Parameterize NetGraphMsgHandler with NetworkGraph
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use util::atomic_counter::AtomicCounter;
28 use util::events::{MessageSendEvent, MessageSendEventsProvider};
29 use util::logger::Logger;
30 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
31
32 use prelude::*;
33 use io;
34 use alloc::collections::LinkedList;
35 use sync::{Arc, Mutex};
36 use core::{cmp, hash, fmt, mem};
37 use core::ops::Deref;
38 use core::convert::Infallible;
39 #[cfg(feature = "std")] use std::error;
40
41 use bitcoin::hashes::sha256::Hash as Sha256;
42 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
43 use bitcoin::hashes::{HashEngine, Hash};
44
45 /// Handler for BOLT1-compliant messages.
46 pub trait CustomMessageHandler: wire::CustomMessageReader {
47         /// Called with the message type that was received and the buffer to be read.
48         /// Can return a `MessageHandlingError` if the message could not be handled.
49         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
50
51         /// Gets the list of pending messages which were generated by the custom message
52         /// handler, clearing the list in the process. The first tuple element must
53         /// correspond to the intended recipients node ids. If no connection to one of the
54         /// specified node does not exist, the message is simply not sent to it.
55         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
56 }
57
58 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
59 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
60 pub struct IgnoringMessageHandler{}
61 impl MessageSendEventsProvider for IgnoringMessageHandler {
62         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
63 }
64 impl RoutingMessageHandler for IgnoringMessageHandler {
65         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
66         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
68         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
69                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
70         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
71         fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
72         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
73         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
74         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
76 }
77 impl Deref for IgnoringMessageHandler {
78         type Target = IgnoringMessageHandler;
79         fn deref(&self) -> &Self { self }
80 }
81
82 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
83 // method that takes self for it.
84 impl wire::Type for Infallible {
85         fn type_id(&self) -> u16 {
86                 unreachable!();
87         }
88 }
89 impl Writeable for Infallible {
90         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
91                 unreachable!();
92         }
93 }
94
95 impl wire::CustomMessageReader for IgnoringMessageHandler {
96         type CustomMessage = Infallible;
97         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
98                 Ok(None)
99         }
100 }
101
102 impl CustomMessageHandler for IgnoringMessageHandler {
103         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
104                 // Since we always return `None` in the read the handle method should never be called.
105                 unreachable!();
106         }
107
108         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
109 }
110
111 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
112 /// You can provide one of these as the route_handler in a MessageHandler.
113 pub struct ErroringMessageHandler {
114         message_queue: Mutex<Vec<MessageSendEvent>>
115 }
116 impl ErroringMessageHandler {
117         /// Constructs a new ErroringMessageHandler
118         pub fn new() -> Self {
119                 Self { message_queue: Mutex::new(Vec::new()) }
120         }
121         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
122                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
123                         action: msgs::ErrorAction::SendErrorMessage {
124                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
125                         },
126                         node_id: node_id.clone(),
127                 });
128         }
129 }
130 impl MessageSendEventsProvider for ErroringMessageHandler {
131         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
132                 let mut res = Vec::new();
133                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
134                 res
135         }
136 }
137 impl ChannelMessageHandler for ErroringMessageHandler {
138         // Any messages which are related to a specific channel generate an error message to let the
139         // peer know we don't care about channels.
140         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
141                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
142         }
143         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
144                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
145         }
146         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
147                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
148         }
149         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
150                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
151         }
152         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
153                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
154         }
155         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
156                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
157         }
158         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
159                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
160         }
161         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
162                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
163         }
164         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
165                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
166         }
167         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
168                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
169         }
170         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
171                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
172         }
173         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
174                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
175         }
176         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
177                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
178         }
179         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
180                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
181         }
182         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
183                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
184         }
185         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
186                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
187         }
188         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
189         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
190         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
191         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
192         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
193 }
194 impl Deref for ErroringMessageHandler {
195         type Target = ErroringMessageHandler;
196         fn deref(&self) -> &Self { self }
197 }
198
199 /// Provides references to trait impls which handle different types of messages.
200 pub struct MessageHandler<CM: Deref, RM: Deref> where
201                 CM::Target: ChannelMessageHandler,
202                 RM::Target: RoutingMessageHandler {
203         /// A message handler which handles messages specific to channels. Usually this is just a
204         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
205         ///
206         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
207         pub chan_handler: CM,
208         /// A message handler which handles messages updating our knowledge of the network channel
209         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
210         /// [`IgnoringMessageHandler`].
211         ///
212         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
213         pub route_handler: RM,
214 }
215
216 /// Provides an object which can be used to send data to and which uniquely identifies a connection
217 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
218 /// implement Hash to meet the PeerManager API.
219 ///
220 /// For efficiency, Clone should be relatively cheap for this type.
221 ///
222 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
223 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
224 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
225 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
226 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
227 /// to simply use another value which is guaranteed to be globally unique instead.
228 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
229         /// Attempts to send some data from the given slice to the peer.
230         ///
231         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
232         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
233         /// called and further write attempts may occur until that time.
234         ///
235         /// If the returned size is smaller than `data.len()`, a
236         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
237         /// written. Additionally, until a `send_data` event completes fully, no further
238         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
239         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
240         /// until then.
241         ///
242         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
243         /// (indicating that read events should be paused to prevent DoS in the send buffer),
244         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
245         /// `resume_read` of false carries no meaning, and should not cause any action.
246         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
247         /// Disconnect the socket pointed to by this SocketDescriptor.
248         ///
249         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
250         /// call (doing so is a noop).
251         fn disconnect_socket(&mut self);
252 }
253
254 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
255 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
256 /// descriptor.
257 #[derive(Clone)]
258 pub struct PeerHandleError {
259         /// Used to indicate that we probably can't make any future connections to this peer, implying
260         /// we should go ahead and force-close any channels we have with it.
