Do not force-close channels when we cannot communicate with peers
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
261         /// because we required features that our peer was missing, or vice versa).
262         ///
263         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
264         /// any channels with this peer or check for new versions of LDK.
265         ///
266         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
267         pub no_connection_possible: bool,
268 }
269 impl fmt::Debug for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274 impl fmt::Display for PeerHandleError {
275         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
276                 formatter.write_str("Peer Sent Invalid Data")
277         }
278 }
279
280 #[cfg(feature = "std")]
281 impl error::Error for PeerHandleError {
282         fn description(&self) -> &str {
283                 "Peer Sent Invalid Data"
284         }
285 }
286
287 enum InitSyncTracker{
288         NoSyncRequested,
289         ChannelsSyncing(u64),
290         NodesSyncing(PublicKey),
291 }
292
293 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
294 /// forwarding gossip messages to peers altogether.
295 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
296
297 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
298 /// we have fewer than this many messages in the outbound buffer again.
299 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
300 /// refilled as we send bytes.
301 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
302 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
303 /// the peer.
304 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
305
306 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
307 /// the socket receive buffer before receiving the ping.
308 ///
309 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
310 /// including any network delays, outbound traffic, or the same for messages from other peers.
311 ///
312 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
313 /// per connected peer to respond to a ping, as long as they send us at least one message during
314 /// each tick, ensuring we aren't actually just disconnected.
315 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
316 /// peer.
317 ///
318 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
319 /// two connected peers, assuming most LDK-running systems have at least two cores.
320 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
321
322 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
323 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
324 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
325 /// process before the next ping.
326 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
327
328 struct Peer {
329         channel_encryptor: PeerChannelEncryptor,
330         their_node_id: Option<PublicKey>,
331         their_features: Option<InitFeatures>,
332         their_net_address: Option<NetAddress>,
333
334         pending_outbound_buffer: LinkedList<Vec<u8>>,
335         pending_outbound_buffer_first_msg_offset: usize,
336         awaiting_write_event: bool,
337
338         pending_read_buffer: Vec<u8>,
339         pending_read_buffer_pos: usize,
340         pending_read_is_header: bool,
341
342         sync_status: InitSyncTracker,
343
344         msgs_sent_since_pong: usize,
345         awaiting_pong_timer_tick_intervals: i8,
346         received_message_since_timer_tick: bool,
347 }
348
349 impl Peer {
350         /// Returns true if the channel announcements/updates for the given channel should be
351         /// forwarded to this peer.
352         /// If we are sending our routing table to this peer and we have not yet sent channel
353         /// announcements/updates for the given channel_id then we will send it when we get to that
354         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
355         /// sent the old versions, we should send the update, and so return true here.
356         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
357                 match self.sync_status {
358                         InitSyncTracker::NoSyncRequested => true,
359                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
360                         InitSyncTracker::NodesSyncing(_) => true,
361                 }
362         }
363
364         /// Similar to the above, but for node announcements indexed by node_id.
365         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
366                 match self.sync_status {
367                         InitSyncTracker::NoSyncRequested => true,
368                         InitSyncTracker::ChannelsSyncing(_) => false,
369                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
370                 }
371         }
372 }
373
374 struct PeerHolder<Descriptor: SocketDescriptor> {
375         peers: HashMap<Descriptor, Peer>,
376         /// Only add to this set when noise completes:
377         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
378 }
379
380 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
381 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
382 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
383 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
384 /// issues such as overly long function definitions.
385 ///
386 /// (C-not exported) as Arcs don't make sense in bindings
387 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
388
389 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
390 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
391 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
392 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
393 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
394 /// helps with issues such as long function definitions.
395 ///
396 /// (C-not exported) as Arcs don't make sense in bindings
397 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
398
399 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
400 /// socket events into messages which it passes on to its [`MessageHandler`].
401 ///
402 /// Locks are taken internally, so you must never assume that reentrancy from a
403 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
404 ///
405 /// Calls to [`read_event`] will decode relevant messages and pass them to the
406 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
407 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
408 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
409 /// calls only after previous ones have returned.
410 ///
411 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
412 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
413 /// essentially you should default to using a SimpleRefPeerManager, and use a
414 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
415 /// you're using lightning-net-tokio.
416 ///
417 /// [`read_event`]: PeerManager::read_event
418 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
419                 CM::Target: ChannelMessageHandler,
420                 RM::Target: RoutingMessageHandler,
421                 L::Target: Logger,
422                 CMH::Target: CustomMessageHandler {
423         message_handler: MessageHandler<CM, RM>,
424         peers: Mutex<PeerHolder<Descriptor>>,
425         our_node_secret: SecretKey,
426         ephemeral_key_midstate: Sha256Engine,
427         custom_message_handler: CMH,
428
429         peer_counter: AtomicCounter,
430
431         logger: L,
432 }
433
434 enum MessageHandlingError {
435         PeerHandleError(PeerHandleError),
436         LightningError(LightningError),
437 }
438
439 impl From<PeerHandleError> for MessageHandlingError {
440         fn from(error: PeerHandleError) -> Self {
441                 MessageHandlingError::PeerHandleError(error)
442         }
443 }
444
445 impl From<LightningError> for MessageHandlingError {
446         fn from(error: LightningError) -> Self {
447                 MessageHandlingError::LightningError(error)
448         }
449 }
450
451 macro_rules! encode_msg {
452         ($msg: expr) => {{
453                 let mut buffer = VecWriter(Vec::new());
454                 wire::write($msg, &mut buffer).unwrap();
455                 buffer.0
456         }}
457 }
458
459 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
460                 CM::Target: ChannelMessageHandler,
461                 L::Target: Logger {
462         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
463         /// handler is used and network graph messages are ignored.
464         ///
465         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
466         /// cryptographically secure random bytes.
