Pull secp256k1 contexts from per-peer to per-PeerManager
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
37 use core::sync::atomic::{AtomicBool, Ordering};
38 use core::{cmp, hash, fmt, mem};
39 use core::ops::Deref;
40 use core::convert::Infallible;
41 #[cfg(feature = "std")] use std::error;
42
43 use bitcoin::hashes::sha256::Hash as Sha256;
44 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
45 use bitcoin::hashes::{HashEngine, Hash};
46
47 /// Handler for BOLT1-compliant messages.
48 pub trait CustomMessageHandler: wire::CustomMessageReader {
49         /// Called with the message type that was received and the buffer to be read.
50         /// Can return a `MessageHandlingError` if the message could not be handled.
51         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
52
53         /// Gets the list of pending messages which were generated by the custom message
54         /// handler, clearing the list in the process. The first tuple element must
55         /// correspond to the intended recipients node ids. If no connection to one of the
56         /// specified node does not exist, the message is simply not sent to it.
57         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
58 }
59
60 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
61 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
62 pub struct IgnoringMessageHandler{}
63 impl MessageSendEventsProvider for IgnoringMessageHandler {
64         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
65 }
66 impl RoutingMessageHandler for IgnoringMessageHandler {
67         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
69         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
70         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
71                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
72         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
73         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
74         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
75         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
78 }
79 impl Deref for IgnoringMessageHandler {
80         type Target = IgnoringMessageHandler;
81         fn deref(&self) -> &Self { self }
82 }
83
84 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
85 // method that takes self for it.
86 impl wire::Type for Infallible {
87         fn type_id(&self) -> u16 {
88                 unreachable!();
89         }
90 }
91 impl Writeable for Infallible {
92         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
93                 unreachable!();
94         }
95 }
96
97 impl wire::CustomMessageReader for IgnoringMessageHandler {
98         type CustomMessage = Infallible;
99         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
100                 Ok(None)
101         }
102 }
103
104 impl CustomMessageHandler for IgnoringMessageHandler {
105         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
106                 // Since we always return `None` in the read the handle method should never be called.
107                 unreachable!();
108         }
109
110         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
111 }
112
113 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
114 /// You can provide one of these as the route_handler in a MessageHandler.
115 pub struct ErroringMessageHandler {
116         message_queue: Mutex<Vec<MessageSendEvent>>
117 }
118 impl ErroringMessageHandler {
119         /// Constructs a new ErroringMessageHandler
120         pub fn new() -> Self {
121                 Self { message_queue: Mutex::new(Vec::new()) }
122         }
123         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
124                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
125                         action: msgs::ErrorAction::SendErrorMessage {
126                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
127                         },
128                         node_id: node_id.clone(),
129                 });
130         }
131 }
132 impl MessageSendEventsProvider for ErroringMessageHandler {
133         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
134                 let mut res = Vec::new();
135                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
136                 res
137         }
138 }
139 impl ChannelMessageHandler for ErroringMessageHandler {
140         // Any messages which are related to a specific channel generate an error message to let the
141         // peer know we don't care about channels.
142         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
143                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
144         }
145         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
146                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
147         }
148         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
149                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
150         }
151         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
152                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
153         }
154         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
155                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
156         }
157         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
158                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
159         }
160         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
161                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
162         }
163         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
164                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
165         }
166         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
167                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
168         }
169         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
170                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
171         }
172         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
173                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
174         }
175         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
176                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
177         }
178         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
180         }
181         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
183         }
184         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
186         }
187         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
191         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
192         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
193         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
194         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
195 }
196 impl Deref for ErroringMessageHandler {
197         type Target = ErroringMessageHandler;
198         fn deref(&self) -> &Self { self }
199 }
200
201 /// Provides references to trait impls which handle different types of messages.
202 pub struct MessageHandler<CM: Deref, RM: Deref> where
203                 CM::Target: ChannelMessageHandler,
204                 RM::Target: RoutingMessageHandler {
205         /// A message handler which handles messages specific to channels. Usually this is just a
206         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
207         ///
208         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
209         pub chan_handler: CM,
210         /// A message handler which handles messages updating our knowledge of the network channel
211         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
212         /// [`IgnoringMessageHandler`].
213         ///
214         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
215         pub route_handler: RM,
216 }
217
218 /// Provides an object which can be used to send data to and which uniquely identifies a connection
219 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
220 /// implement Hash to meet the PeerManager API.
221 ///
222 /// For efficiency, Clone should be relatively cheap for this type.
223 ///
224 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
225 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
226 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
227 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
228 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
229 /// to simply use another value which is guaranteed to be globally unique instead.
230 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
231         /// Attempts to send some data from the given slice to the peer.
232         ///
233         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
234         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
235         /// called and further write attempts may occur until that time.
236         ///
237         /// If the returned size is smaller than `data.len()`, a
238         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
239         /// written. Additionally, until a `send_data` event completes fully, no further
240         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
241         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
242         /// until then.
243         ///
244         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
245         /// (indicating that read events should be paused to prevent DoS in the send buffer),
246         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
247         /// `resume_read` of false carries no meaning, and should not cause any action.
248         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
249         /// Disconnect the socket pointed to by this SocketDescriptor.
250         ///
251         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
252         /// call (doing so is a noop).
253         fn disconnect_socket(&mut self);
254 }
255
256 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
257 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
258 /// descriptor.
259 #[derive(Clone)]
260 pub struct PeerHandleError {
261         /// Used to indicate that we probably can't make any future connections to this peer, implying
262         /// we should go ahead and force-close any channels we have with it.
263         pub no_connection_possible: bool,
264 }
265 impl fmt::Debug for PeerHandleError {
266         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
267                 formatter.write_str("Peer Sent Invalid Data")
268         }
269 }
270 impl fmt::Display for PeerHandleError {
271         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
272                 formatter.write_str("Peer Sent Invalid Data")
273         }
274 }
275
276 #[cfg(feature = "std")]
277 impl error::Error for PeerHandleError {
278         fn description(&self) -> &str {
279                 "Peer Sent Invalid Data"
280         }
281 }
282
283 enum InitSyncTracker{
284         NoSyncRequested,
285         ChannelsSyncing(u64),
286         NodesSyncing(PublicKey),
287 }
288
289 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
290 /// forwarding gossip messages to peers altogether.
291 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
292
293 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
294 /// we have fewer than this many messages in the outbound buffer again.
295 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
296 /// refilled as we send bytes.
297 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
298 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
299 /// the peer.
300 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
301
302 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
303 /// the socket receive buffer before receiving the ping.
304 ///
305 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
306 /// including any network delays, outbound traffic, or the same for messages from other peers.
307 ///
308 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
309 /// per connected peer to respond to a ping, as long as they send us at least one message during
310 /// each tick, ensuring we aren't actually just disconnected.
311 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
312 /// peer.
313 ///
314 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
315 /// two connected peers, assuming most LDK-running systems have at least two cores.
316 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
317
318 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
319 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
320 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
321 /// process before the next ping.
