1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Top level peer message handling and socket handling logic lives here.
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
20 use crate::sign::{KeysManager, NodeSigner, Recipient};
21 use crate::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
22 use crate::ln::features::{InitFeatures, NodeFeatures};
24 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
25 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
26 use crate::util::ser::{VecWriter, Writeable, Writer};
27 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
29 use crate::ln::wire::Encode;
30 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
31 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId, NodeAlias};
32 use crate::util::atomic_counter::AtomicCounter;
33 use crate::util::logger::Logger;
35 use crate::prelude::*;
37 use alloc::collections::LinkedList;
38 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
49 /// A handler provided to [`PeerManager`] for reading and handling custom messages.
51 /// [BOLT 1] specifies a custom message type range for use with experimental or application-specific
52 /// messages. `CustomMessageHandler` allows for user-defined handling of such types. See the
53 /// [`lightning_custom_message`] crate for tools useful in composing more than one custom handler.
55 /// [BOLT 1]: https://github.com/lightning/bolts/blob/master/01-messaging.md
56 /// [`lightning_custom_message`]: https://docs.rs/lightning_custom_message/latest/lightning_custom_message
57 pub trait CustomMessageHandler: wire::CustomMessageReader {
58 /// Handles the given message sent from `sender_node_id`, possibly producing messages for
59 /// [`CustomMessageHandler::get_and_clear_pending_msg`] to return and thus for [`PeerManager`]
61 fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
63 /// Returns the list of pending messages that were generated by the handler, clearing the list
64 /// in the process. Each message is paired with the node id of the intended recipient. If no
65 /// connection to the node exists, then the message is simply not sent.
66 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
68 /// Gets the node feature flags which this handler itself supports. All available handlers are
69 /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
70 /// which are broadcasted in our [`NodeAnnouncement`] message.
72 /// [`NodeAnnouncement`]: crate::ln::msgs::NodeAnnouncement
73 fn provided_node_features(&self) -> NodeFeatures;
75 /// Gets the init feature flags which should be sent to the given peer. All available handlers
76 /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
77 /// which are sent in our [`Init`] message.
79 /// [`Init`]: crate::ln::msgs::Init
80 fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
83 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
84 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
85 pub struct IgnoringMessageHandler{}
86 impl MessageSendEventsProvider for IgnoringMessageHandler {
87 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
89 impl RoutingMessageHandler for IgnoringMessageHandler {
90 fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
91 fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
92 fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
93 fn get_next_channel_announcement(&self, _starting_point: u64) ->
94 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
95 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
96 fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
97 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
98 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
99 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
100 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
101 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
102 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
103 InitFeatures::empty()
105 fn processing_queue_high(&self) -> bool { false }
107 impl OnionMessageProvider for IgnoringMessageHandler {
108 fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
110 impl OnionMessageHandler for IgnoringMessageHandler {
111 fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
112 fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
113 fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
114 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
115 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
116 InitFeatures::empty()
119 impl CustomOnionMessageHandler for IgnoringMessageHandler {
120 type CustomMessage = Infallible;
121 fn handle_custom_message(&self, _msg: Infallible) {
122 // Since we always return `None` in the read the handle method should never be called.
125 fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
130 impl CustomOnionMessageContents for Infallible {
131 fn tlv_type(&self) -> u64 { unreachable!(); }
134 impl Deref for IgnoringMessageHandler {
135 type Target = IgnoringMessageHandler;
136 fn deref(&self) -> &Self { self }
139 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
140 // method that takes self for it.
141 impl wire::Type for Infallible {
142 fn type_id(&self) -> u16 {
146 impl Writeable for Infallible {
147 fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
152 impl wire::CustomMessageReader for IgnoringMessageHandler {
153 type CustomMessage = Infallible;
154 fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
159 impl CustomMessageHandler for IgnoringMessageHandler {
160 fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
161 // Since we always return `None` in the read the handle method should never be called.
165 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
167 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
169 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
170 InitFeatures::empty()
174 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
175 /// You can provide one of these as the route_handler in a MessageHandler.
176 pub struct ErroringMessageHandler {
177 message_queue: Mutex<Vec<MessageSendEvent>>
179 impl ErroringMessageHandler {
180 /// Constructs a new ErroringMessageHandler
181 pub fn new() -> Self {
182 Self { message_queue: Mutex::new(Vec::new()) }
184 fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
185 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
186 action: msgs::ErrorAction::SendErrorMessage {
187 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
189 node_id: node_id.clone(),
193 impl MessageSendEventsProvider for ErroringMessageHandler {
194 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
195 let mut res = Vec::new();
196 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
200 impl ChannelMessageHandler for ErroringMessageHandler {
201 // Any messages which are related to a specific channel generate an error message to let the
202 // peer know we don't care about channels.
203 fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
204 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
206 fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
207 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
209 fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
210 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
212 fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
213 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
215 fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
216 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
218 fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
219 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
221 fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
222 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
224 fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
225 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
227 fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
228 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
230 fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
231 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
233 fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
234 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
236 fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
237 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
239 fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
240 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
242 fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
243 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
245 fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
246 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
248 fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
249 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
251 // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
252 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
253 fn peer_disconnected(&self, _their_node_id: &PublicKey) {}
254 fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
255 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
256 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
257 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
258 // Set a number of features which various nodes may require to talk to us. It's totally
259 // reasonable to indicate we "support" all kinds of channel features...we just reject all
261 let mut features = InitFeatures::empty();
262 features.set_data_loss_protect_optional();
263 features.set_upfront_shutdown_script_optional();
264 features.set_variable_length_onion_optional();
265 features.set_static_remote_key_optional();
266 features.set_payment_secret_optional();
267 features.set_basic_mpp_optional();
268 features.set_wumbo_optional();
269 features.set_shutdown_any_segwit_optional();
270 features.set_channel_type_optional();
271 features.set_scid_privacy_optional();
272 features.set_zero_conf_optional();
276 fn handle_open_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
277 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
280 fn handle_accept_channel_v2(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
281 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
284 fn handle_tx_add_input(&self, their_node_id: &PublicKey, msg: &msgs::TxAddInput) {
285 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
288 fn handle_tx_add_output(&self, their_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
289 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
292 fn handle_tx_remove_input(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
293 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
296 fn handle_tx_remove_output(&self, their_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
297 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
300 fn handle_tx_complete(&self, their_node_id: &PublicKey, msg: &msgs::TxComplete) {
301 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
304 fn handle_tx_signatures(&self, their_node_id: &PublicKey, msg: &msgs::TxSignatures) {
305 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
308 fn handle_tx_init_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
309 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
312 fn handle_tx_ack_rbf(&self, their_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
313 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
316 fn handle_tx_abort(&self, their_node_id: &PublicKey, msg: &msgs::TxAbort) {
317 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
321 impl Deref for ErroringMessageHandler {
322 type Target = ErroringMessageHandler;
323 fn deref(&self) -> &Self { self }
326 /// Provides references to trait impls which handle different types of messages.
327 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref, CustomM: Deref> where
328 CM::Target: ChannelMessageHandler,
329 RM::Target: RoutingMessageHandler,
330 OM::Target: OnionMessageHandler,
331 CustomM::Target: CustomMessageHandler,
333 /// A message handler which handles messages specific to channels. Usually this is just a
334 /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
336 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
337 pub chan_handler: CM,
338 /// A message handler which handles messages updating our knowledge of the network channel
339 /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
341 /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
342 pub route_handler: RM,
344 /// A message handler which handles onion messages. This should generally be an
345 /// [`OnionMessenger`], but can also be an [`IgnoringMessageHandler`].
347 /// [`OnionMessenger`]: crate::onion_message::OnionMessenger
348 pub onion_message_handler: OM,
350 /// A message handler which handles custom messages. The only LDK-provided implementation is
351 /// [`IgnoringMessageHandler`].
352 pub custom_message_handler: CustomM,
355 /// Provides an object which can be used to send data to and which uniquely identifies a connection
356 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
357 /// implement Hash to meet the PeerManager API.
359 /// For efficiency, [`Clone`] should be relatively cheap for this type.
361 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
362 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
363 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
364 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
365 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
366 /// to simply use another value which is guaranteed to be globally unique instead.
367 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
368 /// Attempts to send some data from the given slice to the peer.
370 /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
371 /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
372 /// called and further write attempts may occur until that time.
374 /// If the returned size is smaller than `data.len()`, a
375 /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
376 /// written. Additionally, until a `send_data` event completes fully, no further
377 /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
378 /// prevent denial-of-service issues, you should not read or buffer any data from the socket
381 /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
382 /// (indicating that read events should be paused to prevent DoS in the send buffer),
383 /// `resume_read` may be set indicating that read events on this descriptor should resume. A
384 /// `resume_read` of false carries no meaning, and should not cause any action.
385 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
386 /// Disconnect the socket pointed to by this SocketDescriptor.
388 /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
389 /// call (doing so is a noop).
390 fn disconnect_socket(&mut self);
393 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
394 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
397 pub struct PeerHandleError { }
398 impl fmt::Debug for PeerHandleError {
399 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
400 formatter.write_str("Peer Sent Invalid Data")
403 impl fmt::Display for PeerHandleError {
404 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
405 formatter.write_str("Peer Sent Invalid Data")
409 #[cfg(feature = "std")]
410 impl error::Error for PeerHandleError {
411 fn description(&self) -> &str {
412 "Peer Sent Invalid Data"
416 enum InitSyncTracker{
418 ChannelsSyncing(u64),
419 NodesSyncing(NodeId),
422 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
423 /// forwarding gossip messages to peers altogether.
424 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
426 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
427 /// we have fewer than this many messages in the outbound buffer again.
428 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
429 /// refilled as we send bytes.
430 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
431 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
433 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
435 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
436 /// the socket receive buffer before receiving the ping.
438 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
439 /// including any network delays, outbound traffic, or the same for messages from other peers.
441 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
442 /// per connected peer to respond to a ping, as long as they send us at least one message during
443 /// each tick, ensuring we aren't actually just disconnected.
444 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
447 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
448 /// two connected peers, assuming most LDK-running systems have at least two cores.
449 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
451 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
452 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
453 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
454 /// process before the next ping.
