Suggest a socket read buffer of 4KiB to limit message count
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use crate::chain::keysinterface::{KeysManager, NodeSigner, Recipient};
21 use crate::ln::features::{InitFeatures, NodeFeatures};
22 use crate::ln::msgs;
23 use crate::ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, OnionMessageHandler, RoutingMessageHandler};
24 use crate::ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
25 use crate::util::ser::{VecWriter, Writeable, Writer};
26 use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
27 use crate::ln::wire;
28 use crate::ln::wire::Encode;
29 use crate::onion_message::{CustomOnionMessageContents, CustomOnionMessageHandler, SimpleArcOnionMessenger, SimpleRefOnionMessenger};
30 use crate::routing::gossip::{NetworkGraph, P2PGossipSync, NodeId};
31 use crate::util::atomic_counter::AtomicCounter;
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider, OnionMessageProvider};
33 use crate::util::logger::Logger;
34
35 use crate::prelude::*;
36 use crate::io;
37 use alloc::collections::LinkedList;
38 use crate::sync::{Arc, Mutex, MutexGuard, FairRwLock};
39 use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
40 use core::{cmp, hash, fmt, mem};
41 use core::ops::Deref;
42 use core::convert::Infallible;
43 #[cfg(feature = "std")] use std::error;
44
45 use bitcoin::hashes::sha256::Hash as Sha256;
46 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
47 use bitcoin::hashes::{HashEngine, Hash};
48
49 /// Handler for BOLT1-compliant messages.
50 pub trait CustomMessageHandler: wire::CustomMessageReader {
51         /// Called with the message type that was received and the buffer to be read.
52         /// Can return a `MessageHandlingError` if the message could not be handled.
53         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
54
55         /// Gets the list of pending messages which were generated by the custom message
56         /// handler, clearing the list in the process. The first tuple element must
57         /// correspond to the intended recipients node ids. If no connection to one of the
58         /// specified node does not exist, the message is simply not sent to it.
59         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
60 }
61
62 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
63 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
64 pub struct IgnoringMessageHandler{}
65 impl MessageSendEventsProvider for IgnoringMessageHandler {
66         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
67 }
68 impl RoutingMessageHandler for IgnoringMessageHandler {
69         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
70         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
71         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
72         fn get_next_channel_announcement(&self, _starting_point: u64) ->
73                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
74         fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<msgs::NodeAnnouncement> { None }
75         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
76         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
78         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
79         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
80         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
81         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
82                 InitFeatures::empty()
83         }
84         fn processing_queue_high(&self) -> bool { false }
85 }
86 impl OnionMessageProvider for IgnoringMessageHandler {
87         fn next_onion_message_for_peer(&self, _peer_node_id: PublicKey) -> Option<msgs::OnionMessage> { None }
88 }
89 impl OnionMessageHandler for IgnoringMessageHandler {
90         fn handle_onion_message(&self, _their_node_id: &PublicKey, _msg: &msgs::OnionMessage) {}
91         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
92         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
93         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
94         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
95                 InitFeatures::empty()
96         }
97 }
98 impl CustomOnionMessageHandler for IgnoringMessageHandler {
99         type CustomMessage = Infallible;
100         fn handle_custom_message(&self, _msg: Infallible) {
101                 // Since we always return `None` in the read the handle method should never be called.
102                 unreachable!();
103         }
104         fn read_custom_message<R: io::Read>(&self, _msg_type: u64, _buffer: &mut R) -> Result<Option<Infallible>, msgs::DecodeError> where Self: Sized {
105                 Ok(None)
106         }
107 }
108
109 impl CustomOnionMessageContents for Infallible {
110         fn tlv_type(&self) -> u64 { unreachable!(); }
111 }
112
113 impl Deref for IgnoringMessageHandler {
114         type Target = IgnoringMessageHandler;
115         fn deref(&self) -> &Self { self }
116 }
117
118 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
119 // method that takes self for it.
120 impl wire::Type for Infallible {
121         fn type_id(&self) -> u16 {
122                 unreachable!();
123         }
124 }
125 impl Writeable for Infallible {
126         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
127                 unreachable!();
128         }
129 }
130
131 impl wire::CustomMessageReader for IgnoringMessageHandler {
132         type CustomMessage = Infallible;
133         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
134                 Ok(None)
135         }
136 }
137
138 impl CustomMessageHandler for IgnoringMessageHandler {
139         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
140                 // Since we always return `None` in the read the handle method should never be called.
141                 unreachable!();
142         }
143
144         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
145 }
146
147 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
148 /// You can provide one of these as the route_handler in a MessageHandler.
149 pub struct ErroringMessageHandler {
150         message_queue: Mutex<Vec<MessageSendEvent>>
151 }
152 impl ErroringMessageHandler {
153         /// Constructs a new ErroringMessageHandler
154         pub fn new() -> Self {
155                 Self { message_queue: Mutex::new(Vec::new()) }
156         }
157         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
158                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
159                         action: msgs::ErrorAction::SendErrorMessage {
160                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
161                         },
162                         node_id: node_id.clone(),
163                 });
164         }
165 }
166 impl MessageSendEventsProvider for ErroringMessageHandler {
167         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
168                 let mut res = Vec::new();
169                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
170                 res
171         }
172 }
173 impl ChannelMessageHandler for ErroringMessageHandler {
174         // Any messages which are related to a specific channel generate an error message to let the
175         // peer know we don't care about channels.
176         fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) {
177                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
178         }
179         fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
180                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
181         }
182         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
183                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
184         }
185         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
186                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
187         }
188         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
189                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
190         }
191         fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
192                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
193         }
194         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
195                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
196         }
197         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
198                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
199         }
200         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
201                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
202         }
203         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
204                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
205         }
206         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
207                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
208         }
209         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
210                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
211         }
212         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
213                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
214         }
215         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
216                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
217         }
218         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
219                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
220         }
221         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
222                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
223         }
224         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
225         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
226         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
227         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) -> Result<(), ()> { Ok(()) }
228         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
229         fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
230         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
231                 // Set a number of features which various nodes may require to talk to us. It's totally
232                 // reasonable to indicate we "support" all kinds of channel features...we just reject all
233                 // channels.
234                 let mut features = InitFeatures::empty();
235                 features.set_data_loss_protect_optional();
236                 features.set_upfront_shutdown_script_optional();
237                 features.set_variable_length_onion_optional();
238                 features.set_static_remote_key_optional();
239                 features.set_payment_secret_optional();
240                 features.set_basic_mpp_optional();
241                 features.set_wumbo_optional();
242                 features.set_shutdown_any_segwit_optional();
243                 features.set_channel_type_optional();
244                 features.set_scid_privacy_optional();
245                 features.set_zero_conf_optional();
246                 features
247         }
248 }
249 impl Deref for ErroringMessageHandler {
250         type Target = ErroringMessageHandler;
251         fn deref(&self) -> &Self { self }
252 }
253
254 /// Provides references to trait impls which handle different types of messages.
255 pub struct MessageHandler<CM: Deref, RM: Deref, OM: Deref> where
256                 CM::Target: ChannelMessageHandler,
257                 RM::Target: RoutingMessageHandler,
258                 OM::Target: OnionMessageHandler,
259 {
260         /// A message handler which handles messages specific to channels. Usually this is just a
261         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
262         ///
263         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
264         pub chan_handler: CM,
265         /// A message handler which handles messages updating our knowledge of the network channel
266         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
267         ///
268         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
269         pub route_handler: RM,
270
271         /// A message handler which handles onion messages. For now, this can only be an
272         /// [`IgnoringMessageHandler`].
273         pub onion_message_handler: OM,
274 }
275
276 /// Provides an object which can be used to send data to and which uniquely identifies a connection
277 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
278 /// implement Hash to meet the PeerManager API.
279 ///
280 /// For efficiency, Clone should be relatively cheap for this type.
281 ///
282 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
283 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
284 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
285 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
286 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
287 /// to simply use another value which is guaranteed to be globally unique instead.
288 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
289         /// Attempts to send some data from the given slice to the peer.
290         ///
291         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
292         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
293         /// called and further write attempts may occur until that time.
294         ///
295         /// If the returned size is smaller than `data.len()`, a
296         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
297         /// written. Additionally, until a `send_data` event completes fully, no further
298         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
299         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
300         /// until then.
301         ///
302         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
303         /// (indicating that read events should be paused to prevent DoS in the send buffer),
304         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
305         /// `resume_read` of false carries no meaning, and should not cause any action.
306         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
307         /// Disconnect the socket pointed to by this SocketDescriptor.
308         ///
309         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
310         /// call (doing so is a noop).
311         fn disconnect_socket(&mut self);
312 }
313
314 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
315 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
316 /// descriptor.
317 #[derive(Clone)]
318 pub struct PeerHandleError {
319         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
320         /// because we required features that our peer was missing, or vice versa).
321         ///
322         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
323         /// any channels with this peer or check for new versions of LDK.
324         ///
325         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
326         pub no_connection_possible: bool,
327 }
328 impl fmt::Debug for PeerHandleError {
329         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
330                 formatter.write_str("Peer Sent Invalid Data")
331         }
332 }
333 impl fmt::Display for PeerHandleError {
334         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
335                 formatter.write_str("Peer Sent Invalid Data")
336         }
337 }
338
339 #[cfg(feature = "std")]
340 impl error::Error for PeerHandleError {
341         fn description(&self) -> &str {
342                 "Peer Sent Invalid Data"
343         }
344 }
345
346 enum InitSyncTracker{
347         NoSyncRequested,
348         ChannelsSyncing(u64),
349         NodesSyncing(NodeId),
350 }
351
352 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
353 /// forwarding gossip messages to peers altogether.
