Support platforms with only 32-bit atomics
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::{InitFeatures, NodeFeatures};
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use onion_message::{SimpleArcOnionMessenger, SimpleRefOnionMessenger};
29 use routing::gossip::{NetworkGraph, P2PGossipSync};
30 use util::atomic_counter::AtomicCounter;
31 use util::crypto::sign;
32 use util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
33 use util::logger::Logger;
34
35 use prelude::*;
36 use io;
37 use alloc::collections::LinkedList;
38 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
47 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
48 use bitcoin::hashes::{HashEngine, Hash};
49
50 /// Handler for BOLT1-compliant messages.
51 pub trait CustomMessageHandler: wire::CustomMessageReader {
52         /// Called with the message type that was received and the buffer to be read.
53         /// Can return a `MessageHandlingError` if the message could not be handled.
54         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
55
56         /// Gets the list of pending messages which were generated by the custom message
57         /// handler, clearing the list in the process. The first tuple element must
58         /// correspond to the intended recipients node ids. If no connection to one of the
59         /// specified node does not exist, the message is simply not sent to it.
60         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
61 }
62
63 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
64 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
65 pub struct IgnoringMessageHandler{}
66 impl MessageSendEventsProvider for IgnoringMessageHandler {
67         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
68 }
69 impl RoutingMessageHandler for IgnoringMessageHandler {
70         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
72         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
73         fn get_next_channel_announcement(&self, _starting_point: u64) ->
74                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
75         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
76         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
77         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
78         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
80         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
81         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
82         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
83                 InitFeatures::empty()
84         }
85 }
86 impl OnionMessageProvider for IgnoringMessageHandler {
87         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
88 }
89 impl OnionMessageHandler for IgnoringMessageHandler {
90         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
91         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
92         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
93         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
94         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
95                 InitFeatures::empty()
96         }
97 }
98 impl Deref for IgnoringMessageHandler {
99         type Target = IgnoringMessageHandler;
100         fn deref(&self) -> &Self { self }
101 }
102
103 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
104 // method that takes self for it.
105 impl wire::Type for Infallible {
106         fn type_id(&self) -> u16 {
107                 unreachable!();
108         }
109 }
110 impl Writeable for Infallible {
111         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
112                 unreachable!();
113         }
114 }
115
116 impl wire::CustomMessageReader for IgnoringMessageHandler {
117         type CustomMessage = Infallible;
118         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
119                 Ok(None)
120         }
121 }
122
123 impl CustomMessageHandler for IgnoringMessageHandler {
124         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
125                 // Since we always return `None` in the read the handle method should never be called.
126                 unreachable!();
127         }
128
129         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
130 }
131
132 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
133 /// You can provide one of these as the route_handler in a MessageHandler.
134 pub struct ErroringMessageHandler {
135         message_queue: Mutex<Vec<MessageSendEvent>>
136 }
137 impl ErroringMessageHandler {
138         /// Constructs a new ErroringMessageHandler
139         pub fn new() -> Self {
140                 Self { message_queue: Mutex::new(Vec::new()) }
141         }
142         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
143                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
144                         action: msgs::ErrorAction::SendErrorMessage {
145                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
146                         },
147                         node_id: node_id.clone(),
148                 });
149         }
150 }
151 impl MessageSendEventsProvider for ErroringMessageHandler {
152         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
153                 let mut res = Vec::new();
154                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
155                 res
156         }
157 }
158 impl ChannelMessageHandler for ErroringMessageHandler {
159         // Any messages which are related to a specific channel generate an error message to let the
160         // peer know we don't care about channels.
161         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
162                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
163         }
164         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
165                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
166         }
167         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
168                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
169         }
170         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
171                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
172         }
173         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
174                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
175         }
176         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
177                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
178         }
179         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
180                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
181         }
182         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
183                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
184         }
185         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
186                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
187         }
188         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
189                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
190         }
191         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
192                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
193         }
194         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
195                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
196         }
197         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
198                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
199         }
200         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
201                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
202         }
203         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
204                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
205         }
206         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
207                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
208         }
209         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
210         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
211         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
212         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
213         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
214         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
215         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
216                 // Set a number of features which various nodes may require to talk to us. It's totally
217                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
218                 // channels.
219                 let mut features = InitFeatures::empty();
220                 features.set_data_loss_protect_optional();
221                 features.set_upfront_shutdown_script_optional();
222                 features.set_variable_length_onion_optional();
223                 features.set_static_remote_key_optional();
224                 features.set_payment_secret_optional();
225                 features.set_basic_mpp_optional();
226                 features.set_wumbo_optional();
227                 features.set_shutdown_any_segwit_optional();
228                 features.set_channel_type_optional();
229                 features.set_scid_privacy_optional();
230                 features.set_zero_conf_optional();
231                 features
232         }
233 }
234 impl Deref for ErroringMessageHandler {
235         type Target = ErroringMessageHandler;
236         fn deref(&self) -> &Self { self }
237 }
238
239 /// Provides references to trait impls which handle different types of messages.
240 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
241                 CM::Target: ChannelMessageHandler,
242                 RM::Target: RoutingMessageHandler,
243                 OM::Target: OnionMessageHandler,
244 {
245         /// A message handler which handles messages specific to channels. Usually this is just a
246         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
247         ///
248         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
249         pub chan_handler: CM,
250         /// A message handler which handles messages updating our knowledge of the network channel
251         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
252         ///
253         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
254         pub route_handler: RM,
255
256         /// A message handler which handles onion messages. For now, this can only be an
257         /// [`IgnoringMessageHandler`].
258         pub onion_message_handler: OM,
259 }
260
261 /// Provides an object which can be used to send data to and which uniquely identifies a connection
262 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
263 /// implement Hash to meet the PeerManager API.
264 ///
265 /// For efficiency, Clone should be relatively cheap for this type.
266 ///
267 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
268 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
269 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
270 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
271 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
272 /// to simply use another value which is guaranteed to be globally unique instead.
273 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
274         /// Attempts to send some data from the given slice to the peer.
275         ///
276         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
277         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
278         /// called and further write attempts may occur until that time.
279         ///
280         /// If the returned size is smaller than `data.len()`, a
281         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
282         /// written. Additionally, until a `send_data` event completes fully, no further
283         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
284         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
285         /// until then.
286         ///
287         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
288         /// (indicating that read events should be paused to prevent DoS in the send buffer),
289         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
290         /// `resume_read` of false carries no meaning, and should not cause any action.
291         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
292         /// Disconnect the socket pointed to by this SocketDescriptor.
293         ///
294         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
295         /// call (doing so is a noop).
296         fn disconnect_socket(&mut self);
297 }
298
299 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
300 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
301 /// descriptor.
302 #[derive(Clone)]
303 pub struct PeerHandleError {
304         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
305         /// because we required features that our peer was missing, or vice versa).
306         ///
307         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
308         /// any channels with this peer or check for new versions of LDK.
309         ///
310         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
311         pub no_connection_possible: bool,
312 }
313 impl fmt::Debug for PeerHandleError {
314         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
315                 formatter.write_str("Peer Sent Invalid Data")
316         }
317 }
318 impl fmt::Display for PeerHandleError {
319         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
320                 formatter.write_str("Peer Sent Invalid Data")
321         }
322 }
323
324 #[cfg(feature = "std")]
325 impl error::Error for PeerHandleError {
326         fn description(&self) -> &str {
327                 "Peer Sent Invalid Data"
328         }
329 }
330
331 enum InitSyncTracker{
332         NoSyncRequested,
333         ChannelsSyncing(u64),
334         NodesSyncing(PublicKey),
335 }
336
337 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
338 /// forwarding gossip messages to peers altogether.
339 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
340
341 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
342 /// we have fewer than this many messages in the outbound buffer again.
343 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
344 /// refilled as we send bytes.
345 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
346 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
347 /// the peer.
348 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
349
350 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
351 /// the socket receive buffer before receiving the ping.
352 ///
353 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
354 /// including any network delays, outbound traffic, or the same for messages from other peers.
