Merge pull request #1326 from Psycho-Pirate/peers
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer, implying
261         /// we should go ahead and force-close any channels we have with it.
262         pub no_connection_possible: bool,
263 }
264 impl fmt::Debug for PeerHandleError {
265         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
266                 formatter.write_str("Peer Sent Invalid Data")
267         }
268 }
269 impl fmt::Display for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274
275 #[cfg(feature = "std")]
276 impl error::Error for PeerHandleError {
277         fn description(&self) -> &str {
278                 "Peer Sent Invalid Data"
279         }
280 }
281
282 enum InitSyncTracker{
283         NoSyncRequested,
284         ChannelsSyncing(u64),
285         NodesSyncing(PublicKey),
286 }
287
288 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
289 /// forwarding gossip messages to peers altogether.
290 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
291
292 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
293 /// we have fewer than this many messages in the outbound buffer again.
294 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
295 /// refilled as we send bytes.
296 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
297 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
298 /// the peer.
299 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
300
301 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
302 /// the socket receive buffer before receiving the ping.
303 ///
304 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
305 /// including any network delays, outbound traffic, or the same for messages from other peers.
306 ///
307 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
308 /// per connected peer to respond to a ping, as long as they send us at least one message during
309 /// each tick, ensuring we aren't actually just disconnected.
310 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
311 /// peer.
312 ///
313 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
314 /// two connected peers, assuming most LDK-running systems have at least two cores.
315 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
316
317 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
318 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
319 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
320 /// process before the next ping.
321 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
322
323 struct Peer {
324         channel_encryptor: PeerChannelEncryptor,
325         their_node_id: Option<PublicKey>,
326         their_features: Option<InitFeatures>,
327         their_net_address: Option<NetAddress>,
328
329         pending_outbound_buffer: LinkedList<Vec<u8>>,
330         pending_outbound_buffer_first_msg_offset: usize,
331         awaiting_write_event: bool,
332
333         pending_read_buffer: Vec<u8>,
334         pending_read_buffer_pos: usize,
335         pending_read_is_header: bool,
336
337         sync_status: InitSyncTracker,
338
339         msgs_sent_since_pong: usize,
340         awaiting_pong_timer_tick_intervals: i8,
341         received_message_since_timer_tick: bool,
342 }
343
344 impl Peer {
345         /// Returns true if the channel announcements/updates for the given channel should be
346         /// forwarded to this peer.
347         /// If we are sending our routing table to this peer and we have not yet sent channel
348         /// announcements/updates for the given channel_id then we will send it when we get to that
349         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
350         /// sent the old versions, we should send the update, and so return true here.
351         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
352                 match self.sync_status {
353                         InitSyncTracker::NoSyncRequested => true,
354                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
355                         InitSyncTracker::NodesSyncing(_) => true,
356                 }
357         }
358
359         /// Similar to the above, but for node announcements indexed by node_id.
360         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
361                 match self.sync_status {
362                         InitSyncTracker::NoSyncRequested => true,
363                         InitSyncTracker::ChannelsSyncing(_) => false,
364                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
365                 }
366         }
367 }
368
369 struct PeerHolder<Descriptor: SocketDescriptor> {
370         peers: HashMap<Descriptor, Peer>,
371         /// Only add to this set when noise completes:
372         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
373 }
374
375 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
376 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
377 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
378 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
379 /// issues such as overly long function definitions.
380 ///
381 /// (C-not exported) as Arcs don't make sense in bindings
382 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
383
384 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
385 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
386 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
387 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
388 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
389 /// helps with issues such as long function definitions.
390 ///
391 /// (C-not exported) as Arcs don't make sense in bindings
392 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
393
394 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
395 /// socket events into messages which it passes on to its [`MessageHandler`].
396 ///
397 /// Locks are taken internally, so you must never assume that reentrancy from a
398 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
399 ///
400 /// Calls to [`read_event`] will decode relevant messages and pass them to the
401 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
402 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
403 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
404 /// calls only after previous ones have returned.
405 ///
406 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
407 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
408 /// essentially you should default to using a SimpleRefPeerManager, and use a
409 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
410 /// you're using lightning-net-tokio.
411 ///
412 /// [`read_event`]: PeerManager::read_event
413 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
414                 CM::Target: ChannelMessageHandler,
415                 RM::Target: RoutingMessageHandler,
416                 L::Target: Logger,
417                 CMH::Target: CustomMessageHandler {
418         message_handler: MessageHandler<CM, RM>,
419         peers: Mutex<PeerHolder<Descriptor>>,
420         our_node_secret: SecretKey,
421         ephemeral_key_midstate: Sha256Engine,
422         custom_message_handler: CMH,
423
424         peer_counter: AtomicCounter,
425
426         logger: L,
427 }
428
429 enum MessageHandlingError {
430         PeerHandleError(PeerHandleError),
431         LightningError(LightningError),
432 }
433
434 impl From<PeerHandleError> for MessageHandlingError {
435         fn from(error: PeerHandleError) -> Self {
436                 MessageHandlingError::PeerHandleError(error)
437         }
438 }
439
440 impl From<LightningError> for MessageHandlingError {
441         fn from(error: LightningError) -> Self {
442                 MessageHandlingError::LightningError(error)
443         }
444 }
445
446 macro_rules! encode_msg {
447         ($msg: expr) => {{
448                 let mut buffer = VecWriter(Vec::new());
449                 wire::write($msg, &mut buffer).unwrap();
450                 buffer.0
451         }}
452 }
453
454 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
455                 CM::Target: ChannelMessageHandler,
456                 L::Target: Logger {
457         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
458         /// handler is used and network graph messages are ignored.
459         ///
460         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
461         /// cryptographically secure random bytes.