354 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
355
356 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
357 /// we have fewer than this many messages in the outbound buffer again.
358 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
359 /// refilled as we send bytes.
360 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 12;
361 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
362 /// the peer.
363 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
364
365 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
366 /// the socket receive buffer before receiving the ping.
367 ///
368 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
369 /// including any network delays, outbound traffic, or the same for messages from other peers.
370 ///
371 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
372 /// per connected peer to respond to a ping, as long as they send us at least one message during
373 /// each tick, ensuring we aren't actually just disconnected.
374 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
375 /// peer.
376 ///
377 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
378 /// two connected peers, assuming most LDK-running systems have at least two cores.
379 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
380
381 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
382 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
383 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
384 /// process before the next ping.
385 ///
386 /// Note that we continue responding to other messages even after we've sent this many messages, so
387 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
388 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
389 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
390
391 struct Peer {
392         channel_encryptor: PeerChannelEncryptor,
393         their_node_id: Option<PublicKey>,
394         their_features: Option<InitFeatures>,
395         their_net_address: Option<NetAddress>,
396
397         pending_outbound_buffer: LinkedList<Vec<u8>>,
398         pending_outbound_buffer_first_msg_offset: usize,
399         /// Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily
400         /// prioritize channel messages over them.
401         ///
402         /// Note that these messages are *not* encrypted/MAC'd, and are only serialized.
403         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
404         awaiting_write_event: bool,
405
406         pending_read_buffer: Vec<u8>,
407         pending_read_buffer_pos: usize,
408         pending_read_is_header: bool,
409
410         sync_status: InitSyncTracker,
411
412         msgs_sent_since_pong: usize,
413         awaiting_pong_timer_tick_intervals: i8,
414         received_message_since_timer_tick: bool,
415         sent_gossip_timestamp_filter: bool,
416
417         /// Indicates we've received a `channel_announcement` since the last time we had
418         /// [`PeerManager::gossip_processing_backlogged`] set (or, really, that we've received a
419         /// `channel_announcement` at all - we set this unconditionally but unset it every time we
420         /// check if we're gossip-processing-backlogged).
421         received_channel_announce_since_backlogged: bool,
422 }
423
424 impl Peer {
425         /// Returns true if the channel announcements/updates for the given channel should be
426         /// forwarded to this peer.
427         /// If we are sending our routing table to this peer and we have not yet sent channel
428         /// announcements/updates for the given channel_id then we will send it when we get to that
429         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
430         /// sent the old versions, we should send the update, and so return true here.
431         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
432                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
433                         !self.sent_gossip_timestamp_filter {
434                                 return false;
435                         }
436                 match self.sync_status {
437                         InitSyncTracker::NoSyncRequested => true,
438                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
439                         InitSyncTracker::NodesSyncing(_) => true,
440                 }
441         }
442
443         /// Similar to the above, but for node announcements indexed by node_id.
444         fn should_forward_node_announcement(&self, node_id: NodeId) -> bool {
445                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
446                         !self.sent_gossip_timestamp_filter {
447                                 return false;
448                         }
449                 match self.sync_status {
450                         InitSyncTracker::NoSyncRequested => true,
451                         InitSyncTracker::ChannelsSyncing(_) => false,
452                         InitSyncTracker::NodesSyncing(sync_node_id) => sync_node_id.as_slice() < node_id.as_slice(),
453                 }
454         }
455
456         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
457         /// buffer still has space and we don't need to pause reads to get some writes out.
458         fn should_read(&mut self, gossip_processing_backlogged: bool) -> bool {
459                 if !gossip_processing_backlogged {
460                         self.received_channel_announce_since_backlogged = false;
461                 }
462                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE &&
463                         (!gossip_processing_backlogged || !self.received_channel_announce_since_backlogged)
464         }
465
466         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
467         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
468         fn should_buffer_gossip_backfill(&self) -> bool {
469                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
470                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
471         }
472
473         /// Determines if we should push an onion message onto a peer's outbound buffer. This is checked
474         /// every time the peer's buffer may have been drained.
475         fn should_buffer_onion_message(&self) -> bool {
476                 self.pending_outbound_buffer.is_empty()
477                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
478         }
479
480         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
481         /// buffer. This is checked every time the peer's buffer may have been drained.
482         fn should_buffer_gossip_broadcast(&self) -> bool {
483                 self.pending_outbound_buffer.is_empty()
484                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
485         }
486
487         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
488         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
489                 let total_outbound_buffered =
490                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
491
492                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
493                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
494         }
495 }
496
497 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
498 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
499 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
500 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
501 /// issues such as overly long function definitions.
502 ///
503 /// (C-not exported) as `Arc`s don't make sense in bindings.
504 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<SimpleArcOnionMessenger<L>>, Arc<L>, IgnoringMessageHandler, Arc<KeysManager>>;
505
506 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
507 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
508 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
509 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
510 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
511 /// helps with issues such as long function definitions.
512 ///
513 /// (C-not exported) as general type aliases don't make sense in bindings.
514 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l, 'm, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'm, M, T, F, L>, &'f P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'i SimpleRefOnionMessenger<'j, 'k, L>, &'f L, IgnoringMessageHandler, &'c KeysManager>;
515
516 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
517 /// socket events into messages which it passes on to its [`MessageHandler`].
518 ///
519 /// Locks are taken internally, so you must never assume that reentrancy from a
520 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
521 ///
522 /// Calls to [`read_event`] will decode relevant messages and pass them to the
523 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
524 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
525 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
526 /// calls only after previous ones have returned.
527 ///
528 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
529 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
530 /// essentially you should default to using a SimpleRefPeerManager, and use a
531 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
532 /// you're using lightning-net-tokio.
533 ///
534 /// [`read_event`]: PeerManager::read_event
535 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> where
536                 CM::Target: ChannelMessageHandler,
537                 RM::Target: RoutingMessageHandler,
538                 OM::Target: OnionMessageHandler,
539                 L::Target: Logger,
540                 CMH::Target: CustomMessageHandler,
541                 NS::Target: NodeSigner {
542         message_handler: MessageHandler<CM, RM, OM>,
543         /// Connection state for each connected peer - we have an outer read-write lock which is taken
544         /// as read while we're doing processing for a peer and taken write when a peer is being added
545         /// or removed.
546         ///
547         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
548         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
549         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
550         /// the `MessageHandler`s for a given peer is already guaranteed.
551         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
552         /// Only add to this set when noise completes.
553         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
554         /// lock held. Entries may be added with only the `peers` read lock held (though the
555         /// `Descriptor` value must already exist in `peers`).
556         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
557         /// We can only have one thread processing events at once, but we don't usually need the full
558         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
559         /// `process_events`.
560         event_processing_lock: Mutex<()>,
561         /// Because event processing is global and always does all available work before returning,
562         /// there is no reason for us to have many event processors waiting on the lock at once.
563         /// Instead, we limit the total blocked event processors to always exactly one by setting this
564         /// when an event process call is waiting.
565         blocked_event_processors: AtomicBool,
566
567         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
568         /// value increases strictly since we don't assume access to a time source.
569         last_node_announcement_serial: AtomicU32,
570
571         ephemeral_key_midstate: Sha256Engine,
572         custom_message_handler: CMH,
573
574         peer_counter: AtomicCounter,
575
576         gossip_processing_backlogged: AtomicBool,
577         gossip_processing_backlog_lifted: AtomicBool,
578
579         node_signer: NS,
580
581         logger: L,
582         secp_ctx: Secp256k1<secp256k1::SignOnly>
583 }
584
585 enum MessageHandlingError {
586         PeerHandleError(PeerHandleError),
587         LightningError(LightningError),
588 }
589
590 impl From<PeerHandleError> for MessageHandlingError {
591         fn from(error: PeerHandleError) -> Self {
592                 MessageHandlingError::PeerHandleError(error)
593         }
594 }
595
596 impl From<LightningError> for MessageHandlingError {
597         fn from(error: LightningError) -> Self {
598                 MessageHandlingError::LightningError(error)
599         }
600 }
601
602 macro_rules! encode_msg {
603         ($msg: expr) => {{
604                 let mut buffer = VecWriter(Vec::new());
605                 wire::write($msg, &mut buffer).unwrap();
606                 buffer.0
607         }}
608 }
609
610 impl<Descriptor: SocketDescriptor, CM: Deref, OM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, OM, L, IgnoringMessageHandler, NS> where
611                 CM::Target: ChannelMessageHandler,
612                 OM::Target: OnionMessageHandler,
613                 L::Target: Logger,
614                 NS::Target: NodeSigner {
615         /// Constructs a new `PeerManager` with the given `ChannelMessageHandler` and
616         /// `OnionMessageHandler`. No routing message handler is used and network graph messages are
617         /// ignored.
618         ///
619         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
620         /// cryptographically secure random bytes.
621         ///
622         /// `current_time` is used as an always-increasing counter that survives across restarts and is
623         /// incremented irregularly internally. In general it is best to simply use the current UNIX
624         /// timestamp, however if it is not available a persistent counter that increases once per
625         /// minute should suffice.
