1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Functional tests which test for correct behavior across node restarts.
12 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
13 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
14 use crate::chain::channelmonitor::ChannelMonitor;
15 use crate::chain::keysinterface::EntropySource;
16 use crate::chain::transaction::OutPoint;
17 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
18 use crate::ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, RecipientOnionFields};
20 use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
21 use crate::util::enforcing_trait_impls::EnforcingSigner;
22 use crate::util::test_utils;
23 use crate::util::errors::APIError;
24 use crate::util::ser::{Writeable, ReadableArgs};
25 use crate::util::config::UserConfig;
26 use crate::util::string::UntrustedString;
28 use bitcoin::hash_types::BlockHash;
30 use crate::prelude::*;
31 use core::default::Default;
32 use crate::sync::Mutex;
34 use crate::ln::functional_test_utils::*;
37 fn test_funding_peer_disconnect() {
38 // Test that we can lock in our funding tx while disconnected
39 let chanmon_cfgs = create_chanmon_cfgs(2);
40 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
41 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
42 let persister: test_utils::TestPersister;
43 let new_chain_monitor: test_utils::TestChainMonitor;
44 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
45 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
46 let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
48 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
49 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
51 confirm_transaction(&nodes[0], &tx);
52 let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
53 assert!(events_1.is_empty());
55 reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
57 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
58 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
60 confirm_transaction(&nodes[1], &tx);
61 let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
62 assert!(events_2.is_empty());
64 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
65 let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
66 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
67 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
69 // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
70 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
71 let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
72 assert_eq!(events_3.len(), 1);
73 let as_channel_ready = match events_3[0] {
74 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
75 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
78 _ => panic!("Unexpected event {:?}", events_3[0]),
81 // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
82 // announcement_signatures as well as channel_update.
83 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
84 let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
85 assert_eq!(events_4.len(), 3);
87 let bs_channel_ready = match events_4[0] {
88 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
89 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
90 chan_id = msg.channel_id;
93 _ => panic!("Unexpected event {:?}", events_4[0]),
95 let bs_announcement_sigs = match events_4[1] {
96 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
97 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
100 _ => panic!("Unexpected event {:?}", events_4[1]),
103 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
104 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
106 _ => panic!("Unexpected event {:?}", events_4[2]),
109 // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
110 // generates a duplicative private channel_update
111 nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
112 let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
113 assert_eq!(events_5.len(), 1);
115 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
116 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
118 _ => panic!("Unexpected event {:?}", events_5[0]),
121 // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
122 // announcement_signatures.
123 nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
124 let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
125 assert_eq!(events_6.len(), 1);
126 let as_announcement_sigs = match events_6[0] {
127 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
128 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
131 _ => panic!("Unexpected event {:?}", events_6[0]),
133 expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
134 expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
136 // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
137 // broadcast the channel announcement globally, as well as re-send its (now-public)
139 nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
140 let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
141 assert_eq!(events_7.len(), 1);
142 let (chan_announcement, as_update) = match events_7[0] {
143 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
144 (msg.clone(), update_msg.clone().unwrap())
146 _ => panic!("Unexpected event {:?}", events_7[0]),
149 // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
150 // same channel_announcement.
151 nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
152 let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
153 assert_eq!(events_8.len(), 1);
154 let bs_update = match events_8[0] {
155 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
156 assert_eq!(*msg, chan_announcement);
157 update_msg.clone().unwrap()
159 _ => panic!("Unexpected event {:?}", events_8[0]),
162 // Provide the channel announcement and public updates to the network graph
163 nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
164 nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
165 nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
167 let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
168 let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
169 claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
171 // Check that after deserialization and reconnection we can still generate an identical
172 // channel_announcement from the cached signatures.
