pubkey!(node_id),
1974                                                                         &msg.channel_id);
1975                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1976                                                 },
1977                                                 MessageSendEvent::SendTxRemoveOutput { ref node_id, ref msg } => {
1978                                                         log_debug!(self.logger, "Handling SendTxRemoveOutput event in peer_handler for node {} for channel {}",
1979                                                                         log_pubkey!(node_id),
1980                                                                         &msg.channel_id);
1981                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1982                                                 },
1983                                                 MessageSendEvent::SendTxComplete { ref node_id, ref msg } => {
1984                                                         log_debug!(self.logger, "Handling SendTxComplete event in peer_handler for node {} for channel {}",
1985                                                                         log_pubkey!(node_id),
1986                                                                         &msg.channel_id);
1987                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1988                                                 },
1989                                                 MessageSendEvent::SendTxSignatures { ref node_id, ref msg } => {
1990                                                         log_debug!(self.logger, "Handling SendTxSignatures event in peer_handler for node {} for channel {}",
1991                                                                         log_pubkey!(node_id),
1992                                                                         &msg.channel_id);
1993                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1994                                                 },
1995                                                 MessageSendEvent::SendTxInitRbf { ref node_id, ref msg } => {
1996                                                         log_debug!(self.logger, "Handling SendTxInitRbf event in peer_handler for node {} for channel {}",
1997                                                                         log_pubkey!(node_id),
1998                                                                         &msg.channel_id);
1999                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2000                                                 },
2001                                                 MessageSendEvent::SendTxAckRbf { ref node_id, ref msg } => {
2002                                                         log_debug!(self.logger, "Handling SendTxAckRbf event in peer_handler for node {} for channel {}",
2003                                                                         log_pubkey!(node_id),
2004                                                                         &msg.channel_id);
2005                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2006                                                 },
2007                                                 MessageSendEvent::SendTxAbort { ref node_id, ref msg } => {
2008                                                         log_debug!(self.logger, "Handling SendTxAbort event in peer_handler for node {} for channel {}",
2009                                                                         log_pubkey!(node_id),
2010                                                                         &msg.channel_id);
2011                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2012                                                 },
2013                                                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
2014                                                         log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
2015                                                                         log_pubkey!(node_id),
2016                                                                         &msg.channel_id);
2017                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2018                                                 },
2019                                                 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
2020                                                         log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
2021                                                                         log_pubkey!(node_id),
2022                                                                         update_add_htlcs.len(),
2023                                                                         update_fulfill_htlcs.len(),
2024                                                                         update_fail_htlcs.len(),
2025                                                                         &commitment_signed.channel_id);
2026                                                         let mut peer = get_peer_for_forwarding!(node_id);
2027                                                         for msg in update_add_htlcs {
2028                                                                 self.enqueue_message(&mut *peer, msg);
2029                                                         }
2030                                                         for msg in update_fulfill_htlcs {
2031                                                                 self.enqueue_message(&mut *peer, msg);
2032                                                         }
2033                                                         for msg in update_fail_htlcs {
2034                                                                 self.enqueue_message(&mut *peer, msg);
2035                                                         }
2036                                                         for msg in update_fail_malformed_htlcs {
2037                                                                 self.enqueue_message(&mut *peer, msg);
2038                                                         }
2039                                                         if let &Some(ref msg) = update_fee {
2040                                                                 self.enqueue_message(&mut *peer, msg);
2041                                                         }
2042                                                         self.enqueue_message(&mut *peer, commitment_signed);
2043                                                 },
2044                                                 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
2045                                                         log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
2046                                                                         log_pubkey!(node_id),
2047                                                                         &msg.channel_id);
2048                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2049                                                 },
2050                                                 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
2051                                                         log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
2052                                                                         log_pubkey!(node_id),
2053                                                                         &msg.channel_id);
2054                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2055                                                 },
2056                                                 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
2057                                                         log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
2058                                                                         log_pubkey!(node_id),
2059                                                                         &msg.channel_id);
2060                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2061                                                 },
2062                                                 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
2063                                                         log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
2064                                                                         log_pubkey!(node_id),
2065                                                                         &msg.channel_id);
2066                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2067                                                 },
2068                                                 MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
2069                                                         log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
2070                                                                         log_pubkey!(node_id),
2071                                                                         msg.contents.short_channel_id);
2072                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2073                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
2074                                                 },
2075                                                 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
2076                                                         log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2077                                                         match self.message_handler.route_handler.handle_channel_announcement(&msg) {
2078                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2079                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
2080                                                                 _ => {},
2081                                                         }
2082                                                         if let Some(msg) = update_msg {
2083                                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
2084                                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2085                                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2086                                                                         _ => {},
2087                                                                 }
2088                                                         }
2089                                                 },
2090                                                 MessageSendEvent::BroadcastChannelUpdate { msg } => {
2091                                                         log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for contents {:?}", msg.contents);
2092                                                         match self.message_handler.route_handler.handle_channel_update(&msg) {
2093                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2094                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2095                                                                 _ => {},
2096                                                         }
2097                                                 },
2098                                                 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
2099                                                         log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
2100                                                         match self.message_handler.route_handler.handle_node_announcement(&msg) {
2101                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2102                                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
2103                                                                 _ => {},
2104                                                         }
2105                                                 },
2106                                                 MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
2107                                                         log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
2108                                                                         log_pubkey!(node_id), msg.contents.short_channel_id);
2109                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2110                                                 },
2111                                                 MessageSendEvent::HandleError { node_id, action } => {
2112                                                         match action {
2113                                                                 msgs::ErrorAction::DisconnectPeer { msg } => {
2114                                                                         if let Some(msg) = msg.as_ref() {
2115                                                                                 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2116                                                                                         log_pubkey!(node_id), msg.data);
2117                                                                         } else {
2118                                                                                 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {}",
2119                                                                                         log_pubkey!(node_id));
2120                                                                         }
2121                                                                         // We do not have the peers write lock, so we just store that we're
2122                                                                         // about to disconenct the peer and do it after we finish
2123                                                                         // processing most messages.