462         ///
463         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
464         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
465                 Self::new(MessageHandler {
466                         chan_handler: channel_message_handler,
467                         route_handler: IgnoringMessageHandler{},
468                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
469         }
470 }
471
472 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
473                 RM::Target: RoutingMessageHandler,
474                 L::Target: Logger {
475         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
476         /// handler is used and messages related to channels will be ignored (or generate error
477         /// messages). Note that some other lightning implementations time-out connections after some
478         /// time if no channel is built with the peer.
479         ///
480         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
481         /// cryptographically secure random bytes.
482         ///
483         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
484         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
485                 Self::new(MessageHandler {
486                         chan_handler: ErroringMessageHandler::new(),
487                         route_handler: routing_message_handler,
488                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
489         }
490 }
491
492 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
493 /// This works around `format!()` taking a reference to each argument, preventing
494 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
495 /// due to lifetime errors.
496 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
497 impl core::fmt::Display for OptionalFromDebugger<'_> {
498         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
499                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
500         }
501 }
502
503 /// A function used to filter out local or private addresses
504 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
505 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
506 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
507         match ip_address{
508                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
509                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
510                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
511                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
512                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
513                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
514                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
515                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
516                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
517                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
518                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
519                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
520                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
521                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
522                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
523                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
524                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
525                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
526                 // For remaining addresses
527                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
528                 Some(..) => ip_address,
529                 None => None,
530         }
531 }
532
533 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
534                 CM::Target: ChannelMessageHandler,
535                 RM::Target: RoutingMessageHandler,
536                 L::Target: Logger,
537                 CMH::Target: CustomMessageHandler {
538         /// Constructs a new PeerManager with the given message handlers and node_id secret key
539         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
540         /// cryptographically secure random bytes.
541         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
542                 let mut ephemeral_key_midstate = Sha256::engine();
543                 ephemeral_key_midstate.input(ephemeral_random_data);
544
545                 PeerManager {
546                         message_handler,
547                         peers: Mutex::new(PeerHolder {
548                                 peers: HashMap::new(),
549                                 node_id_to_descriptor: HashMap::new()
550                         }),
551                         our_node_secret,
552                         ephemeral_key_midstate,
553                         peer_counter: AtomicCounter::new(),
554                         logger,
555                         custom_message_handler,
556                 }
557         }
558
559         /// Get the list of node ids for peers which have completed the initial handshake.
560         ///
561         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
562         /// new_outbound_connection, however entries will only appear once the initial handshake has
563         /// completed and we are sure the remote peer has the private key for the given node_id.
564         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
565                 let peers = self.peers.lock().unwrap();
566                 peers.peers.values().filter_map(|p| {
567                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
568                                 return None;
569                         }
570                         p.their_node_id
571                 }).collect()
572         }
573
574         fn get_ephemeral_key(&self) -> SecretKey {
575                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
576                 let counter = self.peer_counter.get_increment();
577                 ephemeral_hash.input(&counter.to_le_bytes());
578                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
579         }
580
581         /// Indicates a new outbound connection has been established to a node with the given node_id
582         /// and an optional remote network address.
583         ///
584         /// The remote network address adds the option to report a remote IP address back to a connecting
585         /// peer using the init message.
586         /// The user should pass the remote network address of the host they are connected to.
587         ///
588         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
589         /// descriptor but must disconnect the connection immediately.
590         ///
591         /// Returns a small number of bytes to send to the remote node (currently always 50).
592         ///
593         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
594         /// [`socket_disconnected()`].
595         ///
596         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
597         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
598                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
599                 let res = peer_encryptor.get_act_one().to_vec();
600                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
601
602                 let mut peers = self.peers.lock().unwrap();
603                 if peers.peers.insert(descriptor, Peer {
604                         channel_encryptor: peer_encryptor,
605                         their_node_id: None,
606                         their_features: None,
607                         their_net_address: remote_network_address,
608
609                         pending_outbound_buffer: LinkedList::new(),
610                         pending_outbound_buffer_first_msg_offset: 0,
611                         awaiting_write_event: false,
612
613                         pending_read_buffer,
614                         pending_read_buffer_pos: 0,
615                         pending_read_is_header: false,
616
617                         sync_status: InitSyncTracker::NoSyncRequested,
618
619                         msgs_sent_since_pong: 0,
620                         awaiting_pong_timer_tick_intervals: 0,
621                         received_message_since_timer_tick: false,
622                 }).is_some() {
623                         panic!("PeerManager driver duplicated descriptors!");
624                 };
625                 Ok(res)
626         }
627
628         /// Indicates a new inbound connection has been established to a node with an optional remote
629         /// network address.
630         ///
631         /// The remote network address adds the option to report a remote IP address back to a connecting
632         /// peer using the init message.
633         /// The user should pass the remote network address of the host they are connected to.
634         ///
635         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
636         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
637         /// call socket_disconnected for the new descriptor but must disconnect the connection
638         /// immediately.
639         ///
640         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
641         /// [`socket_disconnected()`].