261         pub no_connection_possible: bool,
262 }
263 impl fmt::Debug for PeerHandleError {
264         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
265                 formatter.write_str("Peer Sent Invalid Data")
266         }
267 }
268 impl fmt::Display for PeerHandleError {
269         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
270                 formatter.write_str("Peer Sent Invalid Data")
271         }
272 }
273
274 #[cfg(feature = "std")]
275 impl error::Error for PeerHandleError {
276         fn description(&self) -> &str {
277                 "Peer Sent Invalid Data"
278         }
279 }
280
281 enum InitSyncTracker{
282         NoSyncRequested,
283         ChannelsSyncing(u64),
284         NodesSyncing(PublicKey),
285 }
286
287 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
288 /// forwarding gossip messages to peers altogether.
289 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
290
291 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
292 /// we have fewer than this many messages in the outbound buffer again.
293 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
294 /// refilled as we send bytes.
295 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
296 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
297 /// the peer.
298 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
299
300 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
301 /// the socket receive buffer before receiving the ping.
302 ///
303 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
304 /// including any network delays, outbound traffic, or the same for messages from other peers.
305 ///
306 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
307 /// per connected peer to respond to a ping, as long as they send us at least one message during
308 /// each tick, ensuring we aren't actually just disconnected.
309 /// With a timer tick interval of five seconds, this translates to about 30 seconds per connected
310 /// peer.
311 ///
312 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
313 /// two connected peers, assuming most LDK-running systems have at least two cores.
314 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 6;
315
316 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
317 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
318 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
319 /// process before the next ping.
320 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
321
322 struct Peer {
323         channel_encryptor: PeerChannelEncryptor,
324         their_node_id: Option<PublicKey>,
325         their_features: Option<InitFeatures>,
326
327         pending_outbound_buffer: LinkedList<Vec<u8>>,
328         pending_outbound_buffer_first_msg_offset: usize,
329         awaiting_write_event: bool,
330
331         pending_read_buffer: Vec<u8>,
332         pending_read_buffer_pos: usize,
333         pending_read_is_header: bool,
334
335         sync_status: InitSyncTracker,
336
337         msgs_sent_since_pong: usize,
338         awaiting_pong_timer_tick_intervals: i8,
339         received_message_since_timer_tick: bool,
340 }
341
342 impl Peer {
343         /// Returns true if the channel announcements/updates for the given channel should be
344         /// forwarded to this peer.
345         /// If we are sending our routing table to this peer and we have not yet sent channel
346         /// announcements/updates for the given channel_id then we will send it when we get to that
347         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
348         /// sent the old versions, we should send the update, and so return true here.
349         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
350                 match self.sync_status {
351                         InitSyncTracker::NoSyncRequested => true,
352                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
353                         InitSyncTracker::NodesSyncing(_) => true,
354                 }
355         }
356
357         /// Similar to the above, but for node announcements indexed by node_id.
358         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
359                 match self.sync_status {
360                         InitSyncTracker::NoSyncRequested => true,
361                         InitSyncTracker::ChannelsSyncing(_) => false,
362                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
363                 }
364         }
365 }
366
367 struct PeerHolder<Descriptor: SocketDescriptor> {
368         peers: HashMap<Descriptor, Peer>,
369         /// Only add to this set when noise completes:
370         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
371 }
372
373 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
374 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
375 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
376 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
377 /// issues such as overly long function definitions.
378 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
379
380 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
381 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
382 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
383 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
384 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
385 /// helps with issues such as long function definitions.
386 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
387
388 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
389 /// socket events into messages which it passes on to its [`MessageHandler`].
390 ///
391 /// Locks are taken internally, so you must never assume that reentrancy from a
392 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
393 ///
394 /// Calls to [`read_event`] will decode relevant messages and pass them to the
395 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
396 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
397 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
398 /// calls only after previous ones have returned.
399 ///
400 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
401 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
402 /// essentially you should default to using a SimpleRefPeerManager, and use a
403 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
404 /// you're using lightning-net-tokio.
405 ///
406 /// [`read_event`]: PeerManager::read_event
407 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
408                 CM::Target: ChannelMessageHandler,
409                 RM::Target: RoutingMessageHandler,
410                 L::Target: Logger,
411                 CMH::Target: CustomMessageHandler {
412         message_handler: MessageHandler<CM, RM>,
413         peers: Mutex<PeerHolder<Descriptor>>,
414         our_node_secret: SecretKey,
415         ephemeral_key_midstate: Sha256Engine,
416         custom_message_handler: CMH,
417
418         peer_counter: AtomicCounter,
419
420         logger: L,
421 }
422
423 enum MessageHandlingError {
424         PeerHandleError(PeerHandleError),
425         LightningError(LightningError),
426 }
427
428 impl From<PeerHandleError> for MessageHandlingError {
429         fn from(error: PeerHandleError) -> Self {
430                 MessageHandlingError::PeerHandleError(error)
431         }
432 }
433
434 impl From<LightningError> for MessageHandlingError {
435         fn from(error: LightningError) -> Self {
436                 MessageHandlingError::LightningError(error)
437         }
438 }
439
440 macro_rules! encode_msg {
441         ($msg: expr) => {{
442                 let mut buffer = VecWriter(Vec::new());
443                 wire::write($msg, &mut buffer).unwrap();
444                 buffer.0
445         }}
446 }
447
448 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
449                 CM::Target: ChannelMessageHandler,
450                 L::Target: Logger {
451         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
452         /// handler is used and network graph messages are ignored.
453         ///
454         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
455         /// cryptographically secure random bytes.
456         ///
457         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
458         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
459                 Self::new(MessageHandler {
460                         chan_handler: channel_message_handler,
461                         route_handler: IgnoringMessageHandler{},
462                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
463         }
464 }
465
466 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
467                 RM::Target: RoutingMessageHandler,
468                 L::Target: Logger {
469         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
470         /// handler is used and messages related to channels will be ignored (or generate error
471         /// messages). Note that some other lightning implementations time-out connections after some
472         /// time if no channel is built with the peer.
473         ///
474         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
475         /// cryptographically secure random bytes.
476         ///
477         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
478         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
479                 Self::new(MessageHandler {
480                         chan_handler: ErroringMessageHandler::new(),
481                         route_handler: routing_message_handler,
482                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
483         }
484 }
485
486 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
487 /// This works around `format!()` taking a reference to each argument, preventing
488 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
489 /// due to lifetime errors.