2124                                                                         let msg = msg.map(|msg| wire::Message::<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>::Error(msg));
2125                                                                         peers_to_disconnect.insert(node_id, msg);
2126                                                                 },
2127                                                                 msgs::ErrorAction::DisconnectPeerWithWarning { msg } => {
2128                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2129                                                                                 log_pubkey!(node_id), msg.data);
2130                                                                         // We do not have the peers write lock, so we just store that we're
2131                                                                         // about to disconenct the peer and do it after we finish
2132                                                                         // processing most messages.
2133                                                                         peers_to_disconnect.insert(node_id, Some(wire::Message::Warning(msg)));
2134                                                                 },
2135                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
2136                                                                         log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2137                                                                 },
2138                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => {},
2139                                                                 msgs::ErrorAction::IgnoreError => {
2140                                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2141                                                                         },
2142                                                                 msgs::ErrorAction::SendErrorMessage { ref msg } => {
2143                                                                         log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
2144                                                                                         log_pubkey!(node_id),
2145                                                                                         msg.data);
2146                                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2147                                                                 },
2148                                                                 msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
2149                                                                         log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
2150                                                                                         log_pubkey!(node_id),
2151                                                                                         msg.data);
2152                                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), msg);
2153                                                                 },
2154                                                         }
2155                                                 },
2156                                                 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
2157                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2158                                                 },
2159                                                 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
2160                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2161                                                 }
2162                                                 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
2163                                                         log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
2164                                                                 log_pubkey!(node_id),
2165                                                                 msg.short_channel_ids.len(),
2166                                                                 msg.first_blocknum,
2167                                                                 msg.number_of_blocks,
2168                                                                 msg.sync_complete);
2169                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2170                                                 }
2171                                                 MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
2172                                                         self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2173                                                 }
2174                                         }
2175                                 }
2176
2177                                 for (node_id, msg) in self.message_handler.custom_message_handler.get_and_clear_pending_msg() {
2178                                         if peers_to_disconnect.get(&node_id).is_some() { continue; }
2179                                         self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
2180                                 }
2181
2182                                 for (descriptor, peer_mutex) in peers.iter() {
2183                                         let mut peer = peer_mutex.lock().unwrap();
2184                                         if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2185                                         self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
2186                                 }
2187                         }
2188                         if !peers_to_disconnect.is_empty() {
2189                                 let mut peers_lock = self.peers.write().unwrap();
2190                                 let peers = &mut *peers_lock;
2191                                 for (node_id, msg) in peers_to_disconnect.drain() {
2192                                         // Note that since we are holding the peers *write* lock we can
2193                                         // remove from node_id_to_descriptor immediately (as no other
2194                                         // thread can be holding the peer lock if we have the global write
2195                                         // lock).
2196
2197                                         let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2198                                         if let Some(mut descriptor) = descriptor_opt {
2199                                                 if let Some(peer_mutex) = peers.remove(&descriptor) {
2200                                                         let mut peer = peer_mutex.lock().unwrap();
2201                                                         if let Some(msg) = msg {
2202                                                                 self.enqueue_message(&mut *peer, &msg);
2203                                                                 // This isn't guaranteed to work, but if there is enough free
2204                                                                 // room in the send buffer, put the error message there...
2205                                                                 self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
2206                                                         }
2207                                                         self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
2208                                                 } else { debug_assert!(false, "Missing connection for peer"); }
2209                                         }
2210                                 }
2211                         }
2212
2213                         if self.event_processing_state.fetch_sub(1, Ordering::AcqRel) != 1 {
2214                                 // If another thread incremented the state while we were running we should go
2215                                 // around again, but only once.
2216                                 self.event_processing_state.store(1, Ordering::Release);
2217                                 continue;
2218                         }
2219                         break;
2220                 }
2221         }
2222
2223         /// Indicates that the given socket descriptor's connection is now closed.
2224         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
2225                 self.disconnect_event_internal(descriptor);
2226         }
2227
2228         fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
2229                 if !peer.handshake_complete() {
2230                         log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
2231                         descriptor.disconnect_socket();
2232                         return;
2233                 }
2234
2235                 debug_assert!(peer.their_node_id.is_some());
2236                 if let Some((node_id, _)) = peer.their_node_id {
2237                         log_trace!(self.logger, "Disconnecting peer with id {} due to {}", node_id, reason);
2238                         self.message_handler.chan_handler.peer_disconnected(&node_id);
2239                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2240                 }
2241                 descriptor.disconnect_socket();
2242         }
2243
2244         fn disconnect_event_internal(&self, descriptor: &Descriptor) {
2245                 let mut peers = self.peers.write().unwrap();
2246                 let peer_option = peers.remove(descriptor);
2247                 match peer_option {
2248                         None => {
2249                                 // This is most likely a simple race condition where the user found that the socket
2250                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
2251                                 // called this method. Either way we're disconnected, return.