467         ///
468         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
469         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
470                 Self::new(MessageHandler {
471                         chan_handler: channel_message_handler,
472                         route_handler: IgnoringMessageHandler{},
473                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
474         }
475 }
476
477 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
478                 RM::Target: RoutingMessageHandler,
479                 L::Target: Logger {
480         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
481         /// handler is used and messages related to channels will be ignored (or generate error
482         /// messages). Note that some other lightning implementations time-out connections after some
483         /// time if no channel is built with the peer.
484         ///
485         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
486         /// cryptographically secure random bytes.
487         ///
488         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
489         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
490                 Self::new(MessageHandler {
491                         chan_handler: ErroringMessageHandler::new(),
492                         route_handler: routing_message_handler,
493                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
494         }
495 }
496
497 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
498 /// This works around `format!()` taking a reference to each argument, preventing
499 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
500 /// due to lifetime errors.
501 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
502 impl core::fmt::Display for OptionalFromDebugger<'_> {
503         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
504                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
505         }
506 }
507
508 /// A function used to filter out local or private addresses
509 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
510 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
511 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
512         match ip_address{
513                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
514                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
515                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
516                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
517                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
518                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
519                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
520                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
521                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
522                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
523                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
524                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
525                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
526                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
527                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
528                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
529                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
530                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
531                 // For remaining addresses
532                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
533                 Some(..) => ip_address,
534                 None => None,
535         }
536 }
537
538 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
539                 CM::Target: ChannelMessageHandler,
540                 RM::Target: RoutingMessageHandler,
541                 L::Target: Logger,
542                 CMH::Target: CustomMessageHandler {
543         /// Constructs a new PeerManager with the given message handlers and node_id secret key
544         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
545         /// cryptographically secure random bytes.
546         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
547                 let mut ephemeral_key_midstate = Sha256::engine();
548                 ephemeral_key_midstate.input(ephemeral_random_data);
549
550                 PeerManager {
551                         message_handler,
552                         peers: Mutex::new(PeerHolder {
553                                 peers: HashMap::new(),
554                                 node_id_to_descriptor: HashMap::new()
555                         }),
556                         our_node_secret,
557                         ephemeral_key_midstate,
558                         peer_counter: AtomicCounter::new(),
559                         logger,
560                         custom_message_handler,
561                 }
562         }
563
564         /// Get the list of node ids for peers which have completed the initial handshake.
565         ///
566         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
567         /// new_outbound_connection, however entries will only appear once the initial handshake has
568         /// completed and we are sure the remote peer has the private key for the given node_id.
569         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
570                 let peers = self.peers.lock().unwrap();
571                 peers.peers.values().filter_map(|p| {
572                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
573                                 return None;
574                         }
575                         p.their_node_id
576                 }).collect()
577         }
578
579         fn get_ephemeral_key(&self) -> SecretKey {
580                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
581                 let counter = self.peer_counter.get_increment();
582                 ephemeral_hash.input(&counter.to_le_bytes());
583                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
584         }
585
586         /// Indicates a new outbound connection has been established to a node with the given node_id
587         /// and an optional remote network address.
588         ///
589         /// The remote network address adds the option to report a remote IP address back to a connecting
590         /// peer using the init message.
591         /// The user should pass the remote network address of the host they are connected to.
592         ///
593         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
594         /// descriptor but must disconnect the connection immediately.
595         ///
596         /// Returns a small number of bytes to send to the remote node (currently always 50).
597         ///
598         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
599         /// [`socket_disconnected()`].
600         ///
601         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
602         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
603                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
604                 let res = peer_encryptor.get_act_one().to_vec();
605                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
606
607                 let mut peers = self.peers.lock().unwrap();
608                 if peers.peers.insert(descriptor, Peer {
609                         channel_encryptor: peer_encryptor,
610                         their_node_id: None,
611                         their_features: None,
612                         their_net_address: remote_network_address,
613
614                         pending_outbound_buffer: LinkedList::new(),
615                         pending_outbound_buffer_first_msg_offset: 0,
616                         awaiting_write_event: false,
617
618                         pending_read_buffer,
619                         pending_read_buffer_pos: 0,
620                         pending_read_is_header: false,
621
622                         sync_status: InitSyncTracker::NoSyncRequested,
623
624                         msgs_sent_since_pong: 0,
625                         awaiting_pong_timer_tick_intervals: 0,
626                         received_message_since_timer_tick: false,
627                 }).is_some() {
628                         panic!("PeerManager driver duplicated descriptors!");
629                 };
630                 Ok(res)
631         }
632
633         /// Indicates a new inbound connection has been established to a node with an optional remote
634         /// network address.
635         ///
636         /// The remote network address adds the option to report a remote IP address back to a connecting
637         /// peer using the init message.
638         /// The user should pass the remote network address of the host they are connected to.
639         ///
640         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
641         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
642         /// call socket_disconnected for the new descriptor but must disconnect the connection
643         /// immediately.
644         ///
645         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
646         /// [`socket_disconnected()`].