490 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
491 impl core::fmt::Display for OptionalFromDebugger<'_> {
492         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
493                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
494         }
495 }
496
497 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
498                 CM::Target: ChannelMessageHandler,
499                 RM::Target: RoutingMessageHandler,
500                 L::Target: Logger,
501                 CMH::Target: CustomMessageHandler {
502         /// Constructs a new PeerManager with the given message handlers and node_id secret key
503         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
504         /// cryptographically secure random bytes.
505         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
506                 let mut ephemeral_key_midstate = Sha256::engine();
507                 ephemeral_key_midstate.input(ephemeral_random_data);
508
509                 PeerManager {
510                         message_handler,
511                         peers: Mutex::new(PeerHolder {
512                                 peers: HashMap::new(),
513                                 node_id_to_descriptor: HashMap::new()
514                         }),
515                         our_node_secret,
516                         ephemeral_key_midstate,
517                         peer_counter: AtomicCounter::new(),
518                         logger,
519                         custom_message_handler,
520                 }
521         }
522
523         /// Get the list of node ids for peers which have completed the initial handshake.
524         ///
525         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
526         /// new_outbound_connection, however entries will only appear once the initial handshake has
527         /// completed and we are sure the remote peer has the private key for the given node_id.
528         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
529                 let peers = self.peers.lock().unwrap();
530                 peers.peers.values().filter_map(|p| {
531                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
532                                 return None;
533                         }
534                         p.their_node_id
535                 }).collect()
536         }
537
538         fn get_ephemeral_key(&self) -> SecretKey {
539                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
540                 let counter = self.peer_counter.get_increment();
541                 ephemeral_hash.input(&counter.to_le_bytes());
542                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
543         }
544
545         /// Indicates a new outbound connection has been established to a node with the given node_id.
546         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
547         /// descriptor but must disconnect the connection immediately.
548         ///
549         /// Returns a small number of bytes to send to the remote node (currently always 50).
550         ///
551         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
552         /// [`socket_disconnected()`].
553         ///
554         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
555         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
556                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
557                 let res = peer_encryptor.get_act_one().to_vec();
558                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
559
560                 let mut peers = self.peers.lock().unwrap();
561                 if peers.peers.insert(descriptor, Peer {
562                         channel_encryptor: peer_encryptor,
563                         their_node_id: None,
564                         their_features: None,
565
566                         pending_outbound_buffer: LinkedList::new(),
567                         pending_outbound_buffer_first_msg_offset: 0,
568                         awaiting_write_event: false,
569
570                         pending_read_buffer,
571                         pending_read_buffer_pos: 0,
572                         pending_read_is_header: false,
573
574                         sync_status: InitSyncTracker::NoSyncRequested,
575
576                         msgs_sent_since_pong: 0,
577                         awaiting_pong_timer_tick_intervals: 0,
578                         received_message_since_timer_tick: false,
579                 }).is_some() {
580                         panic!("PeerManager driver duplicated descriptors!");
581                 };
582                 Ok(res)
583         }
584
585         /// Indicates a new inbound connection has been established.
586         ///
587         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
588         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
589         /// call socket_disconnected for the new descriptor but must disconnect the connection
590         /// immediately.
591         ///
592         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
593         /// [`socket_disconnected()`].
594         ///
595         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
596         pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
597                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
598                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
599
600                 let mut peers = self.peers.lock().unwrap();
601                 if peers.peers.insert(descriptor, Peer {
602                         channel_encryptor: peer_encryptor,
603                         their_node_id: None,
604                         their_features: None,
605
606                         pending_outbound_buffer: LinkedList::new(),
607                         pending_outbound_buffer_first_msg_offset: 0,
608                         awaiting_write_event: false,
609
610                         pending_read_buffer,
611                         pending_read_buffer_pos: 0,
612                         pending_read_is_header: false,
613
614                         sync_status: InitSyncTracker::NoSyncRequested,
615
616                         msgs_sent_since_pong: 0,
617                         awaiting_pong_timer_tick_intervals: 0,
618                         received_message_since_timer_tick: false,
619                 }).is_some() {
620                         panic!("PeerManager driver duplicated descriptors!");
621                 };
622                 Ok(())
623         }
624
625         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
626                 while !peer.awaiting_write_event {
627                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
628                                 match peer.sync_status {
629                                         InitSyncTracker::NoSyncRequested => {},
630                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
631                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
632                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
633                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
634                                                         self.enqueue_message(peer, announce);
635                                                         if let &Some(ref update_a) = update_a_option {
636                                                                 self.enqueue_message(peer, update_a);
637                                                         }
638                                                         if let &Some(ref update_b) = update_b_option {
639                                                                 self.enqueue_message(peer, update_b);
640                                                         }
641                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
642                                                 }
643                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
644                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
645                                                 }
646                                         },
647                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
648                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
649                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
650                                                 for msg in all_messages.iter() {
651                                                         self.enqueue_message(peer, msg);
652                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
653                                                 }
654                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
655                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
656                                                 }
657                                         },
658                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
659                                         InitSyncTracker::NodesSyncing(key) => {
660                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
661                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
662                                                 for msg in all_messages.iter() {
663                                                         self.enqueue_message(peer, msg);
664                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
665                                                 }
666                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
667                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
668                                                 }
669                                         },
670                                 }
671                         }
672                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
673                                 self.maybe_send_extra_ping(peer);
674                         }
675
676                         if {
677                                 let next_buff = match peer.pending_outbound_buffer.front() {
678                                         None => return,
679                                         Some(buff) => buff,
680                                 };
681
682                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
683                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
684                                 let data_sent = descriptor.send_data(pending, should_be_reading);
685                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
686                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
687                         } {
688                                 peer.pending_outbound_buffer_first_msg_offset = 0;
689                                 peer.pending_outbound_buffer.pop_front();
690                         } else {
691                                 peer.awaiting_write_event = true;
692                         }
693                 }
694         }
695
696         /// Indicates that there is room to write data to the given socket descriptor.
697         ///
698         /// May return an Err to indicate that the connection should be closed.