322 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
323
324 struct Peer {
325         channel_encryptor: PeerChannelEncryptor,
326         their_node_id: Option<PublicKey>,
327         their_features: Option<InitFeatures>,
328         their_net_address: Option<NetAddress>,
329
330         pending_outbound_buffer: LinkedList<Vec<u8>>,
331         pending_outbound_buffer_first_msg_offset: usize,
332         awaiting_write_event: bool,
333
334         pending_read_buffer: Vec<u8>,
335         pending_read_buffer_pos: usize,
336         pending_read_is_header: bool,
337
338         sync_status: InitSyncTracker,
339
340         msgs_sent_since_pong: usize,
341         awaiting_pong_timer_tick_intervals: i8,
342         received_message_since_timer_tick: bool,
343         sent_gossip_timestamp_filter: bool,
344 }
345
346 impl Peer {
347         /// Returns true if the channel announcements/updates for the given channel should be
348         /// forwarded to this peer.
349         /// If we are sending our routing table to this peer and we have not yet sent channel
350         /// announcements/updates for the given channel_id then we will send it when we get to that
351         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
352         /// sent the old versions, we should send the update, and so return true here.
353         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
354                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
355                         !self.sent_gossip_timestamp_filter {
356                                 return false;
357                         }
358                 match self.sync_status {
359                         InitSyncTracker::NoSyncRequested => true,
360                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
361                         InitSyncTracker::NodesSyncing(_) => true,
362                 }
363         }
364
365         /// Similar to the above, but for node announcements indexed by node_id.
366         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
367                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
368                         !self.sent_gossip_timestamp_filter {
369                                 return false;
370                         }
371                 match self.sync_status {
372                         InitSyncTracker::NoSyncRequested => true,
373                         InitSyncTracker::ChannelsSyncing(_) => false,
374                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
375                 }
376         }
377 }
378
379 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
380 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
381 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
382 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
383 /// issues such as overly long function definitions.
384 ///
385 /// (C-not exported) as Arcs don't make sense in bindings
386 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
387
388 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
389 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
390 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
391 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
392 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
393 /// helps with issues such as long function definitions.
394 ///
395 /// (C-not exported) as Arcs don't make sense in bindings
396 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
397
398 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
399 /// socket events into messages which it passes on to its [`MessageHandler`].
400 ///
401 /// Locks are taken internally, so you must never assume that reentrancy from a
402 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
403 ///
404 /// Calls to [`read_event`] will decode relevant messages and pass them to the
405 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
406 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
407 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
408 /// calls only after previous ones have returned.
409 ///
410 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
411 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
412 /// essentially you should default to using a SimpleRefPeerManager, and use a
413 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
414 /// you're using lightning-net-tokio.
415 ///
416 /// [`read_event`]: PeerManager::read_event
417 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
418                 CM::Target: ChannelMessageHandler,
419                 RM::Target: RoutingMessageHandler,
420                 L::Target: Logger,
421                 CMH::Target: CustomMessageHandler {
422         message_handler: MessageHandler<CM, RM>,
423         /// Connection state for each connected peer - we have an outer read-write lock which is taken
424         /// as read while we're doing processing for a peer and taken write when a peer is being added
425         /// or removed.
426         ///
427         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
428         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
429         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
430         /// the `MessageHandler`s for a given peer is already guaranteed.
431         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
432         /// Only add to this set when noise completes.
433         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
434         /// lock held. Entries may be added with only the `peers` read lock held (though the
435         /// `Descriptor` value must already exist in `peers`).
436         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
437         /// We can only have one thread processing events at once, but we don't usually need the full
438         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
439         /// `process_events`.
440         event_processing_lock: Mutex<()>,
441         /// Because event processing is global and always does all available work before returning,
442         /// there is no reason for us to have many event processors waiting on the lock at once.
443         /// Instead, we limit the total blocked event processors to always exactly one by setting this
444         /// when an event process call is waiting.
445         blocked_event_processors: AtomicBool,
446         our_node_secret: SecretKey,
447         ephemeral_key_midstate: Sha256Engine,
448         custom_message_handler: CMH,
449
450         peer_counter: AtomicCounter,
451
452         logger: L,
453         secp_ctx: Secp256k1<secp256k1::SignOnly>
454 }
455
456 enum MessageHandlingError {
457         PeerHandleError(PeerHandleError),
458         LightningError(LightningError),
459 }
460
461 impl From<PeerHandleError> for MessageHandlingError {
462         fn from(error: PeerHandleError) -> Self {
463                 MessageHandlingError::PeerHandleError(error)
464         }
465 }
466
467 impl From<LightningError> for MessageHandlingError {
468         fn from(error: LightningError) -> Self {
469                 MessageHandlingError::LightningError(error)
470         }
471 }
472
473 macro_rules! encode_msg {
474         ($msg: expr) => {{
475                 let mut buffer = VecWriter(Vec::new());
476                 wire::write($msg, &mut buffer).unwrap();
477                 buffer.0
478         }}
479 }
480
481 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
482                 CM::Target: ChannelMessageHandler,
483                 L::Target: Logger {
484         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
485         /// handler is used and network graph messages are ignored.
486         ///
487         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
488         /// cryptographically secure random bytes.
489         ///
490         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
491         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
492                 Self::new(MessageHandler {
493                         chan_handler: channel_message_handler,
494                         route_handler: IgnoringMessageHandler{},
495                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
496         }
497 }
498
499 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
500                 RM::Target: RoutingMessageHandler,
501                 L::Target: Logger {
502         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
503         /// handler is used and messages related to channels will be ignored (or generate error
504         /// messages). Note that some other lightning implementations time-out connections after some
505         /// time if no channel is built with the peer.
506         ///
507         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
508         /// cryptographically secure random bytes.
509         ///
510         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
511         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
512                 Self::new(MessageHandler {
513                         chan_handler: ErroringMessageHandler::new(),
514                         route_handler: routing_message_handler,
515                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
516         }
517 }
518
519 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
520 /// This works around `format!()` taking a reference to each argument, preventing
521 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
522 /// due to lifetime errors.
523 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
524 impl core::fmt::Display for OptionalFromDebugger<'_> {
525         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
526                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
527         }
528 }
529
530 /// A function used to filter out local or private addresses
531 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
532 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
533 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
534         match ip_address{
535                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
536                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
537                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
538                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
539                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
540                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
541                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
542                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
543                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
544                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
545                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
546                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
547                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
548                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
549                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
550                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
551                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
552                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
553                 // For remaining addresses
554                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
555                 Some(..) => ip_address,
556                 None => None,
557         }
558 }
559
560 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
561                 CM::Target: ChannelMessageHandler,
562                 RM::Target: RoutingMessageHandler,
563                 L::Target: Logger,
564                 CMH::Target: CustomMessageHandler {
565         /// Constructs a new PeerManager with the given message handlers and node_id secret key
566         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
567         /// cryptographically secure random bytes.
568         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
569                 let mut ephemeral_key_midstate = Sha256::engine();
570                 ephemeral_key_midstate.input(ephemeral_random_data);
571
572                 let mut secp_ctx = Secp256k1::signing_only();
573                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
574                 secp_ctx.seeded_randomize(&ephemeral_hash);
575
576                 PeerManager {
577                         message_handler,
578                         peers: FairRwLock::new(HashMap::new()),
579                         node_id_to_descriptor: Mutex::new(HashMap::new()),
580                         event_processing_lock: Mutex::new(()),
581                         blocked_event_processors: AtomicBool::new(false),
582                         our_node_secret,
583                         ephemeral_key_midstate,
584                         peer_counter: AtomicCounter::new(),
585                         logger,
586                         custom_message_handler,
587                         secp_ctx,
588                 }
589         }
590
591         /// Get the list of node ids for peers which have completed the initial handshake.
