2c7e8e72bbee663fd824a7f3aad5a27b1c118792
[rust-lightning] / lightning / src / ln / reload_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Functional tests which test for correct behavior across node restarts.
11
12 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
13 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
14 use crate::chain::channelmonitor::ChannelMonitor;
15 use crate::chain::keysinterface::KeysInterface;
16 use crate::chain::transaction::OutPoint;
17 use crate::ln::channelmanager::{self, ChannelManager, ChannelManagerReadArgs, PaymentId};
18 use crate::ln::msgs;
19 use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
20 use crate::util::enforcing_trait_impls::EnforcingSigner;
21 use crate::util::test_utils;
22 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
23 use crate::util::ser::{Writeable, ReadableArgs};
24 use crate::util::config::UserConfig;
25
26 use bitcoin::hash_types::BlockHash;
27
28 use crate::prelude::*;
29 use core::default::Default;
30 use crate::sync::Mutex;
31
32 use crate::ln::functional_test_utils::*;
33
34 #[test]
35 fn test_funding_peer_disconnect() {
36         // Test that we can lock in our funding tx while disconnected
37         let chanmon_cfgs = create_chanmon_cfgs(2);
38         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
39         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
40         let persister: test_utils::TestPersister;
41         let new_chain_monitor: test_utils::TestChainMonitor;
42         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
43         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
44         let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, channelmanager::provided_init_features(), channelmanager::provided_init_features());
45
46         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
47         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
48
49         confirm_transaction(&nodes[0], &tx);
50         let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
51         assert!(events_1.is_empty());
52
53         reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
54
55         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
56         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
57
58         confirm_transaction(&nodes[1], &tx);
59         let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
60         assert!(events_2.is_empty());
61
62         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
63         let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
64         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
65         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
66
67         // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
68         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
69         let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
70         assert_eq!(events_3.len(), 1);
71         let as_channel_ready = match events_3[0] {
72                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
73                         assert_eq!(*node_id, nodes[1].node.get_our_node_id());
74                         msg.clone()
75                 },
76                 _ => panic!("Unexpected event {:?}", events_3[0]),
77         };
78
79         // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
80         // announcement_signatures as well as channel_update.
81         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
82         let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
83         assert_eq!(events_4.len(), 3);
84         let chan_id;
85         let bs_channel_ready = match events_4[0] {
86                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
87                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
88                         chan_id = msg.channel_id;
89                         msg.clone()
90                 },
91                 _ => panic!("Unexpected event {:?}", events_4[0]),
92         };
93         let bs_announcement_sigs = match events_4[1] {
94                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
95                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
96                         msg.clone()
97                 },
98                 _ => panic!("Unexpected event {:?}", events_4[1]),
99         };
100         match events_4[2] {
101                 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
102                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
103                 },
104                 _ => panic!("Unexpected event {:?}", events_4[2]),
105         }
106
107         // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
108         // generates a duplicative private channel_update
109         nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
110         let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
111         assert_eq!(events_5.len(), 1);
112         match events_5[0] {
113                 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
114                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
115                 },
116                 _ => panic!("Unexpected event {:?}", events_5[0]),
117         };
118
119         // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
120         // announcement_signatures.
121         nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
122         let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
123         assert_eq!(events_6.len(), 1);
124         let as_announcement_sigs = match events_6[0] {
125                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
126                         assert_eq!(*node_id, nodes[1].node.get_our_node_id());
127                         msg.clone()
128                 },
129                 _ => panic!("Unexpected event {:?}", events_6[0]),
130         };
131         expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
132         expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
133
134         // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
135         // broadcast the channel announcement globally, as well as re-send its (now-public)
136         // channel_update.
137         nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
138         let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
139         assert_eq!(events_7.len(), 1);
140         let (chan_announcement, as_update) = match events_7[0] {
141                 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
142                         (msg.clone(), update_msg.clone())
143                 },
144                 _ => panic!("Unexpected event {:?}", events_7[0]),
145         };
146
147         // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
148         // same channel_announcement.
149         nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
150         let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
151         assert_eq!(events_8.len(), 1);
152         let bs_update = match events_8[0] {
153                 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
154                         assert_eq!(*msg, chan_announcement);
155                         update_msg.clone()
156                 },
157                 _ => panic!("Unexpected event {:?}", events_8[0]),
158         };
159
160         // Provide the channel announcement and public updates to the network graph
161         nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
162         nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
163         nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
164
165         let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
166         let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
167         claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
168
169         // Check that after deserialization and reconnection we can still generate an identical
170         // channel_announcement from the cached signatures.