699         ///
700         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
701         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
702         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
703         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
704         /// sufficient!
705         ///
706         /// [`send_data`]: SocketDescriptor::send_data
707         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
708         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
709                 let mut peers = self.peers.lock().unwrap();
710                 match peers.peers.get_mut(descriptor) {
711                         None => {
712                                 // This is most likely a simple race condition where the user found that the socket
713                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
714                                 // this method. Return an error to make sure we get disconnected.
715                                 return Err(PeerHandleError { no_connection_possible: false });
716                         },
717                         Some(peer) => {
718                                 peer.awaiting_write_event = false;
719                                 self.do_attempt_write_data(descriptor, peer);
720                         }
721                 };
722                 Ok(())
723         }
724
725         /// Indicates that data was read from the given socket descriptor.
726         ///
727         /// May return an Err to indicate that the connection should be closed.
728         ///
729         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
730         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
731         /// [`send_data`] calls to handle responses.
732         ///
733         /// If `Ok(true)` is returned, further read_events should not be triggered until a
734         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
735         /// send buffer).
736         ///
737         /// [`send_data`]: SocketDescriptor::send_data
738         /// [`process_events`]: PeerManager::process_events
739         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
740                 match self.do_read_event(peer_descriptor, data) {
741                         Ok(res) => Ok(res),
742                         Err(e) => {
743                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
744                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
745                                 Err(e)
746                         }
747                 }
748         }
749
750         /// Append a message to a peer's pending outbound/write buffer
751         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
752                 peer.msgs_sent_since_pong += 1;
753                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
754         }
755
756         /// Append a message to a peer's pending outbound/write buffer
757         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
758                 let mut buffer = VecWriter(Vec::with_capacity(2048));
759                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
760                 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
761                 self.enqueue_encoded_message(peer, &buffer.0);
762         }
763
764         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
765                 let pause_read = {
766                         let mut peers_lock = self.peers.lock().unwrap();
767                         let peers = &mut *peers_lock;
768                         let mut msgs_to_forward = Vec::new();
769                         let mut peer_node_id = None;
770                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
771                                 None => {
772                                         // This is most likely a simple race condition where the user read some bytes
773                                         // from the socket, then we told the user to `disconnect_socket()`, then they
774                                         // called this method. Return an error to make sure we get disconnected.
775                                         return Err(PeerHandleError { no_connection_possible: false });
776                                 },
777                                 Some(peer) => {
778                                         assert!(peer.pending_read_buffer.len() > 0);
779                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
780
781                                         let mut read_pos = 0;
782                                         while read_pos < data.len() {
783                                                 {
784                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
785                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
786                                                         read_pos += data_to_copy;
787                                                         peer.pending_read_buffer_pos += data_to_copy;
788                                                 }
789
790                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
791                                                         peer.pending_read_buffer_pos = 0;
792
793                                                         macro_rules! try_potential_handleerror {
794                                                                 ($thing: expr) => {
795                                                                         match $thing {
796                                                                                 Ok(x) => x,
797                                                                                 Err(e) => {
798                                                                                         match e.action {
799                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
800                                                                                                         //TODO: Try to push msg
801                                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
802                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
803                                                                                                 },
804                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
805                                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
806                                                                                                         continue
807                                                                                                 },
808                                                                                                 msgs::ErrorAction::IgnoreError => {
809                                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
810                                                                                                         continue;
811                                                                                                 },
812                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
813                                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
814                                                                                                         self.enqueue_message(peer, &msg);
815                                                                                                         continue;
816                                                                                                 },
817                                                                                         }
818                                                                                 }
819                                                                         }
820                                                                 }
821                                                         }
822
823                                                         macro_rules! insert_node_id {
824                                                                 () => {
825                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
826                                                                                 hash_map::Entry::Occupied(_) => {
827                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
828                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
829                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
830                                                                                 },
831                                                                                 hash_map::Entry::Vacant(entry) => {
832                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
833                                                                                         entry.insert(peer_descriptor.clone())
834                                                                                 },
835                                                                         };
836                                                                 }
837                                                         }
838
839                                                         let next_step = peer.channel_encryptor.get_noise_step();
840                                                         match next_step {
841                                                                 NextNoiseStep::ActOne => {
842                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
843                                                                         peer.pending_outbound_buffer.push_back(act_two);
844                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
845                                                                 },
846                                                                 NextNoiseStep::ActTwo => {
847                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
848                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
849                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
850                                                                         peer.pending_read_is_header = true;
851
852                                                                         peer.their_node_id = Some(their_node_id);
853                                                                         insert_node_id!();
854                                                                         let features = InitFeatures::known();
855                                                                         let resp = msgs::Init { features };
856                                                                         self.enqueue_message(peer, &resp);
857                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
858                                                                 },
859                                                                 NextNoiseStep::ActThree => {
860                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
861                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
862                                                                         peer.pending_read_is_header = true;
863                                                                         peer.their_node_id = Some(their_node_id);
864                                                                         insert_node_id!();
865                                                                         let features = InitFeatures::known();
866                                                                         let resp = msgs::Init { features };
867                                                                         self.enqueue_message(peer, &resp);
868                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
869                                                                 },
870                                                                 NextNoiseStep::NoiseComplete => {
871                                                                         if peer.pending_read_is_header {
872                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
873                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
874                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
875                                                                                 if msg_len < 2 { // Need at least the message type tag
876                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
877                                                                                 }
878                                                                                 peer.pending_read_is_header = false;
879                                                                         } else {
880                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
881                                                                                 assert!(msg_data.len() >= 2);
882
883                                                                                 // Reset read buffer
884                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
885                                                                                 peer.pending_read_is_header = true;
886
887                                                                                 let mut reader = io::Cursor::new(&msg_data[..]);
888                                                                                 let message_result = wire::read(&mut reader, &*self.custom_message_handler);
889                                                                                 let message = match message_result {
890                                                                                         Ok(x) => x,
891                                                                                         Err(e) => {
892                                                                                                 match e {
893                                                                                                         msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
894                                                                                                         msgs::DecodeError::UnknownRequiredFeature => {
895                                                                                                                 log_trace!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
896                                                                                                                 continue;
897                                                                                                         }
898                                                                                                         msgs::DecodeError::InvalidValue => {
899                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
900                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
901                                                                                                         }
902                                                                                                         msgs::DecodeError::ShortRead => {
903                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
904                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
905                                                                                                         }
906                                                                                                         msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
907                                                                                                         msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
908                                                                                                         msgs::DecodeError::UnsupportedCompression => {
909                                                                                                                 log_trace!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
910                                                                                                                 continue;
911                                                                                                         }
912                                                                                                 }
913                                                                                         }
914                                                                                 };
915
916                                                                                 match self.handle_message(peer, message) {
917                                                                                         Err(handling_error) => match handling_error {
918                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
919                                                                                                 MessageHandlingError::LightningError(e) => {
920                                                                                                         try_potential_handleerror!(Err(e));
921                                                                                                 },
922                                                                                         },
923                                                                                         Ok(Some(msg)) => {
924                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
925                                                                                                 msgs_to_forward.push(msg);
926                                                                                         },
927                                                                                         Ok(None) => {},
928                                                                                 }
929                                                                         }
930                                                                 }
931                                                         }
932                                                 }
933                                         }
934
935                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
936                                 }
937                         };
938
939                         for msg in msgs_to_forward.drain(..) {
940                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
941                         }
942
943                         pause_read
944                 };
945
946                 Ok(pause_read)
947         }
948
949         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
950         /// Returns the message back if it needs to be broadcasted to all other peers.