642         ///
643         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
644         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
645                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
646                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
647
648                 let mut peers = self.peers.lock().unwrap();
649                 if peers.peers.insert(descriptor, Peer {
650                         channel_encryptor: peer_encryptor,
651                         their_node_id: None,
652                         their_features: None,
653                         their_net_address: remote_network_address,
654
655                         pending_outbound_buffer: LinkedList::new(),
656                         pending_outbound_buffer_first_msg_offset: 0,
657                         awaiting_write_event: false,
658
659                         pending_read_buffer,
660                         pending_read_buffer_pos: 0,
661                         pending_read_is_header: false,
662
663                         sync_status: InitSyncTracker::NoSyncRequested,
664
665                         msgs_sent_since_pong: 0,
666                         awaiting_pong_timer_tick_intervals: 0,
667                         received_message_since_timer_tick: false,
668                 }).is_some() {
669                         panic!("PeerManager driver duplicated descriptors!");
670                 };
671                 Ok(())
672         }
673
674         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
675                 while !peer.awaiting_write_event {
676                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
677                                 match peer.sync_status {
678                                         InitSyncTracker::NoSyncRequested => {},
679                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
680                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
681                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
682                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
683                                                         self.enqueue_message(peer, announce);
684                                                         if let &Some(ref update_a) = update_a_option {
685                                                                 self.enqueue_message(peer, update_a);
686                                                         }
687                                                         if let &Some(ref update_b) = update_b_option {
688                                                                 self.enqueue_message(peer, update_b);
689                                                         }
690                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
691                                                 }
692                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
693                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
694                                                 }
695                                         },
696                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
697                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
698                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
699                                                 for msg in all_messages.iter() {
700                                                         self.enqueue_message(peer, msg);
701                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
702                                                 }
703                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
704                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
705                                                 }
706                                         },
707                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
708                                         InitSyncTracker::NodesSyncing(key) => {
709                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
710                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
711                                                 for msg in all_messages.iter() {
712                                                         self.enqueue_message(peer, msg);
713                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
714                                                 }
715                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
716                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
717                                                 }
718                                         },
719                                 }
720                         }
721                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
722                                 self.maybe_send_extra_ping(peer);
723                         }
724
725                         if {
726                                 let next_buff = match peer.pending_outbound_buffer.front() {
727                                         None => return,
728                                         Some(buff) => buff,
729                                 };
730
731                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
732                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
733                                 let data_sent = descriptor.send_data(pending, should_be_reading);
734                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
735                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
736                         } {
737                                 peer.pending_outbound_buffer_first_msg_offset = 0;
738                                 peer.pending_outbound_buffer.pop_front();
739                         } else {
740                                 peer.awaiting_write_event = true;
741                         }
742                 }
743         }
744
745         /// Indicates that there is room to write data to the given socket descriptor.
746         ///
747         /// May return an Err to indicate that the connection should be closed.
748         ///
749         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
750         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
751         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
752         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
753         /// sufficient!
754         ///
755         /// [`send_data`]: SocketDescriptor::send_data
756         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
757         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
758                 let mut peers = self.peers.lock().unwrap();
759                 match peers.peers.get_mut(descriptor) {
760                         None => {
761                                 // This is most likely a simple race condition where the user found that the socket
762                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
763                                 // this method. Return an error to make sure we get disconnected.
764                                 return Err(PeerHandleError { no_connection_possible: false });
765                         },
766                         Some(peer) => {
767                                 peer.awaiting_write_event = false;
768                                 self.do_attempt_write_data(descriptor, peer);
769                         }
770                 };
771                 Ok(())
772         }
773
774         /// Indicates that data was read from the given socket descriptor.
775         ///
776         /// May return an Err to indicate that the connection should be closed.
777         ///
778         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
779         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
780         /// [`send_data`] calls to handle responses.
781         ///
782         /// If `Ok(true)` is returned, further read_events should not be triggered until a
783         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
784         /// send buffer).
785         ///
786         /// [`send_data`]: SocketDescriptor::send_data
787         /// [`process_events`]: PeerManager::process_events
788         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
789                 match self.do_read_event(peer_descriptor, data) {
790                         Ok(res) => Ok(res),
791                         Err(e) => {
792                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
793                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
794                                 Err(e)
795                         }
796                 }
797         }
798
799         /// Append a message to a peer's pending outbound/write buffer
800         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
801                 peer.msgs_sent_since_pong += 1;
802                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
803         }
804
805         /// Append a message to a peer's pending outbound/write buffer
806         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
807                 let mut buffer = VecWriter(Vec::with_capacity(2048));
808                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
809
810                 if is_gossip_msg(message.type_id()) {
811                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
812                 } else {
813                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
814                 }
815                 self.enqueue_encoded_message(peer, &buffer.0);
816         }
817
818         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
819                 let pause_read = {
820                         let mut peers_lock = self.peers.lock().unwrap();
821                         let peers = &mut *peers_lock;
822                         let mut msgs_to_forward = Vec::new();
823                         let mut peer_node_id = None;
824                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
825                                 None => {
826                                         // This is most likely a simple race condition where the user read some bytes
827                                         // from the socket, then we told the user to `disconnect_socket()`, then they
828                                         // called this method. Return an error to make sure we get disconnected.
829                                         return Err(PeerHandleError { no_connection_possible: false });
830                                 },
831                                 Some(peer) => {
832                                         assert!(peer.pending_read_buffer.len() > 0);
833                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
834
835                                         let mut read_pos = 0;
836                                         while read_pos < data.len() {
837                                                 {
838                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
839                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
840                                                         read_pos += data_to_copy;
841                                                         peer.pending_read_buffer_pos += data_to_copy;
842                                                 }
843
844                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
845                                                         peer.pending_read_buffer_pos = 0;
846
847                                                         macro_rules! try_potential_handleerror {
848                                                                 ($thing: expr) => {
849                                                                         match $thing {
850                                                                                 Ok(x) => x,
851                                                                                 Err(e) => {
852                                                                                         match e.action {
853                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
854                                                                                                         //TODO: Try to push msg
855                                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
856                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
857                                                                                                 },
858                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
859                                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
860                                                                                                         continue
861                                                                                                 },
862                                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
863                                                                                                 msgs::ErrorAction::IgnoreError => {
864                                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
865                                                                                                         continue;
866                                                                                                 },
867                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
868                                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
869                                                                                                         self.enqueue_message(peer, &msg);
870                                                                                                         continue;