456 /// Note that we continue responding to other messages even after we've sent this many messages, so
457 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
458 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
459 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
462 channel_encryptor: PeerChannelEncryptor,
463 /// We cache a `NodeId` here to avoid serializing peers' keys every time we forward gossip
464 /// messages in `PeerManager`. Use `Peer::set_their_node_id` to modify this field.
465 their_node_id: Option<(PublicKey, NodeId)>,
466 /// The features provided in the peer's [`msgs::Init`] message.
468 /// This is set only after we've processed the [`msgs::Init`] message and called relevant
469 /// `peer_connected` handler methods. Thus, this field is set *iff* we've finished our
470 /// handshake and can talk to this peer normally (though use [`Peer::handshake_complete`] to
472 their_features: Option<InitFeatures>,
473 their_net_address: Option<NetAddress>,
475 pending_outbound_buffer: LinkedList<Vec<u8>>,
476 pending_outbound_buffer_first_msg_offset: usize,
477 /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
478 /// prioritize channel messages over them.
480 /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
481 gossip_broadcast_buffer: LinkedList<Vec<u8>>,
482 awaiting_write_event: bool,
484 pending_read_buffer: Vec<u8>,
485 pending_read_buffer_pos: usize,
486 pending_read_is_header: bool,
488 sync_status: InitSyncTracker,
490 msgs_sent_since_pong: usize,
491 awaiting_pong_timer_tick_intervals: i64,
492 received_message_since_timer_tick: bool,
493 sent_gossip_timestamp_filter: bool,
495 /// Indicates we've received a `channel_announcement` since the last time we had
496 /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
497 /// `channel_announcement` at all - we set this unconditionally but unset it every time we
498 /// check if we're gossip-processing-backlogged).
499 received_channel_announce_since_backlogged: bool,
501 inbound_connection: bool,
505 /// True after we've processed the [`msgs::Init`] message and called relevant `peer_connected`
506 /// handler methods. Thus, this implies we've finished our handshake and can talk to this peer
508 fn handshake_complete(&self) -> bool {
509 self.their_features.is_some()
512 /// Returns true if the channel announcements/updates for the given channel should be
513 /// forwarded to this peer.
514 /// If we are sending our routing table to this peer and we have not yet sent channel
515 /// announcements/updates for the given channel_id then we will send it when we get to that
516 /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
517 /// sent the old versions, we should send the update, and so return true here.
518 fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
519 if !self.handshake_complete() { return false; }
520 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
521 !self.sent_gossip_timestamp_filter {
524 match self.sync_status {
525 InitSyncTracker::NoSyncRequested => true,
526 InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
527 InitSyncTracker::NodesSyncing(_) => true,
531 /// Similar to the above, but for node announcements indexed by node_id.
532 fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
533 if !self.handshake_complete() { return false; }
534 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
535 !self.sent_gossip_timestamp_filter {
538 match self.sync_status {
539 InitSyncTracker::NoSyncRequested => true,
540 InitSyncTracker::ChannelsSyncing(_) => false,
541 InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
545 /// Returns whether we should be reading bytes from this peer, based on whether its outbound
546 /// buffer still has space and we don't need to pause reads to get some writes out.
547 fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
548 if !gossip_processing_backlogged {
549 self.received_channel_announce_since_backlogged = false;
551 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
552 (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
555 /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
556 /// outbound buffer. This is checked every time the peer's buffer may have been drained.
557 fn should_buffer_gossip_backfill(&self) -> bool {
558 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
559 && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
560 && self.handshake_complete()
563 /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
564 /// every time the peer's buffer may have been drained.
565 fn should_buffer_onion_message(&self) -> bool {
566 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
567 && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
570 /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
571 /// buffer. This is checked every time the peer's buffer may have been drained.
572 fn should_buffer_gossip_broadcast(&self) -> bool {
573 self.pending_outbound_buffer.is_empty() && self.handshake_complete()
574 && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
577 /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
578 fn buffer_full_drop_gossip_broadcast(&self) -> bool {
579 let total_outbound_buffered =
580 self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
582 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
583 self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
586 fn set_their_node_id(&mut self, node_id: PublicKey) {
587 self.their_node_id = Some((node_id, NodeId::from_pubkey(&node_id)));
591 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
592 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
593 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
594 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
595 /// issues such as overly long function definitions.
597 /// This is not exported to bindings users as `Arc`s don't make sense in bindings.
598 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler, Arc<KeysManager>>;
600 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
601 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
602 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
603 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
604 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
605 /// helps with issues such as long function definitions.
607 /// This is not exported to bindings users as general type aliases don't make sense in bindings.
608 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>, &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler, &'c KeysManager>;
611 /// A generic trait which is implemented for all [`PeerManager`]s. This makes bounding functions or
612 /// structs on any [`PeerManager`] much simpler as only this trait is needed as a bound, rather
613 /// than the full set of bounds on [`PeerManager`] itself.
614 #[allow(missing_docs)]
615 pub trait APeerManager {
616 type Descriptor: SocketDescriptor;
617 type CMT: ChannelMessageHandler + ?Sized;
618 type CM: Deref<Target=Self::CMT>;
619 type RMT: RoutingMessageHandler + ?Sized;
620 type RM: Deref<Target=Self::RMT>;
621 type OMT: OnionMessageHandler + ?Sized;
622 type OM: Deref<Target=Self::OMT>;
623 type LT: Logger + ?Sized;
624 type L: Deref<Target=Self::LT>;
625 type CMHT: CustomMessageHandler + ?Sized;
626 type CMH: Deref<Target=Self::CMHT>;
627 type NST: NodeSigner + ?Sized;
628 type NS: Deref<Target=Self::NST>;
629 /// Gets a reference to the underlying [`PeerManager`].
630 fn as_ref(&self) -> &PeerManager<Self::Descriptor, Self::CM, Self::RM, Self::OM, Self::L, Self::CMH, Self::NS>;
633 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref>
634 APeerManager for PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
635 CM::Target: ChannelMessageHandler,
636 RM::Target: RoutingMessageHandler,
637 OM::Target: OnionMessageHandler,
639 CMH::Target: CustomMessageHandler,
640 NS::Target: NodeSigner,
642 type Descriptor = Descriptor;
643 type CMT = <CM as Deref>::Target;
645 type RMT = <RM as Deref>::Target;
647 type OMT = <OM as Deref>::Target;
649 type LT = <L as Deref>::Target;
651 type CMHT = <CMH as Deref>::Target;
653 type NST = <NS as Deref>::Target;
655 fn as_ref(&self) -> &PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> { self }
658 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
659 /// socket events into messages which it passes on to its [`MessageHandler`].
661 /// Locks are taken internally, so you must never assume that reentrancy from a
662 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
664 /// Calls to [`read_event`] will decode relevant messages and pass them to the
665 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
666 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
667 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
668 /// calls only after previous ones have returned.
670 /// Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
671 /// a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
672 /// essentially you should default to using a [`SimpleRefPeerManager`], and use a
673 /// [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
674 /// you're using lightning-net-tokio.
676 /// [`read_event`]: PeerManager::read_event
677 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
678 CM::Target: ChannelMessageHandler,
679 RM::Target: RoutingMessageHandler,
680 OM::Target: OnionMessageHandler,
682 CMH::Target: CustomMessageHandler,
683 NS::Target: NodeSigner {
684 message_handler: MessageHandler<CM, RM, OM, CMH>,
685 /// Connection state for each connected peer - we have an outer read-write lock which is taken
686 /// as read while we're doing processing for a peer and taken write when a peer is being added
689 /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
690 /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
691 /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
692 /// the `MessageHandler`s for a given peer is already guaranteed.
693 peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
694 /// Only add to this set when noise completes.
695 /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
696 /// lock held. Entries may be added with only the `peers` read lock held (though the
697 /// `Descriptor` value must already exist in `peers`).
698 node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
699 /// We can only have one thread processing events at once, but we don't usually need the full
700 /// `peers` write lock to do so, so instead we block on this empty mutex when entering
701 /// `process_events`.
702 event_processing_lock: Mutex<()>,
703 /// Because event processing is global and always does all available work before returning,
704 /// there is no reason for us to have many event processors waiting on the lock at once.
705 /// Instead, we limit the total blocked event processors to always exactly one by setting this
706 /// when an event process call is waiting.
707 blocked_event_processors: AtomicBool,
709 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
710 /// value increases strictly since we don't assume access to a time source.
711 last_node_announcement_serial: AtomicU32,
713 ephemeral_key_midstate: Sha256Engine,
715 peer_counter: AtomicCounter,
717 gossip_processing_backlogged: AtomicBool,
718 gossip_processing_backlog_lifted: AtomicBool,
723 secp_ctx: Secp256k1<secp256k1::SignOnly>
726 enum MessageHandlingError {
727 PeerHandleError(PeerHandleError),
728 LightningError(LightningError),
731 impl From<PeerHandleError> for MessageHandlingError {
732 fn from(error: PeerHandleError) -> Self {
733 MessageHandlingError::PeerHandleError(error)
737 impl From<LightningError> for MessageHandlingError {
738 fn from(error: LightningError) -> Self {
739 MessageHandlingError::LightningError(error)
743 macro_rules! encode_msg {
745 let mut buffer = VecWriter(Vec::new());
746 wire::write($msg, &mut buffer).unwrap();
751 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
752 CM::Target: ChannelMessageHandler,
753 OM::Target: OnionMessageHandler,
755 NS::Target: NodeSigner {
756 /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
757 /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
760 /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
761 /// cryptographically secure random bytes.
763 /// `current_time` is used as an always-increasing counter that survives across restarts and is
764 /// incremented irregularly internally. In general it is best to simply use the current UNIX
765 /// timestamp, however if it is not available a persistent counter that increases once per
766 /// minute should suffice.
768 /// This is not exported to bindings users as we can't export a PeerManager with a dummy route handler
769 pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
770 Self::new(MessageHandler {
771 chan_handler: channel_message_handler,
772 route_handler: IgnoringMessageHandler{},
773 onion_message_handler,
774 custom_message_handler: IgnoringMessageHandler{},
775 }, current_time, ephemeral_random_data, logger, node_signer)
779 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
780 RM::Target: RoutingMessageHandler,
782 NS::Target: NodeSigner {
783 /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
784 /// handler or onion message handler is used and onion and channel messages will be ignored (or
785 /// generate error messages). Note that some other lightning implementations time-out connections
786 /// after some time if no channel is built with the peer.