592         ///
593         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
594         /// new_outbound_connection, however entries will only appear once the initial handshake has
595         /// completed and we are sure the remote peer has the private key for the given node_id.
596         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
597                 let peers = self.peers.read().unwrap();
598                 peers.values().filter_map(|peer_mutex| {
599                         let p = peer_mutex.lock().unwrap();
600                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
601                                 return None;
602                         }
603                         p.their_node_id
604                 }).collect()
605         }
606
607         fn get_ephemeral_key(&self) -> SecretKey {
608                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
609                 let counter = self.peer_counter.get_increment();
610                 ephemeral_hash.input(&counter.to_le_bytes());
611                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
612         }
613
614         /// Indicates a new outbound connection has been established to a node with the given node_id
615         /// and an optional remote network address.
616         ///
617         /// The remote network address adds the option to report a remote IP address back to a connecting
618         /// peer using the init message.
619         /// The user should pass the remote network address of the host they are connected to.
620         ///
621         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
622         /// descriptor but must disconnect the connection immediately.
623         ///
624         /// Returns a small number of bytes to send to the remote node (currently always 50).
625         ///
626         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
627         /// [`socket_disconnected()`].
628         ///
629         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
630         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
631                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
632                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
633                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
634
635                 let mut peers = self.peers.write().unwrap();
636                 if peers.insert(descriptor, Mutex::new(Peer {
637                         channel_encryptor: peer_encryptor,
638                         their_node_id: None,
639                         their_features: None,
640                         their_net_address: remote_network_address,
641
642                         pending_outbound_buffer: LinkedList::new(),
643                         pending_outbound_buffer_first_msg_offset: 0,
644                         awaiting_write_event: false,
645
646                         pending_read_buffer,
647                         pending_read_buffer_pos: 0,
648                         pending_read_is_header: false,
649
650                         sync_status: InitSyncTracker::NoSyncRequested,
651
652                         msgs_sent_since_pong: 0,
653                         awaiting_pong_timer_tick_intervals: 0,
654                         received_message_since_timer_tick: false,
655                         sent_gossip_timestamp_filter: false,
656                 })).is_some() {
657                         panic!("PeerManager driver duplicated descriptors!");
658                 };
659                 Ok(res)
660         }
661
662         /// Indicates a new inbound connection has been established to a node with an optional remote
663         /// network address.
664         ///
665         /// The remote network address adds the option to report a remote IP address back to a connecting
666         /// peer using the init message.
667         /// The user should pass the remote network address of the host they are connected to.
668         ///
669         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
670         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
671         /// call socket_disconnected for the new descriptor but must disconnect the connection
672         /// immediately.
673         ///
674         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
675         /// [`socket_disconnected()`].
676         ///
677         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
678         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
679                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
680                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
681
682                 let mut peers = self.peers.write().unwrap();
683                 if peers.insert(descriptor, Mutex::new(Peer {
684                         channel_encryptor: peer_encryptor,
685                         their_node_id: None,
686                         their_features: None,
687                         their_net_address: remote_network_address,
688
689                         pending_outbound_buffer: LinkedList::new(),
690                         pending_outbound_buffer_first_msg_offset: 0,
691                         awaiting_write_event: false,
692
693                         pending_read_buffer,
694                         pending_read_buffer_pos: 0,
695                         pending_read_is_header: false,
696
697                         sync_status: InitSyncTracker::NoSyncRequested,
698
699                         msgs_sent_since_pong: 0,
700                         awaiting_pong_timer_tick_intervals: 0,
701                         received_message_since_timer_tick: false,
702                         sent_gossip_timestamp_filter: false,
703                 })).is_some() {
704                         panic!("PeerManager driver duplicated descriptors!");
705                 };
706                 Ok(())
707         }
708
709         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
710                 while !peer.awaiting_write_event {
711                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
712                                 match peer.sync_status {
713                                         InitSyncTracker::NoSyncRequested => {},
714                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
715                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
716                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
717                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
718                                                         self.enqueue_message(peer, announce);
719                                                         if let &Some(ref update_a) = update_a_option {
720                                                                 self.enqueue_message(peer, update_a);
721                                                         }
722                                                         if let &Some(ref update_b) = update_b_option {
723                                                                 self.enqueue_message(peer, update_b);
724                                                         }
725                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
726                                                 }
727                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
728                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
729                                                 }
730                                         },
731                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
732                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
733                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
734                                                 for msg in all_messages.iter() {
735                                                         self.enqueue_message(peer, msg);
736                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
737                                                 }
738                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
739                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
740                                                 }
741                                         },
742                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
743                                         InitSyncTracker::NodesSyncing(key) => {
744                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
745                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
746                                                 for msg in all_messages.iter() {
747                                                         self.enqueue_message(peer, msg);
748                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
749                                                 }
750                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
751                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
752                                                 }
753                                         },
754                                 }
755                         }
756                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
757                                 self.maybe_send_extra_ping(peer);
758                         }
759
760                         if {
761                                 let next_buff = match peer.pending_outbound_buffer.front() {
762                                         None => return,
763                                         Some(buff) => buff,
764                                 };
765
766                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
767                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
768                                 let data_sent = descriptor.send_data(pending, should_be_reading);
769                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
770                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
771                         } {
772                                 peer.pending_outbound_buffer_first_msg_offset = 0;
773                                 peer.pending_outbound_buffer.pop_front();
774                         } else {
775                                 peer.awaiting_write_event = true;
776                         }
777                 }
778         }
779
780         /// Indicates that there is room to write data to the given socket descriptor.
781         ///
782         /// May return an Err to indicate that the connection should be closed.
783         ///
784         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
785         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
786         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
787         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
788         /// sufficient!
789         ///
790         /// [`send_data`]: SocketDescriptor::send_data
791         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
792         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
793                 let peers = self.peers.read().unwrap();
794                 match peers.get(descriptor) {
795                         None => {
796                                 // This is most likely a simple race condition where the user found that the socket
797                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
798                                 // this method. Return an error to make sure we get disconnected.
799                                 return Err(PeerHandleError { no_connection_possible: false });
800                         },
801                         Some(peer_mutex) => {
802                                 let mut peer = peer_mutex.lock().unwrap();
803                                 peer.awaiting_write_event = false;
804                                 self.do_attempt_write_data(descriptor, &mut peer);
805                         }
806                 };
807                 Ok(())
808         }
809
810         /// Indicates that data was read from the given socket descriptor.
811         ///
812         /// May return an Err to indicate that the connection should be closed.
813         ///
814         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
815         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
816         /// [`send_data`] calls to handle responses.
817         ///
818         /// If `Ok(true)` is returned, further read_events should not be triggered until a
819         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
820         /// send buffer).
