1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Functional tests which test for correct behavior across node restarts.
12 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
13 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
14 use crate::chain::channelmonitor::{CLOSED_CHANNEL_UPDATE_ID, ChannelMonitor};
15 use crate::sign::EntropySource;
16 use crate::chain::transaction::OutPoint;
17 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
18 use crate::ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, RecipientOnionFields};
20 use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
21 use crate::util::test_channel_signer::TestChannelSigner;
22 use crate::util::test_utils;
23 use crate::util::errors::APIError;
24 use crate::util::ser::{Writeable, ReadableArgs};
25 use crate::util::config::UserConfig;
26 use crate::util::string::UntrustedString;
28 use bitcoin::{PackedLockTime, Transaction, TxOut};
29 use bitcoin::hash_types::BlockHash;
31 use crate::prelude::*;
32 use core::default::Default;
33 use crate::sync::Mutex;
35 use crate::ln::functional_test_utils::*;
38 fn test_funding_peer_disconnect() {
39 // Test that we can lock in our funding tx while disconnected
40 let chanmon_cfgs = create_chanmon_cfgs(2);
41 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
43 let new_chain_monitor;
45 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
46 let nodes_0_deserialized;
47 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
48 let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
50 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
51 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
53 confirm_transaction(&nodes[0], &tx);
54 let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
55 assert!(events_1.is_empty());
57 let mut reconnect_args = ReconnectArgs::new(&nodes[0], &nodes[1]);
58 reconnect_args.send_channel_ready.1 = true;
59 reconnect_nodes(reconnect_args);
61 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
62 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
64 confirm_transaction(&nodes[1], &tx);
65 let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
66 assert!(events_2.is_empty());
68 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
69 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
71 let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
72 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
73 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
75 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
77 // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
78 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
79 let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
80 assert_eq!(events_3.len(), 1);
81 let as_channel_ready = match events_3[0] {
82 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
83 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
86 _ => panic!("Unexpected event {:?}", events_3[0]),
89 // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
90 // announcement_signatures as well as channel_update.
91 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
92 let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
93 assert_eq!(events_4.len(), 3);
95 let bs_channel_ready = match events_4[0] {
96 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
97 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
98 chan_id = msg.channel_id;
101 _ => panic!("Unexpected event {:?}", events_4[0]),
103 let bs_announcement_sigs = match events_4[1] {
104 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
105 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
108 _ => panic!("Unexpected event {:?}", events_4[1]),
111 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
112 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
114 _ => panic!("Unexpected event {:?}", events_4[2]),
117 // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
118 // generates a duplicative private channel_update
119 nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
120 let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
121 assert_eq!(events_5.len(), 1);
123 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
124 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
126 _ => panic!("Unexpected event {:?}", events_5[0]),
129 // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
130 // announcement_signatures.
131 nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
132 let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
133 assert_eq!(events_6.len(), 1);
134 let as_announcement_sigs = match events_6[0] {
135 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
136 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
139 _ => panic!("Unexpected event {:?}", events_6[0]),
141 expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
142 expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
144 // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
145 // broadcast the channel announcement globally, as well as re-send its (now-public)
147 nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
148 let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
149 assert_eq!(events_7.len(), 1);
150 let (chan_announcement, as_update) = match events_7[0] {
151 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
152 (msg.clone(), update_msg.clone().unwrap())
154 _ => panic!("Unexpected event {:?}", events_7[0]),
157 // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
158 // same channel_announcement.
159 nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
160 let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
161 assert_eq!(events_8.len(), 1);
162 let bs_update = match events_8[0] {
163 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
164 assert_eq!(*msg, chan_announcement);
165 update_msg.clone().unwrap()
167 _ => panic!("Unexpected event {:?}", events_8[0]),
170 // Provide the channel announcement and public updates to the network graph
171 nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
172 nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
173 nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
175 let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
176 let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
177 claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
179 // Check that after deserialization and reconnection we can still generate an identical
180 // channel_announcement from the cached signatures.