871                                                                                                 },
872                                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
873                                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
874                                                                                                         self.enqueue_message(peer, &msg);
875                                                                                                         continue;
876                                                                                                 },
877                                                                                         }
878                                                                                 }
879                                                                         }
880                                                                 }
881                                                         }
882
883                                                         macro_rules! insert_node_id {
884                                                                 () => {
885                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
886                                                                                 hash_map::Entry::Occupied(_) => {
887                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
888                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
889                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
890                                                                                 },
891                                                                                 hash_map::Entry::Vacant(entry) => {
892                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
893                                                                                         entry.insert(peer_descriptor.clone())
894                                                                                 },
895                                                                         };
896                                                                 }
897                                                         }
898
899                                                         let next_step = peer.channel_encryptor.get_noise_step();
900                                                         match next_step {
901                                                                 NextNoiseStep::ActOne => {
902                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
903                                                                         peer.pending_outbound_buffer.push_back(act_two);
904                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
905                                                                 },
906                                                                 NextNoiseStep::ActTwo => {
907                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
908                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
909                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
910                                                                         peer.pending_read_is_header = true;
911
912                                                                         peer.their_node_id = Some(their_node_id);
913                                                                         insert_node_id!();
914                                                                         let features = InitFeatures::known();
915                                                                         let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone())};
916                                                                         self.enqueue_message(peer, &resp);
917                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
918                                                                 },
919                                                                 NextNoiseStep::ActThree => {
920                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
921                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
922                                                                         peer.pending_read_is_header = true;
923                                                                         peer.their_node_id = Some(their_node_id);
924                                                                         insert_node_id!();
925                                                                         let features = InitFeatures::known();
926                                                                         let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone())};
927                                                                         self.enqueue_message(peer, &resp);
928                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
929                                                                 },
930                                                                 NextNoiseStep::NoiseComplete => {
931                                                                         if peer.pending_read_is_header {
932                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
933                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
934                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
935                                                                                 if msg_len < 2 { // Need at least the message type tag
936                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
937                                                                                 }
938                                                                                 peer.pending_read_is_header = false;
939                                                                         } else {
940                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
941                                                                                 assert!(msg_data.len() >= 2);
942
943                                                                                 // Reset read buffer
944                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
945                                                                                 peer.pending_read_is_header = true;
946
947                                                                                 let mut reader = io::Cursor::new(&msg_data[..]);
948                                                                                 let message_result = wire::read(&mut reader, &*self.custom_message_handler);
949                                                                                 let message = match message_result {
950                                                                                         Ok(x) => x,
951                                                                                         Err(e) => {
952                                                                                                 match e {
953                                                                                                         // Note that to avoid recursion we never call
954                                                                                                         // `do_attempt_write_data` from here, causing
955                                                                                                         // the messages enqueued here to not actually
956                                                                                                         // be sent before the peer is disconnected.
957                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
958                                                                                                                 log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
959                                                                                                                 continue;
960                                                                                                         }
961                                                                                                         (msgs::DecodeError::UnsupportedCompression, _) => {
962                                                                                                                 log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
963                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
964                                                                                                                 continue;
965                                                                                                         }
966                                                                                                         (_, Some(ty)) if is_gossip_msg(ty) => {
967                                                                                                                 log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
968                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
969                                                                                                                 continue;
970                                                                                                         }
971                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, ty) => {
972                                                                                                                 log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
973                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
974                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
975                                                                                                         }
976                                                                                                         (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
977                                                                                                         (msgs::DecodeError::InvalidValue, _) => {
978                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
979                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
980                                                                                                         }
981                                                                                                         (msgs::DecodeError::ShortRead, _) => {
982                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
983                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
984                                                                                                         }
985                                                                                                         (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
986                                                                                                         (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
987                                                                                                 }
988                                                                                         }
989                                                                                 };
990
991                                                                                 match self.handle_message(peer, message) {
992                                                                                         Err(handling_error) => match handling_error {
993                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
994                                                                                                 MessageHandlingError::LightningError(e) => {
995                                                                                                         try_potential_handleerror!(Err(e));
996                                                                                                 },
997                                                                                         },
998                                                                                         Ok(Some(msg)) => {
999                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
1000                                                                                                 msgs_to_forward.push(msg);
1001                                                                                         },
1002                                                                                         Ok(None) => {},
1003                                                                                 }
1004                                                                         }
1005                                                                 }
1006                                                         }
1007                                                 }
1008                                         }
1009
1010                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
1011                                 }
1012                         };
1013
1014                         for msg in msgs_to_forward.drain(..) {
1015                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
1016                         }
1017
1018                         pause_read
1019                 };
1020
1021                 Ok(pause_read)
1022         }
1023
1024         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1025         /// Returns the message back if it needs to be broadcasted to all other peers.