821         ///
822         /// [`send_data`]: SocketDescriptor::send_data
823         /// [`process_events`]: PeerManager::process_events
824         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
825                 match self.do_read_event(peer_descriptor, data) {
826                         Ok(res) => Ok(res),
827                         Err(e) => {
828                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
829                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
830                                 Err(e)
831                         }
832                 }
833         }
834
835         /// Append a message to a peer's pending outbound/write buffer
836         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
837                 peer.msgs_sent_since_pong += 1;
838                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
839         }
840
841         /// Append a message to a peer's pending outbound/write buffer
842         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
843                 let mut buffer = VecWriter(Vec::with_capacity(2048));
844                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
845
846                 if is_gossip_msg(message.type_id()) {
847                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
848                 } else {
849                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
850                 }
851                 self.enqueue_encoded_message(peer, &buffer.0);
852         }
853
854         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
855                 let mut pause_read = false;
856                 let peers = self.peers.read().unwrap();
857                 let mut msgs_to_forward = Vec::new();
858                 let mut peer_node_id = None;
859                 match peers.get(peer_descriptor) {
860                         None => {
861                                 // This is most likely a simple race condition where the user read some bytes
862                                 // from the socket, then we told the user to `disconnect_socket()`, then they
863                                 // called this method. Return an error to make sure we get disconnected.
864                                 return Err(PeerHandleError { no_connection_possible: false });
865                         },
866                         Some(peer_mutex) => {
867                                 let mut read_pos = 0;
868                                 while read_pos < data.len() {
869                                         macro_rules! try_potential_handleerror {
870                                                 ($peer: expr, $thing: expr) => {
871                                                         match $thing {
872                                                                 Ok(x) => x,
873                                                                 Err(e) => {
874                                                                         match e.action {
875                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
876                                                                                         //TODO: Try to push msg
877                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
878                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
879                                                                                 },
880                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
881                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
882                                                                                         continue
883                                                                                 },
884                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
885                                                                                 msgs::ErrorAction::IgnoreError => {
886                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
887                                                                                         continue;
888                                                                                 },
889                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
890                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
891                                                                                         self.enqueue_message($peer, &msg);
892                                                                                         continue;
893                                                                                 },
894                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
895                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
896                                                                                         self.enqueue_message($peer, &msg);
897                                                                                         continue;
898                                                                                 },
899                                                                         }
900                                                                 }
901                                                         }
902                                                 }
903                                         }
904
905                                         let mut peer_lock = peer_mutex.lock().unwrap();
906                                         let peer = &mut *peer_lock;
907                                         let mut msg_to_handle = None;
908                                         if peer_node_id.is_none() {
909                                                 peer_node_id = peer.their_node_id.clone();
910                                         }
911
912                                         assert!(peer.pending_read_buffer.len() > 0);
913                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
914
915                                         {
916                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
917                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
918                                                 read_pos += data_to_copy;
919                                                 peer.pending_read_buffer_pos += data_to_copy;
920                                         }
921
922                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
923                                                 peer.pending_read_buffer_pos = 0;
924
925                                                 macro_rules! insert_node_id {
926                                                         () => {
927                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
928                                                                         hash_map::Entry::Occupied(_) => {
929                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
930                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
931                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
932                                                                         },
933                                                                         hash_map::Entry::Vacant(entry) => {
934                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
935                                                                                 entry.insert(peer_descriptor.clone())
936                                                                         },
937                                                                 };
938                                                         }
939                                                 }
940
941                                                 let next_step = peer.channel_encryptor.get_noise_step();
942                                                 match next_step {
943                                                         NextNoiseStep::ActOne => {
944                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
945                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
946                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
947                                                                 peer.pending_outbound_buffer.push_back(act_two);
948                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
949                                                         },
950                                                         NextNoiseStep::ActTwo => {
951                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
952                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
953                                                                                 &self.our_node_secret, &self.secp_ctx));
954                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
955                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
956                                                                 peer.pending_read_is_header = true;
957
958                                                                 peer.their_node_id = Some(their_node_id);
959                                                                 insert_node_id!();
960                                                                 let features = InitFeatures::known();
961                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
962                                                                 self.enqueue_message(peer, &resp);
963                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
964                                                         },
965                                                         NextNoiseStep::ActThree => {
966                                                                 let their_node_id = try_potential_handleerror!(peer,
967                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
968                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
969                                                                 peer.pending_read_is_header = true;
970                                                                 peer.their_node_id = Some(their_node_id);
971                                                                 insert_node_id!();
972                                                                 let features = InitFeatures::known();
973                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
974                                                                 self.enqueue_message(peer, &resp);
975                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
976                                                         },
977                                                         NextNoiseStep::NoiseComplete => {
978                                                                 if peer.pending_read_is_header {
979                                                                         let msg_len = try_potential_handleerror!(peer,
980                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
981                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
982                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
983                                                                         if msg_len < 2 { // Need at least the message type tag
984                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
985                                                                         }
986                                                                         peer.pending_read_is_header = false;
987                                                                 } else {
988                                                                         let msg_data = try_potential_handleerror!(peer,
989                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
990                                                                         assert!(msg_data.len() >= 2);
991
992                                                                         // Reset read buffer
993                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
994                                                                         peer.pending_read_buffer.resize(18, 0);
995                                                                         peer.pending_read_is_header = true;
996
997                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
998                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
999                                                                         let message = match message_result {
1000                                                                                 Ok(x) => x,
1001                                                                                 Err(e) => {
1002                                                                                         match e {
1003                                                                                                 // Note that to avoid recursion we never call
1004                                                                                                 // `do_attempt_write_data` from here, causing
1005                                                                                                 // the messages enqueued here to not actually
1006                                                                                                 // be sent before the peer is disconnected.
1007                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1008                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1009                                                                                                         continue;
1010                                                                                                 }
1011                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1012                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1013                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1014                                                                                                         continue;
1015                                                                                                 }
1016                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1017                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1018                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1019                                                                                                         continue;
1020                                                                                                 }
1021                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1022                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1023                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1024                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1025                                                                                                 }
1026                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1027                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1028                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1029                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1030                                                                                                 }
1031                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1032                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1033                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1034                                                                                                 }
1035                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1036                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1037                                                                                         }
1038                                                                                 }
1039                                                                         };
1040
1041                                                                         msg_to_handle = Some(message);
1042                                                                 }
1043                                                         }
1044                                                 }
1045                                         }
1046                                         pause_read = peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
1047
1048                                         if let Some(message) = msg_to_handle {
1049                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1050                                                         Err(handling_error) => match handling_error {
1051                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1052                                                                 MessageHandlingError::LightningError(e) => {
1053                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1054                                                                 },
1055                                                         },
1056                                                         Ok(Some(msg)) => {
1057                                                                 msgs_to_forward.push(msg);
1058                                                         },
1059                                                         Ok(None) => {},
1060                                                 }
1061                                         }
1062                                 }
1063                         }
1064                 }
1065
1066                 for msg in msgs_to_forward.drain(..) {
1067                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1068                 }
1069
1070                 Ok(pause_read)
1071         }
1072
1073         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1074         /// Returns the message back if it needs to be broadcasted to all other peers.
