9d3b7aca807688b6ce8caf8d900702ccfee9a8e0
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::{InitFeatures, NodeFeatures};
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use routing::gossip::{NetworkGraph, P2PGossipSync};
29 use util::atomic_counter::AtomicCounter;
30 use util::crypto::sign;
31 use util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
32 use util::logger::Logger;
33
34 use prelude::*;
35 use io;
36 use alloc::collections::LinkedList;
37 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
38 use core::sync::atomic::{AtomicBool, AtomicU64, Ordering};
39 use core::{cmp, hash, fmt, mem};
40 use core::ops::Deref;
41 use core::convert::Infallible;
42 #[cfg(feature = "std")] use std::error;
43
44 use bitcoin::hashes::sha256::Hash as Sha256;
45 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
48
49 /// Handler for BOLT1-compliant messages.
50 pub trait CustomMessageHandler: wire::CustomMessageReader {
51         /// Called with the message type that was received and the buffer to be read.
52         /// Can return a `MessageHandlingError` if the message could not be handled.
53         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
54
55         /// Gets the list of pending messages which were generated by the custom message
56         /// handler, clearing the list in the process. The first tuple element must
57         /// correspond to the intended recipients node ids. If no connection to one of the
58         /// specified node does not exist, the message is simply not sent to it.
59         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
60 }
61
62 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
63 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
64 pub struct IgnoringMessageHandler{}
65 impl MessageSendEventsProvider for IgnoringMessageHandler {
66         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
67 }
68 impl RoutingMessageHandler for IgnoringMessageHandler {
69         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
70         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
72         fn get_next_channel_announcement(&self, _starting_point: u64) ->
73                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
74         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
75         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
76         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
78         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
80 }
81 impl OnionMessageProvider for IgnoringMessageHandler {
82         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
83 }
84 impl OnionMessageHandler for IgnoringMessageHandler {
85         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
86         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
87         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
88 }
89 impl Deref for IgnoringMessageHandler {
90         type Target = IgnoringMessageHandler;
91         fn deref(&self) -> &Self { self }
92 }
93
94 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
95 // method that takes self for it.
96 impl wire::Type for Infallible {
97         fn type_id(&self) -> u16 {
98                 unreachable!();
99         }
100 }
101 impl Writeable for Infallible {
102         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
103                 unreachable!();
104         }
105 }
106
107 impl wire::CustomMessageReader for IgnoringMessageHandler {
108         type CustomMessage = Infallible;
109         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
110                 Ok(None)
111         }
112 }
113
114 impl CustomMessageHandler for IgnoringMessageHandler {
115         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
116                 // Since we always return `None` in the read the handle method should never be called.
117                 unreachable!();
118         }
119
120         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
121 }
122
123 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
124 /// You can provide one of these as the route_handler in a MessageHandler.
125 pub struct ErroringMessageHandler {
126         message_queue: Mutex<Vec<MessageSendEvent>>
127 }
128 impl ErroringMessageHandler {
129         /// Constructs a new ErroringMessageHandler
130         pub fn new() -> Self {
131                 Self { message_queue: Mutex::new(Vec::new()) }
132         }
133         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
134                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
135                         action: msgs::ErrorAction::SendErrorMessage {
136                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
137                         },
138                         node_id: node_id.clone(),
139                 });
140         }
141 }
142 impl MessageSendEventsProvider for ErroringMessageHandler {
143         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
144                 let mut res = Vec::new();
145                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
146                 res
147         }
148 }
149 impl ChannelMessageHandler for ErroringMessageHandler {
150         // Any messages which are related to a specific channel generate an error message to let the
151         // peer know we don't care about channels.
152         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
153                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
154         }
155         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
156                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
157         }
158         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
159                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
160         }
161         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
162                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
163         }
164         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
165                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
166         }
167         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
168                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
169         }
170         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
171                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
172         }
173         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
174                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
175         }
176         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
177                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
178         }
179         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
180                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
181         }
182         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
183                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
184         }
185         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
186                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
187         }
188         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
189                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
190         }
191         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
192                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
193         }
194         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
195                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
196         }
197         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
198                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
199         }
200         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
201         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
202         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
203         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
204         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
205         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
206 }
207 impl Deref for ErroringMessageHandler {
208         type Target = ErroringMessageHandler;
209         fn deref(&self) -> &Self { self }
210 }
211
212 /// Provides references to trait impls which handle different types of messages.
213 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
214                 CM::Target: ChannelMessageHandler,
215                 RM::Target: RoutingMessageHandler,
216                 OM::Target: OnionMessageHandler,
217 {
218         /// A message handler which handles messages specific to channels. Usually this is just a
219         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
220         ///
221         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
222         pub chan_handler: CM,
223         /// A message handler which handles messages updating our knowledge of the network channel
224         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
225         ///
226         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
227         pub route_handler: RM,
228
229         /// A message handler which handles onion messages. For now, this can only be an
230         /// [`IgnoringMessageHandler`].
231         pub onion_message_handler: OM,
232 }
233
234 /// Provides an object which can be used to send data to and which uniquely identifies a connection
235 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
236 /// implement Hash to meet the PeerManager API.
237 ///
238 /// For efficiency, Clone should be relatively cheap for this type.
239 ///
240 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
241 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
242 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
243 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
244 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
245 /// to simply use another value which is guaranteed to be globally unique instead.
246 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
247         /// Attempts to send some data from the given slice to the peer.
248         ///
249         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
250         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
251         /// called and further write attempts may occur until that time.
252         ///
253         /// If the returned size is smaller than `data.len()`, a
254         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
255         /// written. Additionally, until a `send_data` event completes fully, no further
256         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
257         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
258         /// until then.
259         ///
260         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
261         /// (indicating that read events should be paused to prevent DoS in the send buffer),
262         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
263         /// `resume_read` of false carries no meaning, and should not cause any action.
264         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
265         /// Disconnect the socket pointed to by this SocketDescriptor.
266         ///
267         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
268         /// call (doing so is a noop).
269         fn disconnect_socket(&mut self);
270 }
271
272 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
273 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
274 /// descriptor.
275 #[derive(Clone)]
276 pub struct PeerHandleError {
277         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
278         /// because we required features that our peer was missing, or vice versa).
279         ///
280         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
281         /// any channels with this peer or check for new versions of LDK.
282         ///
283         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
284         pub no_connection_possible: bool,
285 }
286 impl fmt::Debug for PeerHandleError {
287         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
288                 formatter.write_str("Peer Sent Invalid Data")
289         }
290 }
291 impl fmt::Display for PeerHandleError {
292         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
293                 formatter.write_str("Peer Sent Invalid Data")
294         }
295 }
296
297 #[cfg(feature = "std")]
298 impl error::Error for PeerHandleError {
299         fn description(&self) -> &str {
300                 "Peer Sent Invalid Data"
301         }
302 }
303
304 enum InitSyncTracker{
305         NoSyncRequested,
306         ChannelsSyncing(u64),
307         NodesSyncing(PublicKey),
308 }
309
310 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
311 /// forwarding gossip messages to peers altogether.
312 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
313
314 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
315 /// we have fewer than this many messages in the outbound buffer again.
316 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
317 /// refilled as we send bytes.
318 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
319 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
320 /// the peer.
321 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
322
323 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
324 /// the socket receive buffer before receiving the ping.
325 ///
326 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
327 /// including any network delays, outbound traffic, or the same for messages from other peers.
328 ///
329 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
330 /// per connected peer to respond to a ping, as long as they send us at least one message during
331 /// each tick, ensuring we aren't actually just disconnected.
332 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
333 /// peer.
334 ///
335 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
336 /// two connected peers, assuming most LDK-running systems have at least two cores.
337 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
338
339 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
340 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
341 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
342 /// process before the next ping.
