1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Functional tests which test for correct behavior across node restarts.
12 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
13 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
14 use crate::chain::channelmonitor::ChannelMonitor;
15 use crate::chain::keysinterface::EntropySource;
16 use crate::chain::transaction::OutPoint;
17 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
18 use crate::ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId};
20 use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
21 use crate::util::enforcing_trait_impls::EnforcingSigner;
22 use crate::util::test_utils;
23 use crate::util::errors::APIError;
24 use crate::util::ser::{Writeable, ReadableArgs};
25 use crate::util::config::UserConfig;
26 use crate::util::string::UntrustedString;
28 use bitcoin::hash_types::BlockHash;
30 use crate::prelude::*;
31 use core::default::Default;
32 use crate::sync::Mutex;
34 use crate::ln::functional_test_utils::*;
37 fn test_funding_peer_disconnect() {
38 // Test that we can lock in our funding tx while disconnected
39 let chanmon_cfgs = create_chanmon_cfgs(2);
40 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
41 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
42 let persister: test_utils::TestPersister;
43 let new_chain_monitor: test_utils::TestChainMonitor;
44 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
45 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
46 let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
48 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
49 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
51 confirm_transaction(&nodes[0], &tx);
52 let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
53 assert!(events_1.is_empty());
55 reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
57 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
58 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
60 confirm_transaction(&nodes[1], &tx);
61 let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
62 assert!(events_2.is_empty());
64 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
65 let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
66 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
67 let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
69 // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
70 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
71 let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
72 assert_eq!(events_3.len(), 1);
73 let as_channel_ready = match events_3[0] {
74 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
75 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
78 _ => panic!("Unexpected event {:?}", events_3[0]),
81 // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
82 // announcement_signatures as well as channel_update.
83 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
84 let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
85 assert_eq!(events_4.len(), 3);
87 let bs_channel_ready = match events_4[0] {
88 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
89 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
90 chan_id = msg.channel_id;
93 _ => panic!("Unexpected event {:?}", events_4[0]),
95 let bs_announcement_sigs = match events_4[1] {
96 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
97 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
100 _ => panic!("Unexpected event {:?}", events_4[1]),
103 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
104 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
106 _ => panic!("Unexpected event {:?}", events_4[2]),
109 // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
110 // generates a duplicative private channel_update
111 nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
112 let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
113 assert_eq!(events_5.len(), 1);
115 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
116 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
118 _ => panic!("Unexpected event {:?}", events_5[0]),
121 // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
122 // announcement_signatures.
123 nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
124 let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
125 assert_eq!(events_6.len(), 1);
126 let as_announcement_sigs = match events_6[0] {
127 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
128 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
131 _ => panic!("Unexpected event {:?}", events_6[0]),
133 expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
134 expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
136 // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
137 // broadcast the channel announcement globally, as well as re-send its (now-public)
139 nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
140 let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
141 assert_eq!(events_7.len(), 1);
142 let (chan_announcement, as_update) = match events_7[0] {
143 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
144 (msg.clone(), update_msg.clone().unwrap())
146 _ => panic!("Unexpected event {:?}", events_7[0]),
149 // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
150 // same channel_announcement.
151 nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
152 let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
153 assert_eq!(events_8.len(), 1);
154 let bs_update = match events_8[0] {
155 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
156 assert_eq!(*msg, chan_announcement);
157 update_msg.clone().unwrap()
159 _ => panic!("Unexpected event {:?}", events_8[0]),
162 // Provide the channel announcement and public updates to the network graph
163 nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
164 nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
165 nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
167 let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
168 let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
169 claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
171 // Check that after deserialization and reconnection we can still generate an identical
172 // channel_announcement from the cached signatures.