1075         fn handle_message(
1076                 &self,
1077                 peer_mutex: &Mutex<Peer>,
1078                 mut peer_lock: MutexGuard<Peer>,
1079                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1080         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1081                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1082                 peer_lock.received_message_since_timer_tick = true;
1083
1084                 // Need an Init as first message
1085                 if let wire::Message::Init(msg) = message {
1086                         if msg.features.requires_unknown_bits() {
1087                                 log_debug!(self.logger, "Peer features required unknown version bits");
1088                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1089                         }
1090                         if peer_lock.their_features.is_some() {
1091                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1092                         }
1093
1094                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1095
1096                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1097                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1098                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1099                         }
1100
1101                         if !msg.features.supports_static_remote_key() {
1102                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1103                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1104                         }
1105
1106                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1107
1108                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1109                         peer_lock.their_features = Some(msg.features);
1110                         return Ok(None);
1111                 } else if peer_lock.their_features.is_none() {
1112                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1113                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1114                 }
1115
1116                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1117                         // When supporting gossip messages, start inital gossip sync only after we receive
1118                         // a GossipTimestampFilter
1119                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1120                                 !peer_lock.sent_gossip_timestamp_filter {
1121                                 peer_lock.sent_gossip_timestamp_filter = true;
1122                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1123                         }
1124                         return Ok(None);
1125                 }
1126
1127                 let their_features = peer_lock.their_features.clone();
1128                 mem::drop(peer_lock);
1129
1130                 if is_gossip_msg(message.type_id()) {
1131                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1132                 } else {
1133                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1134                 }
1135
1136                 let mut should_forward = None;
1137
1138                 match message {
1139                         // Setup and Control messages:
1140                         wire::Message::Init(_) => {
1141                                 // Handled above
1142                         },
1143                         wire::Message::GossipTimestampFilter(_) => {
1144                                 // Handled above
1145                         },
1146                         wire::Message::Error(msg) => {
1147                                 let mut data_is_printable = true;
1148                                 for b in msg.data.bytes() {
1149                                         if b < 32 || b > 126 {
1150                                                 data_is_printable = false;
1151                                                 break;
1152                                         }
1153                                 }
1154
1155                                 if data_is_printable {
1156                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1157                                 } else {
1158                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1159                                 }
1160                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1161                                 if msg.channel_id == [0; 32] {
1162                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1163                                 }
1164                         },
1165                         wire::Message::Warning(msg) => {
1166                                 let mut data_is_printable = true;
1167                                 for b in msg.data.bytes() {
1168                                         if b < 32 || b > 126 {
1169                                                 data_is_printable = false;
1170                                                 break;
1171                                         }
1172                                 }
1173
1174                                 if data_is_printable {
1175                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1176                                 } else {
1177                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1178                                 }
1179                         },
1180
1181                         wire::Message::Ping(msg) => {
1182                                 if msg.ponglen < 65532 {
1183                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1184                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1185                                 }
1186                         },
1187                         wire::Message::Pong(_msg) => {
1188                                 let mut peer_lock = peer_mutex.lock().unwrap();
1189                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1190                                 peer_lock.msgs_sent_since_pong = 0;
1191                         },
1192
1193                         // Channel messages:
1194                         wire::Message::OpenChannel(msg) => {
1195                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1196                         },
1197                         wire::Message::AcceptChannel(msg) => {
1198                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1199                         },
1200
1201                         wire::Message::FundingCreated(msg) => {
1202                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1203                         },
1204                         wire::Message::FundingSigned(msg) => {
1205                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1206                         },
1207                         wire::Message::FundingLocked(msg) => {
1208                                 self.message_handler.chan_handler.handle_funding_locked(&their_node_id, &msg);
1209                         },
1210
1211                         wire::Message::Shutdown(msg) => {
1212                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1213                         },
1214                         wire::Message::ClosingSigned(msg) => {
1215                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1216                         },
1217
1218                         // Commitment messages:
1219                         wire::Message::UpdateAddHTLC(msg) => {
1220                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1221                         },
1222                         wire::Message::UpdateFulfillHTLC(msg) => {
1223                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1224                         },
1225                         wire::Message::UpdateFailHTLC(msg) => {
1226                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1227                         },
1228                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1229                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1230                         },
1231
1232                         wire::Message::CommitmentSigned(msg) => {
1233                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1234                         },
1235                         wire::Message::RevokeAndACK(msg) => {
1236                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1237                         },
1238                         wire::Message::UpdateFee(msg) => {
1239                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1240                         },
1241                         wire::Message::ChannelReestablish(msg) => {
1242                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1243                         },
1244
1245                         // Routing messages:
1246                         wire::Message::AnnouncementSignatures(msg) => {
1247                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1248                         },
1249                         wire::Message::ChannelAnnouncement(msg) => {
1250                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1251                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1252                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1253                                 }
1254                         },
1255                         wire::Message::NodeAnnouncement(msg) => {
1256                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1257                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1258                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1259                                 }
1260                         },
1261                         wire::Message::ChannelUpdate(msg) => {
1262                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1263                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1264                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1265                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1266                                 }
1267                         },
1268                         wire::Message::QueryShortChannelIds(msg) => {
1269                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1270                         },
1271                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1272                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1273                         },
1274                         wire::Message::QueryChannelRange(msg) => {
1275                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1276                         },
1277                         wire::Message::ReplyChannelRange(msg) => {
1278                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1279                         },
1280
1281                         // Unknown messages:
1282                         wire::Message::Unknown(type_id) if message.is_even() => {
1283                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1284                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1285                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1286                         },
1287                         wire::Message::Unknown(type_id) => {
1288                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1289                         },
1290                         wire::Message::Custom(custom) => {
1291                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1292                         },
1293                 };
1294                 Ok(should_forward)
1295         }
1296
1297         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1298                 match msg {
1299                         wire::Message::ChannelAnnouncement(ref msg) => {
1300                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1301                                 let encoded_msg = encode_msg!(msg);
1302
1303                                 for (_, peer_mutex) in peers.iter() {
1304                                         let mut peer = peer_mutex.lock().unwrap();
1305                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1306                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1307                                                 continue
1308                                         }
1309                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1310                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1311                                         {
1312                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1313                                                 continue;
1314                                         }
1315                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1316                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1317                                                 continue;
1318                                         }
1319                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1320                                                 continue;
1321                                         }
1322                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1323                                 }
1324                         },
1325                         wire::Message::NodeAnnouncement(ref msg) => {
1326                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1327                                 let encoded_msg = encode_msg!(msg);
1328
1329                                 for (_, peer_mutex) in peers.iter() {
1330                                         let mut peer = peer_mutex.lock().unwrap();
1331                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1332                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1333                                                 continue
1334                                         }
1335                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1336                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1337                                         {
1338                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1339                                                 continue;
1340                                         }
1341                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1342                                                 continue;
1343                                         }
1344                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1345                                                 continue;
1346                                         }
1347                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1348                                 }
1349                         },
1350                         wire::Message::ChannelUpdate(ref msg) => {
1351                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1352                                 let encoded_msg = encode_msg!(msg);
1353
1354                                 for (_, peer_mutex) in peers.iter() {
1355                                         let mut peer = peer_mutex.lock().unwrap();
1356                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1357                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1358                                                 continue
1359                                         }
1360                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1361                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1362                                         {
1363                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1364                                                 continue;
1365                                         }
1366                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1367                                                 continue;
1368                                         }
1369                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1370                                 }
1371                         },
1372                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1373                 }
1374         }
1375
1376         /// Checks for any events generated by our handlers and processes them. Includes sending most
1377         /// response messages as well as messages generated by calls to handler functions directly (eg
1378         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1379         ///
1380         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1381         /// issues!