355 ///
356 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
357 /// per connected peer to respond to a ping, as long as they send us at least one message during
358 /// each tick, ensuring we aren't actually just disconnected.
359 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
360 /// peer.
361 ///
362 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
363 /// two connected peers, assuming most LDK-running systems have at least two cores.
364 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
365
366 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
367 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
368 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
369 /// process before the next ping.
370 ///
371 /// Note that we continue responding to other messages even after we've sent this many messages, so
372 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
373 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
374 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
375
376 struct Peer {
377         channel_encryptor: PeerChannelEncryptor,
378         their_node_id: Option<PublicKey>,
379         their_features: Option<InitFeatures>,
380         their_net_address: Option<NetAddress>,
381
382         pending_outbound_buffer: LinkedList<Vec<u8>>,
383         pending_outbound_buffer_first_msg_offset: usize,
384         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
385         /// prioritize channel messages over them.
386         ///
387         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
388         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
389         awaiting_write_event: bool,
390
391         pending_read_buffer: Vec<u8>,
392         pending_read_buffer_pos: usize,
393         pending_read_is_header: bool,
394
395         sync_status: InitSyncTracker,
396
397         msgs_sent_since_pong: usize,
398         awaiting_pong_timer_tick_intervals: i8,
399         received_message_since_timer_tick: bool,
400         sent_gossip_timestamp_filter: bool,
401 }
402
403 impl Peer {
404         /// Returns true if the channel announcements/updates for the given channel should be
405         /// forwarded to this peer.
406         /// If we are sending our routing table to this peer and we have not yet sent channel
407         /// announcements/updates for the given channel_id then we will send it when we get to that
408         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
409         /// sent the old versions, we should send the update, and so return true here.
410         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
411                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
412                         !self.sent_gossip_timestamp_filter {
413                                 return false;
414                         }
415                 match self.sync_status {
416                         InitSyncTracker::NoSyncRequested => true,
417                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
418                         InitSyncTracker::NodesSyncing(_) => true,
419                 }
420         }
421
422         /// Similar to the above, but for node announcements indexed by node_id.
423         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
424                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
425                         !self.sent_gossip_timestamp_filter {
426                                 return false;
427                         }
428                 match self.sync_status {
429                         InitSyncTracker::NoSyncRequested => true,
430                         InitSyncTracker::ChannelsSyncing(_) => false,
431                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
432                 }
433         }
434
435         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
436         /// buffer still has space and we don't need to pause reads to get some writes out.
437         fn should_read(&self) -> bool {
438                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
439         }
440
441         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
442         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
443         fn should_buffer_gossip_backfill(&self) -> bool {
444                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
445                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
446         }
447
448         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
449         /// every time the peer's buffer may have been drained.
450         fn should_buffer_onion_message(&self) -> bool {
451                 self.pending_outbound_buffer.is_empty()
452                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
453         }
454
455         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
456         /// buffer. This is checked every time the peer's buffer may have been drained.
457         fn should_buffer_gossip_broadcast(&self) -> bool {
458                 self.pending_outbound_buffer.is_empty()
459                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
460         }
461
462         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
463         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
464                 let total_outbound_buffered =
465                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
466
467                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
468                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
469         }
470 }
471
472 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
473 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
474 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
475 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
476 /// issues such as overly long function definitions.
477 ///
478 /// (C-not exported) as `Arc`s don't make sense in bindings.
479 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler>;
480
481 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
482 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
483 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
484 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
485 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
486 /// helps with issues such as long function definitions.
487 ///
488 /// (C-not exported) as general type aliases don't make sense in bindings.
489 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler>;
490
491 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
492 /// socket events into messages which it passes on to its [`MessageHandler`].
493 ///
494 /// Locks are taken internally, so you must never assume that reentrancy from a
495 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
496 ///
497 /// Calls to [`read_event`] will decode relevant messages and pass them to the
498 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
499 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
500 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
501 /// calls only after previous ones have returned.
502 ///
503 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
504 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
505 /// essentially you should default to using a SimpleRefPeerManager, and use a
506 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
507 /// you're using lightning-net-tokio.
508 ///
509 /// [`read_event`]: PeerManager::read_event
510 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> where
511                 CM::Target: ChannelMessageHandler,
512                 RM::Target: RoutingMessageHandler,
513                 OM::Target: OnionMessageHandler,
514                 L::Target: Logger,
515                 CMH::Target: CustomMessageHandler {
516         message_handler: MessageHandler<CM, RM, OM>,
517         /// Connection state for each connected peer - we have an outer read-write lock which is taken
518         /// as read while we're doing processing for a peer and taken write when a peer is being added
519         /// or removed.
520         ///
521         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
522         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
523         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
524         /// the `MessageHandler`s for a given peer is already guaranteed.
525         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
526         /// Only add to this set when noise completes.
527         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
528         /// lock held. Entries may be added with only the `peers` read lock held (though the
529         /// `Descriptor` value must already exist in `peers`).
530         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
531         /// We can only have one thread processing events at once, but we don't usually need the full
532         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
533         /// `process_events`.
534         event_processing_lock: Mutex<()>,
535         /// Because event processing is global and always does all available work before returning,
536         /// there is no reason for us to have many event processors waiting on the lock at once.
537         /// Instead, we limit the total blocked event processors to always exactly one by setting this
538         /// when an event process call is waiting.
539         blocked_event_processors: AtomicBool,
540
541         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
542         /// value increases strictly since we don't assume access to a time source.
543         last_node_announcement_serial: AtomicU32,
544
545         our_node_secret: SecretKey,
546         ephemeral_key_midstate: Sha256Engine,
547         custom_message_handler: CMH,
548
549         peer_counter: AtomicCounter,
550
551         logger: L,
552         secp_ctx: Secp256k1<secp256k1::SignOnly>
553 }
554
555 enum MessageHandlingError {
556         PeerHandleError(PeerHandleError),
557         LightningError(LightningError),
558 }
559
560 impl From<PeerHandleError> for MessageHandlingError {
561         fn from(error: PeerHandleError) -> Self {
562                 MessageHandlingError::PeerHandleError(error)
563         }
564 }
565
566 impl From<LightningError> for MessageHandlingError {
567         fn from(error: LightningError) -> Self {
568                 MessageHandlingError::LightningError(error)
569         }
570 }
571
572 macro_rules! encode_msg {
573         ($msg: expr) => {{
574                 let mut buffer = VecWriter(Vec::new());
575                 wire::write($msg, &mut buffer).unwrap();
576                 buffer.0
577         }}
578 }
579
580 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler> where
581                 CM::Target: ChannelMessageHandler,
582                 OM::Target: OnionMessageHandler,
583                 L::Target: Logger {
584         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
585         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
586         /// ignored.
587         ///
588         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
589         /// cryptographically secure random bytes.
590         ///
591         /// `current_time` is used as an always-increasing counter that survives across restarts and is
592         /// incremented irregularly internally. In general it is best to simply use the current UNIX
593         /// timestamp, however if it is not available a persistent counter that increases once per
594         /// minute should suffice.
595         ///
596         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
597         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
598                 Self::new(MessageHandler {
599                         chan_handler: channel_message_handler,
600                         route_handler: IgnoringMessageHandler{},
601                         onion_message_handler,
602                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
603         }
604 }
605
606 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
607                 RM::Target: RoutingMessageHandler,
608                 L::Target: Logger {
609         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
610         /// handler or onion message handler is used and onion and channel messages will be ignored (or
611         /// generate error messages). Note that some other lightning implementations time-out connections
612         /// after some time if no channel is built with the peer.
613         ///
614         /// `current_time` is used as an always-increasing counter that survives across restarts and is
615         /// incremented irregularly internally. In general it is best to simply use the current UNIX
616         /// timestamp, however if it is not available a persistent counter that increases once per
617         /// minute should suffice.
618         ///
619         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
620         /// cryptographically secure random bytes.