1026         fn handle_message(
1027                 &self,
1028                 peer: &mut Peer,
1029                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1030         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1031                 if is_gossip_msg(message.type_id()) {
1032                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1033                 } else {
1034                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1035                 }
1036
1037                 peer.received_message_since_timer_tick = true;
1038
1039                 // Need an Init as first message
1040                 if let wire::Message::Init(_) = message {
1041                 } else if peer.their_features.is_none() {
1042                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
1043                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1044                 }
1045
1046                 let mut should_forward = None;
1047
1048                 match message {
1049                         // Setup and Control messages:
1050                         wire::Message::Init(msg) => {
1051                                 if msg.features.requires_unknown_bits() {
1052                                         log_debug!(self.logger, "Peer features required unknown version bits");
1053                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1054                                 }
1055                                 if peer.their_features.is_some() {
1056                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1057                                 }
1058
1059                                 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);
1060
1061                                 if msg.features.initial_routing_sync() {
1062                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
1063                                 }
1064                                 if !msg.features.supports_static_remote_key() {
1065                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
1066                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1067                                 }
1068
1069                                 self.message_handler.route_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1070
1071                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1072                                 peer.their_features = Some(msg.features);
1073                         },
1074                         wire::Message::Error(msg) => {
1075                                 let mut data_is_printable = true;
1076                                 for b in msg.data.bytes() {
1077                                         if b < 32 || b > 126 {
1078                                                 data_is_printable = false;
1079                                                 break;
1080                                         }
1081                                 }
1082
1083                                 if data_is_printable {
1084                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1085                                 } else {
1086                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1087                                 }
1088                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1089                                 if msg.channel_id == [0; 32] {
1090                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1091                                 }
1092                         },
1093                         wire::Message::Warning(msg) => {
1094                                 let mut data_is_printable = true;
1095                                 for b in msg.data.bytes() {
1096                                         if b < 32 || b > 126 {
1097                                                 data_is_printable = false;
1098                                                 break;
1099                                         }
1100                                 }
1101
1102                                 if data_is_printable {
1103                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1104                                 } else {
1105                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1106                                 }
1107                         },
1108
1109                         wire::Message::Ping(msg) => {
1110                                 if msg.ponglen < 65532 {
1111                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1112                                         self.enqueue_message(peer, &resp);
1113                                 }
1114                         },
1115                         wire::Message::Pong(_msg) => {
1116                                 peer.awaiting_pong_timer_tick_intervals = 0;
1117                                 peer.msgs_sent_since_pong = 0;
1118                         },
1119
1120                         // Channel messages:
1121                         wire::Message::OpenChannel(msg) => {
1122                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1123                         },
1124                         wire::Message::AcceptChannel(msg) => {
1125                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1126                         },
1127
1128                         wire::Message::FundingCreated(msg) => {
1129                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1130                         },
1131                         wire::Message::FundingSigned(msg) => {
1132                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1133                         },
1134                         wire::Message::FundingLocked(msg) => {
1135                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1136                         },
1137
1138                         wire::Message::Shutdown(msg) => {
1139                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1140                         },
1141                         wire::Message::ClosingSigned(msg) => {
1142                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1143                         },
1144
1145                         // Commitment messages:
1146                         wire::Message::UpdateAddHTLC(msg) => {
1147                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1148                         },
1149                         wire::Message::UpdateFulfillHTLC(msg) => {
1150                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1151                         },
1152                         wire::Message::UpdateFailHTLC(msg) => {
1153                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1154                         },
1155                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1156                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1157                         },
1158
1159                         wire::Message::CommitmentSigned(msg) => {
1160                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1161                         },
1162                         wire::Message::RevokeAndACK(msg) => {
1163                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1164                         },
1165                         wire::Message::UpdateFee(msg) => {
1166                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1167                         },
1168                         wire::Message::ChannelReestablish(msg) => {
1169                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1170                         },
1171
1172                         // Routing messages:
1173                         wire::Message::AnnouncementSignatures(msg) => {
1174                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1175                         },
1176                         wire::Message::ChannelAnnouncement(msg) => {
1177                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1178                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1179                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1180                                 }
1181                         },
1182                         wire::Message::NodeAnnouncement(msg) => {
1183                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1184                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1185                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1186                                 }
1187                         },
1188                         wire::Message::ChannelUpdate(msg) => {
1189                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1190                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1191                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1192                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1193                                 }
1194                         },
1195                         wire::Message::QueryShortChannelIds(msg) => {
1196                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1197                         },
1198                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1199                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1200                         },
1201                         wire::Message::QueryChannelRange(msg) => {
1202                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1203                         },
1204                         wire::Message::ReplyChannelRange(msg) => {
1205                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1206                         },
1207                         wire::Message::GossipTimestampFilter(_msg) => {
1208                                 // TODO: handle message
1209                         },
1210
1211                         // Unknown messages:
1212                         wire::Message::Unknown(type_id) if message.is_even() => {
1213                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1214                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1215                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1216                         },
1217                         wire::Message::Unknown(type_id) => {
1218                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1219                         },
1220                         wire::Message::Custom(custom) => {
1221                                 self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
1222                         },
1223                 };
1224                 Ok(should_forward)
1225         }
1226
1227         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1228                 match msg {
1229                         wire::Message::ChannelAnnouncement(ref msg) => {
1230                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1231                                 let encoded_msg = encode_msg!(msg);
1232
1233                                 for (_, peer) in peers.peers.iter_mut() {
1234                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1235                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1236                                                 continue
1237                                         }
1238                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1239                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1240                                         {
1241                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1242                                                 continue;
1243                                         }
1244                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1245                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1246                                                 continue;
1247                                         }
1248                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1249                                                 continue;
1250                                         }
1251                                         self.enqueue_encoded_message(peer, &encoded_msg);
1252                                 }
1253                         },
1254                         wire::Message::NodeAnnouncement(ref msg) => {
1255                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1256                                 let encoded_msg = encode_msg!(msg);
1257
1258                                 for (_, peer) in peers.peers.iter_mut() {
1259                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1260                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1261                                                 continue
1262                                         }
1263                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1264                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1265                                         {
1266                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1267                                                 continue;
1268                                         }
1269                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1270                                                 continue;
1271                                         }
1272                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1273                                                 continue;
1274                                         }
1275                                         self.enqueue_encoded_message(peer, &encoded_msg);
1276                                 }
1277                         },
1278                         wire::Message::ChannelUpdate(ref msg) => {
1279                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1280                                 let encoded_msg = encode_msg!(msg);
1281
1282                                 for (_, peer) in peers.peers.iter_mut() {
1283                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1284                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1285                                                 continue
1286                                         }
1287                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1288                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1289                                         {
1290                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1291                                                 continue;
1292                                         }
1293                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1294                                                 continue;
1295                                         }
1296                                         self.enqueue_encoded_message(peer, &encoded_msg);
1297                                 }
1298                         },
1299                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1300                 }
1301         }
1302
1303         /// Checks for any events generated by our handlers and processes them. Includes sending most
1304         /// response messages as well as messages generated by calls to handler functions directly (eg
1305         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1306         ///
1307         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1308         /// issues!
1309         ///
1310         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1311         /// or one of the other clients provided in our language bindings.
1312         ///
1313         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1314         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1315         /// [`send_data`]: SocketDescriptor::send_data
1316         pub fn process_events(&self) {
1317                 {
1318                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1319                         // buffer by doing things like announcing channels on another node. We should be willing to
1320                         // drop optional-ish messages when send buffers get full!