647         ///
648         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
649         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
650                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
651                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
652
653                 let mut peers = self.peers.lock().unwrap();
654                 if peers.peers.insert(descriptor, Peer {
655                         channel_encryptor: peer_encryptor,
656                         their_node_id: None,
657                         their_features: None,
658                         their_net_address: remote_network_address,
659
660                         pending_outbound_buffer: LinkedList::new(),
661                         pending_outbound_buffer_first_msg_offset: 0,
662                         awaiting_write_event: false,
663
664                         pending_read_buffer,
665                         pending_read_buffer_pos: 0,
666                         pending_read_is_header: false,
667
668                         sync_status: InitSyncTracker::NoSyncRequested,
669
670                         msgs_sent_since_pong: 0,
671                         awaiting_pong_timer_tick_intervals: 0,
672                         received_message_since_timer_tick: false,
673                 }).is_some() {
674                         panic!("PeerManager driver duplicated descriptors!");
675                 };
676                 Ok(())
677         }
678
679         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
680                 while !peer.awaiting_write_event {
681                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
682                                 match peer.sync_status {
683                                         InitSyncTracker::NoSyncRequested => {},
684                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
685                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
686                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
687                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
688                                                         self.enqueue_message(peer, announce);
689                                                         if let &Some(ref update_a) = update_a_option {
690                                                                 self.enqueue_message(peer, update_a);
691                                                         }
692                                                         if let &Some(ref update_b) = update_b_option {
693                                                                 self.enqueue_message(peer, update_b);
694                                                         }
695                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
696                                                 }
697                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
698                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
699                                                 }
700                                         },
701                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
702                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
703                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
704                                                 for msg in all_messages.iter() {
705                                                         self.enqueue_message(peer, msg);
706                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
707                                                 }
708                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
709                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
710                                                 }
711                                         },
712                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
713                                         InitSyncTracker::NodesSyncing(key) => {
714                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
715                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
716                                                 for msg in all_messages.iter() {
717                                                         self.enqueue_message(peer, msg);
718                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
719                                                 }
720                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
721                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
722                                                 }
723                                         },
724                                 }
725                         }
726                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
727                                 self.maybe_send_extra_ping(peer);
728                         }
729
730                         if {
731                                 let next_buff = match peer.pending_outbound_buffer.front() {
732                                         None => return,
733                                         Some(buff) => buff,
734                                 };
735
736                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
737                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
738                                 let data_sent = descriptor.send_data(pending, should_be_reading);
739                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
740                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
741                         } {
742                                 peer.pending_outbound_buffer_first_msg_offset = 0;
743                                 peer.pending_outbound_buffer.pop_front();
744                         } else {
745                                 peer.awaiting_write_event = true;
746                         }
747                 }
748         }
749
750         /// Indicates that there is room to write data to the given socket descriptor.
751         ///
752         /// May return an Err to indicate that the connection should be closed.
753         ///
754         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
755         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
756         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
757         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
758         /// sufficient!
759         ///
760         /// [`send_data`]: SocketDescriptor::send_data
761         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
762         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
763                 let mut peers = self.peers.lock().unwrap();
764                 match peers.peers.get_mut(descriptor) {
765                         None => {
766                                 // This is most likely a simple race condition where the user found that the socket
767                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
768                                 // this method. Return an error to make sure we get disconnected.
769                                 return Err(PeerHandleError { no_connection_possible: false });
770                         },
771                         Some(peer) => {
772                                 peer.awaiting_write_event = false;
773                                 self.do_attempt_write_data(descriptor, peer);
774                         }
775                 };
776                 Ok(())
777         }
778
779         /// Indicates that data was read from the given socket descriptor.
780         ///
781         /// May return an Err to indicate that the connection should be closed.
782         ///
783         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
784         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
785         /// [`send_data`] calls to handle responses.
786         ///
787         /// If `Ok(true)` is returned, further read_events should not be triggered until a
788         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
789         /// send buffer).
790         ///
791         /// [`send_data`]: SocketDescriptor::send_data
792         /// [`process_events`]: PeerManager::process_events
793         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
794                 match self.do_read_event(peer_descriptor, data) {
795                         Ok(res) => Ok(res),
796                         Err(e) => {
797                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
798                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
799                                 Err(e)
800                         }
801                 }
802         }
803
804         /// Append a message to a peer's pending outbound/write buffer
805         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
806                 peer.msgs_sent_since_pong += 1;
807                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
808         }
809
810         /// Append a message to a peer's pending outbound/write buffer
811         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
812                 let mut buffer = VecWriter(Vec::with_capacity(2048));
813                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
814
815                 if is_gossip_msg(message.type_id()) {
816                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
817                 } else {
818                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
819                 }
820                 self.enqueue_encoded_message(peer, &buffer.0);
821         }
822
823         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
824                 let pause_read = {
825                         let mut peers_lock = self.peers.lock().unwrap();
826                         let peers = &mut *peers_lock;
827                         let mut msgs_to_forward = Vec::new();
828                         let mut peer_node_id = None;
829                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
830                                 None => {
831                                         // This is most likely a simple race condition where the user read some bytes
832                                         // from the socket, then we told the user to `disconnect_socket()`, then they
833                                         // called this method. Return an error to make sure we get disconnected.
834                                         return Err(PeerHandleError { no_connection_possible: false });
835                                 },
836                                 Some(peer) => {
837                                         assert!(peer.pending_read_buffer.len() > 0);
838                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
839
840                                         let mut read_pos = 0;
841                                         while read_pos < data.len() {
842                                                 {
843                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
844                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
845                                                         read_pos += data_to_copy;
846                                                         peer.pending_read_buffer_pos += data_to_copy;
847                                                 }
848
849                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
850                                                         peer.pending_read_buffer_pos = 0;
851
852                                                         macro_rules! try_potential_handleerror {
853                                                                 ($thing: expr) => {
854                                                                         match $thing {
855                                                                                 Ok(x) => x,
856                                                                                 Err(e) => {
857                                                                                         match e.action {
858                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
859                                                                                                         //TODO: Try to push msg
860                                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
861                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
862                                                                                                 },
863                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
864                                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
865                                                                                                         continue
866                                                                                                 },
867                                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
868                                                                                                 msgs::ErrorAction::IgnoreError => {
869                                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
870                                                                                                         continue;
871                                                                                                 },
872                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
873                                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
874                                                                                                         self.enqueue_message(peer, &msg);
875                                                                                                         continue;
876                                                                                                 },
877                                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
878                                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
879                                                                                                         self.enqueue_message(peer, &msg);
880                                                                                                         continue;
881                                                                                                 },
882                                                                                         }