626         ///
627         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
628         pub fn new_channel_only(channel_message_handler: CM, onion_message_handler: OM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
629                 Self::new(MessageHandler {
630                         chan_handler: channel_message_handler,
631                         route_handler: IgnoringMessageHandler{},
632                         onion_message_handler,
633                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
634         }
635 }
636
637 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref, NS: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, IgnoringMessageHandler, L, IgnoringMessageHandler, NS> where
638                 RM::Target: RoutingMessageHandler,
639                 L::Target: Logger,
640                 NS::Target: NodeSigner {
641         /// Constructs a new `PeerManager` with the given `RoutingMessageHandler`. No channel message
642         /// handler or onion message handler is used and onion and channel messages will be ignored (or
643         /// generate error messages). Note that some other lightning implementations time-out connections
644         /// after some time if no channel is built with the peer.
645         ///
646         /// `current_time` is used as an always-increasing counter that survives across restarts and is
647         /// incremented irregularly internally. In general it is best to simply use the current UNIX
648         /// timestamp, however if it is not available a persistent counter that increases once per
649         /// minute should suffice.
650         ///
651         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
652         /// cryptographically secure random bytes.
653         ///
654         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
655         pub fn new_routing_only(routing_message_handler: RM, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, node_signer: NS) -> Self {
656                 Self::new(MessageHandler {
657                         chan_handler: ErroringMessageHandler::new(),
658                         route_handler: routing_message_handler,
659                         onion_message_handler: IgnoringMessageHandler{},
660                 }, current_time, ephemeral_random_data, logger, IgnoringMessageHandler{}, node_signer)
661         }
662 }
663
664 /// A simple wrapper that optionally prints ` from <pubkey>` for an optional pubkey.
665 /// This works around `format!()` taking a reference to each argument, preventing
666 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
667 /// due to lifetime errors.
668 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
669 impl core::fmt::Display for OptionalFromDebugger<'_> {
670         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
671                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
672         }
673 }
674
675 /// A function used to filter out local or private addresses
676 /// <https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml>
677 /// <https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml>
678 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
679         match ip_address{
680                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
681                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
682                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
683                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
684                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
685                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
686                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
687                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
688                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
689                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
690                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
691                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
692                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
693                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
694                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
695                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
696                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
697                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
698                 // For remaining addresses
699                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
700                 Some(..) => ip_address,
701                 None => None,
702         }
703 }
704
705 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, OM: Deref, L: Deref, CMH: Deref, NS: Deref> PeerManager<Descriptor, CM, RM, OM, L, CMH, NS> where
706                 CM::Target: ChannelMessageHandler,
707                 RM::Target: RoutingMessageHandler,
708                 OM::Target: OnionMessageHandler,
709                 L::Target: Logger,
710                 CMH::Target: CustomMessageHandler,
711                 NS::Target: NodeSigner
712 {
713         /// Constructs a new PeerManager with the given message handlers and node_id secret key
714         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
715         /// cryptographically secure random bytes.
716         ///
717         /// `current_time` is used as an always-increasing counter that survives across restarts and is
718         /// incremented irregularly internally. In general it is best to simply use the current UNIX
719         /// timestamp, however if it is not available a persistent counter that increases once per
720         /// minute should suffice.
721         pub fn new(message_handler: MessageHandler<CM, RM, OM>, current_time: u32, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH, node_signer: NS) -> Self {
722                 let mut ephemeral_key_midstate = Sha256::engine();
723                 ephemeral_key_midstate.input(ephemeral_random_data);
724
725                 let mut secp_ctx = Secp256k1::signing_only();
726                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
727                 secp_ctx.seeded_randomize(&ephemeral_hash);
728
729                 PeerManager {
730                         message_handler,
731                         peers: FairRwLock::new(HashMap::new()),
732                         node_id_to_descriptor: Mutex::new(HashMap::new()),
733                         event_processing_lock: Mutex::new(()),
734                         blocked_event_processors: AtomicBool::new(false),
735                         ephemeral_key_midstate,
736                         peer_counter: AtomicCounter::new(),
737                         gossip_processing_backlogged: AtomicBool::new(false),
738                         gossip_processing_backlog_lifted: AtomicBool::new(false),
739                         last_node_announcement_serial: AtomicU32::new(current_time),
740                         logger,
741                         custom_message_handler,
742                         node_signer,
743                         secp_ctx,
744                 }
745         }
746
747         /// Get the list of node ids for peers which have completed the initial handshake.
748         ///
749         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
750         /// new_outbound_connection, however entries will only appear once the initial handshake has
751         /// completed and we are sure the remote peer has the private key for the given node_id.
752         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
753                 let peers = self.peers.read().unwrap();
754                 peers.values().filter_map(|peer_mutex| {
755                         let p = peer_mutex.lock().unwrap();
756                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
757                                 return None;
758                         }
759                         p.their_node_id
760                 }).collect()
761         }
762
763         fn get_ephemeral_key(&self) -> SecretKey {
764                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
765                 let counter = self.peer_counter.get_increment();
766                 ephemeral_hash.input(&counter.to_le_bytes());
767                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
768         }
769
770         /// Indicates a new outbound connection has been established to a node with the given node_id
771         /// and an optional remote network address.
772         ///
773         /// The remote network address adds the option to report a remote IP address back to a connecting
774         /// peer using the init message.
775         /// The user should pass the remote network address of the host they are connected to.
776         ///
777         /// If an `Err` is returned here you must disconnect the connection immediately.
778         ///
779         /// Returns a small number of bytes to send to the remote node (currently always 50).
780         ///
781         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
782         /// [`socket_disconnected()`].
783         ///
784         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
785         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
786                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
787                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
788                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
789
790                 let mut peers = self.peers.write().unwrap();
791                 if peers.insert(descriptor, Mutex::new(Peer {
792                         channel_encryptor: peer_encryptor,
793                         their_node_id: None,
794                         their_features: None,
795                         their_net_address: remote_network_address,
796
797                         pending_outbound_buffer: LinkedList::new(),
798                         pending_outbound_buffer_first_msg_offset: 0,
799                         gossip_broadcast_buffer: LinkedList::new(),
800                         awaiting_write_event: false,
801
802                         pending_read_buffer,
803                         pending_read_buffer_pos: 0,
804                         pending_read_is_header: false,
805
806                         sync_status: InitSyncTracker::NoSyncRequested,
807
808                         msgs_sent_since_pong: 0,
809                         awaiting_pong_timer_tick_intervals: 0,
810                         received_message_since_timer_tick: false,
811                         sent_gossip_timestamp_filter: false,
812
813                         received_channel_announce_since_backlogged: false,
814                 })).is_some() {
815                         panic!("PeerManager driver duplicated descriptors!");
816                 };
817                 Ok(res)
818         }
819
820         /// Indicates a new inbound connection has been established to a node with an optional remote
821         /// network address.
822         ///
823         /// The remote network address adds the option to report a remote IP address back to a connecting
824         /// peer using the init message.
825         /// The user should pass the remote network address of the host they are connected to.
826         ///
827         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
828         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
829         /// the connection immediately.
830         ///
831         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
832         /// [`socket_disconnected()`].