951         fn handle_message(
952                 &self,
953                 peer: &mut Peer,
954                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
955         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
956                 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
957                 peer.received_message_since_timer_tick = true;
958
959                 // Need an Init as first message
960                 if let wire::Message::Init(_) = message {
961                 } else if peer.their_features.is_none() {
962                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
963                         return Err(PeerHandleError{ no_connection_possible: false }.into());
964                 }
965
966                 let mut should_forward = None;
967
968                 match message {
969                         // Setup and Control messages:
970                         wire::Message::Init(msg) => {
971                                 if msg.features.requires_unknown_bits() {
972                                         log_debug!(self.logger, "Peer features required unknown version bits");
973                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
974                                 }
975                                 if peer.their_features.is_some() {
976                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
977                                 }
978
979                                 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);
980
981                                 if msg.features.initial_routing_sync() {
982                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
983                                 }
984                                 if !msg.features.supports_static_remote_key() {
985                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
986                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
987                                 }
988
989                                 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
990
991                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
992                                 peer.their_features = Some(msg.features);
993                         },
994                         wire::Message::Error(msg) => {
995                                 let mut data_is_printable = true;
996                                 for b in msg.data.bytes() {
997                                         if b < 32 || b > 126 {
998                                                 data_is_printable = false;
999                                                 break;
1000                                         }
1001                                 }
1002
1003                                 if data_is_printable {
1004                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1005                                 } else {
1006                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1007                                 }
1008                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1009                                 if msg.channel_id == [0; 32] {
1010                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1011                                 }
1012                         },
1013
1014                         wire::Message::Ping(msg) => {
1015                                 if msg.ponglen < 65532 {
1016                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1017                                         self.enqueue_message(peer, &resp);
1018                                 }
1019                         },
1020                         wire::Message::Pong(_msg) => {
1021                                 peer.awaiting_pong_timer_tick_intervals = 0;
1022                                 peer.msgs_sent_since_pong = 0;
1023                         },
1024
1025                         // Channel messages:
1026                         wire::Message::OpenChannel(msg) => {
1027                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1028                         },
1029                         wire::Message::AcceptChannel(msg) => {
1030                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1031                         },
1032
1033                         wire::Message::FundingCreated(msg) => {
1034                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1035                         },
1036                         wire::Message::FundingSigned(msg) => {
1037                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1038                         },
1039                         wire::Message::FundingLocked(msg) => {
1040                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1041                         },
1042
1043                         wire::Message::Shutdown(msg) => {
1044                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1045                         },
1046                         wire::Message::ClosingSigned(msg) => {
1047                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1048                         },
1049
1050                         // Commitment messages:
1051                         wire::Message::UpdateAddHTLC(msg) => {
1052                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1053                         },
1054                         wire::Message::UpdateFulfillHTLC(msg) => {
1055                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1056                         },
1057                         wire::Message::UpdateFailHTLC(msg) => {
1058                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1059                         },
1060                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1061                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1062                         },
1063
1064                         wire::Message::CommitmentSigned(msg) => {
1065                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1066                         },
1067                         wire::Message::RevokeAndACK(msg) => {
1068                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1069                         },
1070                         wire::Message::UpdateFee(msg) => {
1071                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1072                         },
1073                         wire::Message::ChannelReestablish(msg) => {
1074                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1075                         },
1076
1077                         // Routing messages:
1078                         wire::Message::AnnouncementSignatures(msg) => {
1079                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1080                         },
1081                         wire::Message::ChannelAnnouncement(msg) => {
1082                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1083                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1084                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1085                                 }
1086                         },
1087                         wire::Message::NodeAnnouncement(msg) => {
1088                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1089                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1090                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1091                                 }
1092                         },
1093                         wire::Message::ChannelUpdate(msg) => {
1094                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1095                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1096                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1097                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1098                                 }
1099                         },
1100                         wire::Message::QueryShortChannelIds(msg) => {
1101                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1102                         },
1103                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1104                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1105                         },
1106                         wire::Message::QueryChannelRange(msg) => {
1107                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1108                         },
1109                         wire::Message::ReplyChannelRange(msg) => {
1110                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1111                         },
1112                         wire::Message::GossipTimestampFilter(_msg) => {
1113                                 // TODO: handle message
1114                         },
1115
1116                         // Unknown messages:
1117                         wire::Message::Unknown(type_id) if message.is_even() => {
1118                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1119                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1120                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1121                         },
1122                         wire::Message::Unknown(type_id) => {
1123                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1124                         },
1125                         wire::Message::Custom(custom) => {
1126                                 self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
1127                         },
1128                 };
1129                 Ok(should_forward)
1130         }
1131
1132         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1133                 match msg {
1134                         wire::Message::ChannelAnnouncement(ref msg) => {
1135                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1136                                 let encoded_msg = encode_msg!(msg);
1137
1138                                 for (_, peer) in peers.peers.iter_mut() {
1139                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1140                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1141                                                 continue
1142                                         }
1143                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1144                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1145                                         {
1146                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1147                                                 continue;
1148                                         }
1149                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1150                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1151                                                 continue;
1152                                         }
1153                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1154                                                 continue;
1155                                         }
1156                                         self.enqueue_encoded_message(peer, &encoded_msg);
1157                                 }
1158                         },
1159                         wire::Message::NodeAnnouncement(ref msg) => {
1160                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1161                                 let encoded_msg = encode_msg!(msg);
1162
1163                                 for (_, peer) in peers.peers.iter_mut() {
1164                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1165                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1166                                                 continue
1167                                         }
1168                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1169                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1170                                         {
1171                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1172                                                 continue;
1173                                         }
1174                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1175                                                 continue;
1176                                         }
1177                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1178                                                 continue;
1179                                         }
1180                                         self.enqueue_encoded_message(peer, &encoded_msg);
1181                                 }
1182                         },
1183                         wire::Message::ChannelUpdate(ref msg) => {
1184                                 log_trace!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1185                                 let encoded_msg = encode_msg!(msg);
1186
1187                                 for (_, peer) in peers.peers.iter_mut() {
1188                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1189                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1190                                                 continue
1191                                         }
1192                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1193                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1194                                         {