621         ///
622         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
623         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
624                 Self::new(MessageHandler {
625                         chan_handler: ErroringMessageHandler::new(),
626                         route_handler: routing_message_handler,
627                         onion_message_handler: IgnoringMessageHandler{},
628                 }, our_node_secret, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{})
629         }
630 }
631
632 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
633 /// This works around `format!()` taking a reference to each argument, preventing
634 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
635 /// due to lifetime errors.
636 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
637 impl core::fmt::Display for OptionalFromDebugger<'_> {
638         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
639                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
640         }
641 }
642
643 /// A function used to filter out local or private addresses
644 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
645 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
646 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
647         match ip_address{
648                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
649                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
650                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
651                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
652                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
653                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
654                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
655                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
656                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
657                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
658                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
659                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
660                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
661                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
662                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
663                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
664                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
665                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
666                 // For remaining addresses
667                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
668                 Some(..) => ip_address,
669                 None => None,
670         }
671 }
672
673 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH> where
674                 CM::Target: ChannelMessageHandler,
675                 RM::Target: RoutingMessageHandler,
676                 OM::Target: OnionMessageHandler,
677                 L::Target: Logger,
678                 CMH::Target: CustomMessageHandler {
679         /// Constructs a new PeerManager with the given message handlers and node_id secret key
680         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
681         /// cryptographically secure random bytes.
682         ///
683         /// `current_time` is used as an always-increasing counter that survives across restarts and is
684         /// incremented irregularly internally. In general it is best to simply use the current UNIX
685         /// timestamp, however if it is not available a persistent counter that increases once per
686         /// minute should suffice.
687         pub fn new(message_handler: MessageHandler<CM, RM, OM>, our_node_secret: SecretKey, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
688                 let mut ephemeral_key_midstate = Sha256::engine();
689                 ephemeral_key_midstate.input(ephemeral_random_data);
690
691                 let mut secp_ctx = Secp256k1::signing_only();
692                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
693                 secp_ctx.seeded_randomize(&ephemeral_hash);
694
695                 PeerManager {
696                         message_handler,
697                         peers: FairRwLock::new(HashMap::new()),
698                         node_id_to_descriptor: Mutex::new(HashMap::new()),
699                         event_processing_lock: Mutex::new(()),
700                         blocked_event_processors: AtomicBool::new(false),
701                         our_node_secret,
702                         ephemeral_key_midstate,
703                         peer_counter: AtomicCounter::new(),
704                         last_node_announcement_serial: AtomicU32::new(current_time),
705                         logger,
706                         custom_message_handler,
707                         secp_ctx,
708                 }
709         }
710
711         /// Get the list of node ids for peers which have completed the initial handshake.
712         ///
713         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
714         /// new_outbound_connection, however entries will only appear once the initial handshake has
715         /// completed and we are sure the remote peer has the private key for the given node_id.
716         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
717                 let peers = self.peers.read().unwrap();
718                 peers.values().filter_map(|peer_mutex| {
719                         let p = peer_mutex.lock().unwrap();
720                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
721                                 return None;
722                         }
723                         p.their_node_id
724                 }).collect()
725         }
726
727         fn get_ephemeral_key(&self) -> SecretKey {
728                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
729                 let counter = self.peer_counter.get_increment();
730                 ephemeral_hash.input(&counter.to_le_bytes());
731                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
732         }
733
734         /// Indicates a new outbound connection has been established to a node with the given node_id
735         /// and an optional remote network address.
736         ///
737         /// The remote network address adds the option to report a remote IP address back to a connecting
738         /// peer using the init message.
739         /// The user should pass the remote network address of the host they are connected to.
740         ///
741         /// If an `Err` is returned here you must disconnect the connection immediately.
742         ///
743         /// Returns a small number of bytes to send to the remote node (currently always 50).
744         ///
745         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
746         /// [`socket_disconnected()`].
747         ///
748         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
749         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
750                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
751                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
752                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
753
754                 let mut peers = self.peers.write().unwrap();
755                 if peers.insert(descriptor, Mutex::new(Peer {
756                         channel_encryptor: peer_encryptor,
757                         their_node_id: None,
758                         their_features: None,
759                         their_net_address: remote_network_address,
760
761                         pending_outbound_buffer: LinkedList::new(),
762                         pending_outbound_buffer_first_msg_offset: 0,
763                         gossip_broadcast_buffer: LinkedList::new(),
764                         awaiting_write_event: false,
765
766                         pending_read_buffer,
767                         pending_read_buffer_pos: 0,
768                         pending_read_is_header: false,
769
770                         sync_status: InitSyncTracker::NoSyncRequested,
771
772                         msgs_sent_since_pong: 0,
773                         awaiting_pong_timer_tick_intervals: 0,
774                         received_message_since_timer_tick: false,
775                         sent_gossip_timestamp_filter: false,
776                 })).is_some() {
777                         panic!("PeerManager driver duplicated descriptors!");
778                 };
779                 Ok(res)
780         }
781
782         /// Indicates a new inbound connection has been established to a node with an optional remote
783         /// network address.
784         ///
785         /// The remote network address adds the option to report a remote IP address back to a connecting
786         /// peer using the init message.
787         /// The user should pass the remote network address of the host they are connected to.
788         ///
789         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
790         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
791         /// the connection immediately.
792         ///
793         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
794         /// [`socket_disconnected()`].
795         ///
796         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
797         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
798                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
799                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
800
801                 let mut peers = self.peers.write().unwrap();
802                 if peers.insert(descriptor, Mutex::new(Peer {
803                         channel_encryptor: peer_encryptor,
804                         their_node_id: None,
805                         their_features: None,
806                         their_net_address: remote_network_address,
807
808                         pending_outbound_buffer: LinkedList::new(),
809                         pending_outbound_buffer_first_msg_offset: 0,
810                         gossip_broadcast_buffer: LinkedList::new(),
811                         awaiting_write_event: false,
812
813                         pending_read_buffer,
814                         pending_read_buffer_pos: 0,
815                         pending_read_is_header: false,
816
817                         sync_status: InitSyncTracker::NoSyncRequested,
818
819                         msgs_sent_since_pong: 0,
820                         awaiting_pong_timer_tick_intervals: 0,
821                         received_message_since_timer_tick: false,
822                         sent_gossip_timestamp_filter: false,
823                 })).is_some() {
824                         panic!("PeerManager driver duplicated descriptors!");
825                 };
826                 Ok(())
827         }
828
829         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
830                 while !peer.awaiting_write_event {
831                         if peer.should_buffer_onion_message() {
832                                 if let Some(peer_node_id) = peer.their_node_id {
833                                         if let Some(next_onion_message) =
834                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
835                                                         self.enqueue_message(peer, &next_onion_message);
836                                         }
837                                 }
838                         }
839                         if peer.should_buffer_gossip_broadcast() {
840                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
841                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
842                                 }
843                         }
844                         if peer.should_buffer_gossip_backfill() {
845                                 match peer.sync_status {
846                                         InitSyncTracker::NoSyncRequested => {},
847                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
848                                                 if let Some((announce, update_a_option, update_b_option)) =
849                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
850                                                 {
851                                                         self.enqueue_message(peer, &announce);
852                                                         if let Some(update_a) = update_a_option {
853                                                                 self.enqueue_message(peer, &update_a);
854                                                         }
855                                                         if let Some(update_b) = update_b_option {
856                                                                 self.enqueue_message(peer, &update_b);
857                                                         }
858                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
859                                                 } else {
860                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
861                                                 }
862                                         },
863                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
864                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
865                                                         self.enqueue_message(peer, &msg);
866                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
867                                                 } else {
868                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
869                                                 }
870                                         },
871                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
872                                         InitSyncTracker::NodesSyncing(key) => {
873                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
874                                                         self.enqueue_message(peer, &msg);
875                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
876                                                 } else {
877                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
878                                                 }
879                                         },
880                                 }
881                         }
882                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
883                                 self.maybe_send_extra_ping(peer);
884                         }
885
886                         let next_buff = match peer.pending_outbound_buffer.front() {
887                                 None => return,
888                                 Some(buff) => buff,
889                         };
890
891                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
892                         let data_sent = descriptor.send_data(pending, peer.should_read());
893                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
894                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
895                                 peer.pending_outbound_buffer_first_msg_offset = 0;
896                                 peer.pending_outbound_buffer.pop_front();
897                         } else {
898                                 peer.awaiting_write_event = true;
899                         }
900                 }
901         }
902
903         /// Indicates that there is room to write data to the given socket descriptor.