1321
1322                         let mut peers_lock = self.peers.lock().unwrap();
1323                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1324                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1325                         let peers = &mut *peers_lock;
1326                         macro_rules! get_peer_for_forwarding {
1327                                 ($node_id: expr) => {
1328                                         {
1329                                                 match peers.node_id_to_descriptor.get($node_id) {
1330                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1331                                                                 Some(peer) => {
1332                                                                         if peer.their_features.is_none() {
1333                                                                                 continue;
1334                                                                         }
1335                                                                         peer
1336                                                                 },
1337                                                                 None => panic!("Inconsistent peers set state!"),
1338                                                         },
1339                                                         None => {
1340                                                                 continue;
1341                                                         },
1342                                                 }
1343                                         }
1344                                 }
1345                         }
1346                         for event in events_generated.drain(..) {
1347                                 match event {
1348                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1349                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1350                                                                 log_pubkey!(node_id),
1351                                                                 log_bytes!(msg.temporary_channel_id));
1352                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1353                                         },
1354                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1355                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1356                                                                 log_pubkey!(node_id),
1357                                                                 log_bytes!(msg.temporary_channel_id));
1358                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1359                                         },
1360                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1361                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1362                                                                 log_pubkey!(node_id),
1363                                                                 log_bytes!(msg.temporary_channel_id),
1364                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1365                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1366                                                 // indicating to the wallet that they should just throw away this funding transaction
1367                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1368                                         },
1369                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1370                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1371                                                                 log_pubkey!(node_id),
1372                                                                 log_bytes!(msg.channel_id));
1373                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1374                                         },
1375                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1376                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1377                                                                 log_pubkey!(node_id),
1378                                                                 log_bytes!(msg.channel_id));
1379                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1380                                         },
1381                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1382                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1383                                                                 log_pubkey!(node_id),
1384                                                                 log_bytes!(msg.channel_id));
1385                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1386                                         },
1387                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1388                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1389                                                                 log_pubkey!(node_id),
1390                                                                 update_add_htlcs.len(),
1391                                                                 update_fulfill_htlcs.len(),
1392                                                                 update_fail_htlcs.len(),
1393                                                                 log_bytes!(commitment_signed.channel_id));
1394                                                 let peer = get_peer_for_forwarding!(node_id);
1395                                                 for msg in update_add_htlcs {
1396                                                         self.enqueue_message(peer, msg);
1397                                                 }
1398                                                 for msg in update_fulfill_htlcs {
1399                                                         self.enqueue_message(peer, msg);
1400                                                 }
1401                                                 for msg in update_fail_htlcs {
1402                                                         self.enqueue_message(peer, msg);
1403                                                 }
1404                                                 for msg in update_fail_malformed_htlcs {
1405                                                         self.enqueue_message(peer, msg);
1406                                                 }
1407                                                 if let &Some(ref msg) = update_fee {
1408                                                         self.enqueue_message(peer, msg);
1409                                                 }
1410                                                 self.enqueue_message(peer, commitment_signed);
1411                                         },
1412                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1413                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1414                                                                 log_pubkey!(node_id),
1415                                                                 log_bytes!(msg.channel_id));
1416                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1417                                         },
1418                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1419                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1420                                                                 log_pubkey!(node_id),
1421                                                                 log_bytes!(msg.channel_id));
1422                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1423                                         },
1424                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1425                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1426                                                                 log_pubkey!(node_id),
1427                                                                 log_bytes!(msg.channel_id));
1428                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1429                                         },
1430                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1431                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1432                                                                 log_pubkey!(node_id),
1433                                                                 log_bytes!(msg.channel_id));
1434                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1435                                         },
1436                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1437                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1438                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1439                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1440                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1441                                                         _ => {},
1442                                                 }
1443                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1444                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1445                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1446                                                         _ => {},
1447                                                 }
1448                                         },
1449                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1450                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1451                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1452                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1453                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1454                                                         _ => {},
1455                                                 }
1456                                         },
1457                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1458                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1459                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1460                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1461                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1462                                                         _ => {},
1463                                                 }
1464                                         },
1465                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1466                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1467                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1468                                                 let peer = get_peer_for_forwarding!(node_id);
1469                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1470                                         },
1471                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1472                                                 match *action {
1473                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1474                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1475                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1476                                                                                 if let Some(ref msg) = *msg {
1477                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1478                                                                                                         log_pubkey!(node_id),
1479                                                                                                         msg.data);
1480                                                                                         self.enqueue_message(&mut peer, msg);
1481                                                                                         // This isn't guaranteed to work, but if there is enough free
1482                                                                                         // room in the send buffer, put the error message there...
1483                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1484                                                                                 } else {
1485                                                                                         log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1486                                                                                 }
1487                                                                         }
1488                                                                         descriptor.disconnect_socket();
1489                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1490                                                                 }
1491                                                         },
1492                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1493                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1494                                                         },
1495                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1496                                                         msgs::ErrorAction::IgnoreError => {
1497                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1498                                                         },
1499                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1500                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1501                                                                                 log_pubkey!(node_id),
1502                                                                                 msg.data);
1503                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1504                                                         },
1505                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1506                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1507                                                                                 log_pubkey!(node_id),
1508                                                                                 msg.data);
1509                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1510                                                         },
1511                                                 }
1512                                         },
1513                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1514                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1515                                         },
1516                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1517                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1518                                         }
1519                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1520                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1521                                                         log_pubkey!(node_id),
1522                                                         msg.short_channel_ids.len(),
1523                                                         msg.first_blocknum,
1524                                                         msg.number_of_blocks,
1525                                                         msg.sync_complete);
1526                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1527                                         }
1528                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1529                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1530                                         }
1531                                 }
1532                         }
1533
1534                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1535                                 self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
1536                         }
1537
1538                         for (descriptor, peer) in peers.peers.iter_mut() {
1539                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1540                         }
1541                 }
1542         }
1543
1544         /// Indicates that the given socket descriptor's connection is now closed.