343 ///
344 /// Note that we continue responding to other messages even after we've sent this many messages, so
345 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
346 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
347 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
348
349 struct Peer {
350         channel_encryptor: PeerChannelEncryptor,
351         their_node_id: Option<PublicKey>,
352         their_features: Option<InitFeatures>,
353         their_net_address: Option<NetAddress>,
354
355         pending_outbound_buffer: LinkedList<Vec<u8>>,
356         pending_outbound_buffer_first_msg_offset: usize,
357         // Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily prioritize
358         // channel messages over them.
359         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
360         awaiting_write_event: bool,
361
362         pending_read_buffer: Vec<u8>,
363         pending_read_buffer_pos: usize,
364         pending_read_is_header: bool,
365
366         sync_status: InitSyncTracker,
367
368         msgs_sent_since_pong: usize,
369         awaiting_pong_timer_tick_intervals: i8,
370         received_message_since_timer_tick: bool,
371         sent_gossip_timestamp_filter: bool,
372 }
373
374 impl Peer {
375         /// Returns true if the channel announcements/updates for the given channel should be
376         /// forwarded to this peer.
377         /// If we are sending our routing table to this peer and we have not yet sent channel
378         /// announcements/updates for the given channel_id then we will send it when we get to that
379         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
380         /// sent the old versions, we should send the update, and so return true here.
381         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
382                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
383                         !self.sent_gossip_timestamp_filter {
384                                 return false;
385                         }
386                 match self.sync_status {
387                         InitSyncTracker::NoSyncRequested => true,
388                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
389                         InitSyncTracker::NodesSyncing(_) => true,
390                 }
391         }
392
393         /// Similar to the above, but for node announcements indexed by node_id.
394         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
395                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
396                         !self.sent_gossip_timestamp_filter {
397                                 return false;
398                         }
399                 match self.sync_status {
400                         InitSyncTracker::NoSyncRequested => true,
401                         InitSyncTracker::ChannelsSyncing(_) => false,
402                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
403                 }
404         }
405
406         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
407         /// buffer still has space and we don't need to pause reads to get some writes out.
408         fn should_read(&self) -> bool {
409                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
410         }
411
412         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
413         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
414         fn should_buffer_gossip_backfill(&self) -> bool {
415                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
416                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
417         }
418
419         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
420         /// every time the peer's buffer may have been drained.
421         fn should_buffer_onion_message(&self) -> bool {
422                 self.pending_outbound_buffer.is_empty()
423                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
424         }
425
426         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
427         /// buffer. This is checked every time the peer's buffer may have been drained.
428         fn should_buffer_gossip_broadcast(&self) -> bool {
429                 self.pending_outbound_buffer.is_empty()
430                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
431         }
432
433         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
434         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
435                 let total_outbound_buffered =
436                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
437
438                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
439                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
440         }
441 }
442
443 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
444 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
445 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
446 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
447 /// issues such as overly long function definitions.
448 ///
449 /// (C-not exported) as Arcs don't make sense in bindings
450 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, IgnoringMessageHandler, Arc<L>, Arc<IgnoringMessageHandler>>;
451
452 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
453 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
454 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
455 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
456 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
457 /// helps with issues such as long function definitions.
458 ///
459 /// (C-not exported) as Arcs don't make sense in bindings
460 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, IgnoringMessageHandler, &'f L, IgnoringMessageHandler>;
461
462 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
463 /// socket events into messages which it passes on to its [`MessageHandler`].
464 ///
465 /// Locks are taken internally, so you must never assume that reentrancy from a
466 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
467 ///
468 /// Calls to [`read_event`] will decode relevant messages and pass them to the
469 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
470 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
471 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
472 /// calls only after previous ones have returned.
473 ///
474 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
475 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
476 /// essentially you should default to using a SimpleRefPeerManager, and use a
477 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
478 /// you're using lightning-net-tokio.
479 ///
480 /// [`read_event`]: PeerManager::read_event
481 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> where
482                 CM::Target: ChannelMessageHandler,
483                 RM::Target: RoutingMessageHandler,
484                 OM::Target: OnionMessageHandler,
485                 L::Target: Logger,
486                 CMH::Target: CustomMessageHandler {
487         message_handler: MessageHandler<CM, RM, OM>,
488         /// Connection state for each connected peer - we have an outer read-write lock which is taken
489         /// as read while we're doing processing for a peer and taken write when a peer is being added
490         /// or removed.
491         ///
492         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
493         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
494         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
495         /// the `MessageHandler`s for a given peer is already guaranteed.
496         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
497         /// Only add to this set when noise completes.
498         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
499         /// lock held. Entries may be added with only the `peers` read lock held (though the
500         /// `Descriptor` value must already exist in `peers`).
501         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
502         /// We can only have one thread processing events at once, but we don't usually need the full
503         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
504         /// `process_events`.
505         event_processing_lock: Mutex<()>,
506         /// Because event processing is global and always does all available work before returning,
507         /// there is no reason for us to have many event processors waiting on the lock at once.
508         /// Instead, we limit the total blocked event processors to always exactly one by setting this
509         /// when an event process call is waiting.
510         blocked_event_processors: AtomicBool,
511
512         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
513         /// value increases strictly since we don't assume access to a time source.
514         last_node_announcement_serial: AtomicU64,
515
516         our_node_secret: SecretKey,
517         ephemeral_key_midstate: Sha256Engine,
518         custom_message_handler: CMH,
519
520         peer_counter: AtomicCounter,
521
522         logger: L,
523         secp_ctx: Secp256k1<secp256k1::SignOnly>
524 }
525
526 enum MessageHandlingError {
527         PeerHandleError(PeerHandleError),
528         LightningError(LightningError),
529 }
530
531 impl From<PeerHandleError> for MessageHandlingError {
532         fn from(error: PeerHandleError) -> Self {
533                 MessageHandlingError::PeerHandleError(error)
534         }
535 }
536
537 impl From<LightningError> for MessageHandlingError {
538         fn from(error: LightningError) -> Self {
539                 MessageHandlingError::LightningError(error)
540         }
541 }
542
543 macro_rules! encode_msg {
544         ($msg: expr) => {{
545                 let mut buffer = VecWriter(Vec::new());
546                 wire::write($msg, &mut buffer).unwrap();
547                 buffer.0
548         }}
549 }
550
551 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler> where
552                 CM::Target: ChannelMessageHandler,
553                 OM::Target: OnionMessageHandler,
554                 L::Target: Logger {
555         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
556         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
557         /// ignored.
558         ///
559         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
560         /// cryptographically secure random bytes.
561         ///
562         /// `current_time` is used as an always-increasing counter that survives across restarts and is
563         /// incremented irregularly internally. In general it is best to simply use the current UNIX
564         /// timestamp, however if it is not available a persistent counter that increases once per
565         /// minute should suffice.
566         ///
567         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
568         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, our_node_secret: SecretKey, current_time: u64, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
569                 Self::new(MessageHandler {
570                         chan_handler: channel_message_handler,
571                         route_handler: IgnoringMessageHandler{},
572                         onion_message_handler,
573                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
574         }
575 }
576
577 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
578                 RM::Target: RoutingMessageHandler,
579                 L::Target: Logger {
580         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
581         /// handler or onion message handler is used and onion and channel messages will be ignored (or
582         /// generate error messages). Note that some other lightning implementations time-out connections
583         /// after some time if no channel is built with the peer.
584         ///
585         /// `current_time` is used as an always-increasing counter that survives across restarts and is
586         /// incremented irregularly internally. In general it is best to simply use the current UNIX
587         /// timestamp, however if it is not available a persistent counter that increases once per
588         /// minute should suffice.
589         ///
590         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
591         /// cryptographically secure random bytes.
592         ///
593         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
594         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, current_time: u64, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
595                 Self::new(MessageHandler {
596                         chan_handler: ErroringMessageHandler::new(),
597                         route_handler: routing_message_handler,
598                         onion_message_handler: IgnoringMessageHandler{},
599                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
600         }
601 }
602
603 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
604 /// This works around `format!()` taking a reference to each argument, preventing
605 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
606 /// due to lifetime errors.