2252                         },
2253                         Some(peer_lock) => {
2254                                 let peer = peer_lock.lock().unwrap();
2255                                 if let Some((node_id, _)) = peer.their_node_id {
2256                                         log_trace!(self.logger, "Handling disconnection of peer {}", log_pubkey!(node_id));
2257                                         let removed = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2258                                         debug_assert!(removed.is_some(), "descriptor maps should be consistent");
2259                                         if !peer.handshake_complete() { return; }
2260                                         self.message_handler.chan_handler.peer_disconnected(&node_id);
2261                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2262                                 }
2263                         }
2264                 };
2265         }
2266
2267         /// Disconnect a peer given its node id.
2268         ///
2269         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
2270         /// peer. Thus, be very careful about reentrancy issues.
2271         ///
2272         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
2273         pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
2274                 let mut peers_lock = self.peers.write().unwrap();
2275                 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
2276                         let peer_opt = peers_lock.remove(&descriptor);
2277                         if let Some(peer_mutex) = peer_opt {
2278                                 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
2279                         } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
2280                 }
2281         }
2282
2283         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
2284         /// an indication that TCP sockets have stalled even if we weren't around to time them out
2285         /// using regular ping/pongs.
2286         pub fn disconnect_all_peers(&self) {
2287                 let mut peers_lock = self.peers.write().unwrap();
2288                 self.node_id_to_descriptor.lock().unwrap().clear();
2289                 let peers = &mut *peers_lock;
2290                 for (descriptor, peer_mutex) in peers.drain() {
2291                         self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
2292                 }
2293         }
2294
2295         /// This is called when we're blocked on sending additional gossip messages until we receive a
2296         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
2297         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
2298         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
2299                 if peer.awaiting_pong_timer_tick_intervals == 0 {
2300                         peer.awaiting_pong_timer_tick_intervals = -1;
2301                         let ping = msgs::Ping {
2302                                 ponglen: 0,
2303                                 byteslen: 64,
2304                         };
2305                         self.enqueue_message(peer, &ping);
2306                 }
2307         }
2308
2309         /// Send pings to each peer and disconnect those which did not respond to the last round of
2310         /// pings.
2311         ///
2312         /// This may be called on any timescale you want, however, roughly once every ten seconds is
2313         /// preferred. The call rate determines both how often we send a ping to our peers and how much
2314         /// time they have to respond before we disconnect them.
2315         ///
2316         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2317         /// issues!
2318         ///
2319         /// [`send_data`]: SocketDescriptor::send_data
2320         pub fn timer_tick_occurred(&self) {
2321                 let mut descriptors_needing_disconnect = Vec::new();
2322                 {
2323                         let peers_lock = self.peers.read().unwrap();
2324
2325                         self.update_gossip_backlogged();
2326                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2327
2328                         for (descriptor, peer_mutex) in peers_lock.iter() {
2329                                 let mut peer = peer_mutex.lock().unwrap();
2330                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2331
2332                                 if !peer.handshake_complete() {
2333                                         // The peer needs to complete its handshake before we can exchange messages. We
2334                                         // give peers one timer tick to complete handshake, reusing
2335                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2336                                         // for handshake completion.
2337                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
2338                                                 descriptors_needing_disconnect.push(descriptor.clone());
2339                                         } else {
2340                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2341                                         }
2342                                         continue;
2343                                 }
2344                                 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2345                                 debug_assert!(peer.their_node_id.is_some());
2346
2347                                 loop { // Used as a `goto` to skip writing a Ping message.
2348                                         if peer.awaiting_pong_timer_tick_intervals == -1 {
2349                                                 // Magic value set in `maybe_send_extra_ping`.
2350                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2351                                                 peer.received_message_since_timer_tick = false;
2352                                                 break;
2353                                         }
2354
2355                                         if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2356                                                 || peer.awaiting_pong_timer_tick_intervals as u64 >
2357                                                         MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2358                                         {
2359                                                 descriptors_needing_disconnect.push(descriptor.clone());
2360                                                 break;
2361                                         }
2362                                         peer.received_message_since_timer_tick = false;
2363
2364                                         if peer.awaiting_pong_timer_tick_intervals > 0 {
2365                                                 peer.awaiting_pong_timer_tick_intervals += 1;
2366                                                 break;
2367                                         }
2368
2369                                         peer.awaiting_pong_timer_tick_intervals = 1;
2370                                         let ping = msgs::Ping {
2371                                                 ponglen: 0,
2372                                                 byteslen: 64,
2373                                         };
2374                                         self.enqueue_message(&mut *peer, &ping);
2375                                         break;
2376                                 }
2377                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2378                         }
2379                 }
2380
2381                 if !descriptors_needing_disconnect.is_empty() {
2382                         {
2383                                 let mut peers_lock = self.peers.write().unwrap();
2384                                 for descriptor in descriptors_needing_disconnect {
2385                                         if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2386                                                 let peer = peer_mutex.lock().unwrap();
2387                                                 if let Some((node_id, _)) = peer.their_node_id {
2388                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2389                                                 }
2390                                                 self.do_disconnect(descriptor, &*peer, "ping/handshake timeout");
2391                                         }
2392                                 }
2393                         }
2394                 }
2395         }
2396
2397         #[allow(dead_code)]
2398         // Messages of up to 64KB should never end up more than half full with addresses, as that would
2399         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2400         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2401         // message...