833         ///
834         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
835         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
836                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.node_signer);
837                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
838
839                 let mut peers = self.peers.write().unwrap();
840                 if peers.insert(descriptor, Mutex::new(Peer {
841                         channel_encryptor: peer_encryptor,
842                         their_node_id: None,
843                         their_features: None,
844                         their_net_address: remote_network_address,
845
846                         pending_outbound_buffer: LinkedList::new(),
847                         pending_outbound_buffer_first_msg_offset: 0,
848                         gossip_broadcast_buffer: LinkedList::new(),
849                         awaiting_write_event: false,
850
851                         pending_read_buffer,
852                         pending_read_buffer_pos: 0,
853                         pending_read_is_header: false,
854
855                         sync_status: InitSyncTracker::NoSyncRequested,
856
857                         msgs_sent_since_pong: 0,
858                         awaiting_pong_timer_tick_intervals: 0,
859                         received_message_since_timer_tick: false,
860                         sent_gossip_timestamp_filter: false,
861
862                         received_channel_announce_since_backlogged: false,
863                 })).is_some() {
864                         panic!("PeerManager driver duplicated descriptors!");
865                 };
866                 Ok(())
867         }
868
869         fn peer_should_read(&self, peer: &mut Peer) -> bool {
870                 peer.should_read(self.gossip_processing_backlogged.load(Ordering::Relaxed))
871         }
872
873         fn update_gossip_backlogged(&self) {
874                 let new_state = self.message_handler.route_handler.processing_queue_high();
875                 let prev_state = self.gossip_processing_backlogged.swap(new_state, Ordering::Relaxed);
876                 if prev_state && !new_state {
877                         self.gossip_processing_backlog_lifted.store(true, Ordering::Relaxed);
878                 }
879         }
880
881         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer, force_one_write: bool) {
882                 let mut have_written = false;
883                 while !peer.awaiting_write_event {
884                         if peer.should_buffer_onion_message() {
885                                 if let Some(peer_node_id) = peer.their_node_id {
886                                         if let Some(next_onion_message) =
887                                                 self.message_handler.onion_message_handler.next_onion_message_for_peer(peer_node_id) {
888                                                         self.enqueue_message(peer, &next_onion_message);
889                                         }
890                                 }
891                         }
892                         if peer.should_buffer_gossip_broadcast() {
893                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
894                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_buffer(&msg[..]));
895                                 }
896                         }
897                         if peer.should_buffer_gossip_backfill() {
898                                 match peer.sync_status {
899                                         InitSyncTracker::NoSyncRequested => {},
900                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
901                                                 if let Some((announce, update_a_option, update_b_option)) =
902                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
903                                                 {
904                                                         self.enqueue_message(peer, &announce);
905                                                         if let Some(update_a) = update_a_option {
906                                                                 self.enqueue_message(peer, &update_a);
907                                                         }
908                                                         if let Some(update_b) = update_b_option {
909                                                                 self.enqueue_message(peer, &update_b);
910                                                         }
911                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
912                                                 } else {
913                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
914                                                 }
915                                         },
916                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
917                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
918                                                         self.enqueue_message(peer, &msg);
919                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
920                                                 } else {
921                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
922                                                 }
923                                         },
924                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
925                                         InitSyncTracker::NodesSyncing(sync_node_id) => {
926                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&sync_node_id)) {
927                                                         self.enqueue_message(peer, &msg);
928                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
929                                                 } else {
930                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
931                                                 }
932                                         },
933                                 }
934                         }
935                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
936                                 self.maybe_send_extra_ping(peer);
937                         }
938
939                         let should_read = self.peer_should_read(peer);
940                         let next_buff = match peer.pending_outbound_buffer.front() {
941                                 None => {
942                                         if force_one_write && !have_written {
943                                                 if should_read {
944                                                         let data_sent = descriptor.send_data(&[], should_read);
945                                                         debug_assert_eq!(data_sent, 0, "Can't write more than no data");
946                                                 }
947                                         }
948                                         return
949                                 },
950                                 Some(buff) => buff,
951                         };
952
953                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
954                         let data_sent = descriptor.send_data(pending, should_read);
955                         have_written = true;
956                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
957                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
958                                 peer.pending_outbound_buffer_first_msg_offset = 0;
959                                 peer.pending_outbound_buffer.pop_front();
960                         } else {
961                                 peer.awaiting_write_event = true;
962                         }
963                 }
964         }
965
966         /// Indicates that there is room to write data to the given socket descriptor.
967         ///
968         /// May return an Err to indicate that the connection should be closed.
969         ///
970         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
971         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
972         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
973         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
974         /// sufficient!
975         ///
976         /// [`send_data`]: SocketDescriptor::send_data
977         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
978         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
979                 let peers = self.peers.read().unwrap();
980                 match peers.get(descriptor) {
981                         None => {
982                                 // This is most likely a simple race condition where the user found that the socket
983                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
984                                 // this method. Return an error to make sure we get disconnected.
985                                 return Err(PeerHandleError { no_connection_possible: false });
986                         },
987                         Some(peer_mutex) => {
988                                 let mut peer = peer_mutex.lock().unwrap();
989                                 peer.awaiting_write_event = false;
990                                 self.do_attempt_write_data(descriptor, &mut peer, false);
991                         }
992                 };
993                 Ok(())
994         }
995
996         /// Indicates that data was read from the given socket descriptor.
997         ///
998         /// May return an Err to indicate that the connection should be closed.
999         ///
1000         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
1001         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
1002         /// [`send_data`] calls to handle responses.
1003         ///
1004         /// If `Ok(true)` is returned, further read_events should not be triggered until a
1005         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
1006         /// send buffer).
1007         ///
1008         /// In order to avoid processing too many messages at once per peer, `data` should be on the
1009         /// order of 4KiB.
1010         ///
1011         /// [`send_data`]: SocketDescriptor::send_data
1012         /// [`process_events`]: PeerManager::process_events
1013         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1014                 match self.do_read_event(peer_descriptor, data) {
1015                         Ok(res) => Ok(res),
1016                         Err(e) => {
1017                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
1018                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
1019                                 Err(e)
1020                         }
1021                 }
1022         }
1023
1024         /// Append a message to a peer's pending outbound/write buffer
1025         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
1026                 if is_gossip_msg(message.type_id()) {
1027                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1028                 } else {
1029                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
1030                 }
1031                 peer.msgs_sent_since_pong += 1;
1032                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(message));
1033         }
1034
1035         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
1036         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: Vec<u8>) {
1037                 peer.msgs_sent_since_pong += 1;
1038                 peer.gossip_broadcast_buffer.push_back(encoded_message);
1039         }
1040
1041         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
1042                 let mut pause_read = false;
1043                 let peers = self.peers.read().unwrap();
1044                 let mut msgs_to_forward = Vec::new();
1045                 let mut peer_node_id = None;
1046                 match peers.get(peer_descriptor) {
1047                         None => {
1048                                 // This is most likely a simple race condition where the user read some bytes
1049                                 // from the socket, then we told the user to `disconnect_socket()`, then they
1050                                 // called this method. Return an error to make sure we get disconnected.
1051                                 return Err(PeerHandleError { no_connection_possible: false });
1052                         },
1053                         Some(peer_mutex) => {
1054                                 let mut read_pos = 0;
1055                                 while read_pos < data.len() {
1056                                         macro_rules! try_potential_handleerror {
1057                                                 ($peer: expr, $thing: expr) => {
1058                                                         match $thing {
1059                                                                 Ok(x) => x,
1060                                                                 Err(e) => {
1061                                                                         match e.action {
1062                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
1063                                                                                         //TODO: Try to push msg
1064                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1065                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
1066                                                                                 },
1067                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
1068                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1069                                                                                         continue
1070                                                                                 },
1071                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
1072                                                                                 msgs::ErrorAction::IgnoreError => {
1073                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
1074                                                                                         continue;
1075                                                                                 },
1076                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
1077                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1078                                                                                         self.enqueue_message($peer, &msg);
1079                                                                                         continue;
1080                                                                                 },
1081                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
1082                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
1083                                                                                         self.enqueue_message($peer, &msg);
1084                                                                                         continue;
1085                                                                                 },
1086                                                                         }
1087                                                                 }
1088                                                         }
1089                                                 }
1090                                         }
1091
1092                                         let mut peer_lock = peer_mutex.lock().unwrap();
1093                                         let peer = &mut *peer_lock;
1094                                         let mut msg_to_handle = None;
1095                                         if peer_node_id.is_none() {
1096                                                 peer_node_id = peer.their_node_id.clone();
1097                                         }
1098
1099                                         assert!(peer.pending_read_buffer.len() > 0);
1100                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
1101
1102                                         {
1103                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
1104                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
1105                                                 read_pos += data_to_copy;
1106                                                 peer.pending_read_buffer_pos += data_to_copy;
1107                                         }
1108
1109                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
1110                                                 peer.pending_read_buffer_pos = 0;
1111
1112                                                 macro_rules! insert_node_id {
1113                                                         () => {
1114                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
1115                                                                         hash_map::Entry::Occupied(_) => {
1116                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
1117                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
1118                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
1119                                                                         },
1120                                                                         hash_map::Entry::Vacant(entry) => {
1121                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
1122                                                                                 entry.insert(peer_descriptor.clone())
1123                                                                         },
1124                                                                 };
1125                                                         }
1126                                                 }
1127
1128                                                 let next_step = peer.channel_encryptor.get_noise_step();
1129                                                 match next_step {
1130                                                         NextNoiseStep::ActOne => {
1131                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
1132                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
1133                                                                                 &self.node_signer, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
1134                                                                 peer.pending_outbound_buffer.push_back(act_two);
1135                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
1136                                                         },
1137                                                         NextNoiseStep::ActTwo => {
1138                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
1139                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
1140                                                                                 &self.node_signer));
1141                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
1142                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1143                                                                 peer.pending_read_is_header = true;
1144
1145                                                                 peer.their_node_id = Some(their_node_id);
1146                                                                 insert_node_id!();
1147                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1148                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1149                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1150                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1151                                                                 self.enqueue_message(peer, &resp);
1152                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1153                                                         },
1154                                                         NextNoiseStep::ActThree => {
1155                                                                 let their_node_id = try_potential_handleerror!(peer,
1156                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1157                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1158                                                                 peer.pending_read_is_header = true;
1159                                                                 peer.their_node_id = Some(their_node_id);
1160                                                                 insert_node_id!();
1161                                                                 let features = self.message_handler.chan_handler.provided_init_features(&their_node_id)
1162                                                                         .or(self.message_handler.route_handler.provided_init_features(&their_node_id))
1163                                                                         .or(self.message_handler.onion_message_handler.provided_init_features(&their_node_id));
1164                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1165                                                                 self.enqueue_message(peer, &resp);
1166                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1167                                                         },
1168                                                         NextNoiseStep::NoiseComplete => {
1169                                                                 if peer.pending_read_is_header {
1170                                                                         let msg_len = try_potential_handleerror!(peer,
1171                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1172                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1173                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1174                                                                         if msg_len < 2 { // Need at least the message type tag
1175                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1176                                                                         }
1177                                                                         peer.pending_read_is_header = false;
1178                                                                 } else {
1179                                                                         let msg_data = try_potential_handleerror!(peer,
1180                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1181                                                                         assert!(msg_data.len() >= 2);
1182
1183                                                                         // Reset read buffer
1184                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1185                                                                         peer.pending_read_buffer.resize(18, 0);
1186                                                                         peer.pending_read_is_header = true;
1187
1188                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1189                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1190                                                                         let message = match message_result {
1191                                                                                 Ok(x) => x,
1192                                                                                 Err(e) => {
1193                                                                                         match e {
1194                                                                                                 // Note that to avoid recursion we never call
1195                                                                                                 // `do_attempt_write_data` from here, causing
1196                                                                                                 // the messages enqueued here to not actually
1197                                                                                                 // be sent before the peer is disconnected.