1195                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1196                                                 continue;
1197                                         }
1198                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1199                                                 continue;
1200                                         }
1201                                         self.enqueue_encoded_message(peer, &encoded_msg);
1202                                 }
1203                         },
1204                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1205                 }
1206         }
1207
1208         /// Checks for any events generated by our handlers and processes them. Includes sending most
1209         /// response messages as well as messages generated by calls to handler functions directly (eg
1210         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1211         ///
1212         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1213         /// issues!
1214         ///
1215         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1216         /// or one of the other clients provided in our language bindings.
1217         ///
1218         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1219         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1220         /// [`send_data`]: SocketDescriptor::send_data
1221         pub fn process_events(&self) {
1222                 {
1223                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1224                         // buffer by doing things like announcing channels on another node. We should be willing to
1225                         // drop optional-ish messages when send buffers get full!
1226
1227                         let mut peers_lock = self.peers.lock().unwrap();
1228                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1229                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1230                         let peers = &mut *peers_lock;
1231                         macro_rules! get_peer_for_forwarding {
1232                                 ($node_id: expr) => {
1233                                         {
1234                                                 match peers.node_id_to_descriptor.get($node_id) {
1235                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1236                                                                 Some(peer) => {
1237                                                                         if peer.their_features.is_none() {
1238                                                                                 continue;
1239                                                                         }
1240                                                                         peer
1241                                                                 },
1242                                                                 None => panic!("Inconsistent peers set state!"),
1243                                                         },
1244                                                         None => {
1245                                                                 continue;
1246                                                         },
1247                                                 }
1248                                         }
1249                                 }
1250                         }
1251                         for event in events_generated.drain(..) {
1252                                 match event {
1253                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1254                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1255                                                                 log_pubkey!(node_id),
1256                                                                 log_bytes!(msg.temporary_channel_id));
1257                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1258                                         },
1259                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1260                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1261                                                                 log_pubkey!(node_id),
1262                                                                 log_bytes!(msg.temporary_channel_id));
1263                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1264                                         },
1265                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1266                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1267                                                                 log_pubkey!(node_id),
1268                                                                 log_bytes!(msg.temporary_channel_id),
1269                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1270                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1271                                                 // indicating to the wallet that they should just throw away this funding transaction
1272                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1273                                         },
1274                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1275                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1276                                                                 log_pubkey!(node_id),
1277                                                                 log_bytes!(msg.channel_id));
1278                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1279                                         },
1280                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1281                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1282                                                                 log_pubkey!(node_id),
1283                                                                 log_bytes!(msg.channel_id));
1284                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1285                                         },
1286                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1287                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1288                                                                 log_pubkey!(node_id),
1289                                                                 log_bytes!(msg.channel_id));
1290                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1291                                         },
1292                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1293                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1294                                                                 log_pubkey!(node_id),
1295                                                                 update_add_htlcs.len(),
1296                                                                 update_fulfill_htlcs.len(),
1297                                                                 update_fail_htlcs.len(),
1298                                                                 log_bytes!(commitment_signed.channel_id));
1299                                                 let peer = get_peer_for_forwarding!(node_id);
1300                                                 for msg in update_add_htlcs {
1301                                                         self.enqueue_message(peer, msg);
1302                                                 }
1303                                                 for msg in update_fulfill_htlcs {
1304                                                         self.enqueue_message(peer, msg);
1305                                                 }
1306                                                 for msg in update_fail_htlcs {
1307                                                         self.enqueue_message(peer, msg);
1308                                                 }
1309                                                 for msg in update_fail_malformed_htlcs {
1310                                                         self.enqueue_message(peer, msg);
1311                                                 }
1312                                                 if let &Some(ref msg) = update_fee {
1313                                                         self.enqueue_message(peer, msg);
1314                                                 }
1315                                                 self.enqueue_message(peer, commitment_signed);
1316                                         },
1317                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1318                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1319                                                                 log_pubkey!(node_id),
1320                                                                 log_bytes!(msg.channel_id));
1321                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1322                                         },
1323                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1324                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1325                                                                 log_pubkey!(node_id),
1326                                                                 log_bytes!(msg.channel_id));
1327                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1328                                         },
1329                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1330                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1331                                                                 log_pubkey!(node_id),
1332                                                                 log_bytes!(msg.channel_id));
1333                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1334                                         },
1335                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1336                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1337                                                                 log_pubkey!(node_id),
1338                                                                 log_bytes!(msg.channel_id));
1339                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1340                                         },
1341                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1342                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1343                                                 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1344                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1345                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1346                                                 }
1347                                         },
1348                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1349                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1350                                                 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1351                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1352                                                 }
1353                                         },
1354                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1355                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1356                                                 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1357                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1358                                                 }
1359                                         },
1360                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1361                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1362                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1363                                                 let peer = get_peer_for_forwarding!(node_id);
1364                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1365                                         },
1366                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1367                                                 match *action {
1368                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1369                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1370                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1371                                                                                 if let Some(ref msg) = *msg {
1372                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1373                                                                                                         log_pubkey!(node_id),
1374                                                                                                         msg.data);
1375                                                                                         self.enqueue_message(&mut peer, msg);
1376                                                                                         // This isn't guaranteed to work, but if there is enough free
1377                                                                                         // room in the send buffer, put the error message there...