788 /// `current_time` is used as an always-increasing counter that survives across restarts and is
789 /// incremented irregularly internally. In general it is best to simply use the current UNIX
790 /// timestamp, however if it is not available a persistent counter that increases once per
791 /// minute should suffice.
793 /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
794 /// cryptographically secure random bytes.
796 /// This is not exported to bindings users as we can't export a PeerManager with a dummy channel handler
797 pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
798 Self::new(MessageHandler {
799 chan_handler: ErroringMessageHandler::new(),
800 route_handler: routing_message_handler,
801 onion_message_handler: IgnoringMessageHandler{},
802 custom_message_handler: IgnoringMessageHandler{},
803 }, current_time, ephemeral_random_data, logger, node_signer)
807 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
808 /// This works around `format!()` taking a reference to each argument, preventing
809 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
810 /// due to lifetime errors.
811 struct OptionalFromDebugger<'a>(&'a Option<(PublicKey, NodeId)>);
812 impl core::fmt::Display for OptionalFromDebugger<'_> {
813 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
814 if let Some((node_id, _)) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
818 /// A function used to filter out local or private addresses
819 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
820 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
821 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
823 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
824 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
825 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
826 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
827 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
828 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
829 // For IPv4 range 127.0.0.0 - 127.255.255.255 (127/8)
830 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
831 // For IPv4 range 169.254.0.0 - 169.254.255.255 (169.254/16)
832 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
833 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
834 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
835 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
836 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
837 // For IPv4 range 192.88.99.0 - 192.88.99.255 (192.88.99/24)
838 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
839 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
840 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
841 // For remaining addresses
842 Some(NetAddress::IPv6{addr: _, port: _}) => None,
843 Some(..) => ip_address,
848 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
849 CM::Target: ChannelMessageHandler,
850 RM::Target: RoutingMessageHandler,
851 OM::Target: OnionMessageHandler,
853 CMH::Target: CustomMessageHandler,
854 NS::Target: NodeSigner
856 /// Constructs a new `PeerManager` with the given message handlers.
858 /// `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
859 /// cryptographically secure random bytes.
861 /// `current_time` is used as an always-increasing counter that survives across restarts and is
862 /// incremented irregularly internally. In general it is best to simply use the current UNIX
863 /// timestamp, however if it is not available a persistent counter that increases once per
864 /// minute should suffice.
865 pub fn new(message_handler: MessageHandler<CM, RM, OM, CMH>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
866 let mut ephemeral_key_midstate = Sha256::engine();
867 ephemeral_key_midstate.input(ephemeral_random_data);
869 let mut secp_ctx = Secp256k1::signing_only();
870 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
871 secp_ctx.seeded_randomize(&ephemeral_hash);
875 peers: FairRwLock::new(HashMap::new()),
876 node_id_to_descriptor: Mutex::new(HashMap::new()),
877 event_processing_lock: Mutex::new(()),
878 blocked_event_processors: AtomicBool::new(false),
879 ephemeral_key_midstate,
880 peer_counter: AtomicCounter::new(),
881 gossip_processing_backlogged: AtomicBool::new(false),
882 gossip_processing_backlog_lifted: AtomicBool::new(false),
883 last_node_announcement_serial: AtomicU32::new(current_time),
890 /// Get a list of tuples mapping from node id to network addresses for peers which have
891 /// completed the initial handshake.
893 /// For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
894 /// passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
895 /// handshake has completed and we are sure the remote peer has the private key for the given
898 /// The returned `Option`s will only be `Some` if an address had been previously given via
899 /// [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
900 pub fn get_peer_node_ids(&self) -> Vec<(PublicKey, Option<NetAddress>)> {
901 let peers = self.peers.read().unwrap();
902 peers.values().filter_map(|peer_mutex| {
903 let p = peer_mutex.lock().unwrap();
904 if !p.handshake_complete() {
907 Some((p.their_node_id.unwrap().0, p.their_net_address.clone()))
911 fn get_ephemeral_key(&self) -> SecretKey {
912 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
913 let counter = self.peer_counter.get_increment();
914 ephemeral_hash.input(&counter.to_le_bytes());
915 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
918 fn init_features(&self, their_node_id: &PublicKey) -> InitFeatures {
919 self.message_handler.chan_handler.provided_init_features(their_node_id)
920 | self.message_handler.route_handler.provided_init_features(their_node_id)
921 | self.message_handler.onion_message_handler.provided_init_features(their_node_id)
922 | self.message_handler.custom_message_handler.provided_init_features(their_node_id)
925 /// Indicates a new outbound connection has been established to a node with the given `node_id`
926 /// and an optional remote network address.
928 /// The remote network address adds the option to report a remote IP address back to a connecting
929 /// peer using the init message.
930 /// The user should pass the remote network address of the host they are connected to.
932 /// If an `Err` is returned here you must disconnect the connection immediately.
934 /// Returns a small number of bytes to send to the remote node (currently always 50).
936 /// Panics if descriptor is duplicative with some other descriptor which has not yet been
937 /// [`socket_disconnected`].
939 /// [`socket_disconnected`]: PeerManager::socket_disconnected
940 pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
941 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
942 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
943 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
945 let mut peers = self.peers.write().unwrap();
946 match peers.entry(descriptor) {
947 hash_map::Entry::Occupied(_) => {
948 debug_assert!(false, "PeerManager driver duplicated descriptors!");
949 Err(PeerHandleError {})
951 hash_map::Entry::Vacant(e) => {
952 e.insert(Mutex::new(Peer {
953 channel_encryptor: peer_encryptor,
955 their_features: None,
956 their_net_address: remote_network_address,
958 pending_outbound_buffer: LinkedList::new(),
959 pending_outbound_buffer_first_msg_offset: 0,
960 gossip_broadcast_buffer: LinkedList::new(),
961 awaiting_write_event: false,
964 pending_read_buffer_pos: 0,
965 pending_read_is_header: false,
967 sync_status: InitSyncTracker::NoSyncRequested,
969 msgs_sent_since_pong: 0,
970 awaiting_pong_timer_tick_intervals: 0,
971 received_message_since_timer_tick: false,
972 sent_gossip_timestamp_filter: false,
974 received_channel_announce_since_backlogged: false,
975 inbound_connection: false,
982 /// Indicates a new inbound connection has been established to a node with an optional remote
985 /// The remote network address adds the option to report a remote IP address back to a connecting
986 /// peer using the init message.
987 /// The user should pass the remote network address of the host they are connected to.
989 /// May refuse the connection by returning an Err, but will never write bytes to the remote end
990 /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
991 /// the connection immediately.
993 /// Panics if descriptor is duplicative with some other descriptor which has not yet been
994 /// [`socket_disconnected`].
996 /// [`socket_disconnected`]: PeerManager::socket_disconnected
997 pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
998 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
999 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
1001 let mut peers = self.peers.write().unwrap();
1002 match peers.entry(descriptor) {
1003 hash_map::Entry::Occupied(_) => {
1004 debug_assert!(false, "PeerManager driver duplicated descriptors!");
1005 Err(PeerHandleError {})
1007 hash_map::Entry::Vacant(e) => {
1008 e.insert(Mutex::new(Peer {
1009 channel_encryptor: peer_encryptor,
1010 their_node_id: None,
1011 their_features: None,
1012 their_net_address: remote_network_address,
1014 pending_outbound_buffer: LinkedList::new(),
1015 pending_outbound_buffer_first_msg_offset: 0,
1016 gossip_broadcast_buffer: LinkedList::new(),
1017 awaiting_write_event: false,
1019 pending_read_buffer,
1020 pending_read_buffer_pos: 0,
1021 pending_read_is_header: false,
1023 sync_status: InitSyncTracker::NoSyncRequested,
1025 msgs_sent_since_pong: 0,
1026 awaiting_pong_timer_tick_intervals: 0,
1027 received_message_since_timer_tick: false,
1028 sent_gossip_timestamp_filter: false,
1030 received_channel_announce_since_backlogged: false,
1031 inbound_connection: true,
1038 fn peer_should_read(&self, peer: &mut Peer) -> bool {
1039 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
1042 fn update_gossip_backlogged(&self) {
1043 let new_state = self.message_handler.route_handler.processing_queue_high();
1044 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
1045 if prev_state && !new_state {
1046 self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
1050 fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
1051 let mut have_written = false;
1052 while !peer.awaiting_write_event {
1053 if peer.should_buffer_onion_message() {
1054 if let Some((peer_node_id, _)) = peer.their_node_id {
1055 if let Some(next_onion_message) =
1056 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
1057 self.enqueue_message(peer, &next_onion_message);
1061 if peer.should_buffer_gossip_broadcast() {
1062 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
1063 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
1066 if peer.should_buffer_gossip_backfill() {
1067 match peer.sync_status {
1068 InitSyncTracker::NoSyncRequested => {},
1069 InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
1070 if let Some((announce, update_a_option, update_b_option)) =
1071 self.message_handler.route_handler.get_next_channel_announcement(c)
1073 self.enqueue_message(peer, &announce);
1074 if let Some(update_a) = update_a_option {
1075 self.enqueue_message(peer, &update_a);
1077 if let Some(update_b) = update_b_option {
1078 self.enqueue_message(peer, &update_b);
1080 peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
1082 peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
1085 InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
1086 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
1087 self.enqueue_message(peer, &msg);
1088 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1090 peer.sync_status = InitSyncTracker::NoSyncRequested;
1093 InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
1094 InitSyncTracker::NodesSyncing(sync_node_id) => {
1095 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
1096 self.enqueue_message(peer, &msg);
1097 peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
1099 peer.sync_status = InitSyncTracker::NoSyncRequested;
1104 if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
1105 self.maybe_send_extra_ping(peer);
1108 let should_read = self.peer_should_read(peer);
1109 let next_buff = match peer.pending_outbound_buffer.front() {
1111 if force_one_write && !have_written {
1113 let data_sent = descriptor.send_data(&[], should_read);
1114 debug_assert_eq!(data_sent, 0, "Can't write more than no data");
1122 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
1123 let data_sent = descriptor.send_data(pending, should_read);
1124 have_written = true;
1125 peer.pending_outbound_buffer_first_msg_offset += data_sent;
1126 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
1127 peer.pending_outbound_buffer_first_msg_offset = 0;
1128 peer.pending_outbound_buffer.pop_front();
1130 peer.awaiting_write_event = true;
1135 /// Indicates that there is room to write data to the given socket descriptor.