171         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
172
173         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
174
175         reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
176
177         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
178 }
179
180 #[test]
181 fn test_no_txn_manager_serialize_deserialize() {
182         let chanmon_cfgs = create_chanmon_cfgs(2);
183         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
184         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
185         let persister: test_utils::TestPersister;
186         let new_chain_monitor: test_utils::TestChainMonitor;
187         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
188         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
189
190         let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, channelmanager::provided_init_features(), channelmanager::provided_init_features());
191
192         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
193
194         let chan_0_monitor_serialized =
195                 get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
196         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
197
198         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
199         let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
200         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
201         let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
202
203         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
204         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
205         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
206         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
207
208         let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
209         let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
210         for node in nodes.iter() {
211                 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
212                 node.gossip_sync.handle_channel_update(&as_update).unwrap();
213                 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
214         }
215
216         send_payment(&nodes[0], &[&nodes[1]], 1000000);
217 }
218
219 #[test]
220 fn test_manager_serialize_deserialize_events() {
221         // This test makes sure the events field in ChannelManager survives de/serialization
222         let chanmon_cfgs = create_chanmon_cfgs(2);
223         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
224         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
225         let persister: test_utils::TestPersister;
226         let new_chain_monitor: test_utils::TestChainMonitor;
227         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
228         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
229
230         // Start creating a channel, but stop right before broadcasting the funding transaction
231         let channel_value = 100000;
232         let push_msat = 10001;
233         let a_flags = channelmanager::provided_init_features();
234         let b_flags = channelmanager::provided_init_features();
235         let node_a = nodes.remove(0);
236         let node_b = nodes.remove(0);
237         node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
238         node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), a_flags, &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
239         node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), b_flags, &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
240
241         let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
242
243         node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
244         check_added_monitors!(node_a, 0);
245
246         node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
247         {
248                 let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
249                 assert_eq!(added_monitors.len(), 1);
250                 assert_eq!(added_monitors[0].0, funding_output);
251                 added_monitors.clear();
252         }
253
254         let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
255         node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
256         {
257                 let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
258                 assert_eq!(added_monitors.len(), 1);
259                 assert_eq!(added_monitors[0].0, funding_output);
260                 added_monitors.clear();
261         }
262         // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
263
264         nodes.push(node_a);
265         nodes.push(node_b);
266
267         // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
268         let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
269         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
270
271         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
272
273         // After deserializing, make sure the funding_transaction is still held by the channel manager
274         let events_4 = nodes[0].node.get_and_clear_pending_events();
275         assert_eq!(events_4.len(), 0);
276         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
277         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
278
279         // Make sure the channel is functioning as though the de/serialization never happened
280         assert_eq!(nodes[0].node.list_channels().len(), 1);
281
282         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
283         let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
284         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
285         let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
286
287         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
288         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
289         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
290         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
291
292         let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
293         let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
294         for node in nodes.iter() {
295                 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
296                 node.gossip_sync.handle_channel_update(&as_update).unwrap();
297                 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
298         }
299
300         send_payment(&nodes[0], &[&nodes[1]], 1000000);
301 }
302
303 #[test]
304 fn test_simple_manager_serialize_deserialize() {
305         let chanmon_cfgs = create_chanmon_cfgs(2);
306         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
307         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
308         let persister: test_utils::TestPersister;
309         let new_chain_monitor: test_utils::TestChainMonitor;
310         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
311         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
312         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
313
314         let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
315         let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
316
317         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
318
319         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
320         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
321
322         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
323
324         fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
325         claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
326 }
327
328 #[test]
329 fn test_manager_serialize_deserialize_inconsistent_monitor() {
330         // Test deserializing a ChannelManager with an out-of-date ChannelMonitor
331         let chanmon_cfgs = create_chanmon_cfgs(4);
332         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
333         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
334         let logger: test_utils::TestLogger;
335         let fee_estimator: test_utils::TestFeeEstimator;
336         let persister: test_utils::TestPersister;
337         let new_chain_monitor: test_utils::TestChainMonitor;
338         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
339         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
340         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