607 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
608 impl core::fmt::Display for OptionalFromDebugger<'_> {
609         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
610                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
611         }
612 }
613
614 /// A function used to filter out local or private addresses
615 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
616 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
617 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
618         match ip_address{
619                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
620                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
621                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
622                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
623                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
624                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
625                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
626                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
627                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
628                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
629                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
630                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
631                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
632                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
633                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
634                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
635                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
636                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
637                 // For remaining addresses
638                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
639                 Some(..) => ip_address,
640                 None => None,
641         }
642 }
643
644 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH> where
645                 CM::Target: ChannelMessageHandler,
646                 RM::Target: RoutingMessageHandler,
647                 OM::Target: OnionMessageHandler,
648                 L::Target: Logger,
649                 CMH::Target: CustomMessageHandler {
650         /// Constructs a new PeerManager with the given message handlers and node_id secret key
651         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
652         /// cryptographically secure random bytes.
653         ///
654         /// `current_time` is used as an always-increasing counter that survives across restarts and is
655         /// incremented irregularly internally. In general it is best to simply use the current UNIX
656         /// timestamp, however if it is not available a persistent counter that increases once per
657         /// minute should suffice.
658         pub fn new(message_handler: MessageHandler<CM, RM, OM>, our_node_secret: SecretKey, current_time: u64, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
659                 let mut ephemeral_key_midstate = Sha256::engine();
660                 ephemeral_key_midstate.input(ephemeral_random_data);
661
662                 let mut secp_ctx = Secp256k1::signing_only();
663                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
664                 secp_ctx.seeded_randomize(&ephemeral_hash);
665
666                 PeerManager {
667                         message_handler,
668                         peers: FairRwLock::new(HashMap::new()),
669                         node_id_to_descriptor: Mutex::new(HashMap::new()),
670                         event_processing_lock: Mutex::new(()),
671                         blocked_event_processors: AtomicBool::new(false),
672                         our_node_secret,
673                         ephemeral_key_midstate,
674                         peer_counter: AtomicCounter::new(),
675                         last_node_announcement_serial: AtomicU64::new(current_time),
676                         logger,
677                         custom_message_handler,
678                         secp_ctx,
679                 }
680         }
681
682         /// Get the list of node ids for peers which have completed the initial handshake.
683         ///
684         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
685         /// new_outbound_connection, however entries will only appear once the initial handshake has
686         /// completed and we are sure the remote peer has the private key for the given node_id.
687         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
688                 let peers = self.peers.read().unwrap();
689                 peers.values().filter_map(|peer_mutex| {
690                         let p = peer_mutex.lock().unwrap();
691                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
692                                 return None;
693                         }
694                         p.their_node_id
695                 }).collect()
696         }
697
698         fn get_ephemeral_key(&self) -> SecretKey {
699                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
700                 let counter = self.peer_counter.get_increment();
701                 ephemeral_hash.input(&counter.to_le_bytes());
702                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
703         }
704
705         /// Indicates a new outbound connection has been established to a node with the given node_id
706         /// and an optional remote network address.
707         ///
708         /// The remote network address adds the option to report a remote IP address back to a connecting
709         /// peer using the init message.
710         /// The user should pass the remote network address of the host they are connected to.
711         ///
712         /// If an `Err` is returned here you must disconnect the connection immediately.
713         ///
714         /// Returns a small number of bytes to send to the remote node (currently always 50).
715         ///
716         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
717         /// [`socket_disconnected()`].
718         ///
719         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
720         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
721                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
722                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
723                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
724
725                 let mut peers = self.peers.write().unwrap();
726                 if peers.insert(descriptor, Mutex::new(Peer {
727                         channel_encryptor: peer_encryptor,
728                         their_node_id: None,
729                         their_features: None,
730                         their_net_address: remote_network_address,
731
732                         pending_outbound_buffer: LinkedList::new(),
733                         pending_outbound_buffer_first_msg_offset: 0,
734                         gossip_broadcast_buffer: LinkedList::new(),
735                         awaiting_write_event: false,
736
737                         pending_read_buffer,
738                         pending_read_buffer_pos: 0,
739                         pending_read_is_header: false,
740
741                         sync_status: InitSyncTracker::NoSyncRequested,
742
743                         msgs_sent_since_pong: 0,
744                         awaiting_pong_timer_tick_intervals: 0,
745                         received_message_since_timer_tick: false,
746                         sent_gossip_timestamp_filter: false,
747                 })).is_some() {
748                         panic!("PeerManager driver duplicated descriptors!");
749                 };
750                 Ok(res)
751         }
752
753         /// Indicates a new inbound connection has been established to a node with an optional remote
754         /// network address.
755         ///
756         /// The remote network address adds the option to report a remote IP address back to a connecting
757         /// peer using the init message.
758         /// The user should pass the remote network address of the host they are connected to.
759         ///
760         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
761         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
762         /// the connection immediately.
763         ///
764         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
765         /// [`socket_disconnected()`].
766         ///
767         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
768         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
769                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
770                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
771
772                 let mut peers = self.peers.write().unwrap();
773                 if peers.insert(descriptor, Mutex::new(Peer {
774                         channel_encryptor: peer_encryptor,
775                         their_node_id: None,
776                         their_features: None,
777                         their_net_address: remote_network_address,
778
779                         pending_outbound_buffer: LinkedList::new(),
780                         pending_outbound_buffer_first_msg_offset: 0,
781                         gossip_broadcast_buffer: LinkedList::new(),
782                         awaiting_write_event: false,
783
784                         pending_read_buffer,
785                         pending_read_buffer_pos: 0,
786                         pending_read_is_header: false,
787
788                         sync_status: InitSyncTracker::NoSyncRequested,
789
790                         msgs_sent_since_pong: 0,
791                         awaiting_pong_timer_tick_intervals: 0,
792                         received_message_since_timer_tick: false,
793                         sent_gossip_timestamp_filter: false,
794                 })).is_some() {
795                         panic!("PeerManager driver duplicated descriptors!");
796                 };
797                 Ok(())
798         }
799
800         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
801                 while !peer.awaiting_write_event {
802                         if peer.should_buffer_onion_message() {
803                                 if let Some(peer_node_id) = peer.their_node_id {
804                                         if let Some(next_onion_message) =
805                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
806                                                         self.enqueue_message(peer, &next_onion_message);
807                                         }
808                                 }
809                         }
810                         if peer.should_buffer_gossip_broadcast() {
811                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
812                                         peer.pending_outbound_buffer.push_back(msg);
813                                 }
814                         }
815                         if peer.should_buffer_gossip_backfill() {
816                                 match peer.sync_status {
817                                         InitSyncTracker::NoSyncRequested => {},
818                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
819                                                 if let Some((announce, update_a_option, update_b_option)) =
820                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
821                                                 {
822                                                         self.enqueue_message(peer, &announce);
823                                                         if let Some(update_a) = update_a_option {
824                                                                 self.enqueue_message(peer, &update_a);
825                                                         }
826                                                         if let Some(update_b) = update_b_option {
827                                                                 self.enqueue_message(peer, &update_b);
828                                                         }
829                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
830                                                 } else {
831                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
832                                                 }
833                                         },
834                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
835                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
836                                                         self.enqueue_message(peer, &msg);
837                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
838                                                 } else {
839                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
840                                                 }
841                                         },
842                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
843                                         InitSyncTracker::NodesSyncing(key) => {
844                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
845                                                         self.enqueue_message(peer, &msg);
846                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
847                                                 } else {
848                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
849                                                 }
850                                         },
851                                 }
852                         }
853                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
854                                 self.maybe_send_extra_ping(peer);
855                         }
856
857                         let next_buff = match peer.pending_outbound_buffer.front() {
858                                 None => return,
859                                 Some(buff) => buff,
860                         };
861
862                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
863                         let data_sent = descriptor.send_data(pending, peer.should_read());
864                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
865                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
866                                 peer.pending_outbound_buffer_first_msg_offset = 0;
867                                 peer.pending_outbound_buffer.pop_front();
868                         } else {
869                                 peer.awaiting_write_event = true;
870                         }
871                 }
872         }
873
874         /// Indicates that there is room to write data to the given socket descriptor.