1137 /// May return an Err to indicate that the connection should be closed.
1139 /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
1140 /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
1141 /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
1142 /// ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
1145 /// [`send_data`]: SocketDescriptor::send_data
1146 /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
1147 pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
1148 let peers = self.peers.read().unwrap();
1149 match peers.get(descriptor) {
1151 // This is most likely a simple race condition where the user found that the socket
1152 // was writeable, then we told the user to `disconnect_socket()`, then they called
1153 // this method. Return an error to make sure we get disconnected.
1154 return Err(PeerHandleError { });
1156 Some(peer_mutex) => {
1157 let mut peer = peer_mutex.lock().unwrap();
1158 peer.awaiting_write_event = false;
1159 self.do_attempt_write_data(descriptor, &mut peer, false);
1165 /// Indicates that data was read from the given socket descriptor.
1167 /// May return an Err to indicate that the connection should be closed.
1169 /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1170 /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1171 /// [`send_data`] calls to handle responses.
1173 /// If `Ok(true)` is returned, further read_events should not be triggered until a
1174 /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1177 /// In order to avoid processing too many messages at once per peer, `data` should be on the
1180 /// [`send_data`]: SocketDescriptor::send_data
1181 /// [`process_events`]: PeerManager::process_events
1182 pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1183 match self.do_read_event(peer_descriptor, data) {
1186 log_trace!(self.logger, "Disconnecting peer due to a protocol error (usually a duplicate connection).");
1187 self.disconnect_event_internal(peer_descriptor);
1193 /// Append a message to a peer's pending outbound/write buffer
1194 fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1195 if is_gossip_msg(message.type_id()) {
1196 log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0));
1198 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap().0))
1200 peer.msgs_sent_since_pong += 1;
1201 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1204 /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1205 fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1206 peer.msgs_sent_since_pong += 1;
1207 peer.gossip_broadcast_buffer.push_back(encoded_message);
1210 fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1211 let mut pause_read = false;
1212 let peers = self.peers.read().unwrap();
1213 let mut msgs_to_forward = Vec::new();
1214 let mut peer_node_id = None;
1215 match peers.get(peer_descriptor) {
1217 // This is most likely a simple race condition where the user read some bytes
1218 // from the socket, then we told the user to `disconnect_socket()`, then they
1219 // called this method. Return an error to make sure we get disconnected.
1220 return Err(PeerHandleError { });
1222 Some(peer_mutex) => {
1223 let mut read_pos = 0;
1224 while read_pos < data.len() {
1225 macro_rules! try_potential_handleerror {
1226 ($peer: expr, $thing: expr) => {
1231 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1232 //TODO: Try to push msg
1233 log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1234 return Err(PeerHandleError { });
1236 msgs::ErrorAction::IgnoreAndLog(level) => {
1237 log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1240 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1241 msgs::ErrorAction::IgnoreError => {
1242 log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1245 msgs::ErrorAction::SendErrorMessage { msg } => {
1246 log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1247 self.enqueue_message($peer, &msg);
1250 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1251 log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1252 self.enqueue_message($peer, &msg);
1261 let mut peer_lock = peer_mutex.lock().unwrap();
1262 let peer = &mut *peer_lock;
1263 let mut msg_to_handle = None;
1264 if peer_node_id.is_none() {
1265 peer_node_id = peer.their_node_id.clone();
1268 assert!(peer.pending_read_buffer.len() > 0);
1269 assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1272 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1273 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1274 read_pos += data_to_copy;
1275 peer.pending_read_buffer_pos += data_to_copy;
1278 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1279 peer.pending_read_buffer_pos = 0;
1281 macro_rules! insert_node_id {
1283 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap().0) {
1284 hash_map::Entry::Occupied(e) => {
1285 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap().0));
1286 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1287 // Check that the peers map is consistent with the
1288 // node_id_to_descriptor map, as this has been broken
1290 debug_assert!(peers.get(e.get()).is_some());
1291 return Err(PeerHandleError { })
1293 hash_map::Entry::Vacant(entry) => {
1294 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap().0));
1295 entry.insert(peer_descriptor.clone())
1301 let next_step = peer.channel_encryptor.get_noise_step();
1303 NextNoiseStep::ActOne => {
1304 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1305 .process_act_one_with_keys(&peer.pending_read_buffer[..],
1306 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1307 peer.pending_outbound_buffer.push_back(act_two);
1308 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1310 NextNoiseStep::ActTwo => {
1311 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1312 peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1313 &self.node_signer));
1314 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1315 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1316 peer.pending_read_is_header = true;
1318 peer.set_their_node_id(their_node_id);
1320 let features = self.init_features(&their_node_id);
1321 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1322 self.enqueue_message(peer, &resp);
1323 peer.awaiting_pong_timer_tick_intervals = 0;
1325 NextNoiseStep::ActThree => {
1326 let their_node_id = try_potential_handleerror!(peer,
1327 peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1328 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1329 peer.pending_read_is_header = true;
1330 peer.set_their_node_id(their_node_id);
1332 let features = self.init_features(&their_node_id);
1333 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1334 self.enqueue_message(peer, &resp);
1335 peer.awaiting_pong_timer_tick_intervals = 0;
1337 NextNoiseStep::NoiseComplete => {
1338 if peer.pending_read_is_header {
1339 let msg_len = try_potential_handleerror!(peer,
1340 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1341 if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1342 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1343 if msg_len < 2 { // Need at least the message type tag
1344 return Err(PeerHandleError { });
1346 peer.pending_read_is_header = false;
1348 let msg_data = try_potential_handleerror!(peer,
1349 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1350 assert!(msg_data.len() >= 2);
1352 // Reset read buffer
1353 if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1354 peer.pending_read_buffer.resize(18, 0);
1355 peer.pending_read_is_header = true;
1357 let mut reader = io::Cursor::new(&msg_data[..]);
1358 let message_result = wire::read(&mut reader, &*self.message_handler.custom_message_handler);
1359 let message = match message_result {
1363 // Note that to avoid recursion we never call
1364 // `do_attempt_write_data` from here, causing
1365 // the messages enqueued here to not actually
1366 // be sent before the peer is disconnected.
1367 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1368 log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1371 (msgs::DecodeError::UnsupportedCompression, _) => {
1372 log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1373 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1376 (_, Some(ty)) if is_gossip_msg(ty) => {
1377 log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1378 self.enqueue_message(peer, &msgs::WarningMessage {
1379 channel_id: [0; 32],
1380 data: format!("Unreadable/bogus gossip message of type {}", ty),
1384 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1385 log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1386 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1387 return Err(PeerHandleError { });
1389 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { }),
1390 (msgs::DecodeError::InvalidValue, _) => {
1391 log_debug!(self.logger, "Got an invalid value while deserializing message");
1392 return Err(PeerHandleError { });
1394 (msgs::DecodeError::ShortRead, _) => {
1395 log_debug!(self.logger, "Deserialization failed due to shortness of message");
1396 return Err(PeerHandleError { });
1398 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { }),
1399 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { }),
1404 msg_to_handle = Some(message);
1409 pause_read = !self.peer_should_read(peer);
1411 if let Some(message) = msg_to_handle {
1412 match self.handle_message(&peer_mutex, peer_lock, message) {
1413 Err(handling_error) => match handling_error {
1414 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1415 MessageHandlingError::LightningError(e) => {
1416 try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1420 msgs_to_forward.push(msg);
1429 for msg in msgs_to_forward.drain(..) {
1430 self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref().map(|(pk, _)| pk));
1436 /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1437 /// Returns the message back if it needs to be broadcasted to all other peers.