883                                                                                 }
884                                                                         }
885                                                                 }
886                                                         }
887
888                                                         macro_rules! insert_node_id {
889                                                                 () => {
890                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
891                                                                                 hash_map::Entry::Occupied(_) => {
892                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
893                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
894                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
895                                                                                 },
896                                                                                 hash_map::Entry::Vacant(entry) => {
897                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
898                                                                                         entry.insert(peer_descriptor.clone())
899                                                                                 },
900                                                                         };
901                                                                 }
902                                                         }
903
904                                                         let next_step = peer.channel_encryptor.get_noise_step();
905                                                         match next_step {
906                                                                 NextNoiseStep::ActOne => {
907                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
908                                                                         peer.pending_outbound_buffer.push_back(act_two);
909                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
910                                                                 },
911                                                                 NextNoiseStep::ActTwo => {
912                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
913                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
914                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
915                                                                         peer.pending_read_is_header = true;
916
917                                                                         peer.their_node_id = Some(their_node_id);
918                                                                         insert_node_id!();
919                                                                         let features = InitFeatures::known();
920                                                                         let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone())};
921                                                                         self.enqueue_message(peer, &resp);
922                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
923                                                                 },
924                                                                 NextNoiseStep::ActThree => {
925                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
926                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
927                                                                         peer.pending_read_is_header = true;
928                                                                         peer.their_node_id = Some(their_node_id);
929                                                                         insert_node_id!();
930                                                                         let features = InitFeatures::known();
931                                                                         let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone())};
932                                                                         self.enqueue_message(peer, &resp);
933                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
934                                                                 },
935                                                                 NextNoiseStep::NoiseComplete => {
936                                                                         if peer.pending_read_is_header {
937                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
938                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
939                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
940                                                                                 if msg_len < 2 { // Need at least the message type tag
941                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
942                                                                                 }
943                                                                                 peer.pending_read_is_header = false;
944                                                                         } else {
945                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
946                                                                                 assert!(msg_data.len() >= 2);
947
948                                                                                 // Reset read buffer
949                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
950                                                                                 peer.pending_read_is_header = true;
951
952                                                                                 let mut reader = io::Cursor::new(&msg_data[..]);
953                                                                                 let message_result = wire::read(&mut reader, &*self.custom_message_handler);
954                                                                                 let message = match message_result {
955                                                                                         Ok(x) => x,
956                                                                                         Err(e) => {
957                                                                                                 match e {
958                                                                                                         // Note that to avoid recursion we never call
959                                                                                                         // `do_attempt_write_data` from here, causing
960                                                                                                         // the messages enqueued here to not actually
961                                                                                                         // be sent before the peer is disconnected.
962                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
963                                                                                                                 log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
964                                                                                                                 continue;
965                                                                                                         }
966                                                                                                         (msgs::DecodeError::UnsupportedCompression, _) => {
967                                                                                                                 log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
968                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
969                                                                                                                 continue;
970                                                                                                         }
971                                                                                                         (_, Some(ty)) if is_gossip_msg(ty) => {
972                                                                                                                 log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
973                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
974                                                                                                                 continue;
975                                                                                                         }
976                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, ty) => {
977                                                                                                                 log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
978                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
979                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
980                                                                                                         }
981                                                                                                         (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
982                                                                                                         (msgs::DecodeError::InvalidValue, _) => {
983                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
984                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
985                                                                                                         }
986                                                                                                         (msgs::DecodeError::ShortRead, _) => {
987                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
988                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
989                                                                                                         }
990                                                                                                         (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
991                                                                                                         (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
992                                                                                                 }
993                                                                                         }
994                                                                                 };
995
996                                                                                 match self.handle_message(peer, message) {
997                                                                                         Err(handling_error) => match handling_error {
998                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
999                                                                                                 MessageHandlingError::LightningError(e) => {
1000                                                                                                         try_potential_handleerror!(Err(e));
1001                                                                                                 },
1002                                                                                         },
1003                                                                                         Ok(Some(msg)) => {
1004                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
1005                                                                                                 msgs_to_forward.push(msg);
1006                                                                                         },
1007                                                                                         Ok(None) => {},
1008                                                                                 }
1009                                                                         }
1010                                                                 }
1011                                                         }
1012                                                 }
1013                                         }
1014
1015                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
1016                                 }
1017                         };
1018
1019                         for msg in msgs_to_forward.drain(..) {
1020                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
1021                         }
1022
1023                         pause_read
1024                 };
1025
1026                 Ok(pause_read)
1027         }
1028
1029         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1030         /// Returns the message back if it needs to be broadcasted to all other peers.
1031         fn handle_message(
1032                 &self,
1033                 peer: &mut Peer,
1034                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1035         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1036                 if is_gossip_msg(message.type_id()) {
1037                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1038                 } else {
1039                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1040                 }
1041
1042                 peer.received_message_since_timer_tick = true;
1043
1044                 // Need an Init as first message
1045                 if let wire::Message::Init(_) = message {
1046                 } else if peer.their_features.is_none() {
1047                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
1048                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1049                 }
1050
1051                 let mut should_forward = None;
1052
1053                 match message {
1054                         // Setup and Control messages:
1055                         wire::Message::Init(msg) => {
1056                                 if msg.features.requires_unknown_bits() {
1057                                         log_debug!(self.logger, "Peer features required unknown version bits");
1058                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1059                                 }
1060                                 if peer.their_features.is_some() {