875         ///
876         /// May return an Err to indicate that the connection should be closed.
877         ///
878         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
879         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
880         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
881         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
882         /// sufficient!
883         ///
884         /// [`send_data`]: SocketDescriptor::send_data
885         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
886         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
887                 let peers = self.peers.read().unwrap();
888                 match peers.get(descriptor) {
889                         None => {
890                                 // This is most likely a simple race condition where the user found that the socket
891                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
892                                 // this method. Return an error to make sure we get disconnected.
893                                 return Err(PeerHandleError { no_connection_possible: false });
894                         },
895                         Some(peer_mutex) => {
896                                 let mut peer = peer_mutex.lock().unwrap();
897                                 peer.awaiting_write_event = false;
898                                 self.do_attempt_write_data(descriptor, &mut peer);
899                         }
900                 };
901                 Ok(())
902         }
903
904         /// Indicates that data was read from the given socket descriptor.
905         ///
906         /// May return an Err to indicate that the connection should be closed.
907         ///
908         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
909         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
910         /// [`send_data`] calls to handle responses.
911         ///
912         /// If `Ok(true)` is returned, further read_events should not be triggered until a
913         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
914         /// send buffer).
915         ///
916         /// [`send_data`]: SocketDescriptor::send_data
917         /// [`process_events`]: PeerManager::process_events
918         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
919                 match self.do_read_event(peer_descriptor, data) {
920                         Ok(res) => Ok(res),
921                         Err(e) => {
922                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
923                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
924                                 Err(e)
925                         }
926                 }
927         }
928
929         /// Append a message to a peer's pending outbound/write buffer
930         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
931                 let mut buffer = VecWriter(Vec::with_capacity(2048));
932                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
933
934                 if is_gossip_msg(message.type_id()) {
935                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
936                 } else {
937                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
938                 }
939                 peer.msgs_sent_since_pong += 1;
940                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&buffer.0[..]));
941         }
942
943         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
944         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
945                 peer.msgs_sent_since_pong += 1;
946                 peer.gossip_broadcast_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
947         }
948
949         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
950                 let mut pause_read = false;
951                 let peers = self.peers.read().unwrap();
952                 let mut msgs_to_forward = Vec::new();
953                 let mut peer_node_id = None;
954                 match peers.get(peer_descriptor) {
955                         None => {
956                                 // This is most likely a simple race condition where the user read some bytes
957                                 // from the socket, then we told the user to `disconnect_socket()`, then they
958                                 // called this method. Return an error to make sure we get disconnected.
959                                 return Err(PeerHandleError { no_connection_possible: false });
960                         },
961                         Some(peer_mutex) => {
962                                 let mut read_pos = 0;
963                                 while read_pos < data.len() {
964                                         macro_rules! try_potential_handleerror {
965                                                 ($peer: expr, $thing: expr) => {
966                                                         match $thing {
967                                                                 Ok(x) => x,
968                                                                 Err(e) => {
969                                                                         match e.action {
970                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
971                                                                                         //TODO: Try to push msg
972                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
973                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
974                                                                                 },
975                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
976                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
977                                                                                         continue
978                                                                                 },
979                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
980                                                                                 msgs::ErrorAction::IgnoreError => {
981                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
982                                                                                         continue;
983                                                                                 },
984                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
985                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
986                                                                                         self.enqueue_message($peer, &msg);
987                                                                                         continue;
988                                                                                 },
989                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
990                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
991                                                                                         self.enqueue_message($peer, &msg);
992                                                                                         continue;
993                                                                                 },
994                                                                         }
995                                                                 }
996                                                         }
997                                                 }
998                                         }
999
1000                                         let mut peer_lock = peer_mutex.lock().unwrap();
1001                                         let peer = &mut *peer_lock;
1002                                         let mut msg_to_handle = None;
1003                                         if peer_node_id.is_none() {
1004                                                 peer_node_id = peer.their_node_id.clone();
1005                                         }
1006
1007                                         assert!(peer.pending_read_buffer.len() > 0);
1008                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1009
1010                                         {
1011                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1012                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1013                                                 read_pos += data_to_copy;
1014                                                 peer.pending_read_buffer_pos += data_to_copy;
1015                                         }
1016
1017                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1018                                                 peer.pending_read_buffer_pos = 0;
1019
1020                                                 macro_rules! insert_node_id {
1021                                                         () => {
1022                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
1023                                                                         hash_map::Entry::Occupied(_) => {
1024                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
1025                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1026                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1027                                                                         },
1028                                                                         hash_map::Entry::Vacant(entry) => {
1029                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
1030                                                                                 entry.insert(peer_descriptor.clone())
1031                                                                         },
1032                                                                 };
1033                                                         }
1034                                                 }
1035
1036                                                 let next_step = peer.channel_encryptor.get_noise_step();
1037                                                 match next_step {
1038                                                         NextNoiseStep::ActOne => {
1039                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1040                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1041                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1042                                                                 peer.pending_outbound_buffer.push_back(act_two);
1043                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1044                                                         },
1045                                                         NextNoiseStep::ActTwo => {
1046                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1047                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1048                                                                                 &self.our_node_secret, &self.secp_ctx));
1049                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1050                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1051                                                                 peer.pending_read_is_header = true;
1052
1053                                                                 peer.their_node_id = Some(their_node_id);
1054                                                                 insert_node_id!();
1055                                                                 let features = InitFeatures::known();
1056                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1057                                                                 self.enqueue_message(peer, &resp);
1058                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1059                                                         },
1060                                                         NextNoiseStep::ActThree => {
1061                                                                 let their_node_id = try_potential_handleerror!(peer,
1062                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1063                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1064                                                                 peer.pending_read_is_header = true;
1065                                                                 peer.their_node_id = Some(their_node_id);
1066                                                                 insert_node_id!();
1067                                                                 let features = InitFeatures::known();
1068                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1069                                                                 self.enqueue_message(peer, &resp);
1070                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1071                                                         },
1072                                                         NextNoiseStep::NoiseComplete => {
1073                                                                 if peer.pending_read_is_header {
1074                                                                         let msg_len = try_potential_handleerror!(peer,
1075                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1076                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1077                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1078                                                                         if msg_len < 2 { // Need at least the message type tag
1079                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1080                                                                         }
1081                                                                         peer.pending_read_is_header = false;
1082                                                                 } else {
1083                                                                         let msg_data = try_potential_handleerror!(peer,
1084                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1085                                                                         assert!(msg_data.len() >= 2);
1086
1087                                                                         // Reset read buffer
1088                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1089                                                                         peer.pending_read_buffer.resize(18, 0);
1090                                                                         peer.pending_read_is_header = true;
1091
1092                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1093                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1094                                                                         let message = match message_result {
1095                                                                                 Ok(x) => x,
1096                                                                                 Err(e) => {
1097                                                                                         match e {
1098                                                                                                 // Note that to avoid recursion we never call
1099                                                                                                 // `do_attempt_write_data` from here, causing
1100                                                                                                 // the messages enqueued here to not actually
1101                                                                                                 // be sent before the peer is disconnected.