1198                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1199                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1200                                                                                                         continue;
1201                                                                                                 }
1202                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1203                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1204                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1205                                                                                                         continue;
1206                                                                                                 }
1207                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1208                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1209                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage {
1210                                                                                                                 channel_id: [0; 32],
1211                                                                                                                 data: format!("Unreadable/bogus gossip message of type {}", ty),
1212                                                                                                         });
1213                                                                                                         continue;
1214                                                                                                 }
1215                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1216                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1217                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1218                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1219                                                                                                 }
1220                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1221                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1222                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1223                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1224                                                                                                 }
1225                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1226                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1227                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1228                                                                                                 }
1229                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1230                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1231                                                                                         }
1232                                                                                 }
1233                                                                         };
1234
1235                                                                         msg_to_handle = Some(message);
1236                                                                 }
1237                                                         }
1238                                                 }
1239                                         }
1240                                         pause_read = !self.peer_should_read(peer);
1241
1242                                         if let Some(message) = msg_to_handle {
1243                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1244                                                         Err(handling_error) => match handling_error {
1245                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1246                                                                 MessageHandlingError::LightningError(e) => {
1247                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1248                                                                 },
1249                                                         },
1250                                                         Ok(Some(msg)) => {
1251                                                                 msgs_to_forward.push(msg);
1252                                                         },
1253                                                         Ok(None) => {},
1254                                                 }
1255                                         }
1256                                 }
1257                         }
1258                 }
1259
1260                 for msg in msgs_to_forward.drain(..) {
1261                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1262                 }
1263
1264                 Ok(pause_read)
1265         }
1266
1267         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1268         /// Returns the message back if it needs to be broadcasted to all other peers.
1269         fn handle_message(
1270                 &self,
1271                 peer_mutex: &Mutex<Peer>,
1272                 mut peer_lock: MutexGuard<Peer>,
1273                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1274         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1275                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1276                 peer_lock.received_message_since_timer_tick = true;
1277
1278                 // Need an Init as first message
1279                 if let wire::Message::Init(msg) = message {
1280                         if msg.features.requires_unknown_bits() {
1281                                 log_debug!(self.logger, "Peer features required unknown version bits");
1282                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1283                         }
1284                         if peer_lock.their_features.is_some() {
1285                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1286                         }
1287
1288                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1289
1290                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1291                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1292                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1293                         }
1294
1295                         if let Err(()) = self.message_handler.route_handler.peer_connected(&their_node_id, &msg) {
1296                                 log_debug!(self.logger, "Route Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1297                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1298                         }
1299                         if let Err(()) = self.message_handler.chan_handler.peer_connected(&their_node_id, &msg) {
1300                                 log_debug!(self.logger, "Channel Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1301                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1302                         }
1303                         if let Err(()) = self.message_handler.onion_message_handler.peer_connected(&their_node_id, &msg) {
1304                                 log_debug!(self.logger, "Onion Message Handler decided we couldn't communicate with peer {}", log_pubkey!(their_node_id));
1305                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1306                         }
1307
1308                         peer_lock.their_features = Some(msg.features);
1309                         return Ok(None);
1310                 } else if peer_lock.their_features.is_none() {
1311                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1312                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1313                 }
1314
1315                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1316                         // When supporting gossip messages, start inital gossip sync only after we receive
1317                         // a GossipTimestampFilter
1318                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1319                                 !peer_lock.sent_gossip_timestamp_filter {
1320                                 peer_lock.sent_gossip_timestamp_filter = true;
1321                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1322                         }
1323                         return Ok(None);
1324                 }
1325
1326                 if let wire::Message::ChannelAnnouncement(ref _msg) = message {
1327                         peer_lock.received_channel_announce_since_backlogged = true;
1328                 }
1329
1330                 mem::drop(peer_lock);
1331
1332                 if is_gossip_msg(message.type_id()) {
1333                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1334                 } else {
1335                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1336                 }
1337
1338                 let mut should_forward = None;
1339
1340                 match message {
1341                         // Setup and Control messages:
1342                         wire::Message::Init(_) => {
1343                                 // Handled above
1344                         },
1345                         wire::Message::GossipTimestampFilter(_) => {
1346                                 // Handled above
1347                         },
1348                         wire::Message::Error(msg) => {
1349                                 let mut data_is_printable = true;
1350                                 for b in msg.data.bytes() {
1351                                         if b < 32 || b > 126 {
1352                                                 data_is_printable = false;
1353                                                 break;
1354                                         }
1355                                 }
1356
1357                                 if data_is_printable {
1358                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1359                                 } else {
1360                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1361                                 }
1362                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1363                                 if msg.channel_id == [0; 32] {
1364                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1365                                 }
1366                         },
1367                         wire::Message::Warning(msg) => {
1368                                 let mut data_is_printable = true;
1369                                 for b in msg.data.bytes() {
1370                                         if b < 32 || b > 126 {
1371                                                 data_is_printable = false;
1372                                                 break;
1373                                         }
1374                                 }
1375
1376                                 if data_is_printable {
1377                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1378                                 } else {
1379                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1380                                 }
1381                         },
1382
1383                         wire::Message::Ping(msg) => {
1384                                 if msg.ponglen < 65532 {
1385                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1386                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1387                                 }
1388                         },
1389                         wire::Message::Pong(_msg) => {
1390                                 let mut peer_lock = peer_mutex.lock().unwrap();
1391                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1392                                 peer_lock.msgs_sent_since_pong = 0;
1393                         },
1394
1395                         // Channel messages:
1396                         wire::Message::OpenChannel(msg) => {
1397                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, &msg);
1398                         },
1399                         wire::Message::AcceptChannel(msg) => {
1400                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, &msg);
1401                         },
1402
1403                         wire::Message::FundingCreated(msg) => {
1404                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1405                         },
1406                         wire::Message::FundingSigned(msg) => {
1407                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1408                         },
1409                         wire::Message::ChannelReady(msg) => {
1410                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1411                         },
1412
1413                         wire::Message::Shutdown(msg) => {
1414                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, &msg);
1415                         },
1416                         wire::Message::ClosingSigned(msg) => {
1417                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1418                         },
1419
1420                         // Commitment messages:
1421                         wire::Message::UpdateAddHTLC(msg) => {
1422                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1423                         },
1424                         wire::Message::UpdateFulfillHTLC(msg) => {
1425                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1426                         },
1427                         wire::Message::UpdateFailHTLC(msg) => {
1428                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1429                         },
1430                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1431                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1432                         },
1433
1434                         wire::Message::CommitmentSigned(msg) => {
1435                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1436                         },
1437                         wire::Message::RevokeAndACK(msg) => {
1438                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1439                         },
1440                         wire::Message::UpdateFee(msg) => {
1441                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1442                         },
1443                         wire::Message::ChannelReestablish(msg) => {
1444                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1445                         },
1446
1447                         // Routing messages:
1448                         wire::Message::AnnouncementSignatures(msg) => {
1449                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1450                         },
1451                         wire::Message::ChannelAnnouncement(msg) => {
1452                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1453                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1454                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1455                                 }
1456                                 self.update_gossip_backlogged();
1457                         },
1458                         wire::Message::NodeAnnouncement(msg) => {
1459                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1460                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1461                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1462                                 }
1463                                 self.update_gossip_backlogged();
1464                         },
1465                         wire::Message::ChannelUpdate(msg) => {
1466                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1467                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1468                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1469                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1470                                 }
1471                                 self.update_gossip_backlogged();
1472                         },
1473                         wire::Message::QueryShortChannelIds(msg) => {
1474                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1475                         },
1476                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1477                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1478                         },
1479                         wire::Message::QueryChannelRange(msg) => {
1480                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1481                         },
1482                         wire::Message::ReplyChannelRange(msg) => {
1483                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1484                         },
1485
1486                         // Onion message:
1487                         wire::Message::OnionMessage(msg) => {
1488                                 self.message_handler.onion_message_handler.handle_onion_message(&their_node_id, &msg);
1489                         },
1490
1491                         // Unknown messages:
1492                         wire::Message::Unknown(type_id) if message.is_even() => {
1493                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1494                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1495                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1496                         },
1497                         wire::Message::Unknown(type_id) => {
1498                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1499                         },
1500                         wire::Message::Custom(custom) => {
1501                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1502                         },
1503                 };
1504                 Ok(should_forward)
1505         }
1506
1507         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1508                 match msg {
1509                         wire::Message::ChannelAnnouncement(ref msg) => {
1510                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1511                                 let encoded_msg = encode_msg!(msg);
1512
1513                                 for (_, peer_mutex) in peers.iter() {
1514                                         let mut peer = peer_mutex.lock().unwrap();
1515                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1516                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1517                                                 continue
1518                                         }
1519                                         if peer.buffer_full_drop_gossip_broadcast() {
1520                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1521                                                 continue;
1522                                         }
1523                                         if let Some(their_node_id) = peer.their_node_id {
1524                                                 let their_node_id = NodeId::from_pubkey(&their_node_id);
1525                                                 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
1526                                                         continue;
1527                                                 }
1528                                         }
1529                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1530                                                 continue;
1531                                         }
1532                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1533                                 }
1534                         },
1535                         wire::Message::NodeAnnouncement(ref msg) => {
1536                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1537                                 let encoded_msg = encode_msg!(msg);
1538
1539                                 for (_, peer_mutex) in peers.iter() {
1540                                         let mut peer = peer_mutex.lock().unwrap();
1541                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1542                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1543                                                 continue
1544                                         }
1545                                         if peer.buffer_full_drop_gossip_broadcast() {
1546                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1547                                                 continue;
1548                                         }
1549                                         if let Some(their_node_id) = peer.their_node_id {
1550                                                 if NodeId::from_pubkey(&their_node_id) == msg.contents.node_id {
1551                                                         continue;
1552                                                 }
1553                                         }
1554                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1555                                                 continue;
1556                                         }
1557                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1558                                 }
1559                         },
1560                         wire::Message::ChannelUpdate(ref msg) => {
1561                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1562                                 let encoded_msg = encode_msg!(msg);
1563
1564                                 for (_, peer_mutex) in peers.iter() {
1565                                         let mut peer = peer_mutex.lock().unwrap();
1566                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1567                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1568                                                 continue
1569                                         }
1570                                         if peer.buffer_full_drop_gossip_broadcast() {
1571                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1572                                                 continue;
1573                                         }
1574                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1575                                                 continue;
1576                                         }
1577                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, encoded_msg.clone());
1578                                 }
1579                         },
1580                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1581                 }
1582         }
1583
1584         /// Checks for any events generated by our handlers and processes them. Includes sending most
1585         /// response messages as well as messages generated by calls to handler functions directly (eg
1586         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1587         ///
1588         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1589         /// issues!