2402         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (SocketAddress::MAX_LEN as u32 + 1) / 2;
2403         #[deny(const_err)]
2404         #[allow(dead_code)]
2405         // ...by failing to compile if the number of addresses that would be half of a message is
2406         // smaller than 100:
2407         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2408
2409         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2410         /// peers. Note that peers will likely ignore this message unless we have at least one public
2411         /// channel which has at least six confirmations on-chain.
2412         ///
2413         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2414         /// node to humans. They carry no in-protocol meaning.
2415         ///
2416         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2417         /// accepts incoming connections. These will be included in the node_announcement, publicly
2418         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2419         /// addresses should likely contain only Tor Onion addresses.
2420         ///
2421         /// Panics if `addresses` is absurdly large (more than 100).
2422         ///
2423         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2424         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<SocketAddress>) {
2425                 if addresses.len() > 100 {
2426                         panic!("More than half the message size was taken up by public addresses!");
2427                 }
2428
2429                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2430                 // addresses be sorted for future compatibility.
2431                 addresses.sort_by_key(|addr| addr.get_id());
2432
2433                 let features = self.message_handler.chan_handler.provided_node_features()
2434                         | self.message_handler.route_handler.provided_node_features()
2435                         | self.message_handler.onion_message_handler.provided_node_features()
2436                         | self.message_handler.custom_message_handler.provided_node_features();
2437                 let announcement = msgs::UnsignedNodeAnnouncement {
2438                         features,
2439                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2440                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2441                         rgb,
2442                         alias: NodeAlias(alias),
2443                         addresses,
2444                         excess_address_data: Vec::new(),
2445                         excess_data: Vec::new(),
2446                 };
2447                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2448                         msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2449                 ) {
2450                         Ok(sig) => sig,
2451                         Err(_) => {
2452                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2453                                 return;
2454                         },
2455                 };
2456
2457                 let msg = msgs::NodeAnnouncement {
2458                         signature: node_announce_sig,
2459                         contents: announcement
2460                 };
2461
2462                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2463                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2464                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2465         }
2466 }
2467
2468 fn is_gossip_msg(type_id: u16) -> bool {
2469         match type_id {
2470                 msgs::ChannelAnnouncement::TYPE |
2471                 msgs::ChannelUpdate::TYPE |
2472                 msgs::NodeAnnouncement::TYPE |
2473                 msgs::QueryChannelRange::TYPE |
2474                 msgs::ReplyChannelRange::TYPE |
2475                 msgs::QueryShortChannelIds::TYPE |
2476                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2477                 _ => false
2478         }
2479 }
2480
2481 #[cfg(test)]
2482 mod tests {
2483         use crate::sign::{NodeSigner, Recipient};
2484         use crate::events;
2485         use crate::io;
2486         use crate::ln::ChannelId;
2487         use crate::ln::features::{InitFeatures, NodeFeatures};
2488         use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2489         use crate::ln::peer_handler::{CustomMessageHandler, PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2490         use crate::ln::{msgs, wire};
2491         use crate::ln::msgs::{LightningError, SocketAddress};
2492         use crate::util::test_utils;
2493
2494         use bitcoin::Network;
2495         use bitcoin::blockdata::constants::ChainHash;
2496         use bitcoin::secp256k1::{PublicKey, SecretKey};
2497
2498         use crate::prelude::*;
2499         use crate::sync::{Arc, Mutex};
2500         use core::convert::Infallible;
2501         use core::sync::atomic::{AtomicBool, Ordering};
2502
2503         #[derive(Clone)]
2504         struct FileDescriptor {
2505                 fd: u16,
2506                 outbound_data: Arc<Mutex<Vec<u8>>>,
2507                 disconnect: Arc<AtomicBool>,
2508         }
2509         impl PartialEq for FileDescriptor {
2510                 fn eq(&self, other: &Self) -> bool {
2511                         self.fd == other.fd
2512                 }
2513         }
2514         impl Eq for FileDescriptor { }
2515         impl core::hash::Hash for FileDescriptor {
2516                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2517                         self.fd.hash(hasher)
2518                 }
2519         }
2520
2521         impl SocketDescriptor for FileDescriptor {
2522                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2523                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2524                         data.len()
2525                 }
2526
2527                 fn disconnect_socket(&mut self) { self.disconnect.store(true, Ordering::Release); }
2528         }
2529
2530         struct PeerManagerCfg {
2531                 chan_handler: test_utils::TestChannelMessageHandler,
2532                 routing_handler: test_utils::TestRoutingMessageHandler,
2533                 custom_handler: TestCustomMessageHandler,
2534                 logger: test_utils::TestLogger,
2535                 node_signer: test_utils::TestNodeSigner,
2536         }
2537
2538         struct TestCustomMessageHandler {
2539                 features: InitFeatures,
2540         }
2541
2542         impl wire::CustomMessageReader for TestCustomMessageHandler {
2543                 type CustomMessage = Infallible;
2544                 fn read<R: io::Read>(&self, _: u16, _: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
2545                         Ok(None)
2546                 }
2547         }
2548
2549         impl CustomMessageHandler for TestCustomMessageHandler {
2550                 fn handle_custom_message(&self, _: Infallible, _: &PublicKey) -> Result<(), LightningError> {