181 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
183 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
185 reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
187 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
191 fn test_no_txn_manager_serialize_deserialize() {
192 let chanmon_cfgs = create_chanmon_cfgs(2);
193 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
195 let new_chain_monitor;
197 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
198 let nodes_0_deserialized;
199 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
201 let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
203 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
205 let chan_0_monitor_serialized =
206 get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
207 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
209 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
210 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
212 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
213 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
214 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
216 let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
218 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
219 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
220 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
221 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
223 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
224 let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
225 for node in nodes.iter() {
226 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
227 node.gossip_sync.handle_channel_update(&as_update).unwrap();
228 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
231 send_payment(&nodes[0], &[&nodes[1]], 1000000);
235 fn test_manager_serialize_deserialize_events() {
236 // This test makes sure the events field in ChannelManager survives de/serialization
237 let chanmon_cfgs = create_chanmon_cfgs(2);
238 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
240 let new_chain_monitor;
242 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
243 let nodes_0_deserialized;
244 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
246 // Start creating a channel, but stop right before broadcasting the funding transaction
247 let channel_value = 100000;
248 let push_msat = 10001;
249 let node_a = nodes.remove(0);
250 let node_b = nodes.remove(0);
251 node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
252 node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
253 node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
255 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
257 node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
258 check_added_monitors!(node_a, 0);
260 node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
262 let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
263 assert_eq!(added_monitors.len(), 1);
264 assert_eq!(added_monitors[0].0, funding_output);
265 added_monitors.clear();
268 let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
269 node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
271 let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
272 assert_eq!(added_monitors.len(), 1);
273 assert_eq!(added_monitors[0].0, funding_output);
274 added_monitors.clear();
276 // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
278 expect_channel_pending_event(&node_a, &node_b.node.get_our_node_id());
279 expect_channel_pending_event(&node_b, &node_a.node.get_our_node_id());
284 // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
285 let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
286 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
288 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
290 // After deserializing, make sure the funding_transaction is still held by the channel manager
291 let events_4 = nodes[0].node.get_and_clear_pending_events();
292 assert_eq!(events_4.len(), 0);
293 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
294 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
296 // Make sure the channel is functioning as though the de/serialization never happened
297 assert_eq!(nodes[0].node.list_channels().len(), 1);
299 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
300 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
302 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
303 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
304 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
306 let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
308 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
309 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
310 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
311 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
313 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
314 let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
315 for node in nodes.iter() {
316 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
317 node.gossip_sync.handle_channel_update(&as_update).unwrap();
318 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
321 send_payment(&nodes[0], &[&nodes[1]], 1000000);
325 fn test_simple_manager_serialize_deserialize() {
326 let chanmon_cfgs = create_chanmon_cfgs(2);
327 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
329 let new_chain_monitor;
331 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
332 let nodes_0_deserialized;
333 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
334 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
336 let (our_payment_preimage, ..) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
337 let (_, our_payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
339 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
341 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
342 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
344 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
346 fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
347 claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
351 fn test_manager_serialize_deserialize_inconsistent_monitor() {
352 // Test deserializing a ChannelManager with an out-of-date ChannelMonitor
353 let chanmon_cfgs = create_chanmon_cfgs(4);
354 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
358 let new_chain_monitor;
360 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
361 let nodes_0_deserialized;
362 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
364 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
365 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0).2;
366 let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3);
368 let mut node_0_stale_monitors_serialized = Vec::new();
369 for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
370 let mut writer = test_utils::TestVecWriter(Vec::new());
371 get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
372 node_0_stale_monitors_serialized.push(writer.0);