1590         ///
1591         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1592         /// or one of the other clients provided in our language bindings.
1593         ///
1594         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1595         /// without doing any work. All available events that need handling will be handled before the
1596         /// other calls return.
1597         ///
1598         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1599         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1600         /// [`send_data`]: SocketDescriptor::send_data
1601         pub fn process_events(&self) {
1602                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1603                 if _single_processor_lock.is_err() {
1604                         // While we could wake the older sleeper here with a CV and make more even waiting
1605                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1606                         // count" goal.
1607                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1608                                 Err(val) => {
1609                                         debug_assert!(val, "compare_exchange failed spuriously?");
1610                                         return;
1611                                 },
1612                                 Ok(val) => {
1613                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1614                                         // We're the only waiter, as the running process_events may have emptied the
1615                                         // pending events "long" ago and there are new events for us to process, wait until
1616                                         // its done and process any leftover events before returning.
1617                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1618                                         self.blocked_event_processors.store(false, Ordering::Release);
1619                                 }
1620                         }
1621                 }
1622
1623                 self.update_gossip_backlogged();
1624                 let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1625
1626                 let mut peers_to_disconnect = HashMap::new();
1627                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1628                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1629
1630                 {
1631                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1632                         // buffer by doing things like announcing channels on another node. We should be willing to
1633                         // drop optional-ish messages when send buffers get full!
1634
1635                         let peers_lock = self.peers.read().unwrap();
1636                         let peers = &*peers_lock;
1637                         macro_rules! get_peer_for_forwarding {
1638                                 ($node_id: expr) => {
1639                                         {
1640                                                 if peers_to_disconnect.get($node_id).is_some() {
1641                                                         // If we've "disconnected" this peer, do not send to it.
1642                                                         continue;
1643                                                 }
1644                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1645                                                 match descriptor_opt {
1646                                                         Some(descriptor) => match peers.get(&descriptor) {
1647                                                                 Some(peer_mutex) => {
1648                                                                         let peer_lock = peer_mutex.lock().unwrap();
1649                                                                         if peer_lock.their_features.is_none() {
1650                                                                                 continue;
1651                                                                         }
1652                                                                         peer_lock
1653                                                                 },
1654                                                                 None => {
1655                                                                         debug_assert!(false, "Inconsistent peers set state!");
1656                                                                         continue;
1657                                                                 }
1658                                                         },
1659                                                         None => {
1660                                                                 continue;
1661                                                         },
1662                                                 }
1663                                         }
1664                                 }
1665                         }
1666                         for event in events_generated.drain(..) {
1667                                 match event {
1668                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1669                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1670                                                                 log_pubkey!(node_id),
1671                                                                 log_bytes!(msg.temporary_channel_id));
1672                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1673                                         },
1674                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1675                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1676                                                                 log_pubkey!(node_id),
1677                                                                 log_bytes!(msg.temporary_channel_id));
1678                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1679                                         },
1680                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1681                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1682                                                                 log_pubkey!(node_id),
1683                                                                 log_bytes!(msg.temporary_channel_id),
1684                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1685                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1686                                                 // indicating to the wallet that they should just throw away this funding transaction
1687                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1688                                         },
1689                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1690                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1691                                                                 log_pubkey!(node_id),
1692                                                                 log_bytes!(msg.channel_id));
1693                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1694                                         },
1695                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1696                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1697                                                                 log_pubkey!(node_id),
1698                                                                 log_bytes!(msg.channel_id));
1699                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1700                                         },
1701                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1702                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1703                                                                 log_pubkey!(node_id),
1704                                                                 log_bytes!(msg.channel_id));
1705                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1706                                         },
1707                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1708                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1709                                                                 log_pubkey!(node_id),
1710                                                                 update_add_htlcs.len(),
1711                                                                 update_fulfill_htlcs.len(),
1712                                                                 update_fail_htlcs.len(),
1713                                                                 log_bytes!(commitment_signed.channel_id));
1714                                                 let mut peer = get_peer_for_forwarding!(node_id);
1715                                                 for msg in update_add_htlcs {
1716                                                         self.enqueue_message(&mut *peer, msg);
1717                                                 }
1718                                                 for msg in update_fulfill_htlcs {
1719                                                         self.enqueue_message(&mut *peer, msg);
1720                                                 }
1721                                                 for msg in update_fail_htlcs {
1722                                                         self.enqueue_message(&mut *peer, msg);
1723                                                 }
1724                                                 for msg in update_fail_malformed_htlcs {
1725                                                         self.enqueue_message(&mut *peer, msg);
1726                                                 }
1727                                                 if let &Some(ref msg) = update_fee {
1728                                                         self.enqueue_message(&mut *peer, msg);
1729                                                 }
1730                                                 self.enqueue_message(&mut *peer, commitment_signed);
1731                                         },
1732                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1733                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1734                                                                 log_pubkey!(node_id),
1735                                                                 log_bytes!(msg.channel_id));
1736                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1737                                         },
1738                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1739                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1740                                                                 log_pubkey!(node_id),
1741                                                                 log_bytes!(msg.channel_id));
1742                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1743                                         },
1744                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1745                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1746                                                                 log_pubkey!(node_id),
1747                                                                 log_bytes!(msg.channel_id));
1748                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1749                                         },
1750                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1751                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1752                                                                 log_pubkey!(node_id),
1753                                                                 log_bytes!(msg.channel_id));
1754                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1755                                         },
1756                                         MessageSendEvent::SendChannelAnnouncement { ref node_id, ref msg, ref update_msg } => {
1757                                                 log_debug!(self.logger, "Handling SendChannelAnnouncement event in peer_handler for node {} for short channel id {}",
1758                                                                 log_pubkey!(node_id),
1759                                                                 msg.contents.short_channel_id);
1760                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1761                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), update_msg);
1762                                         },
1763                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1764                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1765                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1766                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1767                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1768                                                         _ => {},
1769                                                 }
1770                                                 if let Some(msg) = update_msg {
1771                                                         match self.message_handler.route_handler.handle_channel_update(&msg) {
1772                                                                 Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1773                                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1774                                                                 _ => {},
1775                                                         }
1776                                                 }
1777                                         },
1778                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1779                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1780                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1781                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1782                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1783                                                         _ => {},
1784                                                 }
1785                                         },
1786                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1787                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler for node {}", msg.contents.node_id);
1788                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1789                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1790                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1791                                                         _ => {},
1792                                                 }
1793                                         },
1794                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1795                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1796                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1797                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1798                                         },
1799                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1800                                                 match *action {
1801                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1802                                                                 // We do not have the peers write lock, so we just store that we're
1803                                                                 // about to disconenct the peer and do it after we finish
1804                                                                 // processing most messages.
1805                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1806                                                         },
1807                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1808                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1809                                                         },
1810                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1811                                                         msgs::ErrorAction::IgnoreError => {
1812                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1813                                                         },
1814                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1815                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1816                                                                                 log_pubkey!(node_id),
1817                                                                                 msg.data);
1818                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1819                                                         },
1820                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1821                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1822                                                                                 log_pubkey!(node_id),
1823                                                                                 msg.data);
1824                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1825                                                         },
1826                                                 }
1827                                         },
1828                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1829                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1830                                         },
1831                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1832                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1833                                         }
1834                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1835                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1836                                                         log_pubkey!(node_id),
1837                                                         msg.short_channel_ids.len(),
1838                                                         msg.first_blocknum,
1839                                                         msg.number_of_blocks,
1840                                                         msg.sync_complete);
1841                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1842                                         }
1843                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1844                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1845                                         }
1846                                 }
1847                         }
1848
1849                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1850                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1851                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1852                         }
1853
1854                         for (descriptor, peer_mutex) in peers.iter() {
1855                                 let mut peer = peer_mutex.lock().unwrap();
1856                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
1857                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer, flush_read_disabled);
1858                         }
1859                 }
1860                 if !peers_to_disconnect.is_empty() {
1861                         let mut peers_lock = self.peers.write().unwrap();
1862                         let peers = &mut *peers_lock;
1863                         for (node_id, msg) in peers_to_disconnect.drain() {
1864                                 // Note that since we are holding the peers *write* lock we can
1865                                 // remove from node_id_to_descriptor immediately (as no other
1866                                 // thread can be holding the peer lock if we have the global write
1867                                 // lock).