173 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
175 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
177 reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
179 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
183 fn test_no_txn_manager_serialize_deserialize() {
184 let chanmon_cfgs = create_chanmon_cfgs(2);
185 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
186 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
187 let persister: test_utils::TestPersister;
188 let new_chain_monitor: test_utils::TestChainMonitor;
189 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
190 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
192 let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
194 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
196 let chan_0_monitor_serialized =
197 get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
198 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
200 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
201 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
202 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
203 let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
205 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
206 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
207 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
208 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
210 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
211 let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
212 for node in nodes.iter() {
213 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
214 node.gossip_sync.handle_channel_update(&as_update).unwrap();
215 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
218 send_payment(&nodes[0], &[&nodes[1]], 1000000);
222 fn test_manager_serialize_deserialize_events() {
223 // This test makes sure the events field in ChannelManager survives de/serialization
224 let chanmon_cfgs = create_chanmon_cfgs(2);
225 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
226 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
227 let persister: test_utils::TestPersister;
228 let new_chain_monitor: test_utils::TestChainMonitor;
229 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
230 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
232 // Start creating a channel, but stop right before broadcasting the funding transaction
233 let channel_value = 100000;
234 let push_msat = 10001;
235 let node_a = nodes.remove(0);
236 let node_b = nodes.remove(0);
237 node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
238 node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
239 node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
241 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
243 node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
244 check_added_monitors!(node_a, 0);
246 node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
248 let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
249 assert_eq!(added_monitors.len(), 1);
250 assert_eq!(added_monitors[0].0, funding_output);
251 added_monitors.clear();
254 let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
255 node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
257 let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
258 assert_eq!(added_monitors.len(), 1);
259 assert_eq!(added_monitors[0].0, funding_output);
260 added_monitors.clear();
262 // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
264 expect_channel_pending_event(&node_a, &node_b.node.get_our_node_id());
265 expect_channel_pending_event(&node_b, &node_a.node.get_our_node_id());
270 // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
271 let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
272 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
274 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
276 // After deserializing, make sure the funding_transaction is still held by the channel manager
277 let events_4 = nodes[0].node.get_and_clear_pending_events();
278 assert_eq!(events_4.len(), 0);
279 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
280 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
282 // Make sure the channel is functioning as though the de/serialization never happened
283 assert_eq!(nodes[0].node.list_channels().len(), 1);
285 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
286 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
287 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
288 let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
290 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
291 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
292 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
293 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
295 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
296 let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
297 for node in nodes.iter() {
298 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
299 node.gossip_sync.handle_channel_update(&as_update).unwrap();
300 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
303 send_payment(&nodes[0], &[&nodes[1]], 1000000);
307 fn test_simple_manager_serialize_deserialize() {
308 let chanmon_cfgs = create_chanmon_cfgs(2);
309 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
310 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
311 let persister: test_utils::TestPersister;
312 let new_chain_monitor: test_utils::TestChainMonitor;
313 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
314 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
315 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
317 let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
318 let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
320 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
322 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
323 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
325 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
327 fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
328 claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
332 fn test_manager_serialize_deserialize_inconsistent_monitor() {
333 // Test deserializing a ChannelManager with an out-of-date ChannelMonitor
334 let chanmon_cfgs = create_chanmon_cfgs(4);
335 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
336 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
337 let logger: test_utils::TestLogger;
338 let fee_estimator: test_utils::TestFeeEstimator;
339 let persister: test_utils::TestPersister;
340 let new_chain_monitor: test_utils::TestChainMonitor;
341 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
342 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
343 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
344 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0).2;
345 let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3);
347 let mut node_0_stale_monitors_serialized = Vec::new();
348 for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
349 let mut writer = test_utils::TestVecWriter(Vec::new());
350 get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
351 node_0_stale_monitors_serialized.push(writer.0);