2551                         unreachable!();
2552                 }
2553
2554                 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
2555
2556                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
2557
2558                 fn provided_init_features(&self, _: &PublicKey) -> InitFeatures {
2559                         self.features.clone()
2560                 }
2561         }
2562
2563         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2564                 let mut cfgs = Vec::new();
2565                 for i in 0..peer_count {
2566                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2567                         let features = {
2568                                 let mut feature_bits = vec![0u8; 33];
2569                                 feature_bits[32] = 0b00000001;
2570                                 InitFeatures::from_le_bytes(feature_bits)
2571                         };
2572                         cfgs.push(
2573                                 PeerManagerCfg{
2574                                         chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2575                                         logger: test_utils::TestLogger::new(),
2576                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2577                                         custom_handler: TestCustomMessageHandler { features },
2578                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2579                                 }
2580                         );
2581                 }
2582
2583                 cfgs
2584         }
2585
2586         fn create_feature_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2587                 let mut cfgs = Vec::new();
2588                 for i in 0..peer_count {
2589                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2590                         let features = {
2591                                 let mut feature_bits = vec![0u8; 33 + i + 1];
2592                                 feature_bits[33 + i] = 0b00000001;
2593                                 InitFeatures::from_le_bytes(feature_bits)
2594                         };
2595                         cfgs.push(
2596                                 PeerManagerCfg{
2597                                         chan_handler: test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet)),
2598                                         logger: test_utils::TestLogger::new(),
2599                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2600                                         custom_handler: TestCustomMessageHandler { features },
2601                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2602                                 }
2603                         );
2604                 }
2605
2606                 cfgs
2607         }
2608
2609         fn create_chain_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2610                 let mut cfgs = Vec::new();
2611                 for i in 0..peer_count {
2612                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2613                         let features = InitFeatures::from_le_bytes(vec![0u8; 33]);
2614                         let network = ChainHash::from(&[i as u8; 32][..]);
2615                         cfgs.push(
2616                                 PeerManagerCfg{
2617                                         chan_handler: test_utils::TestChannelMessageHandler::new(network),
2618                                         logger: test_utils::TestLogger::new(),
2619                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2620                                         custom_handler: TestCustomMessageHandler { features },
2621                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2622                                 }
2623                         );
2624                 }
2625
2626                 cfgs
2627         }
2628
2629         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>> {
2630                 let mut peers = Vec::new();
2631                 for i in 0..peer_count {
2632                         let ephemeral_bytes = [i as u8; 32];
2633                         let msg_handler = MessageHandler {
2634                                 chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler,
2635                                 onion_message_handler: IgnoringMessageHandler {}, custom_message_handler: &cfgs[i].custom_handler
2636                         };
2637                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, &cfgs[i].node_signer);
2638                         peers.push(peer);
2639                 }
2640
2641                 peers
2642         }
2643
2644         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2645                 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2646                 let mut fd_a = FileDescriptor {
2647                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2648                         disconnect: Arc::new(AtomicBool::new(false)),
2649                 };
2650                 let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2651                 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2652                 let mut fd_b = FileDescriptor {
2653                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2654                         disconnect: Arc::new(AtomicBool::new(false)),
2655                 };
2656                 let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2657                 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2658                 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2659                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2660                 peer_a.process_events();
2661
2662                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2663                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2664
2665                 peer_b.process_events();
2666                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2667                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2668
2669                 peer_a.process_events();
2670                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2671                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2672
2673                 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2674                 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2675
2676                 (fd_a.clone(), fd_b.clone())
2677         }
2678
2679         #[test]
2680         #[cfg(feature = "std")]
2681         fn fuzz_threaded_connections() {
2682                 // Spawn two threads which repeatedly connect two peers together, leading to "got second
2683                 // connection with peer" disconnections and rapid reconnect. This previously found an issue
2684                 // with our internal map consistency, and is a generally good smoke test of disconnection.