904         ///
905         /// May return an Err to indicate that the connection should be closed.
906         ///
907         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
908         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
909         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
910         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
911         /// sufficient!
912         ///
913         /// [`send_data`]: SocketDescriptor::send_data
914         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
915         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
916                 let peers = self.peers.read().unwrap();
917                 match peers.get(descriptor) {
918                         None => {
919                                 // This is most likely a simple race condition where the user found that the socket
920                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
921                                 // this method. Return an error to make sure we get disconnected.
922                                 return Err(PeerHandleError { no_connection_possible: false });
923                         },
924                         Some(peer_mutex) => {
925                                 let mut peer = peer_mutex.lock().unwrap();
926                                 peer.awaiting_write_event = false;
927                                 self.do_attempt_write_data(descriptor, &mut peer);
928                         }
929                 };
930                 Ok(())
931         }
932
933         /// Indicates that data was read from the given socket descriptor.
934         ///
935         /// May return an Err to indicate that the connection should be closed.
936         ///
937         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
938         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
939         /// [`send_data`] calls to handle responses.
940         ///
941         /// If `Ok(true)` is returned, further read_events should not be triggered until a
942         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
943         /// send buffer).
944         ///
945         /// [`send_data`]: SocketDescriptor::send_data
946         /// [`process_events`]: PeerManager::process_events
947         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
948                 match self.do_read_event(peer_descriptor, data) {
949                         Ok(res) => Ok(res),
950                         Err(e) => {
951                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
952                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
953                                 Err(e)
954                         }
955                 }
956         }
957
958         /// Append a message to a peer's pending outbound/write buffer
959         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
960                 if is_gossip_msg(message.type_id()) {
961                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
962                 } else {
963                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
964                 }
965                 peer.msgs_sent_since_pong += 1;
966                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
967         }
968
969         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
970         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
971                 peer.msgs_sent_since_pong += 1;
972                 peer.gossip_broadcast_buffer.push_back(encoded_message);
973         }
974
975         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
976                 let mut pause_read = false;
977                 let peers = self.peers.read().unwrap();
978                 let mut msgs_to_forward = Vec::new();
979                 let mut peer_node_id = None;
980                 match peers.get(peer_descriptor) {
981                         None => {
982                                 // This is most likely a simple race condition where the user read some bytes
983                                 // from the socket, then we told the user to `disconnect_socket()`, then they
984                                 // called this method. Return an error to make sure we get disconnected.
985                                 return Err(PeerHandleError { no_connection_possible: false });
986                         },
987                         Some(peer_mutex) => {
988                                 let mut read_pos = 0;
989                                 while read_pos < data.len() {
990                                         macro_rules! try_potential_handleerror {
991                                                 ($peer: expr, $thing: expr) => {
992                                                         match $thing {
993                                                                 Ok(x) => x,
994                                                                 Err(e) => {
995                                                                         match e.action {
996                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
997                                                                                         //TODO: Try to push msg
998                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
999                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
1000                                                                                 },
1001                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1002                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1003                                                                                         continue
1004                                                                                 },
1005                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1006                                                                                 msgs::ErrorAction::IgnoreError => {
1007                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1008                                                                                         continue;
1009                                                                                 },
1010                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1011                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1012                                                                                         self.enqueue_message($peer, &msg);
1013                                                                                         continue;
1014                                                                                 },
1015                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1016                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1017                                                                                         self.enqueue_message($peer, &msg);
1018                                                                                         continue;
1019                                                                                 },
1020                                                                         }
1021                                                                 }
1022                                                         }
1023                                                 }
1024                                         }
1025
1026                                         let mut peer_lock = peer_mutex.lock().unwrap();
1027                                         let peer = &mut *peer_lock;
1028                                         let mut msg_to_handle = None;
1029                                         if peer_node_id.is_none() {
1030                                                 peer_node_id = peer.their_node_id.clone();
1031                                         }
1032
1033                                         assert!(peer.pending_read_buffer.len() > 0);
1034                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1035
1036                                         {
1037                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1038                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1039                                                 read_pos += data_to_copy;
1040                                                 peer.pending_read_buffer_pos += data_to_copy;
1041                                         }
1042
1043                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1044                                                 peer.pending_read_buffer_pos = 0;
1045
1046                                                 macro_rules! insert_node_id {
1047                                                         () => {
1048                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
1049                                                                         hash_map::Entry::Occupied(_) => {
1050                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
1051                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1052                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1053                                                                         },
1054                                                                         hash_map::Entry::Vacant(entry) => {
1055                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
1056                                                                                 entry.insert(peer_descriptor.clone())
1057                                                                         },
1058                                                                 };
1059                                                         }
1060                                                 }
1061
1062                                                 let next_step = peer.channel_encryptor.get_noise_step();
1063                                                 match next_step {
1064                                                         NextNoiseStep::ActOne => {
1065                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1066                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1067                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1068                                                                 peer.pending_outbound_buffer.push_back(act_two);
1069                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1070                                                         },
1071                                                         NextNoiseStep::ActTwo => {
1072                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1073                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1074                                                                                 &self.our_node_secret, &self.secp_ctx));
1075                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1076                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1077                                                                 peer.pending_read_is_header = true;
1078
1079                                                                 peer.their_node_id = Some(their_node_id);
1080                                                                 insert_node_id!();
1081                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1082                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1083                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1084                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1085                                                                 self.enqueue_message(peer, &resp);
1086                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1087                                                         },
1088                                                         NextNoiseStep::ActThree => {
1089                                                                 let their_node_id = try_potential_handleerror!(peer,
1090                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1091                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1092                                                                 peer.pending_read_is_header = true;
1093                                                                 peer.their_node_id = Some(their_node_id);
1094                                                                 insert_node_id!();
1095                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1096                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1097                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1098                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1099                                                                 self.enqueue_message(peer, &resp);
1100                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1101                                                         },
1102                                                         NextNoiseStep::NoiseComplete => {
1103                                                                 if peer.pending_read_is_header {
1104                                                                         let msg_len = try_potential_handleerror!(peer,
1105                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1106                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1107                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1108                                                                         if msg_len < 2 { // Need at least the message type tag
1109                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1110                                                                         }
1111                                                                         peer.pending_read_is_header = false;
1112                                                                 } else {
1113                                                                         let msg_data = try_potential_handleerror!(peer,
1114                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1115                                                                         assert!(msg_data.len() >= 2);
1116
1117                                                                         // Reset read buffer
1118                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1119                                                                         peer.pending_read_buffer.resize(18, 0);
1120                                                                         peer.pending_read_is_header = true;
1121
1122                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1123                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1124                                                                         let message = match message_result {
1125                                                                                 Ok(x) => x,
1126                                                                                 Err(e) => {
1127                                                                                         match e {
1128                                                                                                 // Note that to avoid recursion we never call
1129                                                                                                 // `do_attempt_write_data` from here, causing
1130                                                                                                 // the messages enqueued here to not actually
1131                                                                                                 // be sent before the peer is disconnected.