1378                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1379                                                                                 } else {
1380                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1381                                                                                 }
1382                                                                         }
1383                                                                         descriptor.disconnect_socket();
1384                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1385                                                                 }
1386                                                         },
1387                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1388                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1389                                                         },
1390                                                         msgs::ErrorAction::IgnoreError => {
1391                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1392                                                         },
1393                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1394                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1395                                                                                 log_pubkey!(node_id),
1396                                                                                 msg.data);
1397                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1398                                                         },
1399                                                 }
1400                                         },
1401                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1402                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1403                                         },
1404                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1405                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1406                                         }
1407                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1408                                                 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1409                                                         log_pubkey!(node_id),
1410                                                         msg.short_channel_ids.len(),
1411                                                         msg.first_blocknum,
1412                                                         msg.number_of_blocks,
1413                                                         msg.sync_complete);
1414                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1415                                         }
1416                                 }
1417                         }
1418
1419                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1420                                 self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
1421                         }
1422
1423                         for (descriptor, peer) in peers.peers.iter_mut() {
1424                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1425                         }
1426                 }
1427         }
1428
1429         /// Indicates that the given socket descriptor's connection is now closed.
1430         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1431                 self.disconnect_event_internal(descriptor, false);
1432         }
1433
1434         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1435                 let mut peers = self.peers.lock().unwrap();
1436                 let peer_option = peers.peers.remove(descriptor);
1437                 match peer_option {
1438                         None => {
1439                                 // This is most likely a simple race condition where the user found that the socket
1440                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1441                                 // called this method. Either way we're disconnected, return.
1442                         },
1443                         Some(peer) => {
1444                                 match peer.their_node_id {
1445                                         Some(node_id) => {
1446                                                 log_trace!(self.logger,
1447                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1448                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1449                                                 peers.node_id_to_descriptor.remove(&node_id);
1450                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1451                                         },
1452                                         None => {}
1453                                 }
1454                         }
1455                 };
1456         }
1457
1458         /// Disconnect a peer given its node id.
1459         ///
1460         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1461         /// force-closing any channels we have with it.
1462         ///
1463         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1464         /// peer. Thus, be very careful about reentrancy issues.
1465         ///
1466         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1467         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1468                 let mut peers_lock = self.peers.lock().unwrap();
1469                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1470                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1471                         peers_lock.peers.remove(&descriptor);
1472                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1473                         descriptor.disconnect_socket();
1474                 }
1475         }
1476
1477         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1478         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1479         /// using regular ping/pongs.
1480         pub fn disconnect_all_peers(&self) {
1481                 let mut peers_lock = self.peers.lock().unwrap();
1482                 let peers = &mut *peers_lock;
1483                 for (mut descriptor, peer) in peers.peers.drain() {
1484                         if let Some(node_id) = peer.their_node_id {
1485                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1486                                 peers.node_id_to_descriptor.remove(&node_id);
1487                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1488                         }
1489                         descriptor.disconnect_socket();
1490                 }
1491                 debug_assert!(peers.node_id_to_descriptor.is_empty());
1492         }
1493
1494         /// This is called when we're blocked on sending additional gossip messages until we receive a
1495         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1496         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1497         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1498                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1499                         peer.awaiting_pong_timer_tick_intervals = -1;
1500                         let ping = msgs::Ping {
1501                                 ponglen: 0,
1502                                 byteslen: 64,
1503                         };
1504                         self.enqueue_message(peer, &ping);
1505                 }
1506         }
1507
1508         /// Send pings to each peer and disconnect those which did not respond to the last round of
1509         /// pings.
1510         ///
1511         /// This may be called on any timescale you want, however, roughly once every five to ten
1512         /// seconds is preferred. The call rate determines both how often we send a ping to our peers
1513         /// and how much time they have to respond before we disconnect them.
1514         ///
1515         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1516         /// issues!
1517         ///
1518         /// [`send_data`]: SocketDescriptor::send_data
1519         pub fn timer_tick_occurred(&self) {
1520                 let mut peers_lock = self.peers.lock().unwrap();
1521                 {
1522                         let peers = &mut *peers_lock;
1523                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1524                         let peers = &mut peers.peers;
1525                         let mut descriptors_needing_disconnect = Vec::new();
1526                         let peer_count = peers.len();
1527
1528                         peers.retain(|descriptor, peer| {
1529                                 let mut do_disconnect_peer = false;
1530                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1531                                         // The peer needs to complete its handshake before we can exchange messages. We
1532                                         // give peers one timer tick to complete handshake, reusing
1533                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1534                                         // for handshake completion.
1535                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1536                                                 do_disconnect_peer = true;
1537                                         } else {
1538                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1539                                                 return true;
1540                                         }
1541                                 }
1542
1543                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1544                                         // Magic value set in `maybe_send_extra_ping`.