1102                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1103                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1104                                                                                                         continue;
1105                                                                                                 }
1106                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1107                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1108                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1109                                                                                                         continue;
1110                                                                                                 }
1111                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1112                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1113                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1114                                                                                                         continue;
1115                                                                                                 }
1116                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1117                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1118                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1119                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1120                                                                                                 }
1121                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1122                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1123                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1124                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1125                                                                                                 }
1126                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1127                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1128                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1129                                                                                                 }
1130                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1131                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1132                                                                                         }
1133                                                                                 }
1134                                                                         };
1135
1136                                                                         msg_to_handle = Some(message);
1137                                                                 }
1138                                                         }
1139                                                 }
1140                                         }
1141                                         pause_read = !peer.should_read();
1142
1143                                         if let Some(message) = msg_to_handle {
1144                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1145                                                         Err(handling_error) => match handling_error {
1146                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1147                                                                 MessageHandlingError::LightningError(e) => {
1148                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1149                                                                 },
1150                                                         },
1151                                                         Ok(Some(msg)) => {
1152                                                                 msgs_to_forward.push(msg);
1153                                                         },
1154                                                         Ok(None) => {},
1155                                                 }
1156                                         }
1157                                 }
1158                         }
1159                 }
1160
1161                 for msg in msgs_to_forward.drain(..) {
1162                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1163                 }
1164
1165                 Ok(pause_read)
1166         }
1167
1168         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1169         /// Returns the message back if it needs to be broadcasted to all other peers.
1170         fn handle_message(
1171                 &self,
1172                 peer_mutex: &Mutex<Peer>,
1173                 mut peer_lock: MutexGuard<Peer>,
1174                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1175         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1176                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1177                 peer_lock.received_message_since_timer_tick = true;
1178
1179                 // Need an Init as first message
1180                 if let wire::Message::Init(msg) = message {
1181                         if msg.features.requires_unknown_bits() {
1182                                 log_debug!(self.logger, "Peer features required unknown version bits");
1183                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1184                         }
1185                         if peer_lock.their_features.is_some() {
1186                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1187                         }
1188
1189                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1190
1191                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1192                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1193                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1194                         }
1195
1196                         if !msg.features.supports_static_remote_key() {
1197                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1198                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1199                         }
1200
1201                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1202                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1203                         self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg);
1204
1205                         peer_lock.their_features = Some(msg.features);
1206                         return Ok(None);
1207                 } else if peer_lock.their_features.is_none() {
1208                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1209                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1210                 }
1211
1212                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1213                         // When supporting gossip messages, start inital gossip sync only after we receive
1214                         // a GossipTimestampFilter
1215                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1216                                 !peer_lock.sent_gossip_timestamp_filter {
1217                                 peer_lock.sent_gossip_timestamp_filter = true;
1218                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1219                         }
1220                         return Ok(None);
1221                 }
1222
1223                 let their_features = peer_lock.their_features.clone();
1224                 mem::drop(peer_lock);
1225
1226                 if is_gossip_msg(message.type_id()) {
1227                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1228                 } else {
1229                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1230                 }
1231
1232                 let mut should_forward = None;
1233
1234                 match message {
1235                         // Setup and Control messages:
1236                         wire::Message::Init(_) => {
1237                                 // Handled above
1238                         },
1239                         wire::Message::GossipTimestampFilter(_) => {
1240                                 // Handled above
1241                         },
1242                         wire::Message::Error(msg) => {
1243                                 let mut data_is_printable = true;
1244                                 for b in msg.data.bytes() {
1245                                         if b < 32 || b > 126 {
1246                                                 data_is_printable = false;
1247                                                 break;
1248                                         }
1249                                 }
1250
1251                                 if data_is_printable {
1252                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1253                                 } else {
1254                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1255                                 }
1256                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1257                                 if msg.channel_id == [0; 32] {
1258                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1259                                 }
1260                         },
1261                         wire::Message::Warning(msg) => {
1262                                 let mut data_is_printable = true;
1263                                 for b in msg.data.bytes() {
1264                                         if b < 32 || b > 126 {
1265                                                 data_is_printable = false;
1266                                                 break;
1267                                         }
1268                                 }
1269
1270                                 if data_is_printable {
1271                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1272                                 } else {
1273                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1274                                 }
1275                         },
1276
1277                         wire::Message::Ping(msg) => {
1278                                 if msg.ponglen < 65532 {
1279                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1280                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1281                                 }
1282                         },
1283                         wire::Message::Pong(_msg) => {
1284                                 let mut peer_lock = peer_mutex.lock().unwrap();
1285                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1286                                 peer_lock.msgs_sent_since_pong = 0;
1287                         },
1288
1289                         // Channel messages:
1290                         wire::Message::OpenChannel(msg) => {
1291                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1292                         },
1293                         wire::Message::AcceptChannel(msg) => {
1294                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1295                         },
1296
1297                         wire::Message::FundingCreated(msg) => {
1298                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1299                         },
1300                         wire::Message::FundingSigned(msg) => {
1301                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1302                         },
1303                         wire::Message::ChannelReady(msg) => {
1304                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1305                         },
1306
1307                         wire::Message::Shutdown(msg) => {
1308                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1309                         },
1310                         wire::Message::ClosingSigned(msg) => {
1311                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1312                         },
1313
1314                         // Commitment messages:
1315                         wire::Message::UpdateAddHTLC(msg) => {
1316                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1317                         },
1318                         wire::Message::UpdateFulfillHTLC(msg) => {
1319                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1320                         },
1321                         wire::Message::UpdateFailHTLC(msg) => {
1322                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1323                         },
1324                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1325                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1326                         },
1327
1328                         wire::Message::CommitmentSigned(msg) => {
1329                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1330                         },
1331                         wire::Message::RevokeAndACK(msg) => {
1332                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1333                         },
1334                         wire::Message::UpdateFee(msg) => {
1335                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1336                         },
1337                         wire::Message::ChannelReestablish(msg) => {
1338                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1339                         },
1340
1341                         // Routing messages:
1342                         wire::Message::AnnouncementSignatures(msg) => {
1343                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1344                         },
1345                         wire::Message::ChannelAnnouncement(msg) => {
1346                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1347                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1348                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1349                                 }
1350                         },
1351                         wire::Message::NodeAnnouncement(msg) => {
1352                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1353                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1354                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1355                                 }
1356                         },
1357                         wire::Message::ChannelUpdate(msg) => {
1358                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1359                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1360                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1361                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1362                                 }
1363                         },
1364                         wire::Message::QueryShortChannelIds(msg) => {
1365                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1366                         },
1367                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1368                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1369                         },
1370                         wire::Message::QueryChannelRange(msg) => {
1371                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1372                         },
1373                         wire::Message::ReplyChannelRange(msg) => {
1374                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1375                         },
1376
1377                         // Onion message:
1378                         wire::Message::OnionMessage(msg) => {
1379                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1380                         },
1381
1382                         // Unknown messages:
1383                         wire::Message::Unknown(type_id) if message.is_even() => {
1384                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1385                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1386                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1387                         },
1388                         wire::Message::Unknown(type_id) => {
1389                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1390                         },
1391                         wire::Message::Custom(custom) => {
1392                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1393                         },
1394                 };
1395                 Ok(should_forward)
1396         }
1397
1398         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1399                 match msg {
1400                         wire::Message::ChannelAnnouncement(ref msg) => {
1401                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1402                                 let encoded_msg = encode_msg!(msg);
1403
1404                                 for (_, peer_mutex) in peers.iter() {
1405                                         let mut peer = peer_mutex.lock().unwrap();
1406                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1407                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1408                                                 continue
1409                                         }
1410                                         if peer.buffer_full_drop_gossip_broadcast() {
1411                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1412                                                 continue;
1413                                         }
1414                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1415                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1416                                                 continue;
1417                                         }
1418                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1419                                                 continue;
1420                                         }
1421                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1422                                 }
1423                         },
1424                         wire::Message::NodeAnnouncement(ref msg) => {
1425                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1426                                 let encoded_msg = encode_msg!(msg);
1427
1428                                 for (_, peer_mutex) in peers.iter() {
1429                                         let mut peer = peer_mutex.lock().unwrap();
1430                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1431                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1432                                                 continue
1433                                         }
1434                                         if peer.buffer_full_drop_gossip_broadcast() {
1435                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1436                                                 continue;
1437                                         }
1438                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1439                                                 continue;
1440                                         }
1441                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1442                                                 continue;
1443                                         }
1444                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1445                                 }
1446                         },
1447                         wire::Message::ChannelUpdate(ref msg) => {
1448                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1449                                 let encoded_msg = encode_msg!(msg);
1450
1451                                 for (_, peer_mutex) in peers.iter() {
1452                                         let mut peer = peer_mutex.lock().unwrap();
1453                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1454                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1455                                                 continue
1456                                         }
1457                                         if peer.buffer_full_drop_gossip_broadcast() {
1458                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1459                                                 continue;
1460                                         }
1461                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1462                                                 continue;
1463                                         }
1464                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1465                                 }
1466                         },
1467                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1468                 }
1469         }
1470
1471         /// Checks for any events generated by our handlers and processes them. Includes sending most
1472         /// response messages as well as messages generated by calls to handler functions directly (eg
1473         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1474         ///
1475         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1476         /// issues!