354 let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
356 // Serialize the ChannelManager here, but the monitor we keep up-to-date
357 let nodes_0_serialized = nodes[0].node.encode();
359 route_payment(&nodes[0], &[&nodes[3]], 1000000);
360 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
361 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
362 nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id());
364 // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
366 let mut node_0_monitors_serialized = Vec::new();
367 for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
368 node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
371 logger = test_utils::TestLogger::new();
372 fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
373 persister = test_utils::TestPersister::new();
374 let keys_manager = &chanmon_cfgs[0].keys_manager;
375 new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager);
376 nodes[0].chain_monitor = &new_chain_monitor;
379 let mut node_0_stale_monitors = Vec::new();
380 for serialized in node_0_stale_monitors_serialized.iter() {
381 let mut read = &serialized[..];
382 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
383 assert!(read.is_empty());
384 node_0_stale_monitors.push(monitor);
387 let mut node_0_monitors = Vec::new();
388 for serialized in node_0_monitors_serialized.iter() {
389 let mut read = &serialized[..];
390 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
391 assert!(read.is_empty());
392 node_0_monitors.push(monitor);
395 let mut nodes_0_read = &nodes_0_serialized[..];
396 if let Err(msgs::DecodeError::InvalidValue) =
397 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
398 default_config: UserConfig::default(),
399 entropy_source: keys_manager,
400 node_signer: keys_manager,
401 signer_provider: keys_manager,
402 fee_estimator: &fee_estimator,
403 router: &nodes[0].router,
404 chain_monitor: nodes[0].chain_monitor,
405 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
407 channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
409 panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
412 let mut nodes_0_read = &nodes_0_serialized[..];
413 let (_, nodes_0_deserialized_tmp) =
414 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
415 default_config: UserConfig::default(),
416 entropy_source: keys_manager,
417 node_signer: keys_manager,
418 signer_provider: keys_manager,
419 fee_estimator: &fee_estimator,
420 router: nodes[0].router,
421 chain_monitor: nodes[0].chain_monitor,
422 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
424 channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
426 nodes_0_deserialized = nodes_0_deserialized_tmp;
427 assert!(nodes_0_read.is_empty());
429 for monitor in node_0_monitors.drain(..) {
430 assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
431 ChannelMonitorUpdateStatus::Completed);
432 check_added_monitors!(nodes[0], 1);
434 nodes[0].node = &nodes_0_deserialized;
436 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
437 { // Channel close should result in a commitment tx
438 nodes[0].node.timer_tick_occurred();
439 let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
440 assert_eq!(txn.len(), 1);
441 check_spends!(txn[0], funding_tx);
442 assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
444 check_added_monitors!(nodes[0], 1);
446 // nodes[1] and nodes[2] have no lost state with nodes[0]...
447 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
448 reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
449 //... and we can even still claim the payment!
450 claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
452 nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
453 let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
454 nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }, false).unwrap();
455 nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
456 let mut found_err = false;
457 for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
458 if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
460 &ErrorAction::SendErrorMessage { ref msg } => {
461 assert_eq!(msg.channel_id, channel_id);
465 _ => panic!("Unexpected event!"),
472 fn do_test_data_loss_protect(reconnect_panicing: bool) {
473 // When we get a data_loss_protect proving we're behind, we immediately panic as the
474 // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
475 // panic message informs the user they should force-close without broadcasting, which is tested
476 // if `reconnect_panicing` is not set.
477 let mut chanmon_cfgs = create_chanmon_cfgs(2);
478 // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
479 // during signing due to revoked tx
480 chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
482 let new_chain_monitor;
483 let nodes_0_deserialized;
484 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
485 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
486 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
488 let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000);
490 // Cache node A state before any channel update
491 let previous_node_state = nodes[0].node.encode();
492 let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
494 send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
495 send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
497 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
498 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
500 reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
502 if reconnect_panicing {
503 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
504 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
506 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
508 // Check we close channel detecting A is fallen-behind
509 // Check that we sent the warning message when we detected that A has fallen behind,
510 // and give the possibility for A to recover from the warning.
511 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
512 let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
513 assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
516 let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
517 // The node B should not broadcast the transaction to force close the channel!
518 assert!(node_txn.is_empty());
521 let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
522 // Check A panics upon seeing proof it has fallen behind.
523 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
524 return; // By this point we should have panic'ed!
527 nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
528 check_added_monitors!(nodes[0], 1);
529 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
531 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
532 assert_eq!(node_txn.len(), 0);
535 for msg in nodes[0].node.get_and_clear_pending_msg_events() {
536 if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
537 } else if let MessageSendEvent::HandleError { ref action, .. } = msg {
539 &ErrorAction::SendErrorMessage { ref msg } => {
540 assert_eq!(msg.data, "Channel force-closed");
542 _ => panic!("Unexpected event!"),
545 panic!("Unexpected event {:?}", msg)
549 // after the warning message sent by B, we should not able to
550 // use the channel, or reconnect with success to the channel.