1440 peer_mutex: &Mutex<Peer>,
1441 mut peer_lock: MutexGuard<Peer>,
1442 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1443 ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1444 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages").0;
1445 peer_lock.received_message_since_timer_tick = true;
1447 // Need an Init as first message
1448 if let wire::Message::Init(msg) = message {
1449 let our_features = self.init_features(&their_node_id);
1450 if msg.features.requires_unknown_bits_from(&our_features) {
1451 log_debug!(self.logger, "Peer requires features unknown to us");
1452 return Err(PeerHandleError { }.into());
1455 if our_features.requires_unknown_bits_from(&msg.features) {
1456 log_debug!(self.logger, "We require features unknown to our peer");
1457 return Err(PeerHandleError { }.into());
1460 if peer_lock.their_features.is_some() {
1461 return Err(PeerHandleError { }.into());
1464 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1466 // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1467 if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1468 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1471 if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1472 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1473 return Err(PeerHandleError { }.into());
1475 if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1476 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1477 return Err(PeerHandleError { }.into());
1479 if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg, peer_lock.inbound_connection) {
1480 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1481 return Err(PeerHandleError { }.into());
1484 peer_lock.their_features = Some(msg.features);
1486 } else if peer_lock.their_features.is_none() {
1487 log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1488 return Err(PeerHandleError { }.into());
1491 if let wire::Message::GossipTimestampFilter(_msg) = message {
1492 // When supporting gossip messages, start inital gossip sync only after we receive
1493 // a GossipTimestampFilter
1494 if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1495 !peer_lock.sent_gossip_timestamp_filter {
1496 peer_lock.sent_gossip_timestamp_filter = true;
1497 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1502 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1503 peer_lock.received_channel_announce_since_backlogged = true;
1506 mem::drop(peer_lock);
1508 if is_gossip_msg(message.type_id()) {
1509 log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1511 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1514 let mut should_forward = None;
1517 // Setup and Control messages:
1518 wire::Message::Init(_) => {
1521 wire::Message::GossipTimestampFilter(_) => {
1524 wire::Message::Error(msg) => {
1525 let mut data_is_printable = true;
1526 for b in msg.data.bytes() {
1527 if b < 32 || b > 126 {
1528 data_is_printable = false;
1533 if data_is_printable {
1534 log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1536 log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1538 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1539 if msg.channel_id == [0; 32] {
1540 return Err(PeerHandleError { }.into());
1543 wire::Message::Warning(msg) => {
1544 let mut data_is_printable = true;
1545 for b in msg.data.bytes() {
1546 if b < 32 || b > 126 {
1547 data_is_printable = false;
1552 if data_is_printable {
1553 log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1555 log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1559 wire::Message::Ping(msg) => {
1560 if msg.ponglen < 65532 {
1561 let resp = msgs::Pong { byteslen: msg.ponglen };
1562 self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1565 wire::Message::Pong(_msg) => {
1566 let mut peer_lock = peer_mutex.lock().unwrap();
1567 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1568 peer_lock.msgs_sent_since_pong = 0;
1571 // Channel messages:
1572 wire::Message::OpenChannel(msg) => {
1573 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1575 wire::Message::OpenChannelV2(msg) => {
1576 self.message_handler.chan_handler.handle_open_channel_v2(&their_node_id, &msg);
1578 wire::Message::AcceptChannel(msg) => {
1579 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1581 wire::Message::AcceptChannelV2(msg) => {
1582 self.message_handler.chan_handler.handle_accept_channel_v2(&their_node_id, &msg);
1585 wire::Message::FundingCreated(msg) => {
1586 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1588 wire::Message::FundingSigned(msg) => {
1589 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1591 wire::Message::ChannelReady(msg) => {
1592 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1595 // Interactive transaction construction messages:
1596 wire::Message::TxAddInput(msg) => {
1597 self.message_handler.chan_handler.handle_tx_add_input(&their_node_id, &msg);
1599 wire::Message::TxAddOutput(msg) => {
1600 self.message_handler.chan_handler.handle_tx_add_output(&their_node_id, &msg);
1602 wire::Message::TxRemoveInput(msg) => {
1603 self.message_handler.chan_handler.handle_tx_remove_input(&their_node_id, &msg);
1605 wire::Message::TxRemoveOutput(msg) => {
1606 self.message_handler.chan_handler.handle_tx_remove_output(&their_node_id, &msg);
1608 wire::Message::TxComplete(msg) => {
1609 self.message_handler.chan_handler.handle_tx_complete(&their_node_id, &msg);
1611 wire::Message::TxSignatures(msg) => {
1612 self.message_handler.chan_handler.handle_tx_signatures(&their_node_id, &msg);
1614 wire::Message::TxInitRbf(msg) => {
1615 self.message_handler.chan_handler.handle_tx_init_rbf(&their_node_id, &msg);
1617 wire::Message::TxAckRbf(msg) => {
1618 self.message_handler.chan_handler.handle_tx_ack_rbf(&their_node_id, &msg);
1620 wire::Message::TxAbort(msg) => {
1621 self.message_handler.chan_handler.handle_tx_abort(&their_node_id, &msg);
1624 wire::Message::Shutdown(msg) => {
1625 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1627 wire::Message::ClosingSigned(msg) => {
1628 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1631 // Commitment messages:
1632 wire::Message::UpdateAddHTLC(msg) => {
1633 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1635 wire::Message::UpdateFulfillHTLC(msg) => {
1636 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1638 wire::Message::UpdateFailHTLC(msg) => {
1639 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1641 wire::Message::UpdateFailMalformedHTLC(msg) => {
1642 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1645 wire::Message::CommitmentSigned(msg) => {
1646 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1648 wire::Message::RevokeAndACK(msg) => {
1649 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1651 wire::Message::UpdateFee(msg) => {
1652 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1654 wire::Message::ChannelReestablish(msg) => {
1655 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1658 // Routing messages:
1659 wire::Message::AnnouncementSignatures(msg) => {
1660 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1662 wire::Message::ChannelAnnouncement(msg) => {
1663 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1664 .map_err(|e| -> MessageHandlingError { e.into() })? {
1665 should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1667 self.update_gossip_backlogged();
1669 wire::Message::NodeAnnouncement(msg) => {
1670 if self.message_handler.route_handler.handle_node_announcement(&msg)
1671 .map_err(|e| -> MessageHandlingError { e.into() })? {
1672 should_forward = Some(wire::Message::NodeAnnouncement(msg));
1674 self.update_gossip_backlogged();
1676 wire::Message::ChannelUpdate(msg) => {
1677 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1678 if self.message_handler.route_handler.handle_channel_update(&msg)
1679 .map_err(|e| -> MessageHandlingError { e.into() })? {
1680 should_forward = Some(wire::Message::ChannelUpdate(msg));
1682 self.update_gossip_backlogged();
1684 wire::Message::QueryShortChannelIds(msg) => {
1685 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1687 wire::Message::ReplyShortChannelIdsEnd(msg) => {
1688 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1690 wire::Message::QueryChannelRange(msg) => {
1691 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1693 wire::Message::ReplyChannelRange(msg) => {
1694 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1698 wire::Message::OnionMessage(msg) => {
1699 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1702 // Unknown messages:
1703 wire::Message::Unknown(type_id) if message.is_even() => {
1704 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1705 return Err(PeerHandleError { }.into());
1707 wire::Message::Unknown(type_id) => {
1708 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1710 wire::Message::Custom(custom) => {
1711 self.message_handler.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1717 fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1719 wire::Message::ChannelAnnouncement(ref msg) => {
1720 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1721 let encoded_msg = encode_msg!(msg);
1723 for (_, peer_mutex) in peers.iter() {
1724 let mut peer = peer_mutex.lock().unwrap();
1725 if !peer.handshake_complete() ||
1726 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1729 debug_assert!(peer.their_node_id.is_some());
1730 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1731 if peer.buffer_full_drop_gossip_broadcast() {
1732 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1735 if let Some((_, their_node_id)) = peer.their_node_id {
1736 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1740 if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1743 self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1746 wire::Message::NodeAnnouncement(ref msg) => {
1747 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1748 let encoded_msg = encode_msg!(msg);
1750 for (_, peer_mutex) in peers.iter() {
1751 let mut peer = peer_mutex.lock().unwrap();
1752 if !peer.handshake_complete() ||
1753 !peer.should_forward_node_announcement(msg.contents.node_id) {
1756 debug_assert!(peer.their_node_id.is_some());
1757 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1758 if peer.buffer_full_drop_gossip_broadcast() {
1759 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1762 if let Some((_, their_node_id)) = peer.their_node_id {
1763 if their_node_id == msg.contents.node_id {
1767 if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1770 self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1773 wire::Message::ChannelUpdate(ref msg) => {
1774 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1775 let encoded_msg = encode_msg!(msg);
1777 for (_, peer_mutex) in peers.iter() {
1778 let mut peer = peer_mutex.lock().unwrap();
1779 if !peer.handshake_complete() ||
1780 !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1783 debug_assert!(peer.their_node_id.is_some());
1784 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
1785 if peer.buffer_full_drop_gossip_broadcast() {
1786 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1789 if except_node.is_some() && peer.their_node_id.as_ref().map(|(pk, _)| pk) == except_node {
1792 self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1795 _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1799 /// Checks for any events generated by our handlers and processes them. Includes sending most
1800 /// response messages as well as messages generated by calls to handler functions directly (eg
1801 /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1803 /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1806 /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1807 /// or one of the other clients provided in our language bindings.
1809 /// Note that if there are any other calls to this function waiting on lock(s) this may return
1810 /// without doing any work. All available events that need handling will be handled before the
1811 /// other calls return.
1813 /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1814 /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1815 /// [`send_data`]: SocketDescriptor::send_data
1816 pub fn process_events(&self) {
1817 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1818 if _single_processor_lock.is_err() {
1819 // While we could wake the older sleeper here with a CV and make more even waiting
1820 // times, that would be a lot of overengineering for a simple "reduce total waiter
1822 match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1824 debug_assert!(val, "compare_exchange failed spuriously?");
1828 debug_assert!(!val, "compare_exchange succeeded spuriously?");
1829 // We're the only waiter, as the running process_events may have emptied the
1830 // pending events "long" ago and there are new events for us to process, wait until
1831 // its done and process any leftover events before returning.
1832 _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1833 self.blocked_event_processors.store(false, Ordering::Release);
1838 self.update_gossip_backlogged();
1839 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1841 let mut peers_to_disconnect = HashMap::new();
1842 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1843 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1846 // TODO: There are some DoS attacks here where you can flood someone's outbound send
1847 // buffer by doing things like announcing channels on another node. We should be willing to
1848 // drop optional-ish messages when send buffers get full!
1850 let peers_lock = self.peers.read().unwrap();
1851 let peers = &*peers_lock;
1852 macro_rules! get_peer_for_forwarding {
1853 ($node_id: expr) => {
1855 if peers_to_disconnect.get($node_id).is_some() {
1856 // If we've "disconnected" this peer, do not send to it.