1382         ///
1383         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1384         /// or one of the other clients provided in our language bindings.
1385         ///
1386         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1387         /// without doing any work. All available events that need handling will be handled before the
1388         /// other calls return.
1389         ///
1390         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1391         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1392         /// [`send_data`]: SocketDescriptor::send_data
1393         pub fn process_events(&self) {
1394                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1395                 if _single_processor_lock.is_err() {
1396                         // While we could wake the older sleeper here with a CV and make more even waiting
1397                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1398                         // count" goal.
1399                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1400                                 Err(val) => {
1401                                         debug_assert!(val, "compare_exchange failed spuriously?");
1402                                         return;
1403                                 },
1404                                 Ok(val) => {
1405                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1406                                         // We're the only waiter, as the running process_events may have emptied the
1407                                         // pending events "long" ago and there are new events for us to process, wait until
1408                                         // its done and process any leftover events before returning.
1409                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1410                                         self.blocked_event_processors.store(false, Ordering::Release);
1411                                 }
1412                         }
1413                 }
1414
1415                 let mut peers_to_disconnect = HashMap::new();
1416                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1417                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1418
1419                 {
1420                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1421                         // buffer by doing things like announcing channels on another node. We should be willing to
1422                         // drop optional-ish messages when send buffers get full!
1423
1424                         let peers_lock = self.peers.read().unwrap();
1425                         let peers = &*peers_lock;
1426                         macro_rules! get_peer_for_forwarding {
1427                                 ($node_id: expr) => {
1428                                         {
1429                                                 if peers_to_disconnect.get($node_id).is_some() {
1430                                                         // If we've "disconnected" this peer, do not send to it.
1431                                                         continue;
1432                                                 }
1433                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1434                                                 match descriptor_opt {
1435                                                         Some(descriptor) => match peers.get(&descriptor) {
1436                                                                 Some(peer_mutex) => {
1437                                                                         let peer_lock = peer_mutex.lock().unwrap();
1438                                                                         if peer_lock.their_features.is_none() {
1439                                                                                 continue;
1440                                                                         }
1441                                                                         peer_lock
1442                                                                 },
1443                                                                 None => {
1444                                                                         debug_assert!(false, "Inconsistent peers set state!");
1445                                                                         continue;
1446                                                                 }
1447                                                         },
1448                                                         None => {
1449                                                                 continue;
1450                                                         },
1451                                                 }
1452                                         }
1453                                 }
1454                         }
1455                         for event in events_generated.drain(..) {
1456                                 match event {
1457                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1458                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1459                                                                 log_pubkey!(node_id),
1460                                                                 log_bytes!(msg.temporary_channel_id));
1461                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1462                                         },
1463                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1464                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1465                                                                 log_pubkey!(node_id),
1466                                                                 log_bytes!(msg.temporary_channel_id));
1467                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1468                                         },
1469                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1470                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1471                                                                 log_pubkey!(node_id),
1472                                                                 log_bytes!(msg.temporary_channel_id),
1473                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1474                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1475                                                 // indicating to the wallet that they should just throw away this funding transaction
1476                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1477                                         },
1478                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1479                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1480                                                                 log_pubkey!(node_id),
1481                                                                 log_bytes!(msg.channel_id));
1482                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1483                                         },
1484                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1485                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1486                                                                 log_pubkey!(node_id),
1487                                                                 log_bytes!(msg.channel_id));
1488                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1489                                         },
1490                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1491                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1492                                                                 log_pubkey!(node_id),
1493                                                                 log_bytes!(msg.channel_id));
1494                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1495                                         },
1496                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1497                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1498                                                                 log_pubkey!(node_id),
1499                                                                 update_add_htlcs.len(),
1500                                                                 update_fulfill_htlcs.len(),
1501                                                                 update_fail_htlcs.len(),
1502                                                                 log_bytes!(commitment_signed.channel_id));
1503                                                 let mut peer = get_peer_for_forwarding!(node_id);
1504                                                 for msg in update_add_htlcs {
1505                                                         self.enqueue_message(&mut *peer, msg);
1506                                                 }
1507                                                 for msg in update_fulfill_htlcs {
1508                                                         self.enqueue_message(&mut *peer, msg);
1509                                                 }
1510                                                 for msg in update_fail_htlcs {
1511                                                         self.enqueue_message(&mut *peer, msg);
1512                                                 }
1513                                                 for msg in update_fail_malformed_htlcs {
1514                                                         self.enqueue_message(&mut *peer, msg);
1515                                                 }
1516                                                 if let &Some(ref msg) = update_fee {
1517                                                         self.enqueue_message(&mut *peer, msg);
1518                                                 }
1519                                                 self.enqueue_message(&mut *peer, commitment_signed);
1520                                         },
1521                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1522                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1523                                                                 log_pubkey!(node_id),
1524                                                                 log_bytes!(msg.channel_id));
1525                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1526                                         },
1527                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1528                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1529                                                                 log_pubkey!(node_id),
1530                                                                 log_bytes!(msg.channel_id));
1531                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1532                                         },
1533                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1534                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1535                                                                 log_pubkey!(node_id),
1536                                                                 log_bytes!(msg.channel_id));
1537                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1538                                         },
1539                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1540                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1541                                                                 log_pubkey!(node_id),
1542                                                                 log_bytes!(msg.channel_id));
1543                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1544                                         },
1545                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1546                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1547                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1548                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1549                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1550                                                         _ => {},
1551                                                 }
1552                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1553                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1554                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1555                                                         _ => {},
1556                                                 }
1557                                         },
1558                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1559                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1560                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1561                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1562                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1563                                                         _ => {},
1564                                                 }
1565                                         },
1566                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1567                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1568                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1569                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1570                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1571                                                         _ => {},
1572                                                 }
1573                                         },
1574                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1575                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1576                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1577                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1578                                         },
1579                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1580                                                 match *action {
1581                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1582                                                                 // We do not have the peers write lock, so we just store that we're
1583                                                                 // about to disconenct the peer and do it after we finish
1584                                                                 // processing most messages.
1585                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1586                                                         },
1587                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1588                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1589                                                         },
1590                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1591                                                         msgs::ErrorAction::IgnoreError => {
1592                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1593                                                         },
1594                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1595                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1596                                                                                 log_pubkey!(node_id),
1597                                                                                 msg.data);
1598                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1599                                                         },
1600                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1601                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1602                                                                                 log_pubkey!(node_id),
1603                                                                                 msg.data);
1604                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1605                                                         },
1606                                                 }
1607                                         },
1608                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1609                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1610                                         },
1611                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1612                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1613                                         }
1614                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1615                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1616                                                         log_pubkey!(node_id),
1617                                                         msg.short_channel_ids.len(),
1618                                                         msg.first_blocknum,
1619                                                         msg.number_of_blocks,
1620                                                         msg.sync_complete);
1621                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1622                                         }
1623                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1624                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1625                                         }
1626                                 }
1627                         }
1628
1629                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1630                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1631                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1632                         }
1633
1634                         for (descriptor, peer_mutex) in peers.iter() {
1635                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1636                         }
1637                 }
1638                 if !peers_to_disconnect.is_empty() {
1639                         let mut peers_lock = self.peers.write().unwrap();
1640                         let peers = &mut *peers_lock;
1641                         for (node_id, msg) in peers_to_disconnect.drain() {
1642                                 // Note that since we are holding the peers *write* lock we can
1643                                 // remove from node_id_to_descriptor immediately (as no other
1644                                 // thread can be holding the peer lock if we have the global write
1645                                 // lock).