173 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
175 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
177 reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
179 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
183 fn test_no_txn_manager_serialize_deserialize() {
184 let chanmon_cfgs = create_chanmon_cfgs(2);
185 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
186 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
187 let persister: test_utils::TestPersister;
188 let new_chain_monitor: test_utils::TestChainMonitor;
189 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
190 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
192 let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
194 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
196 let chan_0_monitor_serialized =
197 get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
198 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
200 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
201 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
202 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
203 let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
205 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
206 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
207 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
208 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
210 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
211 let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
212 for node in nodes.iter() {
213 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
214 node.gossip_sync.handle_channel_update(&as_update).unwrap();
215 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
218 send_payment(&nodes[0], &[&nodes[1]], 1000000);
222 fn test_manager_serialize_deserialize_events() {
223 // This test makes sure the events field in ChannelManager survives de/serialization
224 let chanmon_cfgs = create_chanmon_cfgs(2);
225 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
226 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
227 let persister: test_utils::TestPersister;
228 let new_chain_monitor: test_utils::TestChainMonitor;
229 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
230 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
232 // Start creating a channel, but stop right before broadcasting the funding transaction
233 let channel_value = 100000;
234 let push_msat = 10001;
235 let node_a = nodes.remove(0);
236 let node_b = nodes.remove(0);
237 node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
238 node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
239 node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
241 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
243 node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
244 check_added_monitors!(node_a, 0);
246 node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
248 let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
249 assert_eq!(added_monitors.len(), 1);
250 assert_eq!(added_monitors[0].0, funding_output);
251 added_monitors.clear();
254 let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
255 node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
257 let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
258 assert_eq!(added_monitors.len(), 1);
259 assert_eq!(added_monitors[0].0, funding_output);
260 added_monitors.clear();
262 // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
267 // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
268 let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
269 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
271 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
273 // After deserializing, make sure the funding_transaction is still held by the channel manager
274 let events_4 = nodes[0].node.get_and_clear_pending_events();
275 assert_eq!(events_4.len(), 0);
276 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
277 assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
279 // Make sure the channel is functioning as though the de/serialization never happened
280 assert_eq!(nodes[0].node.list_channels().len(), 1);
282 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
283 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
284 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
285 let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
287 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
288 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
289 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
290 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
292 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
293 let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
294 for node in nodes.iter() {
295 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
296 node.gossip_sync.handle_channel_update(&as_update).unwrap();
297 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
300 send_payment(&nodes[0], &[&nodes[1]], 1000000);
304 fn test_simple_manager_serialize_deserialize() {
305 let chanmon_cfgs = create_chanmon_cfgs(2);
306 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
307 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
308 let persister: test_utils::TestPersister;
309 let new_chain_monitor: test_utils::TestChainMonitor;
310 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
311 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
312 let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
314 let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
315 let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
317 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
319 let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
320 reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
322 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
324 fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
325 claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
329 fn test_manager_serialize_deserialize_inconsistent_monitor() {
330 // Test deserializing a ChannelManager with an out-of-date ChannelMonitor
331 let chanmon_cfgs = create_chanmon_cfgs(4);
332 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
333 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
334 let logger: test_utils::TestLogger;
335 let fee_estimator: test_utils::TestFeeEstimator;
336 let persister: test_utils::TestPersister;
337 let new_chain_monitor: test_utils::TestChainMonitor;
338 let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
339 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
340 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
341 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0).2;
342 let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3);
344 let mut node_0_stale_monitors_serialized = Vec::new();
345 for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
346 let mut writer = test_utils::TestVecWriter(Vec::new());
347 get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
348 node_0_stale_monitors_serialized.push(writer.0);
351 let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