1545                                         peer.awaiting_pong_timer_tick_intervals = 1;
1546                                         peer.received_message_since_timer_tick = false;
1547                                         return true;
1548                                 }
1549
1550                                 if do_disconnect_peer
1551                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1552                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1553                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1554                                 {
1555                                         descriptors_needing_disconnect.push(descriptor.clone());
1556                                         match peer.their_node_id {
1557                                                 Some(node_id) => {
1558                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1559                                                         node_id_to_descriptor.remove(&node_id);
1560                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1561                                                 }
1562                                                 None => {},
1563                                         }
1564                                         return false;
1565                                 }
1566                                 peer.received_message_since_timer_tick = false;
1567
1568                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1569                                         peer.awaiting_pong_timer_tick_intervals += 1;
1570                                         return true;
1571                                 }
1572
1573                                 peer.awaiting_pong_timer_tick_intervals = 1;
1574                                 let ping = msgs::Ping {
1575                                         ponglen: 0,
1576                                         byteslen: 64,
1577                                 };
1578                                 self.enqueue_message(peer, &ping);
1579                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1580
1581                                 true
1582                         });
1583
1584                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1585                                 descriptor.disconnect_socket();
1586                         }
1587                 }
1588         }
1589 }
1590
1591 #[cfg(test)]
1592 mod tests {
1593         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler};
1594         use ln::msgs;
1595         use util::events;
1596         use util::test_utils;
1597
1598         use bitcoin::secp256k1::Secp256k1;
1599         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1600
1601         use prelude::*;
1602         use sync::{Arc, Mutex};
1603         use core::sync::atomic::Ordering;
1604
1605         #[derive(Clone)]
1606         struct FileDescriptor {
1607                 fd: u16,
1608                 outbound_data: Arc<Mutex<Vec<u8>>>,
1609         }
1610         impl PartialEq for FileDescriptor {
1611                 fn eq(&self, other: &Self) -> bool {
1612                         self.fd == other.fd
1613                 }
1614         }
1615         impl Eq for FileDescriptor { }
1616         impl core::hash::Hash for FileDescriptor {
1617                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1618                         self.fd.hash(hasher)
1619                 }
1620         }
1621
1622         impl SocketDescriptor for FileDescriptor {
1623                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1624                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1625                         data.len()
1626                 }
1627
1628                 fn disconnect_socket(&mut self) {}
1629         }
1630
1631         struct PeerManagerCfg {
1632                 chan_handler: test_utils::TestChannelMessageHandler,
1633                 routing_handler: test_utils::TestRoutingMessageHandler,
1634                 logger: test_utils::TestLogger,
1635         }
1636
1637         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1638                 let mut cfgs = Vec::new();
1639                 for _ in 0..peer_count {
1640                         cfgs.push(
1641                                 PeerManagerCfg{
1642                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1643                                         logger: test_utils::TestLogger::new(),
1644                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1645                                 }
1646                         );
1647                 }
1648
1649                 cfgs
1650         }
1651
1652         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1653                 let mut peers = Vec::new();
1654                 for i in 0..peer_count {
1655                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1656                         let ephemeral_bytes = [i as u8; 32];
1657                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1658                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1659                         peers.push(peer);
1660                 }
1661
1662                 peers
1663         }
1664
1665         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1666                 let secp_ctx = Secp256k1::new();
1667                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1668                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1669                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1670                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1671                 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1672                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1673                 peer_a.process_events();
1674                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1675                 peer_b.process_events();
1676                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1677                 (fd_a.clone(), fd_b.clone())
1678         }
1679
1680         #[test]
1681         fn test_disconnect_peer() {
1682                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1683                 // push a DisconnectPeer event to remove the node flagged by id
1684                 let cfgs = create_peermgr_cfgs(2);
1685                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1686                 let mut peers = create_network(2, &cfgs);
1687                 establish_connection(&peers[0], &peers[1]);
1688                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1689
1690                 let secp_ctx = Secp256k1::new();
1691                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1692
1693                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1694                         node_id: their_id,
1695                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1696                 });
1697                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1698                 peers[0].message_handler.chan_handler = &chan_handler;
1699
1700                 peers[0].process_events();
1701                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1702         }
1703
1704         #[test]
1705         fn test_timer_tick_occurred() {
1706                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1707                 let cfgs = create_peermgr_cfgs(2);
1708                 let peers = create_network(2, &cfgs);
1709                 establish_connection(&peers[0], &peers[1]);
1710                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1711
1712                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1713                 peers[0].timer_tick_occurred();
1714                 peers[0].process_events();
1715                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1716
1717                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1718                 peers[0].timer_tick_occurred();
1719                 peers[0].process_events();
1720                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1721         }
1722
1723         #[test]
1724         fn test_do_attempt_write_data() {
1725                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1726                 let cfgs = create_peermgr_cfgs(2);
1727                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1728                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1729                 let peers = create_network(2, &cfgs);
1730
1731                 // By calling establish_connect, we trigger do_attempt_write_data between
1732                 // the peers. Previously this function would mistakenly enter an infinite loop
1733                 // when there were more channel messages available than could fit into a peer's
1734                 // buffer. This issue would now be detected by this test (because we use custom
1735                 // RoutingMessageHandlers that intentionally return more channel messages
1736                 // than can fit into a peer's buffer).
1737                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1738
1739                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1740                 // due to the max-messagse-before-ping limits this may take a few iterations to complete.
1741                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1742                         peers[0].process_events();
1743                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1744                         assert!(!b_read_data.is_empty());
1745
1746                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1747                         peers[1].process_events();
1748
1749                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1750                         assert!(!a_read_data.is_empty());
1751                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1752
1753                         peers[1].process_events();
1754                         assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages");
1755                 }
1756
1757                 // Check that each peer has received the expected number of channel updates and channel
1758                 // announcements.
1759                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1760                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1761                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1762                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1763         }
1764
1765         #[test]
1766         fn test_handshake_timeout() {
1767                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1768                 // tick.
1769                 let cfgs = create_peermgr_cfgs(2);
1770                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1771                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1772                 let peers = create_network(2, &cfgs);
1773
1774                 let secp_ctx = Secp256k1::new();
1775                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1776                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1777                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1778                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone()).unwrap();
1779                 peers[0].new_inbound_connection(fd_a.clone()).unwrap();
1780
1781                 // If we get a single timer tick before completion, that's fine
1782                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1783                 peers[0].timer_tick_occurred();
1784                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1785
1786                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1787                 peers[0].process_events();
1788                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1789                 peers[1].process_events();
1790
1791                 // ...but if we get a second timer tick, we should disconnect the peer
1792                 peers[0].timer_tick_occurred();
1793                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1794
1795                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1796         }
1797 }