551 assert!(nodes[0].node.list_usable_channels().is_empty());
552 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
553 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
554 let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
556 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
557 let mut err_msgs_0 = Vec::with_capacity(1);
558 for msg in nodes[0].node.get_and_clear_pending_msg_events() {
559 if let MessageSendEvent::HandleError { ref action, .. } = msg {
561 &ErrorAction::SendErrorMessage { ref msg } => {
562 assert_eq!(msg.data, format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()));
563 err_msgs_0.push(msg.clone());
565 _ => panic!("Unexpected event!"),
568 panic!("Unexpected event!");
571 assert_eq!(err_msgs_0.len(), 1);
572 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
573 assert!(nodes[1].node.list_usable_channels().is_empty());
574 check_added_monitors!(nodes[1], 1);
575 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
576 check_closed_broadcast!(nodes[1], false);
581 fn test_data_loss_protect_showing_stale_state_panics() {
582 do_test_data_loss_protect(true);
586 fn test_force_close_without_broadcast() {
587 do_test_data_loss_protect(false);
591 fn test_forwardable_regen() {
592 // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
593 // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
595 // We test it for both payment receipt and payment forwarding.
597 let chanmon_cfgs = create_chanmon_cfgs(3);
598 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
599 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
600 let persister: test_utils::TestPersister;
601 let new_chain_monitor: test_utils::TestChainMonitor;
602 let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
603 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
604 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
605 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
607 // First send a payment to nodes[1]
608 let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
609 nodes[0].node.send_payment_with_route(&route, payment_hash,
610 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
611 check_added_monitors!(nodes[0], 1);
613 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
614 assert_eq!(events.len(), 1);
615 let payment_event = SendEvent::from_event(events.pop().unwrap());
616 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
617 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
619 expect_pending_htlcs_forwardable_ignore!(nodes[1]);
621 // Next send a payment which is forwarded by nodes[1]
622 let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
623 nodes[0].node.send_payment_with_route(&route_2, payment_hash_2,
624 RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
625 check_added_monitors!(nodes[0], 1);
627 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
628 assert_eq!(events.len(), 1);
629 let payment_event = SendEvent::from_event(events.pop().unwrap());
630 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
631 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
633 // There is already a PendingHTLCsForwardable event "pending" so another one will not be
635 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
637 // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
638 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
639 nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
641 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
642 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
643 reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
645 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
646 // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
647 // the commitment state.
648 reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
650 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
652 expect_pending_htlcs_forwardable!(nodes[1]);
653 expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000);
654 check_added_monitors!(nodes[1], 1);
656 let mut events = nodes[1].node.get_and_clear_pending_msg_events();
657 assert_eq!(events.len(), 1);
658 let payment_event = SendEvent::from_event(events.pop().unwrap());
659 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
660 commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
661 expect_pending_htlcs_forwardable!(nodes[2]);
662 expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
664 claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
665 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
668 fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
669 // Test what happens if a node receives an MPP payment, claims it, but crashes before
670 // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
671 // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
672 // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the
673 // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
674 // not have the preimage tied to the still-pending HTLC.
676 // To get to the correct state, on startup we should propagate the preimage to the
677 // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
678 // receiving the preimage without a state update.
680 // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
681 // definitely claimed.
682 let chanmon_cfgs = create_chanmon_cfgs(4);
683 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
684 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
686 let persister: test_utils::TestPersister;
687 let new_chain_monitor: test_utils::TestChainMonitor;
688 let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
690 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
692 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0);
693 create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0);
694 let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0).2;
695 let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0).2;
697 // Create an MPP route for 15k sats, more than the default htlc-max of 10%
698 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
699 assert_eq!(route.paths.len(), 2);
700 route.paths.sort_by(|path_a, _| {
701 // Sort the path so that the path through nodes[1] comes first
702 if path_a[0].pubkey == nodes[1].node.get_our_node_id() {
703 core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
706 nodes[0].node.send_payment_with_route(&route, payment_hash,
707 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
708 check_added_monitors!(nodes[0], 2);
710 // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event
711 let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
712 assert_eq!(send_events.len(), 2);
713 let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut send_events);
714 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut send_events);
715 do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_1_msgs, true, false, None);
716 do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_2_msgs, true, false, None);
718 // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
719 // monitors and ChannelManager, for use later, if we don't want to persist both monitors.
720 let mut original_monitor = test_utils::TestVecWriter(Vec::new());
721 if !persist_both_monitors {
722 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
723 if outpoint.to_channel_id() == chan_id_not_persisted {
724 assert!(original_monitor.0.is_empty());
725 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
730 let original_manager = nodes[3].node.encode();
732 expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000);
734 nodes[3].node.claim_funds(payment_preimage);
735 check_added_monitors!(nodes[3], 2);
736 expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
738 // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
739 // crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
740 // with the old ChannelManager.