1477         ///
1478         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1479         /// or one of the other clients provided in our language bindings.
1480         ///
1481         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1482         /// without doing any work. All available events that need handling will be handled before the
1483         /// other calls return.
1484         ///
1485         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1486         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1487         /// [`send_data`]: SocketDescriptor::send_data
1488         pub fn process_events(&self) {
1489                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1490                 if _single_processor_lock.is_err() {
1491                         // While we could wake the older sleeper here with a CV and make more even waiting
1492                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1493                         // count" goal.
1494                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1495                                 Err(val) => {
1496                                         debug_assert!(val, "compare_exchange failed spuriously?");
1497                                         return;
1498                                 },
1499                                 Ok(val) => {
1500                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1501                                         // We're the only waiter, as the running process_events may have emptied the
1502                                         // pending events "long" ago and there are new events for us to process, wait until
1503                                         // its done and process any leftover events before returning.
1504                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1505                                         self.blocked_event_processors.store(false, Ordering::Release);
1506                                 }
1507                         }
1508                 }
1509
1510                 let mut peers_to_disconnect = HashMap::new();
1511                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1512                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1513
1514                 {
1515                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1516                         // buffer by doing things like announcing channels on another node. We should be willing to
1517                         // drop optional-ish messages when send buffers get full!
1518
1519                         let peers_lock = self.peers.read().unwrap();
1520                         let peers = &*peers_lock;
1521                         macro_rules! get_peer_for_forwarding {
1522                                 ($node_id: expr) => {
1523                                         {
1524                                                 if peers_to_disconnect.get($node_id).is_some() {
1525                                                         // If we've "disconnected" this peer, do not send to it.
1526                                                         continue;
1527                                                 }
1528                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1529                                                 match descriptor_opt {
1530                                                         Some(descriptor) => match peers.get(&descriptor) {
1531                                                                 Some(peer_mutex) => {
1532                                                                         let peer_lock = peer_mutex.lock().unwrap();
1533                                                                         if peer_lock.their_features.is_none() {
1534                                                                                 continue;
1535                                                                         }
1536                                                                         peer_lock
1537                                                                 },
1538                                                                 None => {
1539                                                                         debug_assert!(false, "Inconsistent peers set state!");
1540                                                                         continue;
1541                                                                 }
1542                                                         },
1543                                                         None => {
1544                                                                 continue;
1545                                                         },
1546                                                 }
1547                                         }
1548                                 }
1549                         }
1550                         for event in events_generated.drain(..) {
1551                                 match event {
1552                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1553                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1554                                                                 log_pubkey!(node_id),
1555                                                                 log_bytes!(msg.temporary_channel_id));
1556                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1557                                         },
1558                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1559                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1560                                                                 log_pubkey!(node_id),
1561                                                                 log_bytes!(msg.temporary_channel_id));
1562                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1563                                         },
1564                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1565                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1566                                                                 log_pubkey!(node_id),
1567                                                                 log_bytes!(msg.temporary_channel_id),
1568                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1569                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1570                                                 // indicating to the wallet that they should just throw away this funding transaction
1571                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1572                                         },
1573                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1574                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1575                                                                 log_pubkey!(node_id),
1576                                                                 log_bytes!(msg.channel_id));
1577                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1578                                         },
1579                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1580                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1581                                                                 log_pubkey!(node_id),
1582                                                                 log_bytes!(msg.channel_id));
1583                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1584                                         },
1585                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1586                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1587                                                                 log_pubkey!(node_id),
1588                                                                 log_bytes!(msg.channel_id));
1589                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1590                                         },
1591                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1592                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1593                                                                 log_pubkey!(node_id),
1594                                                                 update_add_htlcs.len(),
1595                                                                 update_fulfill_htlcs.len(),
1596                                                                 update_fail_htlcs.len(),
1597                                                                 log_bytes!(commitment_signed.channel_id));
1598                                                 let mut peer = get_peer_for_forwarding!(node_id);
1599                                                 for msg in update_add_htlcs {
1600                                                         self.enqueue_message(&mut *peer, msg);
1601                                                 }
1602                                                 for msg in update_fulfill_htlcs {
1603                                                         self.enqueue_message(&mut *peer, msg);
1604                                                 }
1605                                                 for msg in update_fail_htlcs {
1606                                                         self.enqueue_message(&mut *peer, msg);
1607                                                 }
1608                                                 for msg in update_fail_malformed_htlcs {
1609                                                         self.enqueue_message(&mut *peer, msg);
1610                                                 }
1611                                                 if let &Some(ref msg) = update_fee {
1612                                                         self.enqueue_message(&mut *peer, msg);
1613                                                 }
1614                                                 self.enqueue_message(&mut *peer, commitment_signed);
1615                                         },
1616                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1617                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1618                                                                 log_pubkey!(node_id),
1619                                                                 log_bytes!(msg.channel_id));
1620                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1621                                         },
1622                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1623                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1624                                                                 log_pubkey!(node_id),
1625                                                                 log_bytes!(msg.channel_id));
1626                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1627                                         },
1628                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1629                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1630                                                                 log_pubkey!(node_id),
1631                                                                 log_bytes!(msg.channel_id));
1632                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1633                                         },
1634                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1635                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1636                                                                 log_pubkey!(node_id),
1637                                                                 log_bytes!(msg.channel_id));
1638                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1639                                         },
1640                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1641                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1642                                                                 log_pubkey!(node_id),
1643                                                                 msg.contents.short_channel_id);
1644                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1645                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1646                                         },
1647                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1648                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1649                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1650                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1651                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1652                                                         _ => {},
1653                                                 }
1654                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1655                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1656                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1657                                                         _ => {},
1658                                                 }
1659                                         },
1660                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1661                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1662                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1663                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1664                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1665                                                         _ => {},
1666                                                 }
1667                                         },
1668                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1669                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1670                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1671                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1672                                         },
1673                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1674                                                 match *action {
1675                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1676                                                                 // We do not have the peers write lock, so we just store that we're
1677                                                                 // about to disconenct the peer and do it after we finish
1678                                                                 // processing most messages.
1679                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1680                                                         },
1681                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1682                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1683                                                         },
1684                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1685                                                         msgs::ErrorAction::IgnoreError => {
1686                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1687                                                         },
1688                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1689                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1690                                                                                 log_pubkey!(node_id),
1691                                                                                 msg.data);
1692                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1693                                                         },
1694                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1695                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1696                                                                                 log_pubkey!(node_id),
1697                                                                                 msg.data);
1698                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1699                                                         },
1700                                                 }
1701                                         },
1702                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1703                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1704                                         },
1705                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1706                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1707                                         }
1708                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1709                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1710                                                         log_pubkey!(node_id),
1711                                                         msg.short_channel_ids.len(),
1712                                                         msg.first_blocknum,
1713                                                         msg.number_of_blocks,
1714                                                         msg.sync_complete);
1715                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1716                                         }
1717                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1718                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1719                                         }
1720                                 }
1721                         }
1722
1723                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1724                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1725                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1726                         }
1727
1728                         for (descriptor, peer_mutex) in peers.iter() {
1729                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1730                         }
1731                 }
1732                 if !peers_to_disconnect.is_empty() {
1733                         let mut peers_lock = self.peers.write().unwrap();
1734                         let peers = &mut *peers_lock;
1735                         for (node_id, msg) in peers_to_disconnect.drain() {
1736                                 // Note that since we are holding the peers *write* lock we can
1737                                 // remove from node_id_to_descriptor immediately (as no other
1738                                 // thread can be holding the peer lock if we have the global write
1739                                 // lock).