1061                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1062                                 }
1063
1064                                 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);
1065
1066                                 if msg.features.initial_routing_sync() {
1067                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
1068                                 }
1069                                 if !msg.features.supports_static_remote_key() {
1070                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
1071                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1072                                 }
1073
1074                                 self.message_handler.route_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1075
1076                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1077                                 peer.their_features = Some(msg.features);
1078                         },
1079                         wire::Message::Error(msg) => {
1080                                 let mut data_is_printable = true;
1081                                 for b in msg.data.bytes() {
1082                                         if b < 32 || b > 126 {
1083                                                 data_is_printable = false;
1084                                                 break;
1085                                         }
1086                                 }
1087
1088                                 if data_is_printable {
1089                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1090                                 } else {
1091                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1092                                 }
1093                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1094                                 if msg.channel_id == [0; 32] {
1095                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1096                                 }
1097                         },
1098                         wire::Message::Warning(msg) => {
1099                                 let mut data_is_printable = true;
1100                                 for b in msg.data.bytes() {
1101                                         if b < 32 || b > 126 {
1102                                                 data_is_printable = false;
1103                                                 break;
1104                                         }
1105                                 }
1106
1107                                 if data_is_printable {
1108                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1109                                 } else {
1110                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1111                                 }
1112                         },
1113
1114                         wire::Message::Ping(msg) => {
1115                                 if msg.ponglen < 65532 {
1116                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1117                                         self.enqueue_message(peer, &resp);
1118                                 }
1119                         },
1120                         wire::Message::Pong(_msg) => {
1121                                 peer.awaiting_pong_timer_tick_intervals = 0;
1122                                 peer.msgs_sent_since_pong = 0;
1123                         },
1124
1125                         // Channel messages:
1126                         wire::Message::OpenChannel(msg) => {
1127                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1128                         },
1129                         wire::Message::AcceptChannel(msg) => {
1130                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1131                         },
1132
1133                         wire::Message::FundingCreated(msg) => {
1134                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1135                         },
1136                         wire::Message::FundingSigned(msg) => {
1137                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1138                         },
1139                         wire::Message::FundingLocked(msg) => {
1140                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1141                         },
1142
1143                         wire::Message::Shutdown(msg) => {
1144                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1145                         },
1146                         wire::Message::ClosingSigned(msg) => {
1147                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1148                         },
1149
1150                         // Commitment messages:
1151                         wire::Message::UpdateAddHTLC(msg) => {
1152                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1153                         },
1154                         wire::Message::UpdateFulfillHTLC(msg) => {
1155                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1156                         },
1157                         wire::Message::UpdateFailHTLC(msg) => {
1158                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1159                         },
1160                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1161                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1162                         },
1163
1164                         wire::Message::CommitmentSigned(msg) => {
1165                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1166                         },
1167                         wire::Message::RevokeAndACK(msg) => {
1168                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1169                         },
1170                         wire::Message::UpdateFee(msg) => {
1171                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1172                         },
1173                         wire::Message::ChannelReestablish(msg) => {
1174                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1175                         },
1176
1177                         // Routing messages:
1178                         wire::Message::AnnouncementSignatures(msg) => {
1179                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1180                         },
1181                         wire::Message::ChannelAnnouncement(msg) => {
1182                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1183                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1184                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1185                                 }
1186                         },
1187                         wire::Message::NodeAnnouncement(msg) => {
1188                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1189                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1190                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1191                                 }
1192                         },
1193                         wire::Message::ChannelUpdate(msg) => {
1194                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1195                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1196                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1197                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1198                                 }
1199                         },
1200                         wire::Message::QueryShortChannelIds(msg) => {
1201                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1202                         },
1203                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1204                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1205                         },
1206                         wire::Message::QueryChannelRange(msg) => {
1207                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1208                         },
1209                         wire::Message::ReplyChannelRange(msg) => {
1210                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1211                         },
1212                         wire::Message::GossipTimestampFilter(_msg) => {
1213                                 // TODO: handle message
1214                         },
1215
1216                         // Unknown messages:
1217                         wire::Message::Unknown(type_id) if message.is_even() => {
1218                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1219                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1220                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1221                         },
1222                         wire::Message::Unknown(type_id) => {
1223                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1224                         },
1225                         wire::Message::Custom(custom) => {
1226                                 self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
1227                         },
1228                 };
1229                 Ok(should_forward)
1230         }
1231
1232         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1233                 match msg {
1234                         wire::Message::ChannelAnnouncement(ref msg) => {
1235                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1236                                 let encoded_msg = encode_msg!(msg);
1237
1238                                 for (_, peer) in peers.peers.iter_mut() {
1239                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1240                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1241                                                 continue
1242                                         }
1243                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1244                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1245                                         {
1246                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1247                                                 continue;
1248                                         }
1249                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1250                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1251                                                 continue;
1252                                         }
1253                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1254                                                 continue;
1255                                         }
1256                                         self.enqueue_encoded_message(peer, &encoded_msg);
1257                                 }
1258                         },
1259                         wire::Message::NodeAnnouncement(ref msg) => {
1260                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1261                                 let encoded_msg = encode_msg!(msg);
1262
1263                                 for (_, peer) in peers.peers.iter_mut() {
1264                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1265                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1266                                                 continue
1267                                         }
1268                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1269                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1270                                         {
1271                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1272                                                 continue;
1273                                         }
1274                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1275                                                 continue;
1276                                         }
1277                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1278                                                 continue;
1279                                         }
1280                                         self.enqueue_encoded_message(peer, &encoded_msg);
1281                                 }
1282                         },
1283                         wire::Message::ChannelUpdate(ref msg) => {
1284                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1285                                 let encoded_msg = encode_msg!(msg);
1286
1287                                 for (_, peer) in peers.peers.iter_mut() {
1288                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1289                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1290                                                 continue
1291                                         }
1292                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1293                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1294                                         {
1295                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1296                                                 continue;
1297                                         }
1298                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1299                                                 continue;
1300                                         }
1301                                         self.enqueue_encoded_message(peer, &encoded_msg);
1302                                 }
1303                         },
1304                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1305                 }
1306         }
1307
1308         /// Checks for any events generated by our handlers and processes them. Includes sending most
1309         /// response messages as well as messages generated by calls to handler functions directly (eg
1310         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1311         ///
1312         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1313         /// issues!
1314         ///
1315         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1316         /// or one of the other clients provided in our language bindings.
1317         ///
1318         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1319         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1320         /// [`send_data`]: SocketDescriptor::send_data
1321         pub fn process_events(&self) {
1322                 {
1323                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1324                         // buffer by doing things like announcing channels on another node. We should be willing to
1325                         // drop optional-ish messages when send buffers get full!