1859 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1860 match descriptor_opt {
1861 Some(descriptor) => match peers.get(&descriptor) {
1862 Some(peer_mutex) => {
1863 let peer_lock = peer_mutex.lock().unwrap();
1864 if !peer_lock.handshake_complete() {
1870 debug_assert!(false, "Inconsistent peers set state!");
1881 for event in events_generated.drain(..) {
1883 MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1884 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1885 log_pubkey!(node_id),
1886 log_bytes!(msg.temporary_channel_id));
1887 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1889 MessageSendEvent::SendAcceptChannelV2 { ref node_id, ref msg } => {
1890 log_debug!(self.logger, "Handling SendAcceptChannelV2 event in peer_handler for node {} for channel {}",
1891 log_pubkey!(node_id),
1892 log_bytes!(msg.temporary_channel_id));
1893 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1895 MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1896 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1897 log_pubkey!(node_id),
1898 log_bytes!(msg.temporary_channel_id));
1899 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1901 MessageSendEvent::SendOpenChannelV2 { ref node_id, ref msg } => {
1902 log_debug!(self.logger, "Handling SendOpenChannelV2 event in peer_handler for node {} for channel {}",
1903 log_pubkey!(node_id),
1904 log_bytes!(msg.temporary_channel_id));
1905 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1907 MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1908 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1909 log_pubkey!(node_id),
1910 log_bytes!(msg.temporary_channel_id),
1911 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1912 // TODO: If the peer is gone we should generate a DiscardFunding event
1913 // indicating to the wallet that they should just throw away this funding transaction
1914 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1916 MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1917 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1918 log_pubkey!(node_id),
1919 log_bytes!(msg.channel_id));
1920 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1922 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1923 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1924 log_pubkey!(node_id),
1925 log_bytes!(msg.channel_id));
1926 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1928 MessageSendEvent::SendTxAddInput { ref node_id, ref msg } => {
1929 log_debug!(self.logger, "Handling SendTxAddInput event in peer_handler for node {} for channel {}",
1930 log_pubkey!(node_id),
1931 log_bytes!(msg.channel_id));
1932 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1934 MessageSendEvent::SendTxAddOutput { ref node_id, ref msg } => {
1935 log_debug!(self.logger, "Handling SendTxAddOutput event in peer_handler for node {} for channel {}",
1936 log_pubkey!(node_id),
1937 log_bytes!(msg.channel_id));
1938 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1940 MessageSendEvent::SendTxRemoveInput { ref node_id, ref msg } => {
1941 log_debug!(self.logger, "Handling SendTxRemoveInput event in peer_handler for node {} for channel {}",
1942 log_pubkey!(node_id),
1943 log_bytes!(msg.channel_id));
1944 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1946 MessageSendEvent::SendTxRemoveOutput { ref node_id, ref msg } => {
1947 log_debug!(self.logger, "Handling SendTxRemoveOutput event in peer_handler for node {} for channel {}",
1948 log_pubkey!(node_id),
1949 log_bytes!(msg.channel_id));
1950 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1952 MessageSendEvent::SendTxComplete { ref node_id, ref msg } => {
1953 log_debug!(self.logger, "Handling SendTxComplete event in peer_handler for node {} for channel {}",
1954 log_pubkey!(node_id),
1955 log_bytes!(msg.channel_id));
1956 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1958 MessageSendEvent::SendTxSignatures { ref node_id, ref msg } => {
1959 log_debug!(self.logger, "Handling SendTxSignatures event in peer_handler for node {} for channel {}",
1960 log_pubkey!(node_id),
1961 log_bytes!(msg.channel_id));
1962 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1964 MessageSendEvent::SendTxInitRbf { ref node_id, ref msg } => {
1965 log_debug!(self.logger, "Handling SendTxInitRbf event in peer_handler for node {} for channel {}",
1966 log_pubkey!(node_id),
1967 log_bytes!(msg.channel_id));
1968 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1970 MessageSendEvent::SendTxAckRbf { ref node_id, ref msg } => {
1971 log_debug!(self.logger, "Handling SendTxAckRbf event in peer_handler for node {} for channel {}",
1972 log_pubkey!(node_id),
1973 log_bytes!(msg.channel_id));
1974 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1976 MessageSendEvent::SendTxAbort { ref node_id, ref msg } => {
1977 log_debug!(self.logger, "Handling SendTxAbort event in peer_handler for node {} for channel {}",
1978 log_pubkey!(node_id),
1979 log_bytes!(msg.channel_id));
1980 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1982 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1983 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1984 log_pubkey!(node_id),
1985 log_bytes!(msg.channel_id));
1986 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1988 MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1989 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1990 log_pubkey!(node_id),
1991 update_add_htlcs.len(),
1992 update_fulfill_htlcs.len(),
1993 update_fail_htlcs.len(),
1994 log_bytes!(commitment_signed.channel_id));
1995 let mut peer = get_peer_for_forwarding!(node_id);
1996 for msg in update_add_htlcs {
1997 self.enqueue_message(&mut *peer, msg);
1999 for msg in update_fulfill_htlcs {
2000 self.enqueue_message(&mut *peer, msg);
2002 for msg in update_fail_htlcs {
2003 self.enqueue_message(&mut *peer, msg);
2005 for msg in update_fail_malformed_htlcs {
2006 self.enqueue_message(&mut *peer, msg);
2008 if let &Some(ref msg) = update_fee {
2009 self.enqueue_message(&mut *peer, msg);
2011 self.enqueue_message(&mut *peer, commitment_signed);
2013 MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
2014 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
2015 log_pubkey!(node_id),
2016 log_bytes!(msg.channel_id));
2017 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2019 MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
2020 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
2021 log_pubkey!(node_id),
2022 log_bytes!(msg.channel_id));
2023 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2025 MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
2026 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
2027 log_pubkey!(node_id),
2028 log_bytes!(msg.channel_id));
2029 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2031 MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
2032 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
2033 log_pubkey!(node_id),
2034 log_bytes!(msg.channel_id));
2035 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2037 MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
2038 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
2039 log_pubkey!(node_id),
2040 msg.contents.short_channel_id);
2041 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2042 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
2044 MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
2045 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2046 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
2047 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2048 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
2051 if let Some(msg) = update_msg {
2052 match self.message_handler.route_handler.handle_channel_update(&msg) {
2053 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2054 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2059 MessageSendEvent::BroadcastChannelUpdate { msg } => {
2060 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
2061 match self.message_handler.route_handler.handle_channel_update(&msg) {
2062 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2063 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
2067 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
2068 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
2069 match self.message_handler.route_handler.handle_node_announcement(&msg) {
2070 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
2071 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
2075 MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
2076 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
2077 log_pubkey!(node_id), msg.contents.short_channel_id);
2078 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2080 MessageSendEvent::HandleError { ref node_id, ref action } => {
2082 msgs::ErrorAction::DisconnectPeer { ref msg } => {
2083 // We do not have the peers write lock, so we just store that we're
2084 // about to disconenct the peer and do it after we finish
2085 // processing most messages.
2086 peers_to_disconnect.insert(*node_id, msg.clone());
2088 msgs::ErrorAction::IgnoreAndLog(level) => {
2089 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2091 msgs::ErrorAction::IgnoreDuplicateGossip => {},
2092 msgs::ErrorAction::IgnoreError => {
2093 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
2095 msgs::ErrorAction::SendErrorMessage { ref msg } => {
2096 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
2097 log_pubkey!(node_id),
2099 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2101 msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
2102 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
2103 log_pubkey!(node_id),
2105 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2109 MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
2110 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2112 MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
2113 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2115 MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
2116 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
2117 log_pubkey!(node_id),
2118 msg.short_channel_ids.len(),
2120 msg.number_of_blocks,
2122 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2124 MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
2125 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
2130 for (node_id, msg) in self.message_handler.custom_message_handler.get_and_clear_pending_msg() {
2131 if peers_to_disconnect.get(&node_id).is_some() { continue; }
2132 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
2135 for (descriptor, peer_mutex) in peers.iter() {
2136 let mut peer = peer_mutex.lock().unwrap();
2137 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2138 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
2141 if !peers_to_disconnect.is_empty() {
2142 let mut peers_lock = self.peers.write().unwrap();
2143 let peers = &mut *peers_lock;
2144 for (node_id, msg) in peers_to_disconnect.drain() {
2145 // Note that since we are holding the peers *write* lock we can
2146 // remove from node_id_to_descriptor immediately (as no other
2147 // thread can be holding the peer lock if we have the global write
2150 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2151 if let Some(mut descriptor) = descriptor_opt {
2152 if let Some(peer_mutex) = peers.remove(&descriptor) {
2153 let mut peer = peer_mutex.lock().unwrap();
2154 if let Some(msg) = msg {
2155 log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
2156 log_pubkey!(node_id),
2158 self.enqueue_message(&mut *peer, &msg);
2159 // This isn't guaranteed to work, but if there is enough free
2160 // room in the send buffer, put the error message there...
2161 self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
2163 self.do_disconnect(descriptor, &*peer, "DisconnectPeer HandleError");
2164 } else { debug_assert!(false, "Missing connection for peer"); }
2170 /// Indicates that the given socket descriptor's connection is now closed.
2171 pub fn socket_disconnected(&self, descriptor: &Descriptor) {
2172 self.disconnect_event_internal(descriptor);
2175 fn do_disconnect(&self, mut descriptor: Descriptor, peer: &Peer, reason: &'static str) {
2176 if !peer.handshake_complete() {
2177 log_trace!(self.logger, "Disconnecting peer which hasn't completed handshake due to {}", reason);
2178 descriptor.disconnect_socket();
2182 debug_assert!(peer.their_node_id.is_some());
2183 if let Some((node_id, _)) = peer.their_node_id {
2184 log_trace!(self.logger, "Disconnecting peer with id {} due to {}", node_id, reason);
2185 self.message_handler.chan_handler.peer_disconnected(&node_id);
2186 self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2188 descriptor.disconnect_socket();
2191 fn disconnect_event_internal(&self, descriptor: &Descriptor) {
2192 let mut peers = self.peers.write().unwrap();
2193 let peer_option = peers.remove(descriptor);
2196 // This is most likely a simple race condition where the user found that the socket
2197 // was disconnected, then we told the user to `disconnect_socket()`, then they
2198 // called this method. Either way we're disconnected, return.
2200 Some(peer_lock) => {
2201 let peer = peer_lock.lock().unwrap();
2202 if let Some((node_id, _)) = peer.their_node_id {
2203 log_trace!(self.logger, "Handling disconnection of peer {}", log_pubkey!(node_id));
2204 let removed = self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2205 debug_assert!(removed.is_some(), "descriptor maps should be consistent");
2206 if !peer.handshake_complete() { return; }
2207 self.message_handler.chan_handler.peer_disconnected(&node_id);
2208 self.message_handler.onion_message_handler.peer_disconnected(&node_id);
2214 /// Disconnect a peer given its node id.
2216 /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
2217 /// peer. Thus, be very careful about reentrancy issues.
2219 /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
2220 pub fn disconnect_by_node_id(&self, node_id: PublicKey) {
2221 let mut peers_lock = self.peers.write().unwrap();
2222 if let Some(descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
2223 let peer_opt = peers_lock.remove(&descriptor);
2224 if let Some(peer_mutex) = peer_opt {
2225 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request");
2226 } else { debug_assert!(false, "node_id_to_descriptor thought we had a peer"); }
2230 /// Disconnects all currently-connected peers. This is useful on platforms where there may be
2231 /// an indication that TCP sockets have stalled even if we weren't around to time them out
2232 /// using regular ping/pongs.
2233 pub fn disconnect_all_peers(&self) {
2234 let mut peers_lock = self.peers.write().unwrap();
2235 self.node_id_to_descriptor.lock().unwrap().clear();
2236 let peers = &mut *peers_lock;
2237 for (descriptor, peer_mutex) in peers.drain() {
2238 self.do_disconnect(descriptor, &*peer_mutex.lock().unwrap(), "client request to disconnect all peers");
2242 /// This is called when we're blocked on sending additional gossip messages until we receive a
2243 /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
2244 /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
2245 fn maybe_send_extra_ping(&self, peer: &mut Peer) {
2246 if peer.awaiting_pong_timer_tick_intervals == 0 {
2247 peer.awaiting_pong_timer_tick_intervals = -1;
2248 let ping = msgs::Ping {
2252 self.enqueue_message(peer, &ping);
2256 /// Send pings to each peer and disconnect those which did not respond to the last round of
2259 /// This may be called on any timescale you want, however, roughly once every ten seconds is
2260 /// preferred. The call rate determines both how often we send a ping to our peers and how much
2261 /// time they have to respond before we disconnect them.