353 // Serialize the ChannelManager here, but the monitor we keep up-to-date
354 let nodes_0_serialized = nodes[0].node.encode();
356 route_payment(&nodes[0], &[&nodes[3]], 1000000);
357 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
358 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
359 nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id());
361 // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
363 let mut node_0_monitors_serialized = Vec::new();
364 for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
365 node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
368 logger = test_utils::TestLogger::new();
369 fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
370 persister = test_utils::TestPersister::new();
371 let keys_manager = &chanmon_cfgs[0].keys_manager;
372 new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager);
373 nodes[0].chain_monitor = &new_chain_monitor;
376 let mut node_0_stale_monitors = Vec::new();
377 for serialized in node_0_stale_monitors_serialized.iter() {
378 let mut read = &serialized[..];
379 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
380 assert!(read.is_empty());
381 node_0_stale_monitors.push(monitor);
384 let mut node_0_monitors = Vec::new();
385 for serialized in node_0_monitors_serialized.iter() {
386 let mut read = &serialized[..];
387 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
388 assert!(read.is_empty());
389 node_0_monitors.push(monitor);
392 let mut nodes_0_read = &nodes_0_serialized[..];
393 if let Err(msgs::DecodeError::InvalidValue) =
394 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
395 default_config: UserConfig::default(),
396 entropy_source: keys_manager,
397 node_signer: keys_manager,
398 signer_provider: keys_manager,
399 fee_estimator: &fee_estimator,
400 router: &nodes[0].router,
401 chain_monitor: nodes[0].chain_monitor,
402 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
404 channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
406 panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
409 let mut nodes_0_read = &nodes_0_serialized[..];
410 let (_, nodes_0_deserialized_tmp) =
411 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
412 default_config: UserConfig::default(),
413 entropy_source: keys_manager,
414 node_signer: keys_manager,
415 signer_provider: keys_manager,
416 fee_estimator: &fee_estimator,
417 router: nodes[0].router,
418 chain_monitor: nodes[0].chain_monitor,
419 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
421 channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
423 nodes_0_deserialized = nodes_0_deserialized_tmp;
424 assert!(nodes_0_read.is_empty());
426 { // Channel close should result in a commitment tx
427 let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
428 assert_eq!(txn.len(), 1);
429 check_spends!(txn[0], funding_tx);
430 assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
433 for monitor in node_0_monitors.drain(..) {
434 assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
435 ChannelMonitorUpdateStatus::Completed);
436 check_added_monitors!(nodes[0], 1);
438 nodes[0].node = &nodes_0_deserialized;
439 check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
441 // nodes[1] and nodes[2] have no lost state with nodes[0]...
442 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
443 reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
444 //... and we can even still claim the payment!
445 claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
447 nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
448 let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
449 nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }, false).unwrap();
450 nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
451 let mut found_err = false;
452 for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
453 if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
455 &ErrorAction::SendErrorMessage { ref msg } => {
456 assert_eq!(msg.channel_id, channel_id);
460 _ => panic!("Unexpected event!"),
467 fn do_test_data_loss_protect(reconnect_panicing: bool) {
468 // When we get a data_loss_protect proving we're behind, we immediately panic as the
469 // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
470 // panic message informs the user they should force-close without broadcasting, which is tested
471 // if `reconnect_panicing` is not set.
472 let mut chanmon_cfgs = create_chanmon_cfgs(2);
473 // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
474 // during signing due to revoked tx
475 chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
477 let new_chain_monitor;
478 let nodes_0_deserialized;
479 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
480 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
481 let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
483 let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000);
485 // Cache node A state before any channel update
486 let previous_node_state = nodes[0].node.encode();
487 let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
489 send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
490 send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
492 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
493 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
495 reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
497 if reconnect_panicing {
498 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
499 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
501 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
503 // Check we close channel detecting A is fallen-behind
504 // Check that we sent the warning message when we detected that A has fallen behind,
505 // and give the possibility for A to recover from the warning.
506 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
507 let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
508 assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
511 let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
512 // The node B should not broadcast the transaction to force close the channel!
513 assert!(node_txn.is_empty());
516 let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
517 // Check A panics upon seeing proof it has fallen behind.
518 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
519 return; // By this point we should have panic'ed!
522 nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
523 check_added_monitors!(nodes[0], 1);
524 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
526 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
527 assert_eq!(node_txn.len(), 0);
530 for msg in nodes[0].node.get_and_clear_pending_msg_events() {
531 if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
532 } else if let MessageSendEvent::HandleError { ref action, .. } = msg {
534 &ErrorAction::SendErrorMessage { ref msg } => {
535 assert_eq!(msg.data, "Channel force-closed");
537 _ => panic!("Unexpected event!"),
540 panic!("Unexpected event {:?}", msg)
544 // after the warning message sent by B, we should not able to
545 // use the channel, or reconnect with success to the channel.