1740
1741                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1742                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1743                                                 if let Some(msg) = msg {
1744                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1745                                                                         log_pubkey!(node_id),
1746                                                                         msg.data);
1747                                                         let mut peer = peer_mutex.lock().unwrap();
1748                                                         self.enqueue_message(&mut *peer, &msg);
1749                                                         // This isn't guaranteed to work, but if there is enough free
1750                                                         // room in the send buffer, put the error message there...
1751                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1752                                                 } else {
1753                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1754                                                 }
1755                                         }
1756                                         descriptor.disconnect_socket();
1757                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1758                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1759                                 }
1760                         }
1761                 }
1762         }
1763
1764         /// Indicates that the given socket descriptor's connection is now closed.
1765         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1766                 self.disconnect_event_internal(descriptor, false);
1767         }
1768
1769         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1770                 let mut peers = self.peers.write().unwrap();
1771                 let peer_option = peers.remove(descriptor);
1772                 match peer_option {
1773                         None => {
1774                                 // This is most likely a simple race condition where the user found that the socket
1775                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1776                                 // called this method. Either way we're disconnected, return.
1777                         },
1778                         Some(peer_lock) => {
1779                                 let peer = peer_lock.lock().unwrap();
1780                                 if let Some(node_id) = peer.their_node_id {
1781                                         log_trace!(self.logger,
1782                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1783                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1784                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1785                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1786                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1787                                 }
1788                         }
1789                 };
1790         }
1791
1792         /// Disconnect a peer given its node id.
1793         ///
1794         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1795         /// force-closing any channels we have with it.
1796         ///
1797         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1798         /// peer. Thus, be very careful about reentrancy issues.
1799         ///
1800         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1801         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1802                 let mut peers_lock = self.peers.write().unwrap();
1803                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1804                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1805                         peers_lock.remove(&descriptor);
1806                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1807                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1808                         descriptor.disconnect_socket();
1809                 }
1810         }
1811
1812         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1813         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1814         /// using regular ping/pongs.
1815         pub fn disconnect_all_peers(&self) {
1816                 let mut peers_lock = self.peers.write().unwrap();
1817                 self.node_id_to_descriptor.lock().unwrap().clear();
1818                 let peers = &mut *peers_lock;
1819                 for (mut descriptor, peer) in peers.drain() {
1820                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1821                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1822                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1823                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1824                         }
1825                         descriptor.disconnect_socket();
1826                 }
1827         }
1828
1829         /// This is called when we're blocked on sending additional gossip messages until we receive a
1830         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1831         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1832         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1833                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1834                         peer.awaiting_pong_timer_tick_intervals = -1;
1835                         let ping = msgs::Ping {
1836                                 ponglen: 0,
1837                                 byteslen: 64,
1838                         };
1839                         self.enqueue_message(peer, &ping);
1840                 }
1841         }
1842
1843         /// Send pings to each peer and disconnect those which did not respond to the last round of
1844         /// pings.
1845         ///
1846         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1847         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1848         /// time they have to respond before we disconnect them.
1849         ///
1850         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1851         /// issues!
1852         ///
1853         /// [`send_data`]: SocketDescriptor::send_data
1854         pub fn timer_tick_occurred(&self) {
1855                 let mut descriptors_needing_disconnect = Vec::new();
1856                 {
1857                         let peers_lock = self.peers.read().unwrap();
1858
1859                         for (descriptor, peer_mutex) in peers_lock.iter() {
1860                                 let mut peer = peer_mutex.lock().unwrap();
1861                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1862                                         // The peer needs to complete its handshake before we can exchange messages. We
1863                                         // give peers one timer tick to complete handshake, reusing
1864                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1865                                         // for handshake completion.
1866                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1867                                                 descriptors_needing_disconnect.push(descriptor.clone());
1868                                         } else {
1869                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1870                                         }
1871                                         continue;
1872                                 }
1873
1874                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1875                                         // Magic value set in `maybe_send_extra_ping`.
1876                                         peer.awaiting_pong_timer_tick_intervals = 1;
1877                                         peer.received_message_since_timer_tick = false;
1878                                         continue;
1879                                 }
1880
1881                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1882                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1883                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1884                                 {
1885                                         descriptors_needing_disconnect.push(descriptor.clone());
1886                                         continue;
1887                                 }
1888                                 peer.received_message_since_timer_tick = false;
1889
1890                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1891                                         peer.awaiting_pong_timer_tick_intervals += 1;
1892                                         continue;
1893                                 }
1894
1895                                 peer.awaiting_pong_timer_tick_intervals = 1;
1896                                 let ping = msgs::Ping {
1897                                         ponglen: 0,
1898                                         byteslen: 64,
1899                                 };
1900                                 self.enqueue_message(&mut *peer, &ping);
1901                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1902                         }
1903                 }
1904
1905                 if !descriptors_needing_disconnect.is_empty() {
1906                         {
1907                                 let mut peers_lock = self.peers.write().unwrap();
1908                                 for descriptor in descriptors_needing_disconnect.iter() {
1909                                         if let Some(peer) = peers_lock.remove(descriptor) {
1910                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1911                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1912                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1913                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1914                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1915                                                 }
1916                                         }
1917                                 }
1918                         }
1919
1920                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1921                                 descriptor.disconnect_socket();
1922                         }
1923                 }
1924         }
1925
1926         #[allow(dead_code)]
1927         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1928         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
1929         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1930         // message...
1931         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1932         #[deny(const_err)]
1933         #[allow(dead_code)]
1934         // ...by failing to compile if the number of addresses that would be half of a message is
1935         // smaller than 100:
1936         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
1937
1938         /// Generates a signed node_announcement from the given arguments, sending it to all connected
1939         /// peers. Note that peers will likely ignore this message unless we have at least one public
1940         /// channel which has at least six confirmations on-chain.
1941         ///
1942         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1943         /// node to humans. They carry no in-protocol meaning.
1944         ///
1945         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
1946         /// accepts incoming connections. These will be included in the node_announcement, publicly
1947         /// tying these addresses together and to this node. If you wish to preserve user privacy,
1948         /// addresses should likely contain only Tor Onion addresses.
1949         ///
1950         /// Panics if `addresses` is absurdly large (more than 100).
1951         ///
1952         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
1953         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1954                 if addresses.len() > 100 {
1955                         panic!("More than half the message size was taken up by public addresses!");
1956                 }
1957
1958                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1959                 // addresses be sorted for future compatibility.