1132                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1133                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1134                                                                                                         continue;
1135                                                                                                 }
1136                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1137                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1138                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1139                                                                                                         continue;
1140                                                                                                 }
1141                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1142                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1143                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1144                                                                                                                 channel_id: [0; 32],
1145                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1146                                                                                                         });
1147                                                                                                         continue;
1148                                                                                                 }
1149                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1150                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1151                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1152                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1153                                                                                                 }
1154                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1155                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1156                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1157                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1158                                                                                                 }
1159                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1160                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1161                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1162                                                                                                 }
1163                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1164                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1165                                                                                         }
1166                                                                                 }
1167                                                                         };
1168
1169                                                                         msg_to_handle = Some(message);
1170                                                                 }
1171                                                         }
1172                                                 }
1173                                         }
1174                                         pause_read = !peer.should_read();
1175
1176                                         if let Some(message) = msg_to_handle {
1177                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1178                                                         Err(handling_error) => match handling_error {
1179                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1180                                                                 MessageHandlingError::LightningError(e) => {
1181                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1182                                                                 },
1183                                                         },
1184                                                         Ok(Some(msg)) => {
1185                                                                 msgs_to_forward.push(msg);
1186                                                         },
1187                                                         Ok(None) => {},
1188                                                 }
1189                                         }
1190                                 }
1191                         }
1192                 }
1193
1194                 for msg in msgs_to_forward.drain(..) {
1195                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1196                 }
1197
1198                 Ok(pause_read)
1199         }
1200
1201         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1202         /// Returns the message back if it needs to be broadcasted to all other peers.
1203         fn handle_message(
1204                 &self,
1205                 peer_mutex: &Mutex<Peer>,
1206                 mut peer_lock: MutexGuard<Peer>,
1207                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1208         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1209                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1210                 peer_lock.received_message_since_timer_tick = true;
1211
1212                 // Need an Init as first message
1213                 if let wire::Message::Init(msg) = message {
1214                         if msg.features.requires_unknown_bits() {
1215                                 log_debug!(self.logger, "Peer features required unknown version bits");
1216                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1217                         }
1218                         if peer_lock.their_features.is_some() {
1219                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1220                         }
1221
1222                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1223
1224                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1225                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1226                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1227                         }
1228
1229                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg) {
1230                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1231                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1232                         }
1233                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg) {
1234                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1235                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1236                         }
1237                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg) {
1238                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1239                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1240                         }
1241
1242                         peer_lock.their_features = Some(msg.features);
1243                         return Ok(None);
1244                 } else if peer_lock.their_features.is_none() {
1245                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1246                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1247                 }
1248
1249                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1250                         // When supporting gossip messages, start inital gossip sync only after we receive
1251                         // a GossipTimestampFilter
1252                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1253                                 !peer_lock.sent_gossip_timestamp_filter {
1254                                 peer_lock.sent_gossip_timestamp_filter = true;
1255                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1256                         }
1257                         return Ok(None);
1258                 }
1259
1260                 let their_features = peer_lock.their_features.clone();
1261                 mem::drop(peer_lock);
1262
1263                 if is_gossip_msg(message.type_id()) {
1264                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1265                 } else {
1266                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1267                 }
1268
1269                 let mut should_forward = None;
1270
1271                 match message {
1272                         // Setup and Control messages:
1273                         wire::Message::Init(_) => {
1274                                 // Handled above
1275                         },
1276                         wire::Message::GossipTimestampFilter(_) => {
1277                                 // Handled above
1278                         },
1279                         wire::Message::Error(msg) => {
1280                                 let mut data_is_printable = true;
1281                                 for b in msg.data.bytes() {
1282                                         if b < 32 || b > 126 {
1283                                                 data_is_printable = false;
1284                                                 break;
1285                                         }
1286                                 }
1287
1288                                 if data_is_printable {
1289                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1290                                 } else {
1291                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1292                                 }
1293                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1294                                 if msg.channel_id == [0; 32] {
1295                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1296                                 }
1297                         },
1298                         wire::Message::Warning(msg) => {
1299                                 let mut data_is_printable = true;
1300                                 for b in msg.data.bytes() {
1301                                         if b < 32 || b > 126 {
1302                                                 data_is_printable = false;
1303                                                 break;
1304                                         }
1305                                 }
1306
1307                                 if data_is_printable {
1308                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1309                                 } else {
1310                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1311                                 }
1312                         },
1313
1314                         wire::Message::Ping(msg) => {
1315                                 if msg.ponglen < 65532 {
1316                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1317                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1318                                 }
1319                         },
1320                         wire::Message::Pong(_msg) => {
1321                                 let mut peer_lock = peer_mutex.lock().unwrap();
1322                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1323                                 peer_lock.msgs_sent_since_pong = 0;
1324                         },
1325
1326                         // Channel messages:
1327                         wire::Message::OpenChannel(msg) => {
1328                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1329                         },
1330                         wire::Message::AcceptChannel(msg) => {
1331                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1332                         },
1333
1334                         wire::Message::FundingCreated(msg) => {
1335                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1336                         },
1337                         wire::Message::FundingSigned(msg) => {
1338                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1339                         },
1340                         wire::Message::ChannelReady(msg) => {
1341                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1342                         },
1343
1344                         wire::Message::Shutdown(msg) => {
1345                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1346                         },
1347                         wire::Message::ClosingSigned(msg) => {
1348                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1349                         },
1350
1351                         // Commitment messages:
1352                         wire::Message::UpdateAddHTLC(msg) => {
1353                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1354                         },
1355                         wire::Message::UpdateFulfillHTLC(msg) => {
1356                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1357                         },
1358                         wire::Message::UpdateFailHTLC(msg) => {
1359                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1360                         },
1361                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1362                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1363                         },
1364
1365                         wire::Message::CommitmentSigned(msg) => {
1366                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1367                         },
1368                         wire::Message::RevokeAndACK(msg) => {
1369                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1370                         },
1371                         wire::Message::UpdateFee(msg) => {
1372                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1373                         },
1374                         wire::Message::ChannelReestablish(msg) => {
1375                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1376                         },
1377
1378                         // Routing messages:
1379                         wire::Message::AnnouncementSignatures(msg) => {
1380                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1381                         },
1382                         wire::Message::ChannelAnnouncement(msg) => {
1383                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1384                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1385                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1386                                 }
1387                         },
1388                         wire::Message::NodeAnnouncement(msg) => {
1389                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1390                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1391                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1392                                 }
1393                         },
1394                         wire::Message::ChannelUpdate(msg) => {
1395                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1396                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1397                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1398                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1399                                 }
1400                         },
1401                         wire::Message::QueryShortChannelIds(msg) => {
1402                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1403                         },
1404                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1405                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1406                         },
1407                         wire::Message::QueryChannelRange(msg) => {
1408                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1409                         },
1410                         wire::Message::ReplyChannelRange(msg) => {
1411                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1412                         },
1413
1414                         // Onion message:
1415                         wire::Message::OnionMessage(msg) => {
1416                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1417                         },
1418
1419                         // Unknown messages:
1420                         wire::Message::Unknown(type_id) if message.is_even() => {
1421                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1422                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1423                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1424                         },
1425                         wire::Message::Unknown(type_id) => {
1426                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1427                         },
1428                         wire::Message::Custom(custom) => {
1429                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1430                         },
1431                 };
1432                 Ok(should_forward)
1433         }
1434
1435         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1436                 match msg {
1437                         wire::Message::ChannelAnnouncement(ref msg) => {
1438                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1439                                 let encoded_msg = encode_msg!(msg);
1440
1441                                 for (_, peer_mutex) in peers.iter() {
1442                                         let mut peer = peer_mutex.lock().unwrap();
1443                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1444                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1445                                                 continue
1446                                         }
1447                                         if peer.buffer_full_drop_gossip_broadcast() {
1448                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1449                                                 continue;
1450                                         }
1451                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1452                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1453                                                 continue;
1454                                         }
1455                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1456                                                 continue;
1457                                         }
1458                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1459                                 }
1460                         },
1461                         wire::Message::NodeAnnouncement(ref msg) => {
1462                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1463                                 let encoded_msg = encode_msg!(msg);
1464
1465                                 for (_, peer_mutex) in peers.iter() {
1466                                         let mut peer = peer_mutex.lock().unwrap();
1467                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1468                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1469                                                 continue
1470                                         }
1471                                         if peer.buffer_full_drop_gossip_broadcast() {
1472                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1473                                                 continue;
1474                                         }
1475                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1476                                                 continue;
1477                                         }
1478                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1479                                                 continue;
1480                                         }
1481                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1482                                 }
1483                         },
1484                         wire::Message::ChannelUpdate(ref msg) => {
1485                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1486                                 let encoded_msg = encode_msg!(msg);
1487
1488                                 for (_, peer_mutex) in peers.iter() {
1489                                         let mut peer = peer_mutex.lock().unwrap();
1490                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1491                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1492                                                 continue
1493                                         }
1494                                         if peer.buffer_full_drop_gossip_broadcast() {
1495                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1496                                                 continue;
1497                                         }
1498                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1499                                                 continue;
1500                                         }
1501                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1502                                 }
1503                         },
1504                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1505                 }
1506         }
1507
1508         /// Checks for any events generated by our handlers and processes them. Includes sending most
1509         /// response messages as well as messages generated by calls to handler functions directly (eg
1510         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1511         ///
1512         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1513         /// issues!