546 assert!(nodes[0].node.list_usable_channels().is_empty());
547 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
548 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
549 let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
551 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
552 let mut err_msgs_0 = Vec::with_capacity(1);
553 for msg in nodes[0].node.get_and_clear_pending_msg_events() {
554 if let MessageSendEvent::HandleError { ref action, .. } = msg {
556 &ErrorAction::SendErrorMessage { ref msg } => {
557 assert_eq!(msg.data, format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()));
558 err_msgs_0.push(msg.clone());
560 _ => panic!("Unexpected event!"),
563 panic!("Unexpected event!");
566 assert_eq!(err_msgs_0.len(), 1);
567 nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
568 assert!(nodes[1].node.list_usable_channels().is_empty());
569 check_added_monitors!(nodes[1], 1);
570 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
571 check_closed_broadcast!(nodes[1], false);
576 fn test_data_loss_protect_showing_stale_state_panics() {
577 do_test_data_loss_protect(true);
581 fn test_force_close_without_broadcast() {
582 do_test_data_loss_protect(false);
586 fn test_forwardable_regen() {
587 // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
588 // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
590 // We test it for both payment receipt and payment forwarding.
592 let chanmon_cfgs = create_chanmon_cfgs(3);
593 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
594 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
595 let persister: test_utils::TestPersister;
596 let new_chain_monitor: test_utils::TestChainMonitor;
597 let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
598 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
599 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
600 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
602 // First send a payment to nodes[1]
603 let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
604 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
605 check_added_monitors!(nodes[0], 1);
607 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
608 assert_eq!(events.len(), 1);
609 let payment_event = SendEvent::from_event(events.pop().unwrap());
610 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
611 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
613 expect_pending_htlcs_forwardable_ignore!(nodes[1]);
615 // Next send a payment which is forwarded by nodes[1]
616 let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
617 nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
618 check_added_monitors!(nodes[0], 1);
620 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
621 assert_eq!(events.len(), 1);
622 let payment_event = SendEvent::from_event(events.pop().unwrap());
623 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
624 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
626 // There is already a PendingHTLCsForwardable event "pending" so another one will not be
628 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
630 // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
631 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
632 nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
634 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
635 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
636 reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
638 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
639 // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
640 // the commitment state.
641 reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
643 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
645 expect_pending_htlcs_forwardable!(nodes[1]);
646 expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000);
647 check_added_monitors!(nodes[1], 1);
649 let mut events = nodes[1].node.get_and_clear_pending_msg_events();
650 assert_eq!(events.len(), 1);
651 let payment_event = SendEvent::from_event(events.pop().unwrap());
652 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
653 commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
654 expect_pending_htlcs_forwardable!(nodes[2]);
655 expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
657 claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
658 claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
661 fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
662 // Test what happens if a node receives an MPP payment, claims it, but crashes before
663 // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
664 // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
665 // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the
666 // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
667 // not have the preimage tied to the still-pending HTLC.
669 // To get to the correct state, on startup we should propagate the preimage to the
670 // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
671 // receiving the preimage without a state update.
673 // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
674 // definitely claimed.
675 let chanmon_cfgs = create_chanmon_cfgs(4);
676 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
677 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
679 let persister: test_utils::TestPersister;
680 let new_chain_monitor: test_utils::TestChainMonitor;
681 let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
683 let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
685 create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0);
686 create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0);
687 let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0).2;
688 let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0).2;
690 // Create an MPP route for 15k sats, more than the default htlc-max of 10%
691 let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
692 assert_eq!(route.paths.len(), 2);
693 route.paths.sort_by(|path_a, _| {
694 // Sort the path so that the path through nodes[1] comes first
695 if path_a[0].pubkey == nodes[1].node.get_our_node_id() {
696 core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
699 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
700 check_added_monitors!(nodes[0], 2);
702 // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event
703 let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
704 assert_eq!(send_events.len(), 2);
705 let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut send_events);
706 let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut send_events);
707 do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_1_msgs, true, false, None);
708 do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_2_msgs, true, false, None);
710 // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
711 // monitors and ChannelManager, for use later, if we don't want to persist both monitors.
712 let mut original_monitor = test_utils::TestVecWriter(Vec::new());
713 if !persist_both_monitors {
714 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
715 if outpoint.to_channel_id() == chan_id_not_persisted {
716 assert!(original_monitor.0.is_empty());
717 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
722 let original_manager = nodes[3].node.encode();
724 expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000);
726 nodes[3].node.claim_funds(payment_preimage);
727 check_added_monitors!(nodes[3], 2);
728 expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
730 // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
731 // crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
732 // with the old ChannelManager.