2263 /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
2266 /// [`send_data`]: SocketDescriptor::send_data
2267 pub fn timer_tick_occurred(&self) {
2268 let mut descriptors_needing_disconnect = Vec::new();
2270 let peers_lock = self.peers.read().unwrap();
2272 self.update_gossip_backlogged();
2273 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
2275 for (descriptor, peer_mutex) in peers_lock.iter() {
2276 let mut peer = peer_mutex.lock().unwrap();
2277 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
2279 if !peer.handshake_complete() {
2280 // The peer needs to complete its handshake before we can exchange messages. We
2281 // give peers one timer tick to complete handshake, reusing
2282 // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
2283 // for handshake completion.
2284 if peer.awaiting_pong_timer_tick_intervals != 0 {
2285 descriptors_needing_disconnect.push(descriptor.clone());
2287 peer.awaiting_pong_timer_tick_intervals = 1;
2291 debug_assert!(peer.channel_encryptor.is_ready_for_encryption());
2292 debug_assert!(peer.their_node_id.is_some());
2294 loop { // Used as a `goto` to skip writing a Ping message.
2295 if peer.awaiting_pong_timer_tick_intervals == -1 {
2296 // Magic value set in `maybe_send_extra_ping`.
2297 peer.awaiting_pong_timer_tick_intervals = 1;
2298 peer.received_message_since_timer_tick = false;
2302 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2303 || peer.awaiting_pong_timer_tick_intervals as u64 >
2304 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2306 descriptors_needing_disconnect.push(descriptor.clone());
2309 peer.received_message_since_timer_tick = false;
2311 if peer.awaiting_pong_timer_tick_intervals > 0 {
2312 peer.awaiting_pong_timer_tick_intervals += 1;
2316 peer.awaiting_pong_timer_tick_intervals = 1;
2317 let ping = msgs::Ping {
2321 self.enqueue_message(&mut *peer, &ping);
2324 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2328 if !descriptors_needing_disconnect.is_empty() {
2330 let mut peers_lock = self.peers.write().unwrap();
2331 for descriptor in descriptors_needing_disconnect {
2332 if let Some(peer_mutex) = peers_lock.remove(&descriptor) {
2333 let peer = peer_mutex.lock().unwrap();
2334 if let Some((node_id, _)) = peer.their_node_id {
2335 self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2337 self.do_disconnect(descriptor, &*peer, "ping/handshake timeout");
2345 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2346 // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2347 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2349 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2352 // ...by failing to compile if the number of addresses that would be half of a message is
2353 // smaller than 100:
2354 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2356 /// Generates a signed node_announcement from the given arguments, sending it to all connected
2357 /// peers. Note that peers will likely ignore this message unless we have at least one public
2358 /// channel which has at least six confirmations on-chain.
2360 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2361 /// node to humans. They carry no in-protocol meaning.
2363 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2364 /// accepts incoming connections. These will be included in the node_announcement, publicly
2365 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2366 /// addresses should likely contain only Tor Onion addresses.
2368 /// Panics if `addresses` is absurdly large (more than 100).
2370 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2371 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2372 if addresses.len() > 100 {
2373 panic!("More than half the message size was taken up by public addresses!");
2376 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2377 // addresses be sorted for future compatibility.
2378 addresses.sort_by_key(|addr| addr.get_id());
2380 let features = self.message_handler.chan_handler.provided_node_features()
2381 | self.message_handler.route_handler.provided_node_features()
2382 | self.message_handler.onion_message_handler.provided_node_features()
2383 | self.message_handler.custom_message_handler.provided_node_features();
2384 let announcement = msgs::UnsignedNodeAnnouncement {
2386 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2387 node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2389 alias: NodeAlias(alias),
2391 excess_address_data: Vec::new(),
2392 excess_data: Vec::new(),
2394 let node_announce_sig = match self.node_signer.sign_gossip_message(
2395 msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2399 log_error!(self.logger, "Failed to generate signature for node_announcement");
2404 let msg = msgs::NodeAnnouncement {
2405 signature: node_announce_sig,
2406 contents: announcement
2409 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2410 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2411 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2415 fn is_gossip_msg(type_id: u16) -> bool {
2417 msgs::ChannelAnnouncement::TYPE |
2418 msgs::ChannelUpdate::TYPE |
2419 msgs::NodeAnnouncement::TYPE |
2420 msgs::QueryChannelRange::TYPE |
2421 msgs::ReplyChannelRange::TYPE |
2422 msgs::QueryShortChannelIds::TYPE |
2423 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2430 use crate::sign::{NodeSigner, Recipient};
2433 use crate::ln::features::{InitFeatures, NodeFeatures};
2434 use crate::ln::peer_channel_encryptor::PeerChannelEncryptor;
2435 use crate::ln::peer_handler::{CustomMessageHandler, PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2436 use crate::ln::{msgs, wire};
2437 use crate::ln::msgs::{LightningError, NetAddress};
2438 use crate::util::test_utils;
2440 use bitcoin::secp256k1::{PublicKey, SecretKey};
2442 use crate::prelude::*;
2443 use crate::sync::{Arc, Mutex};
2444 use core::convert::Infallible;
2445 use core::sync::atomic::{AtomicBool, Ordering};
2448 struct FileDescriptor {
2450 outbound_data: Arc<Mutex<Vec<u8>>>,
2451 disconnect: Arc<AtomicBool>,
2453 impl PartialEq for FileDescriptor {
2454 fn eq(&self, other: &Self) -> bool {
2458 impl Eq for FileDescriptor { }
2459 impl core::hash::Hash for FileDescriptor {
2460 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2461 self.fd.hash(hasher)
2465 impl SocketDescriptor for FileDescriptor {
2466 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2467 self.outbound_data.lock().unwrap().extend_from_slice(data);
2471 fn disconnect_socket(&mut self) { self.disconnect.store(true, Ordering::Release); }
2474 struct PeerManagerCfg {
2475 chan_handler: test_utils::TestChannelMessageHandler,
2476 routing_handler: test_utils::TestRoutingMessageHandler,
2477 custom_handler: TestCustomMessageHandler,
2478 logger: test_utils::TestLogger,
2479 node_signer: test_utils::TestNodeSigner,
2482 struct TestCustomMessageHandler {
2483 features: InitFeatures,
2486 impl wire::CustomMessageReader for TestCustomMessageHandler {
2487 type CustomMessage = Infallible;
2488 fn read<R: io::Read>(&self, _: u16, _: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
2493 impl CustomMessageHandler for TestCustomMessageHandler {
2494 fn handle_custom_message(&self, _: Infallible, _: &PublicKey) -> Result<(), LightningError> {
2498 fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
2500 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
2502 fn provided_init_features(&self, _: &PublicKey) -> InitFeatures {
2503 self.features.clone()
2507 fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2508 let mut cfgs = Vec::new();
2509 for i in 0..peer_count {
2510 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2512 let mut feature_bits = vec![0u8; 33];
2513 feature_bits[32] = 0b00000001;
2514 InitFeatures::from_le_bytes(feature_bits)
2518 chan_handler: test_utils::TestChannelMessageHandler::new(),
2519 logger: test_utils::TestLogger::new(),
2520 routing_handler: test_utils::TestRoutingMessageHandler::new(),
2521 custom_handler: TestCustomMessageHandler { features },
2522 node_signer: test_utils::TestNodeSigner::new(node_secret),
2530 fn create_incompatible_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2531 let mut cfgs = Vec::new();
2532 for i in 0..peer_count {
2533 let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2535 let mut feature_bits = vec![0u8; 33 + i + 1];
2536 feature_bits[33 + i] = 0b00000001;
2537 InitFeatures::from_le_bytes(feature_bits)
2541 chan_handler: test_utils::TestChannelMessageHandler::new(),
2542 logger: test_utils::TestLogger::new(),
2543 routing_handler: test_utils::TestRoutingMessageHandler::new(),
2544 custom_handler: TestCustomMessageHandler { features },
2545 node_signer: test_utils::TestNodeSigner::new(node_secret),
2553 fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>> {
2554 let mut peers = Vec::new();
2555 for i in 0..peer_count {
2556 let ephemeral_bytes = [i as u8; 32];
2557 let msg_handler = MessageHandler {
2558 chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler,
2559 onion_message_handler: IgnoringMessageHandler {}, custom_message_handler: &cfgs[i].custom_handler
2561 let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, &cfgs[i].node_signer);
2568 fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, &'a TestCustomMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2569 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2570 let mut fd_a = FileDescriptor {
2571 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2572 disconnect: Arc::new(AtomicBool::new(false)),
2574 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2575 let id_b = peer_b.node_signer.get_node_id(Recipient::Node).unwrap();
2576 let mut fd_b = FileDescriptor {
2577 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2578 disconnect: Arc::new(AtomicBool::new(false)),
2580 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2581 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2582 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2583 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2584 peer_a.process_events();
2586 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2587 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2589 peer_b.process_events();
2590 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2591 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2593 peer_a.process_events();
2594 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2595 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2597 assert!(peer_a.get_peer_node_ids().contains(&(id_b, Some(addr_b))));
2598 assert!(peer_b.get_peer_node_ids().contains(&(id_a, Some(addr_a))));
2600 (fd_a.clone(), fd_b.clone())
2604 #[cfg(feature = "std")]
2605 fn fuzz_threaded_connections() {
2606 // Spawn two threads which repeatedly connect two peers together, leading to "got second
2607 // connection with peer" disconnections and rapid reconnect. This previously found an issue
2608 // with our internal map consistency, and is a generally good smoke test of disconnection.
2609 let cfgs = Arc::new(create_peermgr_cfgs(2));
2610 // Until we have std::thread::scoped we have to unsafe { turn off the borrow checker }.