1514         ///
1515         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1516         /// or one of the other clients provided in our language bindings.
1517         ///
1518         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1519         /// without doing any work. All available events that need handling will be handled before the
1520         /// other calls return.
1521         ///
1522         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1523         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1524         /// [`send_data`]: SocketDescriptor::send_data
1525         pub fn process_events(&self) {
1526                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1527                 if _single_processor_lock.is_err() {
1528                         // While we could wake the older sleeper here with a CV and make more even waiting
1529                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1530                         // count" goal.
1531                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1532                                 Err(val) => {
1533                                         debug_assert!(val, "compare_exchange failed spuriously?");
1534                                         return;
1535                                 },
1536                                 Ok(val) => {
1537                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1538                                         // We're the only waiter, as the running process_events may have emptied the
1539                                         // pending events "long" ago and there are new events for us to process, wait until
1540                                         // its done and process any leftover events before returning.
1541                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1542                                         self.blocked_event_processors.store(false, Ordering::Release);
1543                                 }
1544                         }
1545                 }
1546
1547                 let mut peers_to_disconnect = HashMap::new();
1548                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1549                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1550
1551                 {
1552                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1553                         // buffer by doing things like announcing channels on another node. We should be willing to
1554                         // drop optional-ish messages when send buffers get full!
1555
1556                         let peers_lock = self.peers.read().unwrap();
1557                         let peers = &*peers_lock;
1558                         macro_rules! get_peer_for_forwarding {
1559                                 ($node_id: expr) => {
1560                                         {
1561                                                 if peers_to_disconnect.get($node_id).is_some() {
1562                                                         // If we've "disconnected" this peer, do not send to it.
1563                                                         continue;
1564                                                 }
1565                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1566                                                 match descriptor_opt {
1567                                                         Some(descriptor) => match peers.get(&descriptor) {
1568                                                                 Some(peer_mutex) => {
1569                                                                         let peer_lock = peer_mutex.lock().unwrap();
1570                                                                         if peer_lock.their_features.is_none() {
1571                                                                                 continue;
1572                                                                         }
1573                                                                         peer_lock
1574                                                                 },
1575                                                                 None => {
1576                                                                         debug_assert!(false, "Inconsistent peers set state!");
1577                                                                         continue;
1578                                                                 }
1579                                                         },
1580                                                         None => {
1581                                                                 continue;
1582                                                         },
1583                                                 }
1584                                         }
1585                                 }
1586                         }
1587                         for event in events_generated.drain(..) {
1588                                 match event {
1589                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1590                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1591                                                                 log_pubkey!(node_id),
1592                                                                 log_bytes!(msg.temporary_channel_id));
1593                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1594                                         },
1595                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1596                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1597                                                                 log_pubkey!(node_id),
1598                                                                 log_bytes!(msg.temporary_channel_id));
1599                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1600                                         },
1601                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1602                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1603                                                                 log_pubkey!(node_id),
1604                                                                 log_bytes!(msg.temporary_channel_id),
1605                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1606                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1607                                                 // indicating to the wallet that they should just throw away this funding transaction
1608                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1609                                         },
1610                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1611                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1612                                                                 log_pubkey!(node_id),
1613                                                                 log_bytes!(msg.channel_id));
1614                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1615                                         },
1616                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1617                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1618                                                                 log_pubkey!(node_id),
1619                                                                 log_bytes!(msg.channel_id));
1620                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1621                                         },
1622                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1623                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1624                                                                 log_pubkey!(node_id),
1625                                                                 log_bytes!(msg.channel_id));
1626                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1627                                         },
1628                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1629                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1630                                                                 log_pubkey!(node_id),
1631                                                                 update_add_htlcs.len(),
1632                                                                 update_fulfill_htlcs.len(),
1633                                                                 update_fail_htlcs.len(),
1634                                                                 log_bytes!(commitment_signed.channel_id));
1635                                                 let mut peer = get_peer_for_forwarding!(node_id);
1636                                                 for msg in update_add_htlcs {
1637                                                         self.enqueue_message(&mut *peer, msg);
1638                                                 }
1639                                                 for msg in update_fulfill_htlcs {
1640                                                         self.enqueue_message(&mut *peer, msg);
1641                                                 }
1642                                                 for msg in update_fail_htlcs {
1643                                                         self.enqueue_message(&mut *peer, msg);
1644                                                 }
1645                                                 for msg in update_fail_malformed_htlcs {
1646                                                         self.enqueue_message(&mut *peer, msg);
1647                                                 }
1648                                                 if let &Some(ref msg) = update_fee {
1649                                                         self.enqueue_message(&mut *peer, msg);
1650                                                 }
1651                                                 self.enqueue_message(&mut *peer, commitment_signed);
1652                                         },
1653                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1654                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1655                                                                 log_pubkey!(node_id),
1656                                                                 log_bytes!(msg.channel_id));
1657                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1658                                         },
1659                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1660                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1661                                                                 log_pubkey!(node_id),
1662                                                                 log_bytes!(msg.channel_id));
1663                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1664                                         },
1665                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1666                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1667                                                                 log_pubkey!(node_id),
1668                                                                 log_bytes!(msg.channel_id));
1669                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1670                                         },
1671                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1672                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1673                                                                 log_pubkey!(node_id),
1674                                                                 log_bytes!(msg.channel_id));
1675                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1676                                         },
1677                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1678                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1679                                                                 log_pubkey!(node_id),
1680                                                                 msg.contents.short_channel_id);
1681                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1682                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1683                                         },
1684                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1685                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1686                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1687                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1688                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1689                                                         _ => {},
1690                                                 }
1691                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1692                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1693                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1694                                                         _ => {},
1695                                                 }
1696                                         },
1697                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1698                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1699                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1700                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1701                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1702                                                         _ => {},
1703                                                 }
1704                                         },
1705                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1706                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1707                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1708                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1709                                         },
1710                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1711                                                 match *action {
1712                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1713                                                                 // We do not have the peers write lock, so we just store that we're
1714                                                                 // about to disconenct the peer and do it after we finish
1715                                                                 // processing most messages.
1716                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1717                                                         },
1718                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1719                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1720                                                         },
1721                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1722                                                         msgs::ErrorAction::IgnoreError => {
1723                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1724                                                         },
1725                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1726                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1727                                                                                 log_pubkey!(node_id),
1728                                                                                 msg.data);
1729                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1730                                                         },
1731                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1732                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1733                                                                                 log_pubkey!(node_id),
1734                                                                                 msg.data);
1735                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1736                                                         },
1737                                                 }
1738                                         },
1739                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1740                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1741                                         },
1742                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1743                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1744                                         }
1745                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1746                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1747                                                         log_pubkey!(node_id),
1748                                                         msg.short_channel_ids.len(),
1749                                                         msg.first_blocknum,
1750                                                         msg.number_of_blocks,
1751                                                         msg.sync_complete);
1752                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1753                                         }
1754                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1755                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1756                                         }
1757                                 }
1758                         }
1759
1760                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1761                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1762                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1763                         }
1764
1765                         for (descriptor, peer_mutex) in peers.iter() {
1766                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1767                         }
1768                 }
1769                 if !peers_to_disconnect.is_empty() {
1770                         let mut peers_lock = self.peers.write().unwrap();
1771                         let peers = &mut *peers_lock;
1772                         for (node_id, msg) in peers_to_disconnect.drain() {
1773                                 // Note that since we are holding the peers *write* lock we can
1774                                 // remove from node_id_to_descriptor immediately (as no other
1775                                 // thread can be holding the peer lock if we have the global write
1776                                 // lock).