733 let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
734 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
735 if outpoint.to_channel_id() == chan_id_persisted {
736 assert!(updated_monitor.0.is_empty());
737 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
740 // If `persist_both_monitors` is set, get the second monitor here as well
741 if persist_both_monitors {
742 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
743 if outpoint.to_channel_id() == chan_id_not_persisted {
744 assert!(original_monitor.0.is_empty());
745 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
750 // Now restart nodes[3].
751 reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
753 // On startup the preimage should have been copied into the non-persisted monitor:
754 assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
755 assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
757 nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
758 nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
760 // During deserialization, we should have closed one channel and broadcast its latest
761 // commitment transaction. We should also still have the original PaymentClaimable event we
762 // never finished processing.
763 let events = nodes[3].node.get_and_clear_pending_events();
764 assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
765 if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
766 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
767 if persist_both_monitors {
768 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
771 // On restart, we should also get a duplicate PaymentClaimed event as we persisted the
772 // ChannelManager prior to handling the original one.
773 if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
774 events[if persist_both_monitors { 3 } else { 2 }]
776 assert_eq!(payment_hash, our_payment_hash);
779 assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
780 if !persist_both_monitors {
781 // If one of the two channels is still live, reveal the payment preimage over it.
783 nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: nodes[2].node.init_features(), remote_network_address: None }, true).unwrap();
784 let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
785 nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }, false).unwrap();
786 let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
788 nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
789 get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
790 assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
792 nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
794 // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
796 let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
797 check_added_monitors!(nodes[3], 1);
798 assert_eq!(ds_msgs.len(), 2);
799 if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); }
801 let cs_updates = match ds_msgs[1] {
802 MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
803 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
804 check_added_monitors!(nodes[2], 1);
805 let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
806 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
807 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
813 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
814 commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
815 expect_payment_sent!(nodes[0], payment_preimage);
820 fn test_partial_claim_before_restart() {
821 do_test_partial_claim_before_restart(false);
822 do_test_partial_claim_before_restart(true);
825 fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool, use_intercept: bool) {
826 if !use_cs_commitment { assert!(!claim_htlc); }
827 // If we go to forward a payment, and the ChannelMonitor persistence completes, but the
828 // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail
829 // it back until the ChannelMonitor decides the fate of the HTLC.
830 // This was never an issue, but it may be easy to regress here going forward.
831 let chanmon_cfgs = create_chanmon_cfgs(3);
832 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
833 let mut intercept_forwards_config = test_default_channel_config();
834 intercept_forwards_config.accept_intercept_htlcs = true;
835 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), None]);
838 let new_chain_monitor;
839 let nodes_1_deserialized;
841 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
843 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
844 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
846 let intercept_scid = nodes[1].node.get_intercept_scid();
848 let (mut route, payment_hash, payment_preimage, payment_secret) =
849 get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
851 route.paths[0][1].short_channel_id = intercept_scid;
853 let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
854 let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV;
855 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
856 check_added_monitors!(nodes[0], 1);
858 let payment_event = SendEvent::from_node(&nodes[0]);
859 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
860 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
862 // Store the `ChannelManager` before handling the `PendingHTLCsForwardable`/`HTLCIntercepted`
863 // events, expecting either event (and the HTLC itself) to be missing on reload even though its
864 // present when we serialized.