1326
1327                         let mut peers_lock = self.peers.lock().unwrap();
1328                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1329                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1330                         let peers = &mut *peers_lock;
1331                         macro_rules! get_peer_for_forwarding {
1332                                 ($node_id: expr) => {
1333                                         {
1334                                                 match peers.node_id_to_descriptor.get($node_id) {
1335                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1336                                                                 Some(peer) => {
1337                                                                         if peer.their_features.is_none() {
1338                                                                                 continue;
1339                                                                         }
1340                                                                         peer
1341                                                                 },
1342                                                                 None => panic!("Inconsistent peers set state!"),
1343                                                         },
1344                                                         None => {
1345                                                                 continue;
1346                                                         },
1347                                                 }
1348                                         }
1349                                 }
1350                         }
1351                         for event in events_generated.drain(..) {
1352                                 match event {
1353                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1354                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1355                                                                 log_pubkey!(node_id),
1356                                                                 log_bytes!(msg.temporary_channel_id));
1357                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1358                                         },
1359                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1360                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1361                                                                 log_pubkey!(node_id),
1362                                                                 log_bytes!(msg.temporary_channel_id));
1363                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1364                                         },
1365                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1366                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1367                                                                 log_pubkey!(node_id),
1368                                                                 log_bytes!(msg.temporary_channel_id),
1369                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1370                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1371                                                 // indicating to the wallet that they should just throw away this funding transaction
1372                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1373                                         },
1374                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1375                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1376                                                                 log_pubkey!(node_id),
1377                                                                 log_bytes!(msg.channel_id));
1378                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1379                                         },
1380                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1381                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1382                                                                 log_pubkey!(node_id),
1383                                                                 log_bytes!(msg.channel_id));
1384                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1385                                         },
1386                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1387                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1388                                                                 log_pubkey!(node_id),
1389                                                                 log_bytes!(msg.channel_id));
1390                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1391                                         },
1392                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1393                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1394                                                                 log_pubkey!(node_id),
1395                                                                 update_add_htlcs.len(),
1396                                                                 update_fulfill_htlcs.len(),
1397                                                                 update_fail_htlcs.len(),
1398                                                                 log_bytes!(commitment_signed.channel_id));
1399                                                 let peer = get_peer_for_forwarding!(node_id);
1400                                                 for msg in update_add_htlcs {
1401                                                         self.enqueue_message(peer, msg);
1402                                                 }
1403                                                 for msg in update_fulfill_htlcs {
1404                                                         self.enqueue_message(peer, msg);
1405                                                 }
1406                                                 for msg in update_fail_htlcs {
1407                                                         self.enqueue_message(peer, msg);
1408                                                 }
1409                                                 for msg in update_fail_malformed_htlcs {
1410                                                         self.enqueue_message(peer, msg);
1411                                                 }
1412                                                 if let &Some(ref msg) = update_fee {
1413                                                         self.enqueue_message(peer, msg);
1414                                                 }
1415                                                 self.enqueue_message(peer, commitment_signed);
1416                                         },
1417                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1418                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1419                                                                 log_pubkey!(node_id),
1420                                                                 log_bytes!(msg.channel_id));
1421                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1422                                         },
1423                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1424                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1425                                                                 log_pubkey!(node_id),
1426                                                                 log_bytes!(msg.channel_id));
1427                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1428                                         },
1429                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1430                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1431                                                                 log_pubkey!(node_id),
1432                                                                 log_bytes!(msg.channel_id));
1433                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1434                                         },
1435                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1436                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1437                                                                 log_pubkey!(node_id),
1438                                                                 log_bytes!(msg.channel_id));
1439                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1440                                         },
1441                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1442                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1443                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1444                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1445                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1446                                                         _ => {},
1447                                                 }
1448                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1449                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1450                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1451                                                         _ => {},
1452                                                 }
1453                                         },
1454                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1455                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1456                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1457                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1458                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1459                                                         _ => {},
1460                                                 }
1461                                         },
1462                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1463                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1464                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1465                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1466                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1467                                                         _ => {},
1468                                                 }
1469                                         },
1470                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1471                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1472                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1473                                                 let peer = get_peer_for_forwarding!(node_id);
1474                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1475                                         },
1476                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1477                                                 match *action {
1478                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1479                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1480                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1481                                                                                 if let Some(ref msg) = *msg {
1482                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1483                                                                                                         log_pubkey!(node_id),
1484                                                                                                         msg.data);
1485                                                                                         self.enqueue_message(&mut peer, msg);
1486                                                                                         // This isn't guaranteed to work, but if there is enough free
1487                                                                                         // room in the send buffer, put the error message there...
1488                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1489                                                                                 } else {
1490                                                                                         log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1491                                                                                 }
1492                                                                         }
1493                                                                         descriptor.disconnect_socket();
1494                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1495                                                                 }
1496                                                         },
1497                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1498                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1499                                                         },
1500                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1501                                                         msgs::ErrorAction::IgnoreError => {
1502                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1503                                                         },
1504                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1505                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1506                                                                                 log_pubkey!(node_id),
1507                                                                                 msg.data);
1508                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1509                                                         },
1510                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1511                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1512                                                                                 log_pubkey!(node_id),
1513                                                                                 msg.data);
1514                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1515                                                         },
1516                                                 }
1517                                         },
1518                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1519                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1520                                         },
1521                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1522                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1523                                         }
1524                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1525                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1526                                                         log_pubkey!(node_id),
1527                                                         msg.short_channel_ids.len(),
1528                                                         msg.first_blocknum,
1529                                                         msg.number_of_blocks,
1530                                                         msg.sync_complete);
1531                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1532                                         }
1533                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1534                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1535                                         }
1536                                 }
1537                         }
1538
1539                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1540                                 self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
1541                         }
1542
1543                         for (descriptor, peer) in peers.peers.iter_mut() {
1544                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1545                         }
1546                 }
1547         }
1548
1549         /// Indicates that the given socket descriptor's connection is now closed.