1646
1647                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1648                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1649                                                 if let Some(msg) = msg {
1650                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1651                                                                         log_pubkey!(node_id),
1652                                                                         msg.data);
1653                                                         let mut peer = peer_mutex.lock().unwrap();
1654                                                         self.enqueue_message(&mut *peer, &msg);
1655                                                         // This isn't guaranteed to work, but if there is enough free
1656                                                         // room in the send buffer, put the error message there...
1657                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1658                                                 } else {
1659                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1660                                                 }
1661                                         }
1662                                         descriptor.disconnect_socket();
1663                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1664                                 }
1665                         }
1666                 }
1667         }
1668
1669         /// Indicates that the given socket descriptor's connection is now closed.
1670         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1671                 self.disconnect_event_internal(descriptor, false);
1672         }
1673
1674         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1675                 let mut peers = self.peers.write().unwrap();
1676                 let peer_option = peers.remove(descriptor);
1677                 match peer_option {
1678                         None => {
1679                                 // This is most likely a simple race condition where the user found that the socket
1680                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1681                                 // called this method. Either way we're disconnected, return.
1682                         },
1683                         Some(peer_lock) => {
1684                                 let peer = peer_lock.lock().unwrap();
1685                                 if let Some(node_id) = peer.their_node_id {
1686                                         log_trace!(self.logger,
1687                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1688                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1689                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1690                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1691                                 }
1692                         }
1693                 };
1694         }
1695
1696         /// Disconnect a peer given its node id.
1697         ///
1698         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1699         /// force-closing any channels we have with it.
1700         ///
1701         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1702         /// peer. Thus, be very careful about reentrancy issues.
1703         ///
1704         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1705         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1706                 let mut peers_lock = self.peers.write().unwrap();
1707                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1708                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1709                         peers_lock.remove(&descriptor);
1710                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1711                         descriptor.disconnect_socket();
1712                 }
1713         }
1714
1715         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1716         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1717         /// using regular ping/pongs.
1718         pub fn disconnect_all_peers(&self) {
1719                 let mut peers_lock = self.peers.write().unwrap();
1720                 self.node_id_to_descriptor.lock().unwrap().clear();
1721                 let peers = &mut *peers_lock;
1722                 for (mut descriptor, peer) in peers.drain() {
1723                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1724                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1725                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1726                         }
1727                         descriptor.disconnect_socket();
1728                 }
1729         }
1730
1731         /// This is called when we're blocked on sending additional gossip messages until we receive a
1732         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1733         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1734         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1735                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1736                         peer.awaiting_pong_timer_tick_intervals = -1;
1737                         let ping = msgs::Ping {
1738                                 ponglen: 0,
1739                                 byteslen: 64,
1740                         };
1741                         self.enqueue_message(peer, &ping);
1742                 }
1743         }
1744
1745         /// Send pings to each peer and disconnect those which did not respond to the last round of
1746         /// pings.
1747         ///
1748         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1749         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1750         /// time they have to respond before we disconnect them.
1751         ///
1752         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1753         /// issues!
1754         ///
1755         /// [`send_data`]: SocketDescriptor::send_data
1756         pub fn timer_tick_occurred(&self) {
1757                 let mut descriptors_needing_disconnect = Vec::new();
1758                 {
1759                         let peers_lock = self.peers.read().unwrap();
1760
1761                         for (descriptor, peer_mutex) in peers_lock.iter() {
1762                                 let mut peer = peer_mutex.lock().unwrap();
1763                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1764                                         // The peer needs to complete its handshake before we can exchange messages. We
1765                                         // give peers one timer tick to complete handshake, reusing
1766                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1767                                         // for handshake completion.
1768                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1769                                                 descriptors_needing_disconnect.push(descriptor.clone());
1770                                         } else {
1771                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1772                                         }
1773                                         continue;
1774                                 }
1775
1776                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1777                                         // Magic value set in `maybe_send_extra_ping`.
1778                                         peer.awaiting_pong_timer_tick_intervals = 1;
1779                                         peer.received_message_since_timer_tick = false;
1780                                         continue;
1781                                 }
1782
1783                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1784                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1785                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1786                                 {
1787                                         descriptors_needing_disconnect.push(descriptor.clone());
1788                                         continue;
1789                                 }
1790                                 peer.received_message_since_timer_tick = false;
1791
1792                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1793                                         peer.awaiting_pong_timer_tick_intervals += 1;
1794                                         continue;
1795                                 }
1796
1797                                 peer.awaiting_pong_timer_tick_intervals = 1;
1798                                 let ping = msgs::Ping {
1799                                         ponglen: 0,
1800                                         byteslen: 64,
1801                                 };
1802                                 self.enqueue_message(&mut *peer, &ping);
1803                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1804                         }
1805                 }
1806
1807                 if !descriptors_needing_disconnect.is_empty() {
1808                         {
1809                                 let mut peers_lock = self.peers.write().unwrap();
1810                                 for descriptor in descriptors_needing_disconnect.iter() {
1811                                         if let Some(peer) = peers_lock.remove(descriptor) {
1812                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1813                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1814                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1815                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1816                                                 }
1817                                         }
1818                                 }
1819                         }
1820
1821                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1822                                 descriptor.disconnect_socket();
1823                         }
1824                 }
1825         }
1826 }
1827
1828 fn is_gossip_msg(type_id: u16) -> bool {
1829         match type_id {
1830                 msgs::ChannelAnnouncement::TYPE |
1831                 msgs::ChannelUpdate::TYPE |
1832                 msgs::NodeAnnouncement::TYPE |
1833                 msgs::QueryChannelRange::TYPE |
1834                 msgs::ReplyChannelRange::TYPE |
1835                 msgs::QueryShortChannelIds::TYPE |
1836                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1837                 _ => false
1838         }
1839 }
1840
1841 #[cfg(test)]
1842 mod tests {
1843         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1844         use ln::{msgs, wire};
1845         use ln::msgs::NetAddress;
1846         use util::events;
1847         use util::test_utils;
1848
1849         use bitcoin::secp256k1::Secp256k1;
1850         use bitcoin::secp256k1::{SecretKey, PublicKey};
1851
1852         use prelude::*;
1853         use sync::{Arc, Mutex};
1854         use core::sync::atomic::Ordering;
1855
1856         #[derive(Clone)]
1857         struct FileDescriptor {
1858                 fd: u16,
1859                 outbound_data: Arc<Mutex<Vec<u8>>>,
1860         }
1861         impl PartialEq for FileDescriptor {
1862                 fn eq(&self, other: &Self) -> bool {
1863                         self.fd == other.fd
1864                 }
1865         }
1866         impl Eq for FileDescriptor { }
1867         impl core::hash::Hash for FileDescriptor {
1868                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1869                         self.fd.hash(hasher)
1870                 }
1871         }
1872
1873         impl SocketDescriptor for FileDescriptor {
1874                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1875                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1876                         data.len()
1877                 }
1878
1879                 fn disconnect_socket(&mut self) {}
1880         }
1881
1882         struct PeerManagerCfg {
1883                 chan_handler: test_utils::TestChannelMessageHandler,
1884                 routing_handler: test_utils::TestRoutingMessageHandler,
1885                 logger: test_utils::TestLogger,
1886         }
1887
1888         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1889                 let mut cfgs = Vec::new();
1890                 for _ in 0..peer_count {
1891                         cfgs.push(
1892                                 PeerManagerCfg{
1893                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1894                                         logger: test_utils::TestLogger::new(),
1895                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1896                                 }
1897                         );
1898                 }
1899
1900                 cfgs
1901         }
1902
1903         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1904                 let mut peers = Vec::new();
1905                 for i in 0..peer_count {
1906                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1907                         let ephemeral_bytes = [i as u8; 32];
1908                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1909                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1910                         peers.push(peer);
1911                 }
1912
1913                 peers
1914         }
1915
1916         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1917                 let secp_ctx = Secp256k1::new();
1918                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1919                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1920                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1921                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1922                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1923                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1924                 peer_a.process_events();