1960                 addresses.sort_by_key(|addr| addr.get_id());
1961
1962                 let announcement = msgs::UnsignedNodeAnnouncement {
1963                         features: self.message_handler.chan_handler.provided_node_features(),
1964                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1965                         node_id: PublicKey::from_secret_key(&self.secp_ctx, &self.our_node_secret),
1966                         rgb, alias, addresses,
1967                         excess_address_data: Vec::new(),
1968                         excess_data: Vec::new(),
1969                 };
1970                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1971                 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_node_secret);
1972
1973                 let msg = msgs::NodeAnnouncement {
1974                         signature: node_announce_sig,
1975                         contents: announcement
1976                 };
1977
1978                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
1979                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
1980                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
1981         }
1982 }
1983
1984 fn is_gossip_msg(type_id: u16) -> bool {
1985         match type_id {
1986                 msgs::ChannelAnnouncement::TYPE |
1987                 msgs::ChannelUpdate::TYPE |
1988                 msgs::NodeAnnouncement::TYPE |
1989                 msgs::QueryChannelRange::TYPE |
1990                 msgs::ReplyChannelRange::TYPE |
1991                 msgs::QueryShortChannelIds::TYPE |
1992                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1993                 _ => false
1994         }
1995 }
1996
1997 #[cfg(test)]
1998 mod tests {
1999         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2000         use ln::{msgs, wire};
2001         use ln::msgs::NetAddress;
2002         use util::events;
2003         use util::test_utils;
2004
2005         use bitcoin::secp256k1::Secp256k1;
2006         use bitcoin::secp256k1::{SecretKey, PublicKey};
2007
2008         use prelude::*;
2009         use sync::{Arc, Mutex};
2010         use core::sync::atomic::Ordering;
2011
2012         #[derive(Clone)]
2013         struct FileDescriptor {
2014                 fd: u16,
2015                 outbound_data: Arc<Mutex<Vec<u8>>>,
2016         }
2017         impl PartialEq for FileDescriptor {
2018                 fn eq(&self, other: &Self) -> bool {
2019                         self.fd == other.fd
2020                 }
2021         }
2022         impl Eq for FileDescriptor { }
2023         impl core::hash::Hash for FileDescriptor {
2024                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2025                         self.fd.hash(hasher)
2026                 }
2027         }
2028
2029         impl SocketDescriptor for FileDescriptor {
2030                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2031                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2032                         data.len()
2033                 }
2034
2035                 fn disconnect_socket(&mut self) {}
2036         }
2037
2038         struct PeerManagerCfg {
2039                 chan_handler: test_utils::TestChannelMessageHandler,
2040                 routing_handler: test_utils::TestRoutingMessageHandler,
2041                 logger: test_utils::TestLogger,
2042         }
2043
2044         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2045                 let mut cfgs = Vec::new();
2046                 for _ in 0..peer_count {
2047                         cfgs.push(
2048                                 PeerManagerCfg{
2049                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2050                                         logger: test_utils::TestLogger::new(),
2051                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2052                                 }
2053                         );
2054                 }
2055
2056                 cfgs
2057         }
2058
2059         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
2060                 let mut peers = Vec::new();
2061                 for i in 0..peer_count {
2062                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2063                         let ephemeral_bytes = [i as u8; 32];
2064                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2065                         let peer = PeerManager::new(msg_handler, node_secret, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
2066                         peers.push(peer);
2067                 }
2068
2069                 peers
2070         }
2071
2072         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
2073                 let secp_ctx = Secp256k1::new();
2074                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
2075                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2076                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2077                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2078                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2079                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2080                 peer_a.process_events();
2081
2082                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2083                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2084
2085                 peer_b.process_events();
2086                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2087                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2088
2089                 peer_a.process_events();
2090                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2091                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2092
2093                 (fd_a.clone(), fd_b.clone())
2094         }
2095
2096         #[test]
2097         fn test_disconnect_peer() {
2098                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2099                 // push a DisconnectPeer event to remove the node flagged by id
2100                 let cfgs = create_peermgr_cfgs(2);
2101                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2102                 let mut peers = create_network(2, &cfgs);
2103                 establish_connection(&peers[0], &peers[1]);
2104                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2105
2106                 let secp_ctx = Secp256k1::new();
2107                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2108
2109                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2110                         node_id: their_id,
2111                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2112                 });
2113                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2114                 peers[0].message_handler.chan_handler = &chan_handler;
2115
2116                 peers[0].process_events();
2117                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2118         }
2119
2120         #[test]
2121         fn test_send_simple_msg() {
2122                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2123                 // push a message from one peer to another.
2124                 let cfgs = create_peermgr_cfgs(2);
2125                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2126                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2127                 let mut peers = create_network(2, &cfgs);
2128                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2129                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2130
2131                 let secp_ctx = Secp256k1::new();
2132                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2133
2134                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2135                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2136                         node_id: their_id, msg: msg.clone()
2137                 });
2138                 peers[0].message_handler.chan_handler = &a_chan_handler;
2139
2140                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2141                 peers[1].message_handler.chan_handler = &b_chan_handler;
2142
2143                 peers[0].process_events();
2144
2145                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2146                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2147         }
2148
2149         #[test]
2150         fn test_disconnect_all_peer() {
2151                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2152                 // then calls disconnect_all_peers
2153                 let cfgs = create_peermgr_cfgs(2);
2154                 let peers = create_network(2, &cfgs);
2155                 establish_connection(&peers[0], &peers[1]);
2156                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2157
2158                 peers[0].disconnect_all_peers();
2159                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2160         }
2161
2162         #[test]
2163         fn test_timer_tick_occurred() {
2164                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2165                 let cfgs = create_peermgr_cfgs(2);
2166                 let peers = create_network(2, &cfgs);
2167                 establish_connection(&peers[0], &peers[1]);
2168                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2169
2170                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2171                 peers[0].timer_tick_occurred();
2172                 peers[0].process_events();
2173                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2174
2175                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2176                 peers[0].timer_tick_occurred();
2177                 peers[0].process_events();
2178                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2179         }
2180
2181         #[test]
2182         fn test_do_attempt_write_data() {
2183                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2184                 let cfgs = create_peermgr_cfgs(2);
2185                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2186                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2187                 let peers = create_network(2, &cfgs);
2188
2189                 // By calling establish_connect, we trigger do_attempt_write_data between
2190                 // the peers. Previously this function would mistakenly enter an infinite loop
2191                 // when there were more channel messages available than could fit into a peer's
2192                 // buffer. This issue would now be detected by this test (because we use custom
2193                 // RoutingMessageHandlers that intentionally return more channel messages
2194                 // than can fit into a peer's buffer).
2195                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2196
2197                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2198                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2199                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2200                         peers[1].process_events();
2201                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2202                         assert!(!a_read_data.is_empty());
2203
2204                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2205                         peers[0].process_events();
2206
2207                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2208                         assert!(!b_read_data.is_empty());
2209                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2210
2211                         peers[0].process_events();
2212                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2213                 }
2214
2215                 // Check that each peer has received the expected number of channel updates and channel
2216                 // announcements.
2217                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2218                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2219                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2220                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2221         }
2222
2223         #[test]
2224         fn test_handshake_timeout() {
2225                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2226                 // tick.
2227                 let cfgs = create_peermgr_cfgs(2);
2228                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2229                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2230                 let peers = create_network(2, &cfgs);
2231
2232                 let secp_ctx = Secp256k1::new();
2233                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2234                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2235                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2236                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2237                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2238
2239                 // If we get a single timer tick before completion, that's fine
2240                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2241                 peers[0].timer_tick_occurred();
2242                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2243
2244                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2245                 peers[0].process_events();
2246                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2247                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2248                 peers[1].process_events();
2249
2250                 // ...but if we get a second timer tick, we should disconnect the peer
2251                 peers[0].timer_tick_occurred();
2252                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2253
2254                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2255                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2256         }
2257
2258         #[test]
2259         fn test_filter_addresses(){
2260                 // Tests the filter_addresses function.
2261
2262                 // For (10/8)
2263                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2264                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2265                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2266                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2267                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2268                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2269
2270                 // For (0/8)
2271                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2272                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2273                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2274                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2275                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2276                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2277
2278                 // For (100.64/10)
2279                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2280                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2281                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2282                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2283                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2284                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2285
2286                 // For (127/8)
2287                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2288                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2289                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2290                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2291                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2292                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2293
2294                 // For (169.254/16)
2295                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2296                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2297                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2298                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2299                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2300                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2301
2302                 // For (172.16/12)
2303                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2304                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2305                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2306                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2307                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2308                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2309
2310                 // For (192.168/16)
2311                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2312                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2313                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2314                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2315                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2316                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2317
2318                 // For (192.88.99/24)
2319                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2320                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2321                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2322                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2323                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2324                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2325
2326                 // For other IPv4 addresses
2327                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2328                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2329                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2330                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2331                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2332                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2333
2334                 // For (2000::/3)
2335                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2336                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2337                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2338                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2339                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2340                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2341
2342                 // For other IPv6 addresses
2343                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2344                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2345                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2346                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2347                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2348                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2349
2350                 // For (None)
2351                 assert_eq!(filter_addresses(None), None);
2352         }
2353 }