341         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
342         let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
343
344         let mut node_0_stale_monitors_serialized = Vec::new();
345         for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
346                 let mut writer = test_utils::TestVecWriter(Vec::new());
347                 get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
348                 node_0_stale_monitors_serialized.push(writer.0);
349         }
350
351         let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
352
353         // Serialize the ChannelManager here, but the monitor we keep up-to-date
354         let nodes_0_serialized = nodes[0].node.encode();
355
356         route_payment(&nodes[0], &[&nodes[3]], 1000000);
357         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
358         nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
359         nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
360
361         // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
362         // nodes[3])
363         let mut node_0_monitors_serialized = Vec::new();
364         for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
365                 node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
366         }
367
368         logger = test_utils::TestLogger::new();
369         fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
370         persister = test_utils::TestPersister::new();
371         let keys_manager = &chanmon_cfgs[0].keys_manager;
372         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager);
373         nodes[0].chain_monitor = &new_chain_monitor;
374
375
376         let mut node_0_stale_monitors = Vec::new();
377         for serialized in node_0_stale_monitors_serialized.iter() {
378                 let mut read = &serialized[..];
379                 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, keys_manager).unwrap();
380                 assert!(read.is_empty());
381                 node_0_stale_monitors.push(monitor);
382         }
383
384         let mut node_0_monitors = Vec::new();
385         for serialized in node_0_monitors_serialized.iter() {
386                 let mut read = &serialized[..];
387                 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, keys_manager).unwrap();
388                 assert!(read.is_empty());
389                 node_0_monitors.push(monitor);
390         }
391
392         let mut nodes_0_read = &nodes_0_serialized[..];
393         if let Err(msgs::DecodeError::InvalidValue) =
394                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
395                 default_config: UserConfig::default(),
396                 keys_manager,
397                 fee_estimator: &fee_estimator,
398                 chain_monitor: nodes[0].chain_monitor,
399                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
400                 logger: &logger,
401                 channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
402         }) { } else {
403                 panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
404         };
405
406         let mut nodes_0_read = &nodes_0_serialized[..];
407         let (_, nodes_0_deserialized_tmp) =
408                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
409                 default_config: UserConfig::default(),
410                 keys_manager,
411                 fee_estimator: &fee_estimator,
412                 chain_monitor: nodes[0].chain_monitor,
413                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
414                 logger: &logger,
415                 channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
416         }).unwrap();
417         nodes_0_deserialized = nodes_0_deserialized_tmp;
418         assert!(nodes_0_read.is_empty());
419
420         { // Channel close should result in a commitment tx
421                 let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
422                 assert_eq!(txn.len(), 1);
423                 check_spends!(txn[0], funding_tx);
424                 assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
425         }
426
427         for monitor in node_0_monitors.drain(..) {
428                 assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
429                         ChannelMonitorUpdateStatus::Completed);
430                 check_added_monitors!(nodes[0], 1);
431         }
432         nodes[0].node = &nodes_0_deserialized;
433         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
434
435         // nodes[1] and nodes[2] have no lost state with nodes[0]...
436         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
437         reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
438         //... and we can even still claim the payment!
439         claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
440
441         nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
442         let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
443         nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
444         nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
445         let mut found_err = false;
446         for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
447                 if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
448                         match action {
449                                 &ErrorAction::SendErrorMessage { ref msg } => {
450                                         assert_eq!(msg.channel_id, channel_id);
451                                         assert!(!found_err);
452                                         found_err = true;
453                                 },
454                                 _ => panic!("Unexpected event!"),
455                         }
456                 }
457         }
458         assert!(found_err);
459 }
460
461 fn do_test_data_loss_protect(reconnect_panicing: bool) {
462         // When we get a data_loss_protect proving we're behind, we immediately panic as the
463         // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
464         // panic message informs the user they should force-close without broadcasting, which is tested
465         // if `reconnect_panicing` is not set.
466         let mut chanmon_cfgs = create_chanmon_cfgs(2);
467         // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
468         // during signing due to revoked tx
469         chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
470         let persister;
471         let new_chain_monitor;
472         let nodes_0_deserialized;
473         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
474         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
475         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
476
477         let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
478
479         // Cache node A state before any channel update
480         let previous_node_state = nodes[0].node.encode();
481         let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
482
483         send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
484         send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
485
486         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
487         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
488
489         reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
490
491         if reconnect_panicing {
492                 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
493                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
494
495                 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
496
497                 // Check we close channel detecting A is fallen-behind
498                 // Check that we sent the warning message when we detected that A has fallen behind,
499                 // and give the possibility for A to recover from the warning.
500                 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
501                 let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
502                 assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
503
504                 {
505                         let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
506                         // The node B should not broadcast the transaction to force close the channel!