1545         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1546                 self.disconnect_event_internal(descriptor, false);
1547         }
1548
1549         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1550                 let mut peers = self.peers.lock().unwrap();
1551                 let peer_option = peers.peers.remove(descriptor);
1552                 match peer_option {
1553                         None => {
1554                                 // This is most likely a simple race condition where the user found that the socket
1555                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1556                                 // called this method. Either way we're disconnected, return.
1557                         },
1558                         Some(peer) => {
1559                                 match peer.their_node_id {
1560                                         Some(node_id) => {
1561                                                 log_trace!(self.logger,
1562                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1563                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1564                                                 peers.node_id_to_descriptor.remove(&node_id);
1565                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1566                                         },
1567                                         None => {}
1568                                 }
1569                         }
1570                 };
1571         }
1572
1573         /// Disconnect a peer given its node id.
1574         ///
1575         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1576         /// force-closing any channels we have with it.
1577         ///
1578         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1579         /// peer. Thus, be very careful about reentrancy issues.
1580         ///
1581         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1582         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1583                 let mut peers_lock = self.peers.lock().unwrap();
1584                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1585                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1586                         peers_lock.peers.remove(&descriptor);
1587                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1588                         descriptor.disconnect_socket();
1589                 }
1590         }
1591
1592         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1593         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1594         /// using regular ping/pongs.
1595         pub fn disconnect_all_peers(&self) {
1596                 let mut peers_lock = self.peers.lock().unwrap();
1597                 let peers = &mut *peers_lock;
1598                 for (mut descriptor, peer) in peers.peers.drain() {
1599                         if let Some(node_id) = peer.their_node_id {
1600                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1601                                 peers.node_id_to_descriptor.remove(&node_id);
1602                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1603                         }
1604                         descriptor.disconnect_socket();
1605                 }
1606                 debug_assert!(peers.node_id_to_descriptor.is_empty());
1607         }
1608
1609         /// This is called when we're blocked on sending additional gossip messages until we receive a
1610         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1611         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1612         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1613                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1614                         peer.awaiting_pong_timer_tick_intervals = -1;
1615                         let ping = msgs::Ping {
1616                                 ponglen: 0,
1617                                 byteslen: 64,
1618                         };
1619                         self.enqueue_message(peer, &ping);
1620                 }
1621         }
1622
1623         /// Send pings to each peer and disconnect those which did not respond to the last round of
1624         /// pings.
1625         ///
1626         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1627         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1628         /// time they have to respond before we disconnect them.
1629         ///
1630         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1631         /// issues!
1632         ///
1633         /// [`send_data`]: SocketDescriptor::send_data
1634         pub fn timer_tick_occurred(&self) {
1635                 let mut peers_lock = self.peers.lock().unwrap();
1636                 {
1637                         let peers = &mut *peers_lock;
1638                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1639                         let peers = &mut peers.peers;
1640                         let mut descriptors_needing_disconnect = Vec::new();
1641                         let peer_count = peers.len();
1642
1643                         peers.retain(|descriptor, peer| {
1644                                 let mut do_disconnect_peer = false;
1645                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1646                                         // The peer needs to complete its handshake before we can exchange messages. We
1647                                         // give peers one timer tick to complete handshake, reusing
1648                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1649                                         // for handshake completion.
1650                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1651                                                 do_disconnect_peer = true;
1652                                         } else {
1653                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1654                                                 return true;
1655                                         }
1656                                 }
1657
1658                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1659                                         // Magic value set in `maybe_send_extra_ping`.
1660                                         peer.awaiting_pong_timer_tick_intervals = 1;
1661                                         peer.received_message_since_timer_tick = false;
1662                                         return true;
1663                                 }
1664
1665                                 if do_disconnect_peer
1666                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1667                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1668                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1669                                 {
1670                                         descriptors_needing_disconnect.push(descriptor.clone());
1671                                         match peer.their_node_id {
1672                                                 Some(node_id) => {
1673                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1674                                                         node_id_to_descriptor.remove(&node_id);
1675                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1676                                                 }
1677                                                 None => {},
1678                                         }
1679                                         return false;
1680                                 }
1681                                 peer.received_message_since_timer_tick = false;
1682
1683                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1684                                         peer.awaiting_pong_timer_tick_intervals += 1;
1685                                         return true;
1686                                 }
1687
1688                                 peer.awaiting_pong_timer_tick_intervals = 1;
1689                                 let ping = msgs::Ping {
1690                                         ponglen: 0,
1691                                         byteslen: 64,
1692                                 };
1693                                 self.enqueue_message(peer, &ping);
1694                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1695
1696                                 true
1697                         });
1698
1699                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1700                                 descriptor.disconnect_socket();
1701                         }
1702                 }
1703         }
1704 }
1705
1706 fn is_gossip_msg(type_id: u16) -> bool {
1707         match type_id {
1708                 msgs::ChannelAnnouncement::TYPE |
1709                 msgs::ChannelUpdate::TYPE |
1710                 msgs::NodeAnnouncement::TYPE => true,
1711                 _ => false
1712         }
1713 }
1714
1715 #[cfg(test)]
1716 mod tests {
1717         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1718         use ln::msgs;
1719         use ln::msgs::NetAddress;
1720         use util::events;
1721         use util::test_utils;
1722
1723         use bitcoin::secp256k1::Secp256k1;
1724         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1725
1726         use prelude::*;
1727         use sync::{Arc, Mutex};
1728         use core::sync::atomic::Ordering;
1729
1730         #[derive(Clone)]
1731         struct FileDescriptor {
1732                 fd: u16,
1733                 outbound_data: Arc<Mutex<Vec<u8>>>,
1734         }
1735         impl PartialEq for FileDescriptor {
1736                 fn eq(&self, other: &Self) -> bool {
1737                         self.fd == other.fd
1738                 }
1739         }
1740         impl Eq for FileDescriptor { }
1741         impl core::hash::Hash for FileDescriptor {
1742                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1743                         self.fd.hash(hasher)
1744                 }
1745         }
1746
1747         impl SocketDescriptor for FileDescriptor {
1748                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1749                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1750                         data.len()
1751                 }
1752
1753                 fn disconnect_socket(&mut self) {}
1754         }
1755
1756         struct PeerManagerCfg {
1757                 chan_handler: test_utils::TestChannelMessageHandler,
1758                 routing_handler: test_utils::TestRoutingMessageHandler,
1759                 logger: test_utils::TestLogger,
1760         }
1761
1762         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1763                 let mut cfgs = Vec::new();
1764                 for _ in 0..peer_count {
1765                         cfgs.push(
1766                                 PeerManagerCfg{
1767                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1768                                         logger: test_utils::TestLogger::new(),
1769                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1770                                 }
1771                         );
1772                 }
1773
1774                 cfgs
1775         }
1776
1777         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1778                 let mut peers = Vec::new();
1779                 for i in 0..peer_count {
1780                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1781                         let ephemeral_bytes = [i as u8; 32];
1782                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1783                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1784                         peers.push(peer);
1785                 }
1786
1787                 peers
1788         }
1789
1790         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1791                 let secp_ctx = Secp256k1::new();