375 let (our_payment_preimage, ..) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
377 // Serialize the ChannelManager here, but the monitor we keep up-to-date
378 let nodes_0_serialized = nodes[0].node.encode();
380 route_payment(&nodes[0], &[&nodes[3]], 1000000);
381 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
382 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
383 nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id());
385 // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
387 let mut node_0_monitors_serialized = Vec::new();
388 for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
389 node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
392 logger = test_utils::TestLogger::new();
393 fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
394 persister = test_utils::TestPersister::new();
395 let keys_manager = &chanmon_cfgs[0].keys_manager;
396 new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster, &logger, &fee_estimator, &persister, keys_manager);
397 nodes[0].chain_monitor = &new_chain_monitor;
400 let mut node_0_stale_monitors = Vec::new();
401 for serialized in node_0_stale_monitors_serialized.iter() {
402 let mut read = &serialized[..];
403 let (_, monitor) = <(BlockHash, ChannelMonitor<TestChannelSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
404 assert!(read.is_empty());
405 node_0_stale_monitors.push(monitor);
408 let mut node_0_monitors = Vec::new();
409 for serialized in node_0_monitors_serialized.iter() {
410 let mut read = &serialized[..];
411 let (_, monitor) = <(BlockHash, ChannelMonitor<TestChannelSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
412 assert!(read.is_empty());
413 node_0_monitors.push(monitor);
416 let mut nodes_0_read = &nodes_0_serialized[..];
417 if let Err(msgs::DecodeError::InvalidValue) =
418 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
419 default_config: UserConfig::default(),
420 entropy_source: keys_manager,
421 node_signer: keys_manager,
422 signer_provider: keys_manager,
423 fee_estimator: &fee_estimator,
424 router: &nodes[0].router,
425 chain_monitor: nodes[0].chain_monitor,
426 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
428 channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
430 panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
433 let mut nodes_0_read = &nodes_0_serialized[..];
434 let (_, nodes_0_deserialized_tmp) =
435 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
436 default_config: UserConfig::default(),
437 entropy_source: keys_manager,
438 node_signer: keys_manager,
439 signer_provider: keys_manager,
440 fee_estimator: &fee_estimator,
441 router: nodes[0].router,
442 chain_monitor: nodes[0].chain_monitor,
443 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
445 channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
447 nodes_0_deserialized = nodes_0_deserialized_tmp;
448 assert!(nodes_0_read.is_empty());
450 for monitor in node_0_monitors.drain(..) {
451 assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
452 Ok(ChannelMonitorUpdateStatus::Completed));
453 check_added_monitors!(nodes[0], 1);
455 nodes[0].node = &nodes_0_deserialized;
457 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager, [nodes[3].node.get_our_node_id()], 100000);
458 { // Channel close should result in a commitment tx
459 nodes[0].node.timer_tick_occurred();
460 let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
461 assert_eq!(txn.len(), 1);
462 check_spends!(txn[0], funding_tx);
463 assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
465 check_added_monitors!(nodes[0], 1);
467 // nodes[1] and nodes[2] have no lost state with nodes[0]...
468 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
469 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[2]));
470 //... and we can even still claim the payment!
471 claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
473 nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
474 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
476 let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
477 nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init {
478 features: nodes[3].node.init_features(), networks: None, remote_network_address: None
480 nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
481 let mut found_err = false;
482 for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
483 if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
485 &ErrorAction::SendErrorMessage { ref msg } => {
486 assert_eq!(msg.channel_id, channel_id);
490 _ => panic!("Unexpected event!"),
497 fn do_test_data_loss_protect(reconnect_panicing: bool) {
498 // When we get a data_loss_protect proving we're behind, we immediately panic as the
499 // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
500 // panic message informs the user they should force-close without broadcasting, which is tested
501 // if `reconnect_panicing` is not set.
502 let mut chanmon_cfgs = create_chanmon_cfgs(2);
503 // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
504 // during signing due to revoked tx
505 chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
506 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
508 let new_chain_monitor;
510 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
511 let nodes_0_deserialized;
513 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
515 let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000);
517 // Cache node A state before any channel update
518 let previous_node_state = nodes[0].node.encode();
519 let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
521 send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
522 send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
524 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
525 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
527 reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
529 if reconnect_panicing {
530 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
531 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
533 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
534 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
537 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
539 // Check we close channel detecting A is fallen-behind
540 // Check that we sent the warning message when we detected that A has fallen behind,
541 // and give the possibility for A to recover from the warning.
542 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
543 let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
544 assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
547 let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
548 // The node B should not broadcast the transaction to force close the channel!
549 assert!(node_txn.is_empty());
552 let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
553 // Check A panics upon seeing proof it has fallen behind.
554 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
555 return; // By this point we should have panic'ed!