507                         assert!(node_txn.is_empty());
508                 }
509
510                 let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
511                 // Check A panics upon seeing proof it has fallen behind.
512                 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
513                 return; // By this point we should have panic'ed!
514         }
515
516         nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
517         check_added_monitors!(nodes[0], 1);
518         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
519         {
520                 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
521                 assert_eq!(node_txn.len(), 0);
522         }
523
524         for msg in nodes[0].node.get_and_clear_pending_msg_events() {
525                 if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
526                 } else if let MessageSendEvent::HandleError { ref action, .. } = msg {
527                         match action {
528                                 &ErrorAction::SendErrorMessage { ref msg } => {
529                                         assert_eq!(msg.data, "Channel force-closed");
530                                 },
531                                 _ => panic!("Unexpected event!"),
532                         }
533                 } else {
534                         panic!("Unexpected event {:?}", msg)
535                 }
536         }
537
538         // after the warning message sent by B, we should not able to
539         // use the channel, or reconnect with success to the channel.
540         assert!(nodes[0].node.list_usable_channels().is_empty());
541         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
542         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
543         let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
544
545         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
546         let mut err_msgs_0 = Vec::with_capacity(1);
547         for msg in nodes[0].node.get_and_clear_pending_msg_events() {
548                 if let MessageSendEvent::HandleError { ref action, .. } = msg {
549                         match action {
550                                 &ErrorAction::SendErrorMessage { ref msg } => {
551                                         assert_eq!(msg.data, "Failed to find corresponding channel");
552                                         err_msgs_0.push(msg.clone());
553                                 },
554                                 _ => panic!("Unexpected event!"),
555                         }
556                 } else {
557                         panic!("Unexpected event!");
558                 }
559         }
560         assert_eq!(err_msgs_0.len(), 1);
561         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
562         assert!(nodes[1].node.list_usable_channels().is_empty());
563         check_added_monitors!(nodes[1], 1);
564         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_owned() });
565         check_closed_broadcast!(nodes[1], false);
566 }
567
568 #[test]
569 #[should_panic]
570 fn test_data_loss_protect_showing_stale_state_panics() {
571         do_test_data_loss_protect(true);
572 }
573
574 #[test]
575 fn test_force_close_without_broadcast() {
576         do_test_data_loss_protect(false);
577 }
578
579 #[test]
580 fn test_forwardable_regen() {
581         // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
582         // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
583         // HTLCs.
584         // We test it for both payment receipt and payment forwarding.
585
586         let chanmon_cfgs = create_chanmon_cfgs(3);
587         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
588         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
589         let persister: test_utils::TestPersister;
590         let new_chain_monitor: test_utils::TestChainMonitor;
591         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
592         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
593         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
594         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
595
596         // First send a payment to nodes[1]
597         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
598         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
599         check_added_monitors!(nodes[0], 1);
600
601         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
602         assert_eq!(events.len(), 1);
603         let payment_event = SendEvent::from_event(events.pop().unwrap());
604         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
605         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
606
607         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
608
609         // Next send a payment which is forwarded by nodes[1]
610         let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
611         nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
612         check_added_monitors!(nodes[0], 1);
613
614         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
615         assert_eq!(events.len(), 1);
616         let payment_event = SendEvent::from_event(events.pop().unwrap());
617         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
618         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
619
620         // There is already a PendingHTLCsForwardable event "pending" so another one will not be
621         // generated
622         assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
623
624         // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
625         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
626         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
627
628         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
629         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
630         reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
631
632         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
633         // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
634         // the commitment state.
635         reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
636
637         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
638
639         expect_pending_htlcs_forwardable!(nodes[1]);
640         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000);
641         check_added_monitors!(nodes[1], 1);
642
643         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
644         assert_eq!(events.len(), 1);
645         let payment_event = SendEvent::from_event(events.pop().unwrap());
646         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
647         commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
648         expect_pending_htlcs_forwardable!(nodes[2]);
649         expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
650
651         claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
652         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
653 }
654
655 fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
656         // Test what happens if a node receives an MPP payment, claims it, but crashes before
657         // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
658         // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
659         // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the
660         // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
661         // not have the preimage tied to the still-pending HTLC.
662         //
663         // To get to the correct state, on startup we should propagate the preimage to the
664         // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
665         // receiving the preimage without a state update.
666         //
667         // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
668         // definitely claimed.