1868
1869                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1870                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1871                                                 if let Some(msg) = msg {
1872                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1873                                                                         log_pubkey!(node_id),
1874                                                                         msg.data);
1875                                                         let mut peer = peer_mutex.lock().unwrap();
1876                                                         self.enqueue_message(&mut *peer, &msg);
1877                                                         // This isn't guaranteed to work, but if there is enough free
1878                                                         // room in the send buffer, put the error message there...
1879                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer, false);
1880                                                 } else {
1881                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1882                                                 }
1883                                         }
1884                                         descriptor.disconnect_socket();
1885                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1886                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1887                                 }
1888                         }
1889                 }
1890         }
1891
1892         /// Indicates that the given socket descriptor's connection is now closed.
1893         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1894                 self.disconnect_event_internal(descriptor, false);
1895         }
1896
1897         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1898                 let mut peers = self.peers.write().unwrap();
1899                 let peer_option = peers.remove(descriptor);
1900                 match peer_option {
1901                         None => {
1902                                 // This is most likely a simple race condition where the user found that the socket
1903                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1904                                 // called this method. Either way we're disconnected, return.
1905                         },
1906                         Some(peer_lock) => {
1907                                 let peer = peer_lock.lock().unwrap();
1908                                 if let Some(node_id) = peer.their_node_id {
1909                                         log_trace!(self.logger,
1910                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1911                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1912                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1913                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1914                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1915                                 }
1916                         }
1917                 };
1918         }
1919
1920         /// Disconnect a peer given its node id.
1921         ///
1922         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1923         /// force-closing any channels we have with it.
1924         ///
1925         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1926         /// peer. Thus, be very careful about reentrancy issues.
1927         ///
1928         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1929         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1930                 let mut peers_lock = self.peers.write().unwrap();
1931                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1932                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1933                         peers_lock.remove(&descriptor);
1934                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1935                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, no_connection_possible);
1936                         descriptor.disconnect_socket();
1937                 }
1938         }
1939
1940         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1941         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1942         /// using regular ping/pongs.
1943         pub fn disconnect_all_peers(&self) {
1944                 let mut peers_lock = self.peers.write().unwrap();
1945                 self.node_id_to_descriptor.lock().unwrap().clear();
1946                 let peers = &mut *peers_lock;
1947                 for (mut descriptor, peer) in peers.drain() {
1948                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1949                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1950                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1951                                 self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
1952                         }
1953                         descriptor.disconnect_socket();
1954                 }
1955         }
1956
1957         /// This is called when we're blocked on sending additional gossip messages until we receive a
1958         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1959         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1960         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1961                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1962                         peer.awaiting_pong_timer_tick_intervals = -1;
1963                         let ping = msgs::Ping {
1964                                 ponglen: 0,
1965                                 byteslen: 64,
1966                         };
1967                         self.enqueue_message(peer, &ping);
1968                 }
1969         }
1970
1971         /// Send pings to each peer and disconnect those which did not respond to the last round of
1972         /// pings.
1973         ///
1974         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1975         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1976         /// time they have to respond before we disconnect them.
1977         ///
1978         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1979         /// issues!
1980         ///
1981         /// [`send_data`]: SocketDescriptor::send_data
1982         pub fn timer_tick_occurred(&self) {
1983                 let mut descriptors_needing_disconnect = Vec::new();
1984                 {
1985                         let peers_lock = self.peers.read().unwrap();
1986
1987                         self.update_gossip_backlogged();
1988                         let flush_read_disabled = self.gossip_processing_backlog_lifted.swap(false, Ordering::Relaxed);
1989
1990                         for (descriptor, peer_mutex) in peers_lock.iter() {
1991                                 let mut peer = peer_mutex.lock().unwrap();
1992                                 if flush_read_disabled { peer.received_channel_announce_since_backlogged = false; }
1993
1994                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1995                                         // The peer needs to complete its handshake before we can exchange messages. We
1996                                         // give peers one timer tick to complete handshake, reusing
1997                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1998                                         // for handshake completion.
1999                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
2000                                                 descriptors_needing_disconnect.push(descriptor.clone());
2001                                         } else {
2002                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2003                                         }
2004                                         continue;
2005                                 }
2006
2007                                 loop { // Used as a `goto` to skip writing a Ping message.
2008                                         if peer.awaiting_pong_timer_tick_intervals == -1 {
2009                                                 // Magic value set in `maybe_send_extra_ping`.
2010                                                 peer.awaiting_pong_timer_tick_intervals = 1;
2011                                                 peer.received_message_since_timer_tick = false;
2012                                                 break;
2013                                         }
2014
2015                                         if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
2016                                                 || peer.awaiting_pong_timer_tick_intervals as u64 >
2017                                                         MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
2018                                         {
2019                                                 descriptors_needing_disconnect.push(descriptor.clone());
2020                                                 break;
2021                                         }
2022                                         peer.received_message_since_timer_tick = false;
2023
2024                                         if peer.awaiting_pong_timer_tick_intervals > 0 {
2025                                                 peer.awaiting_pong_timer_tick_intervals += 1;
2026                                                 break;
2027                                         }
2028
2029                                         peer.awaiting_pong_timer_tick_intervals = 1;
2030                                         let ping = msgs::Ping {
2031                                                 ponglen: 0,
2032                                                 byteslen: 64,
2033                                         };
2034                                         self.enqueue_message(&mut *peer, &ping);
2035                                         break;
2036                                 }
2037                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer, flush_read_disabled);
2038                         }
2039                 }
2040
2041                 if !descriptors_needing_disconnect.is_empty() {
2042                         {
2043                                 let mut peers_lock = self.peers.write().unwrap();
2044                                 for descriptor in descriptors_needing_disconnect.iter() {
2045                                         if let Some(peer) = peers_lock.remove(descriptor) {
2046                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
2047                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
2048                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
2049                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
2050                                                         self.message_handler.onion_message_handler.peer_disconnected(&node_id, false);
2051                                                 }
2052                                         }
2053                                 }
2054                         }
2055
2056                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
2057                                 descriptor.disconnect_socket();
2058                         }
2059                 }
2060         }
2061
2062         #[allow(dead_code)]
2063         // Messages of up to 64KB should never end up more than half full with addresses, as that would
2064         // be absurd. We ensure this by checking that at least 100 (our stated public contract on when
2065         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2066         // message...
2067         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2068         #[deny(const_err)]
2069         #[allow(dead_code)]
2070         // ...by failing to compile if the number of addresses that would be half of a message is
2071         // smaller than 100:
2072         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 100;
2073
2074         /// Generates a signed node_announcement from the given arguments, sending it to all connected
2075         /// peers. Note that peers will likely ignore this message unless we have at least one public
2076         /// channel which has at least six confirmations on-chain.
2077         ///
2078         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2079         /// node to humans. They carry no in-protocol meaning.
2080         ///
2081         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2082         /// accepts incoming connections. These will be included in the node_announcement, publicly
2083         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2084         /// addresses should likely contain only Tor Onion addresses.
2085         ///
2086         /// Panics if `addresses` is absurdly large (more than 100).
2087         ///
2088         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2089         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2090                 if addresses.len() > 100 {
2091                         panic!("More than half the message size was taken up by public addresses!");
2092                 }
2093
2094                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2095                 // addresses be sorted for future compatibility.