558 nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
559 check_added_monitors!(nodes[0], 1);
560 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 1000000);
562 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
563 assert_eq!(node_txn.len(), 0);
566 for msg in nodes[0].node.get_and_clear_pending_msg_events() {
567 if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
568 } else if let MessageSendEvent::HandleError { ref action, .. } = msg {
570 &ErrorAction::SendErrorMessage { ref msg } => {
571 assert_eq!(msg.data, "Channel force-closed");
573 _ => panic!("Unexpected event!"),
576 panic!("Unexpected event {:?}", msg)
580 // after the warning message sent by B, we should not able to
581 // use the channel, or reconnect with success to the channel.
582 assert!(nodes[0].node.list_usable_channels().is_empty());
583 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
584 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
586 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
587 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
589 let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
591 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
592 let mut err_msgs_0 = Vec::with_capacity(1);
593 for msg in nodes[0].node.get_and_clear_pending_msg_events() {
594 if let MessageSendEvent::HandleError { ref action, .. } = msg {
596 &ErrorAction::SendErrorMessage { ref msg } => {
597 assert_eq!(msg.data, format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()));
598 err_msgs_0.push(msg.clone());
600 _ => panic!("Unexpected event!"),
603 panic!("Unexpected event!");
606 assert_eq!(err_msgs_0.len(), 1);
607 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
608 assert!(nodes[1].node.list_usable_channels().is_empty());
609 check_added_monitors!(nodes[1], 1);
610 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) }
611 , [nodes[0].node.get_our_node_id()], 1000000);
612 check_closed_broadcast!(nodes[1], false);
617 fn test_data_loss_protect_showing_stale_state_panics() {
618 do_test_data_loss_protect(true);
622 fn test_force_close_without_broadcast() {
623 do_test_data_loss_protect(false);
627 fn test_forwardable_regen() {
628 // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
629 // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
631 // We test it for both payment receipt and payment forwarding.
633 let chanmon_cfgs = create_chanmon_cfgs(3);
634 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
636 let new_chain_monitor;
637 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
638 let nodes_1_deserialized;
639 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
640 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
641 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
643 // First send a payment to nodes[1]
644 let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
645 nodes[0].node.send_payment_with_route(&route, payment_hash,
646 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
647 check_added_monitors!(nodes[0], 1);
649 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
650 assert_eq!(events.len(), 1);
651 let payment_event = SendEvent::from_event(events.pop().unwrap());
652 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
653 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
655 expect_pending_htlcs_forwardable_ignore!(nodes[1]);
657 // Next send a payment which is forwarded by nodes[1]
658 let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
659 nodes[0].node.send_payment_with_route(&route_2, payment_hash_2,
660 RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
661 check_added_monitors!(nodes[0], 1);
663 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
664 assert_eq!(events.len(), 1);
665 let payment_event = SendEvent::from_event(events.pop().unwrap());
666 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
667 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
669 // There is already a PendingHTLCsForwardable event "pending" so another one will not be
671 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
673 // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
674 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
675 nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
677 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
678 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
679 reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
681 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
682 // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
683 // the commitment state.
684 let mut reconnect_args = ReconnectArgs::new(&nodes[1], &nodes[2]);
685 reconnect_args.send_channel_ready = (true, true);
686 reconnect_nodes(reconnect_args);
688 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
690 expect_pending_htlcs_forwardable!(nodes[1]);
691 expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000);
692 check_added_monitors!(nodes[1], 1);
694 let mut events = nodes[1].node.get_and_clear_pending_msg_events();
695 assert_eq!(events.len(), 1);
696 let payment_event = SendEvent::from_event(events.pop().unwrap());
697 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
698 commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
699 expect_pending_htlcs_forwardable!(nodes[2]);
700 expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
702 claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
703 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
706 fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
707 // Test what happens if a node receives an MPP payment, claims it, but crashes before
708 // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
709 // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
710 // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the
711 // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
712 // not have the preimage tied to the still-pending HTLC.
714 // To get to the correct state, on startup we should propagate the preimage to the
715 // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
716 // receiving the preimage without a state update.
718 // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
719 // definitely claimed.