1550         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1551                 self.disconnect_event_internal(descriptor, false);
1552         }
1553
1554         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1555                 let mut peers = self.peers.lock().unwrap();
1556                 let peer_option = peers.peers.remove(descriptor);
1557                 match peer_option {
1558                         None => {
1559                                 // This is most likely a simple race condition where the user found that the socket
1560                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1561                                 // called this method. Either way we're disconnected, return.
1562                         },
1563                         Some(peer) => {
1564                                 match peer.their_node_id {
1565                                         Some(node_id) => {
1566                                                 log_trace!(self.logger,
1567                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1568                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1569                                                 peers.node_id_to_descriptor.remove(&node_id);
1570                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1571                                         },
1572                                         None => {}
1573                                 }
1574                         }
1575                 };
1576         }
1577
1578         /// Disconnect a peer given its node id.
1579         ///
1580         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1581         /// force-closing any channels we have with it.
1582         ///
1583         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1584         /// peer. Thus, be very careful about reentrancy issues.
1585         ///
1586         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1587         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1588                 let mut peers_lock = self.peers.lock().unwrap();
1589                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1590                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1591                         peers_lock.peers.remove(&descriptor);
1592                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1593                         descriptor.disconnect_socket();
1594                 }
1595         }
1596
1597         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1598         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1599         /// using regular ping/pongs.
1600         pub fn disconnect_all_peers(&self) {
1601                 let mut peers_lock = self.peers.lock().unwrap();
1602                 let peers = &mut *peers_lock;
1603                 for (mut descriptor, peer) in peers.peers.drain() {
1604                         if let Some(node_id) = peer.their_node_id {
1605                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1606                                 peers.node_id_to_descriptor.remove(&node_id);
1607                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1608                         }
1609                         descriptor.disconnect_socket();
1610                 }
1611                 debug_assert!(peers.node_id_to_descriptor.is_empty());
1612         }
1613
1614         /// This is called when we're blocked on sending additional gossip messages until we receive a
1615         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1616         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1617         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1618                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1619                         peer.awaiting_pong_timer_tick_intervals = -1;
1620                         let ping = msgs::Ping {
1621                                 ponglen: 0,
1622                                 byteslen: 64,
1623                         };
1624                         self.enqueue_message(peer, &ping);
1625                 }
1626         }
1627
1628         /// Send pings to each peer and disconnect those which did not respond to the last round of
1629         /// pings.
1630         ///
1631         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1632         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1633         /// time they have to respond before we disconnect them.
1634         ///
1635         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1636         /// issues!
1637         ///
1638         /// [`send_data`]: SocketDescriptor::send_data
1639         pub fn timer_tick_occurred(&self) {
1640                 let mut peers_lock = self.peers.lock().unwrap();
1641                 {
1642                         let peers = &mut *peers_lock;
1643                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1644                         let peers = &mut peers.peers;
1645                         let mut descriptors_needing_disconnect = Vec::new();
1646                         let peer_count = peers.len();
1647
1648                         peers.retain(|descriptor, peer| {
1649                                 let mut do_disconnect_peer = false;
1650                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1651                                         // The peer needs to complete its handshake before we can exchange messages. We
1652                                         // give peers one timer tick to complete handshake, reusing
1653                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1654                                         // for handshake completion.
1655                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1656                                                 do_disconnect_peer = true;
1657                                         } else {
1658                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1659                                                 return true;
1660                                         }
1661                                 }
1662
1663                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1664                                         // Magic value set in `maybe_send_extra_ping`.
1665                                         peer.awaiting_pong_timer_tick_intervals = 1;
1666                                         peer.received_message_since_timer_tick = false;
1667                                         return true;
1668                                 }
1669
1670                                 if do_disconnect_peer
1671                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1672                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1673                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1674                                 {
1675                                         descriptors_needing_disconnect.push(descriptor.clone());
1676                                         match peer.their_node_id {
1677                                                 Some(node_id) => {
1678                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1679                                                         node_id_to_descriptor.remove(&node_id);
1680                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1681                                                 }
1682                                                 None => {},
1683                                         }
1684                                         return false;
1685                                 }
1686                                 peer.received_message_since_timer_tick = false;
1687
1688                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1689                                         peer.awaiting_pong_timer_tick_intervals += 1;
1690                                         return true;
1691                                 }
1692
1693                                 peer.awaiting_pong_timer_tick_intervals = 1;
1694                                 let ping = msgs::Ping {
1695                                         ponglen: 0,
1696                                         byteslen: 64,
1697                                 };
1698                                 self.enqueue_message(peer, &ping);
1699                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1700
1701                                 true
1702                         });
1703
1704                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1705                                 descriptor.disconnect_socket();
1706                         }
1707                 }
1708         }
1709 }
1710
1711 fn is_gossip_msg(type_id: u16) -> bool {
1712         match type_id {
1713                 msgs::ChannelAnnouncement::TYPE |
1714                 msgs::ChannelUpdate::TYPE |
1715                 msgs::NodeAnnouncement::TYPE |
1716                 msgs::QueryChannelRange::TYPE |
1717                 msgs::ReplyChannelRange::TYPE |
1718                 msgs::QueryShortChannelIds::TYPE |
1719                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1720                 _ => false
1721         }
1722 }
1723
1724 #[cfg(test)]
1725 mod tests {
1726         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1727         use ln::msgs;
1728         use ln::msgs::NetAddress;
1729         use util::events;
1730         use util::test_utils;
1731
1732         use bitcoin::secp256k1::Secp256k1;
1733         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1734
1735         use prelude::*;
1736         use sync::{Arc, Mutex};
1737         use core::sync::atomic::Ordering;
1738
1739         #[derive(Clone)]
1740         struct FileDescriptor {
1741                 fd: u16,
1742                 outbound_data: Arc<Mutex<Vec<u8>>>,
1743         }
1744         impl PartialEq for FileDescriptor {
1745                 fn eq(&self, other: &Self) -> bool {
1746                         self.fd == other.fd
1747                 }
1748         }
1749         impl Eq for FileDescriptor { }
1750         impl core::hash::Hash for FileDescriptor {
1751                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1752                         self.fd.hash(hasher)
1753                 }
1754         }
1755
1756         impl SocketDescriptor for FileDescriptor {
1757                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1758                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1759                         data.len()
1760                 }
1761
1762                 fn disconnect_socket(&mut self) {}
1763         }
1764
1765         struct PeerManagerCfg {
1766                 chan_handler: test_utils::TestChannelMessageHandler,
1767                 routing_handler: test_utils::TestRoutingMessageHandler,
1768                 logger: test_utils::TestLogger,
1769         }
1770
1771         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1772                 let mut cfgs = Vec::new();
1773                 for _ in 0..peer_count {
1774                         cfgs.push(
1775                                 PeerManagerCfg{
1776                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1777                                         logger: test_utils::TestLogger::new(),
1778                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1779                                 }
1780                         );
1781                 }
1782
1783                 cfgs
1784         }
1785
1786         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1787                 let mut peers = Vec::new();
1788                 for i in 0..peer_count {
1789                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1790                         let ephemeral_bytes = [i as u8; 32];
1791                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1792                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1793                         peers.push(peer);
1794                 }
1795
1796                 peers
1797         }
1798
1799         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1800                 let secp_ctx = Secp256k1::new();