2096                 addresses.sort_by_key(|addr| addr.get_id());
2097
2098                 let features = self.message_handler.chan_handler.provided_node_features()
2099                         .or(self.message_handler.route_handler.provided_node_features())
2100                         .or(self.message_handler.onion_message_handler.provided_node_features());
2101                 let announcement = msgs::UnsignedNodeAnnouncement {
2102                         features,
2103                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel),
2104                         node_id: NodeId::from_pubkey(&self.node_signer.get_node_id(Recipient::Node).unwrap()),
2105                         rgb, alias, addresses,
2106                         excess_address_data: Vec::new(),
2107                         excess_data: Vec::new(),
2108                 };
2109                 let node_announce_sig = match self.node_signer.sign_gossip_message(
2110                         msgs::UnsignedGossipMessage::NodeAnnouncement(&announcement)
2111                 ) {
2112                         Ok(sig) => sig,
2113                         Err(_) => {
2114                                 log_error!(self.logger, "Failed to generate signature for node_announcement");
2115                                 return;
2116                         },
2117                 };
2118
2119                 let msg = msgs::NodeAnnouncement {
2120                         signature: node_announce_sig,
2121                         contents: announcement
2122                 };
2123
2124                 log_debug!(self.logger, "Broadcasting NodeAnnouncement after passing it to our own RoutingMessageHandler.");
2125                 let _ = self.message_handler.route_handler.handle_node_announcement(&msg);
2126                 self.forward_broadcast_msg(&*self.peers.read().unwrap(), &wire::Message::NodeAnnouncement(msg), None);
2127         }
2128 }
2129
2130 fn is_gossip_msg(type_id: u16) -> bool {
2131         match type_id {
2132                 msgs::ChannelAnnouncement::TYPE |
2133                 msgs::ChannelUpdate::TYPE |
2134                 msgs::NodeAnnouncement::TYPE |
2135                 msgs::QueryChannelRange::TYPE |
2136                 msgs::ReplyChannelRange::TYPE |
2137                 msgs::QueryShortChannelIds::TYPE |
2138                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
2139                 _ => false
2140         }
2141 }
2142
2143 #[cfg(test)]
2144 mod tests {
2145         use crate::chain::keysinterface::{NodeSigner, Recipient};
2146         use crate::ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
2147         use crate::ln::{msgs, wire};
2148         use crate::ln::msgs::NetAddress;
2149         use crate::util::events;
2150         use crate::util::test_utils;
2151
2152         use bitcoin::secp256k1::SecretKey;
2153
2154         use crate::prelude::*;
2155         use crate::sync::{Arc, Mutex};
2156         use core::sync::atomic::Ordering;
2157
2158         #[derive(Clone)]
2159         struct FileDescriptor {
2160                 fd: u16,
2161                 outbound_data: Arc<Mutex<Vec<u8>>>,
2162         }
2163         impl PartialEq for FileDescriptor {
2164                 fn eq(&self, other: &Self) -> bool {
2165                         self.fd == other.fd
2166                 }
2167         }
2168         impl Eq for FileDescriptor { }
2169         impl core::hash::Hash for FileDescriptor {
2170                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
2171                         self.fd.hash(hasher)
2172                 }
2173         }
2174
2175         impl SocketDescriptor for FileDescriptor {
2176                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
2177                         self.outbound_data.lock().unwrap().extend_from_slice(data);
2178                         data.len()
2179                 }
2180
2181                 fn disconnect_socket(&mut self) {}
2182         }
2183
2184         struct PeerManagerCfg {
2185                 chan_handler: test_utils::TestChannelMessageHandler,
2186                 routing_handler: test_utils::TestRoutingMessageHandler,
2187                 logger: test_utils::TestLogger,
2188                 node_signer: test_utils::TestNodeSigner,
2189         }
2190
2191         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
2192                 let mut cfgs = Vec::new();
2193                 for i in 0..peer_count {
2194                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
2195                         cfgs.push(
2196                                 PeerManagerCfg{
2197                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
2198                                         logger: test_utils::TestLogger::new(),
2199                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
2200                                         node_signer: test_utils::TestNodeSigner::new(node_secret),
2201                                 }
2202                         );
2203                 }
2204
2205                 cfgs
2206         }
2207
2208         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>> {
2209                 let mut peers = Vec::new();
2210                 for i in 0..peer_count {
2211                         let ephemeral_bytes = [i as u8; 32];
2212                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler, onion_message_handler: IgnoringMessageHandler {} };
2213                         let peer = PeerManager::new(msg_handler, 0, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {}, &cfgs[i].node_signer);
2214                         peers.push(peer);
2215                 }
2216
2217                 peers
2218         }
2219
2220         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, IgnoringMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler, &'a test_utils::TestNodeSigner>) -> (FileDescriptor, FileDescriptor) {
2221                 let a_id = peer_a.node_signer.get_node_id(Recipient::Node).unwrap();
2222                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2223                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2224                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2225                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
2226                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
2227                 peer_a.process_events();
2228
2229                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2230                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2231
2232                 peer_b.process_events();
2233                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2234                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
2235
2236                 peer_a.process_events();
2237                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2238                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
2239
2240                 (fd_a.clone(), fd_b.clone())
2241         }
2242
2243         #[test]
2244         fn test_disconnect_peer() {
2245                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2246                 // push a DisconnectPeer event to remove the node flagged by id
2247                 let cfgs = create_peermgr_cfgs(2);
2248                 let chan_handler = test_utils::TestChannelMessageHandler::new();
2249                 let mut peers = create_network(2, &cfgs);
2250                 establish_connection(&peers[0], &peers[1]);
2251                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2252
2253                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2254
2255                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
2256                         node_id: their_id,
2257                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
2258                 });
2259                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
2260                 peers[0].message_handler.chan_handler = &chan_handler;
2261
2262                 peers[0].process_events();
2263                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2264         }
2265
2266         #[test]
2267         fn test_send_simple_msg() {
2268                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2269                 // push a message from one peer to another.
2270                 let cfgs = create_peermgr_cfgs(2);
2271                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2272                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2273                 let mut peers = create_network(2, &cfgs);
2274                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2275                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2276
2277                 let their_id = peers[1].node_signer.get_node_id(Recipient::Node).unwrap();
2278
2279                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2280                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2281                         node_id: their_id, msg: msg.clone()
2282                 });
2283                 peers[0].message_handler.chan_handler = &a_chan_handler;
2284
2285                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2286                 peers[1].message_handler.chan_handler = &b_chan_handler;
2287
2288                 peers[0].process_events();
2289
2290                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2291                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2292         }
2293
2294         #[test]
2295         fn test_disconnect_all_peer() {
2296                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2297                 // then calls disconnect_all_peers
2298                 let cfgs = create_peermgr_cfgs(2);
2299                 let peers = create_network(2, &cfgs);
2300                 establish_connection(&peers[0], &peers[1]);
2301                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2302
2303                 peers[0].disconnect_all_peers();
2304                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2305         }
2306
2307         #[test]
2308         fn test_timer_tick_occurred() {
2309                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2310                 let cfgs = create_peermgr_cfgs(2);
2311                 let peers = create_network(2, &cfgs);
2312                 establish_connection(&peers[0], &peers[1]);
2313                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2314
2315                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2316                 peers[0].timer_tick_occurred();
2317                 peers[0].process_events();
2318                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2319
2320                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2321                 peers[0].timer_tick_occurred();
2322                 peers[0].process_events();
2323                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2324         }
2325
2326         #[test]
2327         fn test_do_attempt_write_data() {
2328                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2329                 let cfgs = create_peermgr_cfgs(2);
2330                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2331                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2332                 let peers = create_network(2, &cfgs);
2333
2334                 // By calling establish_connect, we trigger do_attempt_write_data between
2335                 // the peers. Previously this function would mistakenly enter an infinite loop
2336                 // when there were more channel messages available than could fit into a peer's
2337                 // buffer. This issue would now be detected by this test (because we use custom
2338                 // RoutingMessageHandlers that intentionally return more channel messages
2339                 // than can fit into a peer's buffer).
2340                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2341
2342                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2343                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2344                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2345                         peers[1].process_events();
2346                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2347                         assert!(!a_read_data.is_empty());
2348
2349                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2350                         peers[0].process_events();
2351
2352                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2353                         assert!(!b_read_data.is_empty());
2354                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2355
2356                         peers[0].process_events();
2357                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2358                 }
2359
2360                 // Check that each peer has received the expected number of channel updates and channel
2361                 // announcements.
2362                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2363                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2364                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2365                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2366         }
2367
2368         #[test]
2369         fn test_handshake_timeout() {
2370                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2371                 // tick.
2372                 let cfgs = create_peermgr_cfgs(2);
2373                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2374                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2375                 let peers = create_network(2, &cfgs);
2376
2377                 let a_id = peers[0].node_signer.get_node_id(Recipient::Node).unwrap();
2378                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2379                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2380                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2381                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2382
2383                 // If we get a single timer tick before completion, that's fine
2384                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2385                 peers[0].timer_tick_occurred();
2386                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2387
2388                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2389                 peers[0].process_events();
2390                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2391                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2392                 peers[1].process_events();
2393
2394                 // ...but if we get a second timer tick, we should disconnect the peer
2395                 peers[0].timer_tick_occurred();
2396                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2397
2398                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2399                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2400         }
2401
2402         #[test]
2403         fn test_filter_addresses(){
2404                 // Tests the filter_addresses function.
2405
2406                 // For (10/8)
2407                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2408                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2409                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2410                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2411                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2412                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2413
2414                 // For (0/8)
2415                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2416                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2417                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2418                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2419                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2420                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2421
2422                 // For (100.64/10)
2423                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2424                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2425                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2426                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2427                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2428                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2429
2430                 // For (127/8)
2431                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2432                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2433                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2434                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2435                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2436                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2437
2438                 // For (169.254/16)
2439                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2440                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2441                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2442                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2443                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2444                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2445
2446                 // For (172.16/12)
2447                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2448                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2449                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2450                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2451                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2452                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2453
2454                 // For (192.168/16)
2455                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2456                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2457                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2458                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2459                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2460                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2461
2462                 // For (192.88.99/24)
2463                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2464                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2465                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2466                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2467                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2468                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2469
2470                 // For other IPv4 addresses
2471                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2472                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2473                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2474                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2475                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2476                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2477
2478                 // For (2000::/3)
2479                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2480                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2481                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2482                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2483                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2484                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2485
2486                 // For other IPv6 addresses
2487                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2488                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2489                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2490                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2491                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2492                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2493
2494                 // For (None)
2495                 assert_eq!(filter_addresses(None), None);
2496         }
2497 }