720 let chanmon_cfgs = create_chanmon_cfgs(4);
721 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
723 let new_chain_monitor;
725 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
726 let nodes_3_deserialized;
728 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
730 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0);
731 create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0);
732 let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0).2;
733 let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0).2;
735 // Create an MPP route for 15k sats, more than the default htlc-max of 10%
736 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
737 assert_eq!(route.paths.len(), 2);
738 route.paths.sort_by(|path_a, _| {
739 // Sort the path so that the path through nodes[1] comes first
740 if path_a.hops[0].pubkey == nodes[1].node.get_our_node_id() {
741 core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
744 nodes[0].node.send_payment_with_route(&route, payment_hash,
745 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
746 check_added_monitors!(nodes[0], 2);
748 // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event
749 let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
750 assert_eq!(send_events.len(), 2);
751 let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut send_events);
752 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut send_events);
753 do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_1_msgs, true, false, None);
754 do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_2_msgs, true, false, None);
756 // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
757 // monitors and ChannelManager, for use later, if we don't want to persist both monitors.
758 let mut original_monitor = test_utils::TestVecWriter(Vec::new());
759 if !persist_both_monitors {
760 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
761 if outpoint.to_channel_id() == chan_id_not_persisted {
762 assert!(original_monitor.0.is_empty());
763 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
768 let original_manager = nodes[3].node.encode();
770 expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000);
772 nodes[3].node.claim_funds(payment_preimage);
773 check_added_monitors!(nodes[3], 2);
774 expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
776 // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
777 // crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
778 // with the old ChannelManager.
779 let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
780 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
781 if outpoint.to_channel_id() == chan_id_persisted {
782 assert!(updated_monitor.0.is_empty());
783 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
786 // If `persist_both_monitors` is set, get the second monitor here as well
787 if persist_both_monitors {
788 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
789 if outpoint.to_channel_id() == chan_id_not_persisted {
790 assert!(original_monitor.0.is_empty());
791 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
796 // Now restart nodes[3].
797 reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
799 // On startup the preimage should have been copied into the non-persisted monitor:
800 assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
801 assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
803 nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
804 nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
806 // During deserialization, we should have closed one channel and broadcast its latest
807 // commitment transaction. We should also still have the original PaymentClaimable event we
808 // never finished processing.
809 let events = nodes[3].node.get_and_clear_pending_events();
810 assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
811 if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
812 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
813 if persist_both_monitors {
814 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
815 check_added_monitors(&nodes[3], 2);
817 check_added_monitors(&nodes[3], 1);
820 // On restart, we should also get a duplicate PaymentClaimed event as we persisted the
821 // ChannelManager prior to handling the original one.
822 if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
823 events[if persist_both_monitors { 3 } else { 2 }]
825 assert_eq!(payment_hash, our_payment_hash);
828 assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
829 if !persist_both_monitors {
830 // If one of the two channels is still live, reveal the payment preimage over it.
832 nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
833 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
835 let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
836 nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init {
837 features: nodes[3].node.init_features(), networks: None, remote_network_address: None
839 let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
841 nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
842 get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
843 assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
845 nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
847 // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
849 let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
850 check_added_monitors!(nodes[3], 1);
851 assert_eq!(ds_msgs.len(), 2);
852 if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); }
854 let cs_updates = match ds_msgs[1] {
855 MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
856 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
857 check_added_monitors!(nodes[2], 1);
858 let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
859 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
860 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
866 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
867 commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
868 expect_payment_sent!(nodes[0], payment_preimage);
873 fn test_partial_claim_before_restart() {
874 do_test_partial_claim_before_restart(false);
875 do_test_partial_claim_before_restart(true);
878 fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool, use_intercept: bool) {
879 if !use_cs_commitment { assert!(!claim_htlc); }
880 // If we go to forward a payment, and the ChannelMonitor persistence completes, but the
881 // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail
882 // it back until the ChannelMonitor decides the fate of the HTLC.
883 // This was never an issue, but it may be easy to regress here going forward.