865 let node_encoded = nodes[1].node.encode();
867 let mut intercept_id = None;
868 let mut expected_outbound_amount_msat = None;
870 let events = nodes[1].node.get_and_clear_pending_events();
871 assert_eq!(events.len(), 1);
873 Event::HTLCIntercepted { intercept_id: ev_id, expected_outbound_amount_msat: ev_amt, .. } => {
874 intercept_id = Some(ev_id);
875 expected_outbound_amount_msat = Some(ev_amt);
879 nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_2,
880 nodes[2].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap();
883 expect_pending_htlcs_forwardable!(nodes[1]);
885 let payment_event = SendEvent::from_node(&nodes[1]);
886 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
887 nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg);
888 check_added_monitors!(nodes[2], 1);
891 get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage,
892 &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger);
894 assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
896 let _ = nodes[2].node.get_and_clear_pending_msg_events();
898 nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap();
899 let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
900 assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 });
902 check_added_monitors!(nodes[2], 1);
903 check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed);
904 check_closed_broadcast!(nodes[2], true);
906 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
907 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
908 reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
910 // Note that this checks that this is the only event on nodes[1], implying the
911 // `HTLCIntercepted` event has been removed in the `use_intercept` case.
912 check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager);
915 // Attempt to forward the HTLC back out over nodes[1]' still-open channel, ensuring we get
916 // a intercept-doesn't-exist error.
917 let forward_err = nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_1,
918 nodes[0].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap_err();
919 assert_eq!(forward_err, APIError::APIMisuseError {
920 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.unwrap().0))
924 let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
925 assert_eq!(bs_commitment_tx.len(), 1);
927 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
928 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
930 if use_cs_commitment {
931 // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait
932 // for an HTLC-spending transaction before it does anything with the HTLC upstream.
933 confirm_transaction(&nodes[1], &cs_commitment_tx[0]);
934 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
935 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
938 confirm_transaction(&nodes[1], &cs_commitment_tx[1]);
940 connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1);
941 let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
942 assert_eq!(bs_htlc_timeout_tx.len(), 1);
943 confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]);
946 confirm_transaction(&nodes[1], &bs_commitment_tx[0]);
950 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
952 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true);
954 check_added_monitors!(nodes[1], 1);
956 let events = nodes[1].node.get_and_clear_pending_msg_events();
957 assert_eq!(events.len(), 1);
959 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => {
961 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]);
963 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
965 commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
967 _ => panic!("Unexpected event"),
971 expect_payment_sent!(nodes[0], payment_preimage);
973 expect_payment_failed!(nodes[0], payment_hash, false);
978 fn forwarded_payment_no_manager_persistence() {
979 do_forwarded_payment_no_manager_persistence(true, true, false);
980 do_forwarded_payment_no_manager_persistence(true, false, false);
981 do_forwarded_payment_no_manager_persistence(false, false, false);
985 fn intercepted_payment_no_manager_persistence() {
986 do_forwarded_payment_no_manager_persistence(true, true, true);
987 do_forwarded_payment_no_manager_persistence(true, false, true);
988 do_forwarded_payment_no_manager_persistence(false, false, true);
992 fn removed_payment_no_manager_persistence() {
993 // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but
994 // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is
995 // still failed back to the previous hop even though the ChannelMonitor now no longer is aware
996 // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs
997 // were left dangling when a channel was force-closed due to a stale ChannelManager.
998 let chanmon_cfgs = create_chanmon_cfgs(3);
999 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1000 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1003 let new_chain_monitor;
1004 let nodes_1_deserialized;
1006 let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1008 let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1009 let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
1011 let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
1013 let node_encoded = nodes[1].node.encode();
1015 nodes[2].node.fail_htlc_backwards(&payment_hash);
1016 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
1017 check_added_monitors!(nodes[2], 1);
1018 let events = nodes[2].node.get_and_clear_pending_msg_events();
1019 assert_eq!(events.len(), 1);
1021 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1022 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]);
1023 commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false);
1025 _ => panic!("Unexpected event"),
1028 let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
1029 let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
1030 reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
1032 match nodes[1].node.pop_pending_event().unwrap() {
1033 Event::ChannelClosed { ref reason, .. } => {
1034 assert_eq!(*reason, ClosureReason::OutdatedChannelManager);
1036 _ => panic!("Unexpected event"),
1039 // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is
1040 // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload,
1041 // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set.
1042 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
1043 reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
1045 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1046 check_added_monitors!(nodes[1], 1);
1047 let events = nodes[1].node.get_and_clear_pending_msg_events();
1048 assert_eq!(events.len(), 1);
1050 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1051 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1052 commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1054 _ => panic!("Unexpected event"),
1057 expect_payment_failed!(nodes[0], payment_hash, false);