1777
1778                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1779                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1780                                                 if let Some(msg) = msg {
1781                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1782                                                                         log_pubkey!(node_id),
1783                                                                         msg.data);
1784                                                         let mut peer = peer_mutex.lock().unwrap();
1785                                                         self.enqueue_message(&mut *peer, &msg);
1786                                                         // This isn't guaranteed to work, but if there is enough free
1787                                                         // room in the send buffer, put the error message there...
1788                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1789                                                 } else {
1790                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1791                                                 }
1792                                         }
1793                                         descriptor.disconnect_socket();
1794                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1795                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1796                                 }
1797                         }
1798                 }
1799         }
1800
1801         /// Indicates that the given socket descriptor's connection is now closed.
1802         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1803                 self.disconnect_event_internal(descriptor, false);
1804         }
1805
1806         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1807                 let mut peers = self.peers.write().unwrap();
1808                 let peer_option = peers.remove(descriptor);
1809                 match peer_option {
1810                         None => {
1811                                 // This is most likely a simple race condition where the user found that the socket
1812                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1813                                 // called this method. Either way we're disconnected, return.
1814                         },
1815                         Some(peer_lock) => {
1816                                 let peer = peer_lock.lock().unwrap();
1817                                 if let Some(node_id) = peer.their_node_id {
1818                                         log_trace!(self.logger,
1819                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1820                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1821                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1822                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1823                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1824                                 }
1825                         }
1826                 };
1827         }
1828
1829         /// Disconnect a peer given its node id.
1830         ///
1831         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1832         /// force-closing any channels we have with it.
1833         ///
1834         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1835         /// peer. Thus, be very careful about reentrancy issues.
1836         ///
1837         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1838         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1839                 let mut peers_lock = self.peers.write().unwrap();
1840                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1841                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1842                         peers_lock.remove(&descriptor);
1843                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1844                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1845                         descriptor.disconnect_socket();
1846                 }
1847         }
1848
1849         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1850         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1851         /// using regular ping/pongs.
1852         pub fn disconnect_all_peers(&self) {
1853                 let mut peers_lock = self.peers.write().unwrap();
1854                 self.node_id_to_descriptor.lock().unwrap().clear();
1855                 let peers = &mut *peers_lock;
1856                 for (mut descriptor, peer) in peers.drain() {
1857                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1858                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1859                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1860                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1861                         }
1862                         descriptor.disconnect_socket();
1863                 }
1864         }
1865
1866         /// This is called when we're blocked on sending additional gossip messages until we receive a
1867         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1868         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1869         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1870                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1871                         peer.awaiting_pong_timer_tick_intervals = -1;
1872                         let ping = msgs::Ping {
1873                                 ponglen: 0,
1874                                 byteslen: 64,
1875                         };
1876                         self.enqueue_message(peer, &ping);
1877                 }
1878         }
1879
1880         /// Send pings to each peer and disconnect those which did not respond to the last round of
1881         /// pings.
1882         ///
1883         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1884         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1885         /// time they have to respond before we disconnect them.
1886         ///
1887         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1888         /// issues!
1889         ///
1890         /// [`send_data`]: SocketDescriptor::send_data
1891         pub fn timer_tick_occurred(&self) {
1892                 let mut descriptors_needing_disconnect = Vec::new();
1893                 {
1894                         let peers_lock = self.peers.read().unwrap();
1895
1896                         for (descriptor, peer_mutex) in peers_lock.iter() {
1897                                 let mut peer = peer_mutex.lock().unwrap();
1898                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1899                                         // The peer needs to complete its handshake before we can exchange messages. We
1900                                         // give peers one timer tick to complete handshake, reusing
1901                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1902                                         // for handshake completion.
1903                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1904                                                 descriptors_needing_disconnect.push(descriptor.clone());
1905                                         } else {
1906                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1907                                         }
1908                                         continue;
1909                                 }
1910
1911                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1912                                         // Magic value set in `maybe_send_extra_ping`.
1913                                         peer.awaiting_pong_timer_tick_intervals = 1;
1914                                         peer.received_message_since_timer_tick = false;
1915                                         continue;
1916                                 }
1917
1918                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1919                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1920                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1921                                 {
1922                                         descriptors_needing_disconnect.push(descriptor.clone());
1923                                         continue;
1924                                 }
1925                                 peer.received_message_since_timer_tick = false;
1926
1927                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1928                                         peer.awaiting_pong_timer_tick_intervals += 1;
1929                                         continue;
1930                                 }
1931
1932                                 peer.awaiting_pong_timer_tick_intervals = 1;
1933                                 let ping = msgs::Ping {
1934                                         ponglen: 0,
1935                                         byteslen: 64,
1936                                 };
1937                                 self.enqueue_message(&mut *peer, &ping);
1938                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1939                         }
1940                 }
1941
1942                 if !descriptors_needing_disconnect.is_empty() {
1943                         {
1944                                 let mut peers_lock = self.peers.write().unwrap();
1945                                 for descriptor in descriptors_needing_disconnect.iter() {
1946                                         if let Some(peer) = peers_lock.remove(descriptor) {
1947                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1948                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1949                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1950                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1951                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1952                                                 }
1953                                         }
1954                                 }
1955                         }
1956
1957                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1958                                 descriptor.disconnect_socket();
1959                         }
1960                 }
1961         }
1962
1963         #[allow(dead_code)]
1964         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1965         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
1966         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1967         // message...
1968         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1969         #[deny(const_err)]
1970         #[allow(dead_code)]
1971         // ...by failing to compile if the number of addresses that would be half of a message is
1972         // smaller than 100:
1973         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
1974
1975         /// Generates a signed node_announcement from the given arguments, sending it to all connected
1976         /// peers. Note that peers will likely ignore this message unless we have at least one public
1977         /// channel which has at least six confirmations on-chain.
1978         ///
1979         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1980         /// node to humans. They carry no in-protocol meaning.
1981         ///
1982         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
1983         /// accepts incoming connections. These will be included in the node_announcement, publicly
1984         /// tying these addresses together and to this node. If you wish to preserve user privacy,
1985         /// addresses should likely contain only Tor Onion addresses.
1986         ///
1987         /// Panics if `addresses` is absurdly large (more than 100).
1988         ///
1989         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
1990         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1991                 if addresses.len() > 100 {
1992                         panic!("More than half the message size was taken up by public addresses!");
1993                 }
1994
1995                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1996                 // addresses be sorted for future compatibility.