884 let chanmon_cfgs = create_chanmon_cfgs(3);
885 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
887 let new_chain_monitor;
889 let mut intercept_forwards_config = test_default_channel_config();
890 intercept_forwards_config.accept_intercept_htlcs = true;
891 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), None]);
892 let nodes_1_deserialized;
894 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
896 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
897 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
899 let intercept_scid = nodes[1].node.get_intercept_scid();
901 let (mut route, payment_hash, payment_preimage, payment_secret) =
902 get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
904 route.paths[0].hops[1].short_channel_id = intercept_scid;
906 let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
907 let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV;
908 nodes[0].node.send_payment_with_route(&route, payment_hash,
909 RecipientOnionFields::secret_only(payment_secret), payment_id).unwrap();
910 check_added_monitors!(nodes[0], 1);
912 let payment_event = SendEvent::from_node(&nodes[0]);
913 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
914 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
916 // Store the `ChannelManager` before handling the `PendingHTLCsForwardable`/`HTLCIntercepted`
917 // events, expecting either event (and the HTLC itself) to be missing on reload even though its
918 // present when we serialized.
919 let node_encoded = nodes[1].node.encode();
921 let mut intercept_id = None;
922 let mut expected_outbound_amount_msat = None;
924 let events = nodes[1].node.get_and_clear_pending_events();
925 assert_eq!(events.len(), 1);
927 Event::HTLCIntercepted { intercept_id: ev_id, expected_outbound_amount_msat: ev_amt, .. } => {
928 intercept_id = Some(ev_id);
929 expected_outbound_amount_msat = Some(ev_amt);
933 nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_2,
934 nodes[2].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap();
937 expect_pending_htlcs_forwardable!(nodes[1]);
939 let payment_event = SendEvent::from_node(&nodes[1]);
940 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
941 nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg);
942 check_added_monitors!(nodes[2], 1);
945 get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage,
946 &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger);
948 assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
950 let _ = nodes[2].node.get_and_clear_pending_msg_events();
952 nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap();
953 let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
954 assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 });
956 check_added_monitors!(nodes[2], 1);
957 check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
958 check_closed_broadcast!(nodes[2], true);
960 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
961 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
962 reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
964 // Note that this checks that this is the only event on nodes[1], implying the
965 // `HTLCIntercepted` event has been removed in the `use_intercept` case.
966 check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager, [nodes[2].node.get_our_node_id()], 100000);
969 // Attempt to forward the HTLC back out over nodes[1]' still-open channel, ensuring we get
970 // a intercept-doesn't-exist error.
971 let forward_err = nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_1,
972 nodes[0].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap_err();
973 assert_eq!(forward_err, APIError::APIMisuseError {
974 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.unwrap().0))
978 nodes[1].node.timer_tick_occurred();
979 let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
980 assert_eq!(bs_commitment_tx.len(), 1);
981 check_added_monitors!(nodes[1], 1);
983 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
984 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
986 if use_cs_commitment {
987 // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait
988 // for an HTLC-spending transaction before it does anything with the HTLC upstream.
989 confirm_transaction(&nodes[1], &cs_commitment_tx[0]);
990 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
991 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
994 confirm_transaction(&nodes[1], &cs_commitment_tx[1]);
996 connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1 + 1);
997 let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
998 assert_eq!(bs_htlc_timeout_tx.len(), 1);
999 confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]);
1002 confirm_transaction(&nodes[1], &bs_commitment_tx[0]);
1006 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1008 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true);
1010 check_added_monitors!(nodes[1], 1);
1012 let events = nodes[1].node.get_and_clear_pending_msg_events();
1013 assert_eq!(events.len(), 1);
1015 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => {
1017 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]);
1019 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1021 commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1023 _ => panic!("Unexpected event"),
1027 expect_payment_sent!(nodes[0], payment_preimage);
1029 expect_payment_failed!(nodes[0], payment_hash, false);
1034 fn forwarded_payment_no_manager_persistence() {
1035 do_forwarded_payment_no_manager_persistence(true, true, false);
1036 do_forwarded_payment_no_manager_persistence(true, false, false);
1037 do_forwarded_payment_no_manager_persistence(false, false, false);
1041 fn intercepted_payment_no_manager_persistence() {
1042 do_forwarded_payment_no_manager_persistence(true, true, true);
1043 do_forwarded_payment_no_manager_persistence(true, false, true);
1044 do_forwarded_payment_no_manager_persistence(false, false, true);
1048 fn removed_payment_no_manager_persistence() {
1049 // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but
1050 // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is
1051 // still failed back to the previous hop even though the ChannelMonitor now no longer is aware
1052 // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs
1053 // were left dangling when a channel was force-closed due to a stale ChannelManager.