1925                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1926                 peer_b.process_events();
1927                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1928                 peer_a.process_events();
1929                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1930                 (fd_a.clone(), fd_b.clone())
1931         }
1932
1933         #[test]
1934         fn test_disconnect_peer() {
1935                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1936                 // push a DisconnectPeer event to remove the node flagged by id
1937                 let cfgs = create_peermgr_cfgs(2);
1938                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1939                 let mut peers = create_network(2, &cfgs);
1940                 establish_connection(&peers[0], &peers[1]);
1941                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
1942
1943                 let secp_ctx = Secp256k1::new();
1944                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1945
1946                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1947                         node_id: their_id,
1948                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1949                 });
1950                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1951                 peers[0].message_handler.chan_handler = &chan_handler;
1952
1953                 peers[0].process_events();
1954                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
1955         }
1956
1957         #[test]
1958         fn test_send_simple_msg() {
1959                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1960                 // push a message from one peer to another.
1961                 let cfgs = create_peermgr_cfgs(2);
1962                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
1963                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
1964                 let mut peers = create_network(2, &cfgs);
1965                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1966                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
1967
1968                 let secp_ctx = Secp256k1::new();
1969                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1970
1971                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
1972                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
1973                         node_id: their_id, msg: msg.clone()
1974                 });
1975                 peers[0].message_handler.chan_handler = &a_chan_handler;
1976
1977                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
1978                 peers[1].message_handler.chan_handler = &b_chan_handler;
1979
1980                 peers[0].process_events();
1981
1982                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1983                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
1984         }
1985
1986         #[test]
1987         fn test_disconnect_all_peer() {
1988                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1989                 // then calls disconnect_all_peers
1990                 let cfgs = create_peermgr_cfgs(2);
1991                 let peers = create_network(2, &cfgs);
1992                 establish_connection(&peers[0], &peers[1]);
1993                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
1994
1995                 peers[0].disconnect_all_peers();
1996                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
1997         }
1998
1999         #[test]
2000         fn test_timer_tick_occurred() {
2001                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2002                 let cfgs = create_peermgr_cfgs(2);
2003                 let peers = create_network(2, &cfgs);
2004                 establish_connection(&peers[0], &peers[1]);
2005                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2006
2007                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2008                 peers[0].timer_tick_occurred();
2009                 peers[0].process_events();
2010                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2011
2012                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2013                 peers[0].timer_tick_occurred();
2014                 peers[0].process_events();
2015                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2016         }
2017
2018         #[test]
2019         fn test_do_attempt_write_data() {
2020                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2021                 let cfgs = create_peermgr_cfgs(2);
2022                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2023                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2024                 let peers = create_network(2, &cfgs);
2025
2026                 // By calling establish_connect, we trigger do_attempt_write_data between
2027                 // the peers. Previously this function would mistakenly enter an infinite loop
2028                 // when there were more channel messages available than could fit into a peer's
2029                 // buffer. This issue would now be detected by this test (because we use custom
2030                 // RoutingMessageHandlers that intentionally return more channel messages
2031                 // than can fit into a peer's buffer).
2032                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2033
2034                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2035                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2036                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2037                         peers[1].process_events();
2038                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2039                         assert!(!a_read_data.is_empty());
2040
2041                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2042                         peers[0].process_events();
2043
2044                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2045                         assert!(!b_read_data.is_empty());
2046                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2047
2048                         peers[0].process_events();
2049                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2050                 }
2051
2052                 // Check that each peer has received the expected number of channel updates and channel
2053                 // announcements.
2054                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
2055                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
2056                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
2057                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
2058         }
2059
2060         #[test]
2061         fn test_handshake_timeout() {
2062                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2063                 // tick.
2064                 let cfgs = create_peermgr_cfgs(2);
2065                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2066                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2067                 let peers = create_network(2, &cfgs);
2068
2069                 let secp_ctx = Secp256k1::new();
2070                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2071                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2072                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2073                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2074                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2075
2076                 // If we get a single timer tick before completion, that's fine
2077                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2078                 peers[0].timer_tick_occurred();
2079                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2080
2081                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2082                 peers[0].process_events();
2083                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
2084                 peers[1].process_events();
2085
2086                 // ...but if we get a second timer tick, we should disconnect the peer
2087                 peers[0].timer_tick_occurred();
2088                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2089
2090                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
2091         }
2092
2093         #[test]
2094         fn test_filter_addresses(){
2095                 // Tests the filter_addresses function.
2096
2097                 // For (10/8)
2098                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2099                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2100                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2101                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2102                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2103                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2104
2105                 // For (0/8)
2106                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2107                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2108                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2109                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2110                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2111                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2112
2113                 // For (100.64/10)
2114                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2115                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2116                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2117                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2118                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2119                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2120
2121                 // For (127/8)
2122                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2123                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2124                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2125                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2126                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2127                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2128
2129                 // For (169.254/16)
2130                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2131                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2132                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2133                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2134                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2135                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2136
2137                 // For (172.16/12)
2138                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2139                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2140                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2141                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2142                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2143                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2144
2145                 // For (192.168/16)
2146                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2147                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2148                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2149                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2150                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2151                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2152
2153                 // For (192.88.99/24)
2154                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2155                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2156                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2157                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2158                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2159                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2160
2161                 // For other IPv4 addresses
2162                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2163                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2164                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2165                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2166                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2167                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2168
2169                 // For (2000::/3)
2170                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2171                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2172                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2173                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2174                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2175                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2176
2177                 // For other IPv6 addresses
2178                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2179                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2180                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2181                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2182                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2183                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2184
2185                 // For (None)
2186                 assert_eq!(filter_addresses(None), None);
2187         }
2188 }