669         let chanmon_cfgs = create_chanmon_cfgs(4);
670         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
671         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
672
673         let persister: test_utils::TestPersister;
674         let new_chain_monitor: test_utils::TestChainMonitor;
675         let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
676
677         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
678
679         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features());
680         create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features());
681         let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
682         let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
683
684         // Create an MPP route for 15k sats, more than the default htlc-max of 10%
685         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
686         assert_eq!(route.paths.len(), 2);
687         route.paths.sort_by(|path_a, _| {
688                 // Sort the path so that the path through nodes[1] comes first
689                 if path_a[0].pubkey == nodes[1].node.get_our_node_id() {
690                         core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
691         });
692
693         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
694         check_added_monitors!(nodes[0], 2);
695
696         // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event
697         let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
698         assert_eq!(send_events.len(), 2);
699         do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), send_events[0].clone(), true, false, None);
700         do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), send_events[1].clone(), true, false, None);
701
702         // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
703         // monitors and ChannelManager, for use later, if we don't want to persist both monitors.
704         let mut original_monitor = test_utils::TestVecWriter(Vec::new());
705         if !persist_both_monitors {
706                 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
707                         if outpoint.to_channel_id() == chan_id_not_persisted {
708                                 assert!(original_monitor.0.is_empty());
709                                 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
710                         }
711                 }
712         }
713
714         let original_manager = nodes[3].node.encode();
715
716         expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000);
717
718         nodes[3].node.claim_funds(payment_preimage);
719         check_added_monitors!(nodes[3], 2);
720         expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
721
722         // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
723         // crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
724         // with the old ChannelManager.
725         let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
726         for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
727                 if outpoint.to_channel_id() == chan_id_persisted {
728                         assert!(updated_monitor.0.is_empty());
729                         nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
730                 }
731         }
732         // If `persist_both_monitors` is set, get the second monitor here as well
733         if persist_both_monitors {
734                 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
735                         if outpoint.to_channel_id() == chan_id_not_persisted {
736                                 assert!(original_monitor.0.is_empty());
737                                 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
738                         }
739                 }
740         }
741
742         // Now restart nodes[3].
743         reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
744
745         // On startup the preimage should have been copied into the non-persisted monitor:
746         assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
747         assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
748
749         nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
750         nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
751
752         // During deserialization, we should have closed one channel and broadcast its latest
753         // commitment transaction. We should also still have the original PaymentClaimable event we
754         // never finished processing.
755         let events = nodes[3].node.get_and_clear_pending_events();
756         assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
757         if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
758         if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
759         if persist_both_monitors {
760                 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
761         }
762
763         // On restart, we should also get a duplicate PaymentClaimed event as we persisted the
764         // ChannelManager prior to handling the original one.
765         if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
766                 events[if persist_both_monitors { 3 } else { 2 }]
767         {
768                 assert_eq!(payment_hash, our_payment_hash);
769         } else { panic!(); }
770
771         assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
772         if !persist_both_monitors {
773                 // If one of the two channels is still live, reveal the payment preimage over it.
774
775                 nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
776                 let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
777                 nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
778                 let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
779
780                 nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
781                 get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
782                 assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
783
784                 nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
785
786                 // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
787                 // claim should fly.
788                 let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
789                 check_added_monitors!(nodes[3], 1);
790                 assert_eq!(ds_msgs.len(), 2);
791                 if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); }
792
793                 let cs_updates = match ds_msgs[1] {
794                         MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
795                                 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
796                                 check_added_monitors!(nodes[2], 1);
797                                 let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
798                                 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
799                                 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
800                                 cs_updates
801                         }
802                         _ => panic!(),
803                 };
804
805                 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
806                 commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
807                 expect_payment_sent!(nodes[0], payment_preimage);
808         }
809 }
810
811 #[test]
812 fn test_partial_claim_before_restart() {
813         do_test_partial_claim_before_restart(false);
814         do_test_partial_claim_before_restart(true);
815 }
816
817 fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool) {
818         if !use_cs_commitment { assert!(!claim_htlc); }
819         // If we go to forward a payment, and the ChannelMonitor persistence completes, but the
820         // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail
821         // it back until the ChannelMonitor decides the fate of the HTLC.
822         // This was never an issue, but it may be easy to regress here going forward.