1997                 addresses.sort_by_key(|addr| addr.get_id());
1998
1999                 let features = self.message_handler.chan_handler.provided_node_features()
2000                         .or(self.message_handler.route_handler.provided_node_features())
2001                         .or(self.message_handler.onion_message_handler.provided_node_features());
2002                 let announcement = msgs::UnsignedNodeAnnouncement {
2003                         features,
2004                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2005                         node_id: PublicKey::from_secret_key(&self.secp_ctx, &self.our_node_secret),
2006                         rgb, alias, addresses,
2007                         excess_address_data: Vec::new(),
2008                         excess_data: Vec::new(),
2009                 };
2010                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2011                 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_node_secret);
2012
2013                 let msg = msgs::NodeAnnouncement {
2014                         signature: node_announce_sig,
2015                         contents: announcement
2016                 };
2017
2018                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2019                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2020                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2021         }
2022 }
2023
2024 fn is_gossip_msg(type_id: u16) -> bool {
2025         match type_id {
2026                 msgs::ChannelAnnouncement::TYPE |
2027                 msgs::ChannelUpdate::TYPE |
2028                 msgs::NodeAnnouncement::TYPE |
2029                 msgs::QueryChannelRange::TYPE |
2030                 msgs::ReplyChannelRange::TYPE |
2031                 msgs::QueryShortChannelIds::TYPE |
2032                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2033                 _ => false
2034         }
2035 }
2036
2037 #[cfg(test)]
2038 mod tests {
2039         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2040         use ln::{msgs, wire};
2041         use ln::msgs::NetAddress;
2042         use util::events;
2043         use util::test_utils;
2044
2045         use bitcoin::secp256k1::Secp256k1;
2046         use bitcoin::secp256k1::{SecretKey, PublicKey};
2047
2048         use prelude::*;
2049         use sync::{Arc, Mutex};
2050         use core::sync::atomic::Ordering;
2051
2052         #[derive(Clone)]
2053         struct FileDescriptor {
2054                 fd: u16,
2055                 outbound_data: Arc<Mutex<Vec<u8>>>,
2056         }
2057         impl PartialEq for FileDescriptor {
2058                 fn eq(&self, other: &Self) -> bool {
2059                         self.fd == other.fd
2060                 }
2061         }
2062         impl Eq for FileDescriptor { }
2063         impl core::hash::Hash for FileDescriptor {
2064                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2065                         self.fd.hash(hasher)
2066                 }
2067         }
2068
2069         impl SocketDescriptor for FileDescriptor {
2070                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2071                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2072                         data.len()
2073                 }
2074
2075                 fn disconnect_socket(&mut self) {}
2076         }
2077
2078         struct PeerManagerCfg {
2079                 chan_handler: test_utils::TestChannelMessageHandler,
2080                 routing_handler: test_utils::TestRoutingMessageHandler,
2081                 logger: test_utils::TestLogger,
2082         }
2083
2084         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2085                 let mut cfgs = Vec::new();
2086                 for _ in 0..peer_count {
2087                         cfgs.push(
2088                                 PeerManagerCfg{
2089                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2090                                         logger: test_utils::TestLogger::new(),
2091                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2092                                 }
2093                         );
2094                 }
2095
2096                 cfgs
2097         }
2098
2099         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
2100                 let mut peers = Vec::new();
2101                 for i in 0..peer_count {
2102                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2103                         let ephemeral_bytes = [i as u8; 32];
2104                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2105                         let peer = PeerManager::new(msg_handler, node_secret, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
2106                         peers.push(peer);
2107                 }
2108
2109                 peers
2110         }
2111
2112         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
2113                 let secp_ctx = Secp256k1::new();
2114                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
2115                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2116                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2117                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2118                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2119                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2120                 peer_a.process_events();
2121
2122                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2123                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2124
2125                 peer_b.process_events();
2126                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2127                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2128
2129                 peer_a.process_events();
2130                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2131                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2132
2133                 (fd_a.clone(), fd_b.clone())
2134         }
2135
2136         #[test]
2137         fn test_disconnect_peer() {
2138                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2139                 // push a DisconnectPeer event to remove the node flagged by id
2140                 let cfgs = create_peermgr_cfgs(2);
2141                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2142                 let mut peers = create_network(2, &cfgs);
2143                 establish_connection(&peers[0], &peers[1]);
2144                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2145
2146                 let secp_ctx = Secp256k1::new();
2147                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2148
2149                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2150                         node_id: their_id,
2151                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2152                 });
2153                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2154                 peers[0].message_handler.chan_handler = &chan_handler;
2155
2156                 peers[0].process_events();
2157                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2158         }
2159
2160         #[test]
2161         fn test_send_simple_msg() {
2162                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2163                 // push a message from one peer to another.
2164                 let cfgs = create_peermgr_cfgs(2);
2165                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2166                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2167                 let mut peers = create_network(2, &cfgs);
2168                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2169                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2170
2171                 let secp_ctx = Secp256k1::new();
2172                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2173
2174                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2175                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2176                         node_id: their_id, msg: msg.clone()
2177                 });
2178                 peers[0].message_handler.chan_handler = &a_chan_handler;
2179
2180                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2181                 peers[1].message_handler.chan_handler = &b_chan_handler;
2182
2183                 peers[0].process_events();
2184
2185                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2186                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2187         }
2188
2189         #[test]
2190         fn test_disconnect_all_peer() {
2191                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2192                 // then calls disconnect_all_peers
2193                 let cfgs = create_peermgr_cfgs(2);
2194                 let peers = create_network(2, &cfgs);
2195                 establish_connection(&peers[0], &peers[1]);
2196                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2197
2198                 peers[0].disconnect_all_peers();
2199                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2200         }
2201
2202         #[test]
2203         fn test_timer_tick_occurred() {
2204                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2205                 let cfgs = create_peermgr_cfgs(2);
2206                 let peers = create_network(2, &cfgs);
2207                 establish_connection(&peers[0], &peers[1]);
2208                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2209
2210                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2211                 peers[0].timer_tick_occurred();
2212                 peers[0].process_events();
2213                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2214
2215                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2216                 peers[0].timer_tick_occurred();
2217                 peers[0].process_events();
2218                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2219         }
2220
2221         #[test]
2222         fn test_do_attempt_write_data() {
2223                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2224                 let cfgs = create_peermgr_cfgs(2);
2225                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2226                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2227                 let peers = create_network(2, &cfgs);
2228
2229                 // By calling establish_connect, we trigger do_attempt_write_data between
2230                 // the peers. Previously this function would mistakenly enter an infinite loop
2231                 // when there were more channel messages available than could fit into a peer's
2232                 // buffer. This issue would now be detected by this test (because we use custom
2233                 // RoutingMessageHandlers that intentionally return more channel messages
2234                 // than can fit into a peer's buffer).
2235                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2236
2237                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2238                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2239                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2240                         peers[1].process_events();
2241                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2242                         assert!(!a_read_data.is_empty());
2243
2244                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2245                         peers[0].process_events();
2246
2247                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2248                         assert!(!b_read_data.is_empty());
2249                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2250
2251                         peers[0].process_events();
2252                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2253                 }
2254
2255                 // Check that each peer has received the expected number of channel updates and channel
2256                 // announcements.
2257                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2258                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2259                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2260                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2261         }
2262
2263         #[test]
2264         fn test_handshake_timeout() {
2265                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2266                 // tick.
2267                 let cfgs = create_peermgr_cfgs(2);
2268                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2269                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2270                 let peers = create_network(2, &cfgs);
2271
2272                 let secp_ctx = Secp256k1::new();
2273                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2274                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2275                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2276                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2277                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2278
2279                 // If we get a single timer tick before completion, that's fine
2280                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2281                 peers[0].timer_tick_occurred();
2282                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2283
2284                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2285                 peers[0].process_events();
2286                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2287                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2288                 peers[1].process_events();
2289
2290                 // ...but if we get a second timer tick, we should disconnect the peer
2291                 peers[0].timer_tick_occurred();
2292                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2293
2294                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2295                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2296         }
2297
2298         #[test]
2299         fn test_filter_addresses(){
2300                 // Tests the filter_addresses function.
2301
2302                 // For (10/8)
2303                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2304                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2305                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2306                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2307                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2308                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2309
2310                 // For (0/8)
2311                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2312                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2313                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2314                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2315                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2316                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2317
2318                 // For (100.64/10)
2319                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2320                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2321                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2322                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2323                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2324                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2325
2326                 // For (127/8)
2327                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2328                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2329                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2330                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2331                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2332                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2333
2334                 // For (169.254/16)
2335                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2336                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2337                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2338                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2339                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2340                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2341
2342                 // For (172.16/12)
2343                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2344                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2345                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2346                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2347                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2348                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2349
2350                 // For (192.168/16)
2351                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2352                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2353                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2354                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2355                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2356                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2357
2358                 // For (192.88.99/24)
2359                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2360                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2361                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2362                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2363                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2364                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2365
2366                 // For other IPv4 addresses
2367                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2368                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2369                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2370                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2371                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2372                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2373
2374                 // For (2000::/3)
2375                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2376                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2377                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2378                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2379                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2380                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2381
2382                 // For other IPv6 addresses
2383                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2384                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2385                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2386                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2387                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2388                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2389
2390                 // For (None)
2391                 assert_eq!(filter_addresses(None), None);
2392         }
2393 }