2685                 let cfgs = Arc::new(create_peermgr_cfgs(2));
2686                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
2687                 let peers = Arc::new(create_network(2, unsafe { &*(&*cfgs as *const _) as &'static _ }));
2688
2689                 let start_time = std::time::Instant::now();
2690                 macro_rules! spawn_thread { ($id: expr) => { {
2691                         let peers = Arc::clone(&peers);
2692                         let cfgs = Arc::clone(&cfgs);
2693                         std::thread::spawn(move || {
2694                                 let mut ctr = 0;
2695                                 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2696                                         let id_a = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2697                                         let mut fd_a = FileDescriptor {
2698                                                 fd: $id  + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2699                                                 disconnect: Arc::new(AtomicBool::new(false)),
2700                                         };
2701                                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2702                                         let mut fd_b = FileDescriptor {
2703                                                 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2704                                                 disconnect: Arc::new(AtomicBool::new(false)),
2705                                         };
2706                                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2707                                         let initial_data = peers[1].new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2708                                         peers[0].new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2709                                         if peers[0].read_event(&mut fd_a, &initial_data).is_err() { break; }
2710
2711                                         while start_time.elapsed() < std::time::Duration::from_secs(1) {
2712                                                 peers[0].process_events();
2713                                                 if fd_a.disconnect.load(Ordering::Acquire) { break; }
2714                                                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2715                                                 if peers[1].read_event(&mut fd_b, &a_data).is_err() { break; }
2716
2717                                                 peers[1].process_events();
2718                                                 if fd_b.disconnect.load(Ordering::Acquire) { break; }
2719                                                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2720                                                 if peers[0].read_event(&mut fd_a, &b_data).is_err() { break; }
2721
2722                                                 cfgs[0].chan_handler.pending_events.lock().unwrap()
2723                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2724                                                                 node_id: peers[1].node_signer.get_node_id(Recipient::Node).unwrap(),
2725                                                                 msg: msgs::Shutdown {
2726                                                                         channel_id: ChannelId::new_zero(),
2727                                                                         scriptpubkey: bitcoin::Script::new(),
2728                                                                 },
2729                                                         });
2730                                                 cfgs[1].chan_handler.pending_events.lock().unwrap()
2731                                                         .push(crate::events::MessageSendEvent::SendShutdown {
2732                                                                 node_id: peers[0].node_signer.get_node_id(Recipient::Node).unwrap(),
2733                                                                 msg: msgs::Shutdown {
2734                                                                         channel_id: ChannelId::new_zero(),
2735                                                                         scriptpubkey: bitcoin::Script::new(),
2736                                                                 },
2737                                                         });
2738
2739                                                 if ctr % 2 == 0 {
2740                                                         peers[0].timer_tick_occurred();
2741                                                         peers[1].timer_tick_occurred();
2742                                                 }
2743                                         }
2744
2745                                         peers[0].socket_disconnected(&fd_a);
2746                                         peers[1].socket_disconnected(&fd_b);
2747                                         ctr += 1;
2748                                         std::thread::sleep(std::time::Duration::from_micros(1));
2749                                 }
2750                         })
2751                 } } }
2752                 let thrd_a = spawn_thread!(1);
2753                 let thrd_b = spawn_thread!(2);
2754
2755                 thrd_a.join().unwrap();
2756                 thrd_b.join().unwrap();
2757         }
2758
2759         #[test]
2760         fn test_feature_incompatible_peers() {
2761                 let cfgs = create_peermgr_cfgs(2);
2762                 let incompatible_cfgs = create_feature_incompatible_peermgr_cfgs(2);
2763
2764                 let peers = create_network(2, &cfgs);
2765                 let incompatible_peers = create_network(2, &incompatible_cfgs);
2766                 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2767                 for (peer_a, peer_b) in peer_pairs.iter() {
2768                         let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2769                         let mut fd_a = FileDescriptor {
2770                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2771                                 disconnect: Arc::new(AtomicBool::new(false)),
2772                         };
2773                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2774                         let mut fd_b = FileDescriptor {
2775                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2776                                 disconnect: Arc::new(AtomicBool::new(false)),
2777                         };
2778                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2779                         let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2780                         peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2781                         assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2782                         peer_a.process_events();
2783
2784                         let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2785                         assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2786
2787                         peer_b.process_events();
2788                         let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2789
2790                         // Should fail because of unknown required features
2791                         assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2792                 }
2793         }
2794
2795         #[test]
2796         fn test_chain_incompatible_peers() {
2797                 let cfgs = create_peermgr_cfgs(2);
2798                 let incompatible_cfgs = create_chain_incompatible_peermgr_cfgs(2);
2799
2800                 let peers = create_network(2, &cfgs);
2801                 let incompatible_peers = create_network(2, &incompatible_cfgs);
2802                 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2803                 for (peer_a, peer_b) in peer_pairs.iter() {
2804                         let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2805                         let mut fd_a = FileDescriptor {
2806                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2807                                 disconnect: Arc::new(AtomicBool::new(false)),
2808                         };
2809                         let addr_a = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1000};
2810                         let mut fd_b = FileDescriptor {
2811                                 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2812                                 disconnect: Arc::new(AtomicBool::new(false)),
2813                         };
2814                         let addr_b = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1001};
2815                         let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2816                         peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2817                         assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2818                         peer_a.process_events();
2819
2820                         let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2821                         assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2822
2823                         peer_b.process_events();
2824                         let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2825
2826                         // Should fail because of incompatible chains
2827                         assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2828                 }
2829         }
2830
2831         #[test]
2832         fn test_disconnect_peer() {
2833                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2834                 // push a DisconnectPeer event to remove the node flagged by id
2835                 let cfgs = create_peermgr_cfgs(2);
2836                 let peers = create_network(2, &cfgs);
2837                 establish_connection(&peers[0], &peers[1]);
2838                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2839
2840                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2841                 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2842                         node_id: their_id,
2843                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2844                 });
2845
2846                 peers[0].process_events();
2847                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2848         }
2849
2850         #[test]
2851         fn test_send_simple_msg() {
2852                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2853                 // push a message from one peer to another.