823         let chanmon_cfgs = create_chanmon_cfgs(3);
824         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
825         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
826
827         let persister;
828         let new_chain_monitor;
829         let nodes_1_deserialized;
830
831         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
832
833         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
834         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
835
836         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
837         let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
838         let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV;
839         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
840         check_added_monitors!(nodes[0], 1);
841
842         let payment_event = SendEvent::from_node(&nodes[0]);
843         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
844         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
845
846         let node_encoded = nodes[1].node.encode();
847
848         expect_pending_htlcs_forwardable!(nodes[1]);
849
850         let payment_event = SendEvent::from_node(&nodes[1]);
851         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
852         nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg);
853         check_added_monitors!(nodes[2], 1);
854
855         if claim_htlc {
856                 get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage,
857                         &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger);
858         }
859         assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
860
861         let _ = nodes[2].node.get_and_clear_pending_msg_events();
862
863         nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap();
864         let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
865         assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 });
866
867         check_added_monitors!(nodes[2], 1);
868         check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed);
869         check_closed_broadcast!(nodes[2], true);
870
871         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
872         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
873         reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
874
875         check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager);
876
877         let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
878         assert_eq!(bs_commitment_tx.len(), 1);
879
880         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), true);
881         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
882
883         if use_cs_commitment {
884                 // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait
885                 // for an HTLC-spending transaction before it does anything with the HTLC upstream.
886                 confirm_transaction(&nodes[1], &cs_commitment_tx[0]);
887                 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
888                 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
889
890                 if claim_htlc {
891                         confirm_transaction(&nodes[1], &cs_commitment_tx[1]);
892                 } else {
893                         connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1);
894                         let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
895                         assert_eq!(bs_htlc_timeout_tx.len(), 1);
896                         confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]);
897                 }
898         } else {
899                 confirm_transaction(&nodes[1], &bs_commitment_tx[0]);
900         }
901
902         if !claim_htlc {
903                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
904         } else {
905                 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true);
906         }
907         check_added_monitors!(nodes[1], 1);
908
909         let events = nodes[1].node.get_and_clear_pending_msg_events();
910         assert_eq!(events.len(), 1);
911         match &events[0] {
912                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => {
913                         if claim_htlc {
914                                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]);
915                         } else {
916                                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
917                         }
918                         commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
919                 },
920                 _ => panic!("Unexpected event"),
921         }
922
923         if claim_htlc {
924                 expect_payment_sent!(nodes[0], payment_preimage);
925         } else {
926                 expect_payment_failed!(nodes[0], payment_hash, false);
927         }
928 }
929
930 #[test]
931 fn forwarded_payment_no_manager_persistence() {
932         do_forwarded_payment_no_manager_persistence(true, true);
933         do_forwarded_payment_no_manager_persistence(true, false);
934         do_forwarded_payment_no_manager_persistence(false, false);
935 }
936
937 #[test]
938 fn removed_payment_no_manager_persistence() {
939         // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but
940         // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is
941         // still failed back to the previous hop even though the ChannelMonitor now no longer is aware
942         // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs
943         // were left dangling when a channel was force-closed due to a stale ChannelManager.
944         let chanmon_cfgs = create_chanmon_cfgs(3);
945         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
946         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
947
948         let persister;
949         let new_chain_monitor;
950         let nodes_1_deserialized;
951
952         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
953
954         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
955         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
956
957         let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
958
959         let node_encoded = nodes[1].node.encode();
960
961         nodes[2].node.fail_htlc_backwards(&payment_hash);
962         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
963         check_added_monitors!(nodes[2], 1);
964         let events = nodes[2].node.get_and_clear_pending_msg_events();
965         assert_eq!(events.len(), 1);
966         match &events[0] {
967                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
968                         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]);
969                         commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false);
970                 },
971                 _ => panic!("Unexpected event"),
972         }
973
974         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
975         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
976         reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
977
978         match nodes[1].node.pop_pending_event().unwrap() {
979                 Event::ChannelClosed { ref reason, .. } => {
980                         assert_eq!(*reason, ClosureReason::OutdatedChannelManager);
981                 },
982                 _ => panic!("Unexpected event"),
983         }
984
985         // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is
986         // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload,
987         // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set.
988         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), true);
989         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
990
991         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
992         check_added_monitors!(nodes[1], 1);
993         let events = nodes[1].node.get_and_clear_pending_msg_events();
994         assert_eq!(events.len(), 1);
995         match &events[0] {
996                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
997                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
998                         commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
999                 },
1000                 _ => panic!("Unexpected event"),
1001         }
1002
1003         expect_payment_failed!(nodes[0], payment_hash, false);
1004 }