1792                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1793                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1794                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1795                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1796                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1797                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1798                 peer_a.process_events();
1799                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1800                 peer_b.process_events();
1801                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1802                 (fd_a.clone(), fd_b.clone())
1803         }
1804
1805         #[test]
1806         fn test_disconnect_peer() {
1807                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1808                 // push a DisconnectPeer event to remove the node flagged by id
1809                 let cfgs = create_peermgr_cfgs(2);
1810                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1811                 let mut peers = create_network(2, &cfgs);
1812                 establish_connection(&peers[0], &peers[1]);
1813                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1814
1815                 let secp_ctx = Secp256k1::new();
1816                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1817
1818                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1819                         node_id: their_id,
1820                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1821                 });
1822                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1823                 peers[0].message_handler.chan_handler = &chan_handler;
1824
1825                 peers[0].process_events();
1826                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1827         }
1828
1829         #[test]
1830         fn test_timer_tick_occurred() {
1831                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1832                 let cfgs = create_peermgr_cfgs(2);
1833                 let peers = create_network(2, &cfgs);
1834                 establish_connection(&peers[0], &peers[1]);
1835                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1836
1837                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1838                 peers[0].timer_tick_occurred();
1839                 peers[0].process_events();
1840                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1841
1842                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1843                 peers[0].timer_tick_occurred();
1844                 peers[0].process_events();
1845                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1846         }
1847
1848         #[test]
1849         fn test_do_attempt_write_data() {
1850                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1851                 let cfgs = create_peermgr_cfgs(2);
1852                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1853                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1854                 let peers = create_network(2, &cfgs);
1855
1856                 // By calling establish_connect, we trigger do_attempt_write_data between
1857                 // the peers. Previously this function would mistakenly enter an infinite loop
1858                 // when there were more channel messages available than could fit into a peer's
1859                 // buffer. This issue would now be detected by this test (because we use custom
1860                 // RoutingMessageHandlers that intentionally return more channel messages
1861                 // than can fit into a peer's buffer).
1862                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1863
1864                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1865                 // due to the max-messagse-before-ping limits this may take a few iterations to complete.
1866                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1867                         peers[0].process_events();
1868                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1869                         assert!(!b_read_data.is_empty());
1870
1871                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1872                         peers[1].process_events();
1873
1874                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1875                         assert!(!a_read_data.is_empty());
1876                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1877
1878                         peers[1].process_events();
1879                         assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages");
1880                 }
1881
1882                 // Check that each peer has received the expected number of channel updates and channel
1883                 // announcements.
1884                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1885                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1886                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1887                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1888         }
1889
1890         #[test]
1891         fn test_handshake_timeout() {
1892                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1893                 // tick.
1894                 let cfgs = create_peermgr_cfgs(2);
1895                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1896                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1897                 let peers = create_network(2, &cfgs);
1898
1899                 let secp_ctx = Secp256k1::new();
1900                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1901                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1902                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1903                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1904                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
1905
1906                 // If we get a single timer tick before completion, that's fine
1907                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1908                 peers[0].timer_tick_occurred();
1909                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1910
1911                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1912                 peers[0].process_events();
1913                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1914                 peers[1].process_events();
1915
1916                 // ...but if we get a second timer tick, we should disconnect the peer
1917                 peers[0].timer_tick_occurred();
1918                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1919
1920                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1921         }
1922
1923         #[test]
1924         fn test_filter_addresses(){
1925                 // Tests the filter_addresses function.
1926
1927                 // For (10/8)
1928                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
1929                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1930                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
1931                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1932                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
1933                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1934
1935                 // For (0/8)
1936                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
1937                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1938                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
1939                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1940                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
1941                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1942
1943                 // For (100.64/10)
1944                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
1945                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1946                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
1947                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1948                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
1949                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1950
1951                 // For (127/8)
1952                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
1953                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1954                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
1955                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1956                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
1957                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1958
1959                 // For (169.254/16)
1960                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
1961                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1962                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
1963                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1964                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
1965                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1966
1967                 // For (172.16/12)
1968                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
1969                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1970                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
1971                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1972                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
1973                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1974
1975                 // For (192.168/16)
1976                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
1977                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1978                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
1979                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1980                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
1981                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1982
1983                 // For (192.88.99/24)
1984                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
1985                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1986                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
1987                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1988                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
1989                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1990
1991                 // For other IPv4 addresses
1992                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
1993                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1994                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
1995                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1996                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
1997                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
1998
1999                 // For (2000::/3)
2000                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2001                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2002                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2003                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2004                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2005                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2006
2007                 // For other IPv6 addresses
2008                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2009                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2010                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2011                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2012                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2013                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2014
2015                 // For (None)
2016                 assert_eq!(filter_addresses(None), None);
2017         }
2018 }