2854                 let cfgs = create_peermgr_cfgs(2);
2855                 let a_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2856                 let b_chan_handler = test_utils::TestChannelMessageHandler::new(ChainHash::using_genesis_block(Network::Testnet));
2857                 let mut peers = create_network(2, &cfgs);
2858                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2859                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2860
2861                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2862
2863                 let msg = msgs::Shutdown { channel_id: ChannelId::from_bytes([42; 32]), scriptpubkey: bitcoin::Script::new() };
2864                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2865                         node_id: their_id, msg: msg.clone()
2866                 });
2867                 peers[0].message_handler.chan_handler = &a_chan_handler;
2868
2869                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2870                 peers[1].message_handler.chan_handler = &b_chan_handler;
2871
2872                 peers[0].process_events();
2873
2874                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2875                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2876         }
2877
2878         #[test]
2879         fn test_non_init_first_msg() {
2880                 // Simple test of the first message received over a connection being something other than
2881                 // Init. This results in an immediate disconnection, which previously included a spurious
2882                 // peer_disconnected event handed to event handlers (which would panic in
2883                 // `TestChannelMessageHandler` here).
2884                 let cfgs = create_peermgr_cfgs(2);
2885                 let peers = create_network(2, &cfgs);
2886
2887                 let mut fd_dup = FileDescriptor {
2888                         fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2889                         disconnect: Arc::new(AtomicBool::new(false)),
2890                 };
2891                 let addr_dup = SocketAddress::TcpIpV4{addr: [127, 0, 0, 1], port: 1003};
2892                 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2893                 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2894
2895                 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2896                 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2897                 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2898                 peers[0].process_events();
2899
2900                 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2901                 let (act_three, _) =
2902                         dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
2903                 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
2904
2905                 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
2906                 let msg_bytes = dup_encryptor.encrypt_message(&not_init_msg);
2907                 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
2908         }
2909
2910         #[test]
2911         fn test_disconnect_all_peer() {
2912                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2913                 // then calls disconnect_all_peers
2914                 let cfgs = create_peermgr_cfgs(2);
2915                 let peers = create_network(2, &cfgs);
2916                 establish_connection(&peers[0], &peers[1]);
2917                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2918
2919                 peers[0].disconnect_all_peers();
2920                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2921         }
2922
2923         #[test]
2924         fn test_timer_tick_occurred() {
2925                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2926                 let cfgs = create_peermgr_cfgs(2);
2927                 let peers = create_network(2, &cfgs);
2928                 establish_connection(&peers[0], &peers[1]);
2929                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2930
2931                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2932                 peers[0].timer_tick_occurred();
2933                 peers[0].process_events();
2934                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2935
2936                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2937                 peers[0].timer_tick_occurred();
2938                 peers[0].process_events();
2939                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2940         }
2941
2942         #[test]
2943         fn test_do_attempt_write_data() {
2944                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2945                 let cfgs = create_peermgr_cfgs(2);
2946                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2947                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2948                 let peers = create_network(2, &cfgs);
2949
2950                 // By calling establish_connect, we trigger do_attempt_write_data between
2951                 // the peers. Previously this function would mistakenly enter an infinite loop
2952                 // when there were more channel messages available than could fit into a peer's
2953                 // buffer. This issue would now be detected by this test (because we use custom
2954                 // RoutingMessageHandlers that intentionally return more channel messages
2955                 // than can fit into a peer's buffer).
2956                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2957
2958                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2959                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2960                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2961                         peers[1].process_events();
2962                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2963                         assert!(!a_read_data.is_empty());
2964
2965                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2966                         peers[0].process_events();
2967
2968                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2969                         assert!(!b_read_data.is_empty());
2970                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2971
2972                         peers[0].process_events();
2973                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2974                 }
2975
2976                 // Check that each peer has received the expected number of channel updates and channel
2977                 // announcements.
2978                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2979                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2980                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2981                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2982         }
2983
2984         #[test]
2985         fn test_handshake_timeout() {
2986                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2987                 // tick.
2988                 let cfgs = create_peermgr_cfgs(2);
2989                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2990                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2991                 let peers = create_network(2, &cfgs);
2992
2993                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2994                 let mut fd_a = FileDescriptor {
2995                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2996                         disconnect: Arc::new(AtomicBool::new(false)),
2997                 };
2998                 let mut fd_b = FileDescriptor {
2999                         fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
3000                         disconnect: Arc::new(AtomicBool::new(false)),
3001                 };
3002                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
3003                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
3004
3005                 // If we get a single timer tick before completion, that's fine
3006                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3007                 peers[0].timer_tick_occurred();
3008                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
3009
3010                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
3011                 peers[0].process_events();
3012                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
3013                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
3014                 peers[1].process_events();
3015
3016                 // ...but if we get a second timer tick, we should disconnect the peer
3017                 peers[0].timer_tick_occurred();
3018                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
3019
3020                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
3021                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
3022         }
3023
3024         #[test]
3025         fn test_filter_addresses(){
3026                 // Tests the filter_addresses function.