1054 let chanmon_cfgs = create_chanmon_cfgs(3);
1055 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1057 let new_chain_monitor;
1059 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1060 let nodes_1_deserialized;
1062 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1064 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1065 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
1067 let (_, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
1069 let node_encoded = nodes[1].node.encode();
1071 nodes[2].node.fail_htlc_backwards(&payment_hash);
1072 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
1073 check_added_monitors!(nodes[2], 1);
1074 let events = nodes[2].node.get_and_clear_pending_msg_events();
1075 assert_eq!(events.len(), 1);
1077 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1078 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]);
1079 commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false);
1081 _ => panic!("Unexpected event"),
1084 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
1085 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
1086 reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
1088 match nodes[1].node.pop_pending_event().unwrap() {
1089 Event::ChannelClosed { ref reason, .. } => {
1090 assert_eq!(*reason, ClosureReason::OutdatedChannelManager);
1092 _ => panic!("Unexpected event"),
1095 nodes[1].node.test_process_background_events();
1096 check_added_monitors(&nodes[1], 1);
1098 // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is
1099 // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload,
1100 // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set.
1101 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
1102 reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
1104 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1105 check_added_monitors!(nodes[1], 1);
1106 let events = nodes[1].node.get_and_clear_pending_msg_events();
1107 assert_eq!(events.len(), 1);
1109 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1110 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1111 commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1113 _ => panic!("Unexpected event"),
1116 expect_payment_failed!(nodes[0], payment_hash, false);
1120 fn test_reload_partial_funding_batch() {
1121 let chanmon_cfgs = create_chanmon_cfgs(3);
1122 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1124 let new_chain_monitor;
1126 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1127 let new_channel_manager;
1128 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1130 // Initiate channel opening and create the batch channel funding transaction.
1131 let (tx, funding_created_msgs) = create_batch_channel_funding(&nodes[0], &[
1132 (&nodes[1], 100_000, 0, 42, None),
1133 (&nodes[2], 200_000, 0, 43, None),
1136 // Go through the funding_created and funding_signed flow with node 1.
1137 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msgs[0]);
1138 check_added_monitors(&nodes[1], 1);
1139 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
1141 // The monitor is persisted when receiving funding_signed.
1142 let funding_signed_msg = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
1143 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed_msg);
1144 check_added_monitors(&nodes[0], 1);
1146 // The transaction should not have been broadcast before all channels are ready.
1147 assert_eq!(nodes[0].tx_broadcaster.txn_broadcast().len(), 0);
1149 // Reload the node while a subset of the channels in the funding batch have persisted monitors.
1150 let channel_id_1 = OutPoint { txid: tx.txid(), index: 0 }.to_channel_id();
1151 let node_encoded = nodes[0].node.encode();
1152 let channel_monitor_1_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1153 reload_node!(nodes[0], node_encoded, &[&channel_monitor_1_serialized], new_persister, new_chain_monitor, new_channel_manager);
1155 // Process monitor events.
1156 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
1158 // The monitor should become closed.
1159 check_added_monitors(&nodes[0], 1);
1161 let mut monitor_updates = nodes[0].chain_monitor.monitor_updates.lock().unwrap();
1162 let monitor_updates_1 = monitor_updates.get(&channel_id_1).unwrap();
1163 assert_eq!(monitor_updates_1.len(), 1);
1164 assert_eq!(monitor_updates_1[0].update_id, CLOSED_CHANNEL_UPDATE_ID);
1167 // The funding transaction should not have been broadcast, but we broadcast the force-close
1168 // transaction as part of closing the monitor.
1170 let broadcasted_txs = nodes[0].tx_broadcaster.txn_broadcast();
1171 assert_eq!(broadcasted_txs.len(), 1);
1172 assert!(broadcasted_txs[0].txid() != tx.txid());
1173 assert_eq!(broadcasted_txs[0].input.len(), 1);
1174 assert_eq!(broadcasted_txs[0].input[0].previous_output.txid, tx.txid());
1177 // Ensure the channels don't exist anymore.
1178 assert!(nodes[0].node.list_channels().is_empty());