741 let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
742 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
743 if outpoint.to_channel_id() == chan_id_persisted {
744 assert!(updated_monitor.0.is_empty());
745 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
748 // If `persist_both_monitors` is set, get the second monitor here as well
749 if persist_both_monitors {
750 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
751 if outpoint.to_channel_id() == chan_id_not_persisted {
752 assert!(original_monitor.0.is_empty());
753 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
758 // Now restart nodes[3].
759 reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
761 // On startup the preimage should have been copied into the non-persisted monitor:
762 assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
763 assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
765 nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
766 nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
768 // During deserialization, we should have closed one channel and broadcast its latest
769 // commitment transaction. We should also still have the original PaymentClaimable event we
770 // never finished processing.
771 let events = nodes[3].node.get_and_clear_pending_events();
772 assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
773 if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
774 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
775 if persist_both_monitors {
776 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
779 // On restart, we should also get a duplicate PaymentClaimed event as we persisted the
780 // ChannelManager prior to handling the original one.
781 if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
782 events[if persist_both_monitors { 3 } else { 2 }]
784 assert_eq!(payment_hash, our_payment_hash);
787 assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
788 if !persist_both_monitors {
789 // If one of the two channels is still live, reveal the payment preimage over it.
791 nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: nodes[2].node.init_features(), remote_network_address: None }, true).unwrap();
792 let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
793 nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }, false).unwrap();
794 let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
796 nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
797 get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
798 assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
800 nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
802 // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
804 let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
805 check_added_monitors!(nodes[3], 1);
806 assert_eq!(ds_msgs.len(), 2);
807 if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); }
809 let cs_updates = match ds_msgs[1] {
810 MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
811 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
812 check_added_monitors!(nodes[2], 1);
813 let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
814 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
815 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
821 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
822 commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
823 expect_payment_sent!(nodes[0], payment_preimage);
828 fn test_partial_claim_before_restart() {
829 do_test_partial_claim_before_restart(false);
830 do_test_partial_claim_before_restart(true);
833 fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool, use_intercept: bool) {
834 if !use_cs_commitment { assert!(!claim_htlc); }
835 // If we go to forward a payment, and the ChannelMonitor persistence completes, but the
836 // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail
837 // it back until the ChannelMonitor decides the fate of the HTLC.
838 // This was never an issue, but it may be easy to regress here going forward.
839 let chanmon_cfgs = create_chanmon_cfgs(3);
840 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
841 let mut intercept_forwards_config = test_default_channel_config();
842 intercept_forwards_config.accept_intercept_htlcs = true;
843 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), None]);
846 let new_chain_monitor;
847 let nodes_1_deserialized;
849 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
851 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
852 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
854 let intercept_scid = nodes[1].node.get_intercept_scid();
856 let (mut route, payment_hash, payment_preimage, payment_secret) =
857 get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
859 route.paths[0][1].short_channel_id = intercept_scid;
861 let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
862 let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV;
863 nodes[0].node.send_payment_with_route(&route, payment_hash,
864 RecipientOnionFields::secret_only(payment_secret), payment_id).unwrap();
865 check_added_monitors!(nodes[0], 1);
867 let payment_event = SendEvent::from_node(&nodes[0]);
868 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
869 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
871 // Store the `ChannelManager` before handling the `PendingHTLCsForwardable`/`HTLCIntercepted`
872 // events, expecting either event (and the HTLC itself) to be missing on reload even though its
873 // present when we serialized.