1801                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1802                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1803                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1804                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1805                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1806                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1807                 peer_a.process_events();
1808                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1809                 peer_b.process_events();
1810                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1811                 (fd_a.clone(), fd_b.clone())
1812         }
1813
1814         #[test]
1815         fn test_disconnect_peer() {
1816                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1817                 // push a DisconnectPeer event to remove the node flagged by id
1818                 let cfgs = create_peermgr_cfgs(2);
1819                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1820                 let mut peers = create_network(2, &cfgs);
1821                 establish_connection(&peers[0], &peers[1]);
1822                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1823
1824                 let secp_ctx = Secp256k1::new();
1825                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1826
1827                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1828                         node_id: their_id,
1829                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1830                 });
1831                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1832                 peers[0].message_handler.chan_handler = &chan_handler;
1833
1834                 peers[0].process_events();
1835                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1836         }
1837
1838         #[test]
1839         fn test_timer_tick_occurred() {
1840                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1841                 let cfgs = create_peermgr_cfgs(2);
1842                 let peers = create_network(2, &cfgs);
1843                 establish_connection(&peers[0], &peers[1]);
1844                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1845
1846                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1847                 peers[0].timer_tick_occurred();
1848                 peers[0].process_events();
1849                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1850
1851                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1852                 peers[0].timer_tick_occurred();
1853                 peers[0].process_events();
1854                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1855         }
1856
1857         #[test]
1858         fn test_do_attempt_write_data() {
1859                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1860                 let cfgs = create_peermgr_cfgs(2);
1861                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1862                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1863                 let peers = create_network(2, &cfgs);
1864
1865                 // By calling establish_connect, we trigger do_attempt_write_data between
1866                 // the peers. Previously this function would mistakenly enter an infinite loop
1867                 // when there were more channel messages available than could fit into a peer's
1868                 // buffer. This issue would now be detected by this test (because we use custom
1869                 // RoutingMessageHandlers that intentionally return more channel messages
1870                 // than can fit into a peer's buffer).
1871                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1872
1873                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1874                 // due to the max-messagse-before-ping limits this may take a few iterations to complete.
1875                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1876                         peers[0].process_events();
1877                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1878                         assert!(!b_read_data.is_empty());
1879
1880                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1881                         peers[1].process_events();
1882
1883                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1884                         assert!(!a_read_data.is_empty());
1885                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1886
1887                         peers[1].process_events();
1888                         assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages");
1889                 }
1890
1891                 // Check that each peer has received the expected number of channel updates and channel
1892                 // announcements.
1893                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1894                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1895                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1896                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1897         }
1898
1899         #[test]
1900         fn test_handshake_timeout() {
1901                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1902                 // tick.
1903                 let cfgs = create_peermgr_cfgs(2);
1904                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1905                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1906                 let peers = create_network(2, &cfgs);
1907
1908                 let secp_ctx = Secp256k1::new();
1909                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1910                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1911                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1912                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1913                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
1914
1915                 // If we get a single timer tick before completion, that's fine
1916                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1917                 peers[0].timer_tick_occurred();
1918                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1919
1920                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1921                 peers[0].process_events();
1922                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1923                 peers[1].process_events();
1924
1925                 // ...but if we get a second timer tick, we should disconnect the peer
1926                 peers[0].timer_tick_occurred();
1927                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1928
1929                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1930         }
1931
1932         #[test]
1933         fn test_filter_addresses(){
1934                 // Tests the filter_addresses function.
1935
1936                 // For (10/8)
1937                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
1938                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1939                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
1940                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1941                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
1942                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1943
1944                 // For (0/8)
1945                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
1946                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1947                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
1948                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1949                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
1950                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1951
1952                 // For (100.64/10)
1953                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
1954                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1955                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
1956                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1957                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
1958                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1959
1960                 // For (127/8)
1961                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
1962                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1963                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
1964                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1965                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
1966                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1967
1968                 // For (169.254/16)
1969                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
1970                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1971                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
1972                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1973                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
1974                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1975
1976                 // For (172.16/12)
1977                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
1978                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1979                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
1980                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1981                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
1982                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1983
1984                 // For (192.168/16)
1985                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
1986                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1987                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
1988                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1989                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
1990                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1991
1992                 // For (192.88.99/24)
1993                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
1994                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1995                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
1996                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1997                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
1998                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1999
2000                 // For other IPv4 addresses
2001                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2002                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2003                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2004                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2005                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2006                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2007
2008                 // For (2000::/3)
2009                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2010                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2011                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2012                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2013                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2014                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2015
2016                 // For other IPv6 addresses
2017                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2018                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2019                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2020                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2021                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2022                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2023
2024                 // For (None)
2025                 assert_eq!(filter_addresses(None), None);
2026         }
2027 }