3027
3028                 // For (10/8)
3029                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 0, 0, 0], port: 1000};
3030                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3031                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 0, 255, 201], port: 1000};
3032                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3033                 let ip_address = SocketAddress::TcpIpV4{addr: [10, 255, 255, 255], port: 1000};
3034                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3035
3036                 // For (0/8)
3037                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 0, 0, 0], port: 1000};
3038                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3039                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 0, 255, 187], port: 1000};
3040                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3041                 let ip_address = SocketAddress::TcpIpV4{addr: [0, 255, 255, 255], port: 1000};
3042                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3043
3044                 // For (100.64/10)
3045                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 64, 0, 0], port: 1000};
3046                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3047                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 78, 255, 0], port: 1000};
3048                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3049                 let ip_address = SocketAddress::TcpIpV4{addr: [100, 127, 255, 255], port: 1000};
3050                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3051
3052                 // For (127/8)
3053                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 0, 0, 0], port: 1000};
3054                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3055                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 65, 73, 0], port: 1000};
3056                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3057                 let ip_address = SocketAddress::TcpIpV4{addr: [127, 255, 255, 255], port: 1000};
3058                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3059
3060                 // For (169.254/16)
3061                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 0, 0], port: 1000};
3062                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3063                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 221, 101], port: 1000};
3064                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3065                 let ip_address = SocketAddress::TcpIpV4{addr: [169, 254, 255, 255], port: 1000};
3066                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3067
3068                 // For (172.16/12)
3069                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 16, 0, 0], port: 1000};
3070                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3071                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 27, 101, 23], port: 1000};
3072                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3073                 let ip_address = SocketAddress::TcpIpV4{addr: [172, 31, 255, 255], port: 1000};
3074                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3075
3076                 // For (192.168/16)
3077                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 0, 0], port: 1000};
3078                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3079                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 205, 159], port: 1000};
3080                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3081                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 168, 255, 255], port: 1000};
3082                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3083
3084                 // For (192.88.99/24)
3085                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 0], port: 1000};
3086                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3087                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 140], port: 1000};
3088                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3089                 let ip_address = SocketAddress::TcpIpV4{addr: [192, 88, 99, 255], port: 1000};
3090                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3091
3092                 // For other IPv4 addresses
3093                 let ip_address = SocketAddress::TcpIpV4{addr: [188, 255, 99, 0], port: 1000};
3094                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3095                 let ip_address = SocketAddress::TcpIpV4{addr: [123, 8, 129, 14], port: 1000};
3096                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3097                 let ip_address = SocketAddress::TcpIpV4{addr: [2, 88, 9, 255], port: 1000};
3098                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3099
3100                 // For (2000::/3)
3101                 let ip_address = SocketAddress::TcpIpV6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
3102                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3103                 let ip_address = SocketAddress::TcpIpV6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
3104                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3105                 let ip_address = SocketAddress::TcpIpV6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
3106                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
3107
3108                 // For other IPv6 addresses
3109                 let ip_address = SocketAddress::TcpIpV6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
3110                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3111                 let ip_address = SocketAddress::TcpIpV6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
3112                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3113                 let ip_address = SocketAddress::TcpIpV6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
3114                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3115
3116                 // For (None)
3117                 assert_eq!(filter_addresses(None), None);
3118         }
3119
3120         #[test]
3121         #[cfg(feature = "std")]
3122         fn test_process_events_multithreaded() {
3123                 use std::time::{Duration, Instant};
3124                 // Test that `process_events` getting called on multiple threads doesn't generate too many
3125                 // loop iterations.
3126                 // Each time `process_events` goes around the loop we call
3127                 // `get_and_clear_pending_msg_events`, which we count using the `TestMessageHandler`.
3128                 // Because the loop should go around once more after a call which fails to take the
3129                 // single-threaded lock, if we write zero to the counter before calling `process_events` we
3130                 // should never observe there having been more than 2 loop iterations.
3131                 // Further, because the last thread to exit will call `process_events` before returning, we
3132                 // should always have at least one count at the end.
3133                 let cfg = Arc::new(create_peermgr_cfgs(1));
3134                 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
3135                 let peer = Arc::new(create_network(1, unsafe { &*(&*cfg as *const _) as &'static _ }).pop().unwrap());
3136
3137                 let exit_flag = Arc::new(AtomicBool::new(false));
3138                 macro_rules! spawn_thread { () => { {
3139                         let thread_cfg = Arc::clone(&cfg);
3140                         let thread_peer = Arc::clone(&peer);
3141                         let thread_exit = Arc::clone(&exit_flag);
3142                         std::thread::spawn(move || {
3143                                 while !thread_exit.load(Ordering::Acquire) {
3144                                         thread_cfg[0].chan_handler.message_fetch_counter.store(0, Ordering::Release);
3145                                         thread_peer.process_events();
3146                                         std::thread::sleep(Duration::from_micros(1));
3147                                 }
3148                         })
3149                 } } }
3150
3151                 let thread_a = spawn_thread!();
3152                 let thread_b = spawn_thread!();
3153                 let thread_c = spawn_thread!();
3154
3155                 let start_time = Instant::now();
3156                 while start_time.elapsed() < Duration::from_millis(100) {
3157                         let val = cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire);
3158                         assert!(val <= 2);
3159                         std::thread::yield_now(); // Winblowz seemingly doesn't ever interrupt threads?!
3160                 }
3161
3162                 exit_flag.store(true, Ordering::Release);
3163                 thread_a.join().unwrap();
3164                 thread_b.join().unwrap();
3165                 thread_c.join().unwrap();
3166                 assert!(cfg[0].chan_handler.message_fetch_counter.load(Ordering::Acquire) >= 1);
3167         }
3168 }