874 let node_encoded = nodes[1].node.encode();
876 let mut intercept_id = None;
877 let mut expected_outbound_amount_msat = None;
879 let events = nodes[1].node.get_and_clear_pending_events();
880 assert_eq!(events.len(), 1);
882 Event::HTLCIntercepted { intercept_id: ev_id, expected_outbound_amount_msat: ev_amt, .. } => {
883 intercept_id = Some(ev_id);
884 expected_outbound_amount_msat = Some(ev_amt);
888 nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_2,
889 nodes[2].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap();
892 expect_pending_htlcs_forwardable!(nodes[1]);
894 let payment_event = SendEvent::from_node(&nodes[1]);
895 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
896 nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg);
897 check_added_monitors!(nodes[2], 1);
900 get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage,
901 &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger);
903 assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
905 let _ = nodes[2].node.get_and_clear_pending_msg_events();
907 nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap();
908 let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
909 assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 });
911 check_added_monitors!(nodes[2], 1);
912 check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed);
913 check_closed_broadcast!(nodes[2], true);
915 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
916 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
917 reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
919 // Note that this checks that this is the only event on nodes[1], implying the
920 // `HTLCIntercepted` event has been removed in the `use_intercept` case.
921 check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager);
924 // Attempt to forward the HTLC back out over nodes[1]' still-open channel, ensuring we get
925 // a intercept-doesn't-exist error.
926 let forward_err = nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_1,
927 nodes[0].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap_err();
928 assert_eq!(forward_err, APIError::APIMisuseError {
929 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.unwrap().0))
933 nodes[1].node.timer_tick_occurred();
934 let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
935 assert_eq!(bs_commitment_tx.len(), 1);
936 check_added_monitors!(nodes[1], 1);
938 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
939 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
941 if use_cs_commitment {
942 // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait
943 // for an HTLC-spending transaction before it does anything with the HTLC upstream.
944 confirm_transaction(&nodes[1], &cs_commitment_tx[0]);
945 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
946 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
949 confirm_transaction(&nodes[1], &cs_commitment_tx[1]);
951 connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1 + 1);
952 let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
953 assert_eq!(bs_htlc_timeout_tx.len(), 1);
954 confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]);
957 confirm_transaction(&nodes[1], &bs_commitment_tx[0]);
961 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
963 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true);
965 check_added_monitors!(nodes[1], 1);
967 let events = nodes[1].node.get_and_clear_pending_msg_events();
968 assert_eq!(events.len(), 1);
970 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => {
972 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]);
974 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
976 commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
978 _ => panic!("Unexpected event"),
982 expect_payment_sent!(nodes[0], payment_preimage);
984 expect_payment_failed!(nodes[0], payment_hash, false);
989 fn forwarded_payment_no_manager_persistence() {
990 do_forwarded_payment_no_manager_persistence(true, true, false);
991 do_forwarded_payment_no_manager_persistence(true, false, false);
992 do_forwarded_payment_no_manager_persistence(false, false, false);
996 fn intercepted_payment_no_manager_persistence() {
997 do_forwarded_payment_no_manager_persistence(true, true, true);
998 do_forwarded_payment_no_manager_persistence(true, false, true);
999 do_forwarded_payment_no_manager_persistence(false, false, true);
1003 fn removed_payment_no_manager_persistence() {
1004 // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but
1005 // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is
1006 // still failed back to the previous hop even though the ChannelMonitor now no longer is aware
1007 // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs
1008 // were left dangling when a channel was force-closed due to a stale ChannelManager.
1009 let chanmon_cfgs = create_chanmon_cfgs(3);
1010 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1011 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1014 let new_chain_monitor;
1015 let nodes_1_deserialized;
1017 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1019 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1020 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
1022 let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
1024 let node_encoded = nodes[1].node.encode();
1026 nodes[2].node.fail_htlc_backwards(&payment_hash);
1027 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
1028 check_added_monitors!(nodes[2], 1);
1029 let events = nodes[2].node.get_and_clear_pending_msg_events();
1030 assert_eq!(events.len(), 1);
1032 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1033 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]);
1034 commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false);
1036 _ => panic!("Unexpected event"),
1039 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
1040 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
1041 reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
1043 match nodes[1].node.pop_pending_event().unwrap() {
1044 Event::ChannelClosed { ref reason, .. } => {
1045 assert_eq!(*reason, ClosureReason::OutdatedChannelManager);
1047 _ => panic!("Unexpected event"),
1050 // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is
1051 // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload,
1052 // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set.
1053 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
1054 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
1056 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1057 check_added_monitors!(nodes[1], 1);
1058 let events = nodes[1].node.get_and_clear_pending_msg_events();
1059 assert_eq!(events.len(), 1);
1061 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1062 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1063 commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1065 _ => panic!("Unexpected event"),
1068 expect_payment_failed!(nodes[0], payment_hash, false);