2611 let peers = Arc::new(create_network(2, unsafe { &*(&*cfgs as *const _) as &'static _ }));
2613 let start_time = std::time::Instant::now();
2614 macro_rules! spawn_thread { ($id: expr) => { {
2615 let peers = Arc::clone(&peers);
2616 let cfgs = Arc::clone(&cfgs);
2617 std::thread::spawn(move || {
2619 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2620 let id_a = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2621 let mut fd_a = FileDescriptor {
2622 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2623 disconnect: Arc::new(AtomicBool::new(false)),
2625 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2626 let mut fd_b = FileDescriptor {
2627 fd: $id + ctr * 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2628 disconnect: Arc::new(AtomicBool::new(false)),
2630 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2631 let initial_data = peers[1].new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2632 peers[0].new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2633 if peers[0].read_event(&mut fd_a, &initial_data).is_err() { break; }
2635 while start_time.elapsed() < std::time::Duration::from_secs(1) {
2636 peers[0].process_events();
2637 if fd_a.disconnect.load(Ordering::Acquire) { break; }
2638 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2639 if peers[1].read_event(&mut fd_b, &a_data).is_err() { break; }
2641 peers[1].process_events();
2642 if fd_b.disconnect.load(Ordering::Acquire) { break; }
2643 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2644 if peers[0].read_event(&mut fd_a, &b_data).is_err() { break; }
2646 cfgs[0].chan_handler.pending_events.lock().unwrap()
2647 .push(crate::events::MessageSendEvent::SendShutdown {
2648 node_id: peers[1].node_signer.get_node_id(Recipient::Node).unwrap(),
2649 msg: msgs::Shutdown {
2650 channel_id: [0; 32],
2651 scriptpubkey: bitcoin::Script::new(),
2654 cfgs[1].chan_handler.pending_events.lock().unwrap()
2655 .push(crate::events::MessageSendEvent::SendShutdown {
2656 node_id: peers[0].node_signer.get_node_id(Recipient::Node).unwrap(),
2657 msg: msgs::Shutdown {
2658 channel_id: [0; 32],
2659 scriptpubkey: bitcoin::Script::new(),
2664 peers[0].timer_tick_occurred();
2665 peers[1].timer_tick_occurred();
2669 peers[0].socket_disconnected(&fd_a);
2670 peers[1].socket_disconnected(&fd_b);
2672 std::thread::sleep(std::time::Duration::from_micros(1));
2676 let thrd_a = spawn_thread!(1);
2677 let thrd_b = spawn_thread!(2);
2679 thrd_a.join().unwrap();
2680 thrd_b.join().unwrap();
2684 fn test_incompatible_peers() {
2685 let cfgs = create_peermgr_cfgs(2);
2686 let incompatible_cfgs = create_incompatible_peermgr_cfgs(2);
2688 let peers = create_network(2, &cfgs);
2689 let incompatible_peers = create_network(2, &incompatible_cfgs);
2690 let peer_pairs = [(&peers[0], &incompatible_peers[0]), (&incompatible_peers[1], &peers[1])];
2691 for (peer_a, peer_b) in peer_pairs.iter() {
2692 let id_a = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2693 let mut fd_a = FileDescriptor {
2694 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2695 disconnect: Arc::new(AtomicBool::new(false)),
2697 let addr_a = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1000};
2698 let mut fd_b = FileDescriptor {
2699 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2700 disconnect: Arc::new(AtomicBool::new(false)),
2702 let addr_b = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1001};
2703 let initial_data = peer_b.new_outbound_connection(id_a, fd_b.clone(), Some(addr_a.clone())).unwrap();
2704 peer_a.new_inbound_connection(fd_a.clone(), Some(addr_b.clone())).unwrap();
2705 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2706 peer_a.process_events();
2708 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2709 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2711 peer_b.process_events();
2712 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2714 // Should fail because of unknown required features
2715 assert!(peer_a.read_event(&mut fd_a, &b_data).is_err());
2720 fn test_disconnect_peer() {
2721 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2722 // push a DisconnectPeer event to remove the node flagged by id
2723 let cfgs = create_peermgr_cfgs(2);
2724 let peers = create_network(2, &cfgs);
2725 establish_connection(&peers[0], &peers[1]);
2726 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2728 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2729 cfgs[0].chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2731 action: msgs::ErrorAction::DisconnectPeer { msg: None },
2734 peers[0].process_events();
2735 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2739 fn test_send_simple_msg() {
2740 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2741 // push a message from one peer to another.
2742 let cfgs = create_peermgr_cfgs(2);
2743 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2744 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2745 let mut peers = create_network(2, &cfgs);
2746 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2747 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2749 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2751 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2752 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2753 node_id: their_id, msg: msg.clone()
2755 peers[0].message_handler.chan_handler = &a_chan_handler;
2757 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2758 peers[1].message_handler.chan_handler = &b_chan_handler;
2760 peers[0].process_events();
2762 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2763 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2767 fn test_non_init_first_msg() {
2768 // Simple test of the first message received over a connection being something other than
2769 // Init. This results in an immediate disconnection, which previously included a spurious
2770 // peer_disconnected event handed to event handlers (which would panic in
2771 // `TestChannelMessageHandler` here).
2772 let cfgs = create_peermgr_cfgs(2);
2773 let peers = create_network(2, &cfgs);
2775 let mut fd_dup = FileDescriptor {
2776 fd: 3, outbound_data: Arc::new(Mutex::new(Vec::new())),
2777 disconnect: Arc::new(AtomicBool::new(false)),
2779 let addr_dup = NetAddress::IPv4{addr: [127, 0, 0, 1], port: 1003};
2780 let id_a = cfgs[0].node_signer.get_node_id(Recipient::Node).unwrap();
2781 peers[0].new_inbound_connection(fd_dup.clone(), Some(addr_dup.clone())).unwrap();
2783 let mut dup_encryptor = PeerChannelEncryptor::new_outbound(id_a, SecretKey::from_slice(&[42; 32]).unwrap());
2784 let initial_data = dup_encryptor.get_act_one(&peers[1].secp_ctx);
2785 assert_eq!(peers[0].read_event(&mut fd_dup, &initial_data).unwrap(), false);
2786 peers[0].process_events();
2788 let a_data = fd_dup.outbound_data.lock().unwrap().split_off(0);
2789 let (act_three, _) =
2790 dup_encryptor.process_act_two(&a_data[..], &&cfgs[1].node_signer).unwrap();
2791 assert_eq!(peers[0].read_event(&mut fd_dup, &act_three).unwrap(), false);
2793 let not_init_msg = msgs::Ping { ponglen: 4, byteslen: 0 };
2794 let msg_bytes = dup_encryptor.encrypt_message(¬_init_msg);
2795 assert!(peers[0].read_event(&mut fd_dup, &msg_bytes).is_err());
2799 fn test_disconnect_all_peer() {
2800 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2801 // then calls disconnect_all_peers
2802 let cfgs = create_peermgr_cfgs(2);
2803 let peers = create_network(2, &cfgs);
2804 establish_connection(&peers[0], &peers[1]);
2805 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2807 peers[0].disconnect_all_peers();
2808 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2812 fn test_timer_tick_occurred() {
2813 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2814 let cfgs = create_peermgr_cfgs(2);
2815 let peers = create_network(2, &cfgs);
2816 establish_connection(&peers[0], &peers[1]);
2817 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2819 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2820 peers[0].timer_tick_occurred();
2821 peers[0].process_events();
2822 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2824 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2825 peers[0].timer_tick_occurred();
2826 peers[0].process_events();
2827 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2831 fn test_do_attempt_write_data() {
2832 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2833 let cfgs = create_peermgr_cfgs(2);
2834 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2835 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2836 let peers = create_network(2, &cfgs);
2838 // By calling establish_connect, we trigger do_attempt_write_data between
2839 // the peers. Previously this function would mistakenly enter an infinite loop
2840 // when there were more channel messages available than could fit into a peer's
2841 // buffer. This issue would now be detected by this test (because we use custom
2842 // RoutingMessageHandlers that intentionally return more channel messages
2843 // than can fit into a peer's buffer).
2844 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2846 // Make each peer to read the messages that the other peer just wrote to them. Note that
2847 // due to the max-message-before-ping limits this may take a few iterations to complete.
2848 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2849 peers[1].process_events();
2850 let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2851 assert!(!a_read_data.is_empty());
2853 peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2854 peers[0].process_events();
2856 let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2857 assert!(!b_read_data.is_empty());
2858 peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2860 peers[0].process_events();
2861 assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2864 // Check that each peer has received the expected number of channel updates and channel
2866 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2867 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2868 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2869 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2873 fn test_handshake_timeout() {
2874 // Tests that we time out a peer still waiting on handshake completion after a full timer
2876 let cfgs = create_peermgr_cfgs(2);
2877 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2878 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2879 let peers = create_network(2, &cfgs);
2881 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2882 let mut fd_a = FileDescriptor {
2883 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2884 disconnect: Arc::new(AtomicBool::new(false)),
2886 let mut fd_b = FileDescriptor {
2887 fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())),
2888 disconnect: Arc::new(AtomicBool::new(false)),
2890 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2891 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2893 // If we get a single timer tick before completion, that's fine
2894 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2895 peers[0].timer_tick_occurred();
2896 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2898 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2899 peers[0].process_events();
2900 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2901 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2902 peers[1].process_events();
2904 // ...but if we get a second timer tick, we should disconnect the peer
2905 peers[0].timer_tick_occurred();
2906 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2908 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2909 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2913 fn test_filter_addresses(){
2914 // Tests the filter_addresses function.
2917 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2918 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2919 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2920 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2921 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2922 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2925 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2926 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2927 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2928 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2929 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2930 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2933 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2934 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2935 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2936 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2937 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2938 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2941 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2942 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2943 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2944 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2945 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2946 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2949 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2950 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2951 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2952 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2953 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2954 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2957 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2958 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2959 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2960 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2961 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2962 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2965 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2966 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2967 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2968 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2969 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2970 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2972 // For (192.88.99/24)
2973 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2974 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2975 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2976 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2977 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2978 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2980 // For other IPv4 addresses
2981 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2982 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2983 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2984 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2985 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2986 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2989 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2990 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2991 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2992 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2993 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2994 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2996 // For other IPv6 addresses
2997 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2998 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2999 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
3000 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3001 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
3002 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
3005 assert_eq!(filter_addresses(None), None);