Fix `data_loss_protect` test to actually test DLP
[rust-lightning] / lightning / src / ln / reload_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Functional tests which test for correct behavior across node restarts.
11
12 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
13 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
14 use crate::chain::channelmonitor::{CLOSED_CHANNEL_UPDATE_ID, ChannelMonitor};
15 use crate::sign::EntropySource;
16 use crate::chain::transaction::OutPoint;
17 use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
18 use crate::ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, RecipientOnionFields};
19 use crate::ln::msgs;
20 use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
21 use crate::util::test_channel_signer::TestChannelSigner;
22 use crate::util::test_utils;
23 use crate::util::errors::APIError;
24 use crate::util::ser::{Writeable, ReadableArgs};
25 use crate::util::config::UserConfig;
26 use crate::util::string::UntrustedString;
27
28 use bitcoin::hash_types::BlockHash;
29
30 use crate::prelude::*;
31 use core::default::Default;
32 use crate::sync::Mutex;
33
34 use crate::ln::functional_test_utils::*;
35
36 #[test]
37 fn test_funding_peer_disconnect() {
38         // Test that we can lock in our funding tx while disconnected
39         let chanmon_cfgs = create_chanmon_cfgs(2);
40         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
41         let persister;
42         let new_chain_monitor;
43
44         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
45         let nodes_0_deserialized;
46         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
47         let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
48
49         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
50         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
51
52         confirm_transaction(&nodes[0], &tx);
53         let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
54         assert!(events_1.is_empty());
55
56         let mut reconnect_args = ReconnectArgs::new(&nodes[0], &nodes[1]);
57         reconnect_args.send_channel_ready.1 = true;
58         reconnect_nodes(reconnect_args);
59
60         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
61         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
62
63         confirm_transaction(&nodes[1], &tx);
64         let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
65         assert!(events_2.is_empty());
66
67         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
68                 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
69         }, true).unwrap();
70         let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
71         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
72                 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
73         }, false).unwrap();
74         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
75
76         // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
77         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
78         let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
79         assert_eq!(events_3.len(), 1);
80         let as_channel_ready = match events_3[0] {
81                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
82                         assert_eq!(*node_id, nodes[1].node.get_our_node_id());
83                         msg.clone()
84                 },
85                 _ => panic!("Unexpected event {:?}", events_3[0]),
86         };
87
88         // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
89         // announcement_signatures as well as channel_update.
90         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
91         let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
92         assert_eq!(events_4.len(), 3);
93         let chan_id;
94         let bs_channel_ready = match events_4[0] {
95                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
96                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
97                         chan_id = msg.channel_id;
98                         msg.clone()
99                 },
100                 _ => panic!("Unexpected event {:?}", events_4[0]),
101         };
102         let bs_announcement_sigs = match events_4[1] {
103                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
104                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
105                         msg.clone()
106                 },
107                 _ => panic!("Unexpected event {:?}", events_4[1]),
108         };
109         match events_4[2] {
110                 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
111                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
112                 },
113                 _ => panic!("Unexpected event {:?}", events_4[2]),
114         }
115
116         // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
117         // generates a duplicative private channel_update
118         nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
119         let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
120         assert_eq!(events_5.len(), 1);
121         match events_5[0] {
122                 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
123                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
124                 },
125                 _ => panic!("Unexpected event {:?}", events_5[0]),
126         };
127
128         // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
129         // announcement_signatures.
130         nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
131         let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
132         assert_eq!(events_6.len(), 1);
133         let as_announcement_sigs = match events_6[0] {
134                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
135                         assert_eq!(*node_id, nodes[1].node.get_our_node_id());
136                         msg.clone()
137                 },
138                 _ => panic!("Unexpected event {:?}", events_6[0]),
139         };
140         expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
141         expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
142
143         // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
144         // broadcast the channel announcement globally, as well as re-send its (now-public)
145         // channel_update.
146         nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
147         let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
148         assert_eq!(events_7.len(), 1);
149         let (chan_announcement, as_update) = match events_7[0] {
150                 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
151                         (msg.clone(), update_msg.clone().unwrap())
152                 },
153                 _ => panic!("Unexpected event {:?}", events_7[0]),
154         };
155
156         // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
157         // same channel_announcement.
158         nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
159         let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
160         assert_eq!(events_8.len(), 1);
161         let bs_update = match events_8[0] {
162                 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
163                         assert_eq!(*msg, chan_announcement);
164                         update_msg.clone().unwrap()
165                 },
166                 _ => panic!("Unexpected event {:?}", events_8[0]),
167         };
168
169         // Provide the channel announcement and public updates to the network graph
170         nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
171         nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
172         nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
173
174         let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
175         let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
176         claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
177
178         // Check that after deserialization and reconnection we can still generate an identical
179         // channel_announcement from the cached signatures.
180         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
181
182         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
183
184         reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
185
186         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
187 }
188
189 #[test]
190 fn test_no_txn_manager_serialize_deserialize() {
191         let chanmon_cfgs = create_chanmon_cfgs(2);
192         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
193         let persister;
194         let new_chain_monitor;
195
196         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
197         let nodes_0_deserialized;
198         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
199
200         let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
201
202         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
203
204         let chan_0_monitor_serialized =
205                 get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
206         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
207
208         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
209                 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
210         }, true).unwrap();
211         let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
212         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
213                 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
214         }, false).unwrap();
215         let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
216
217         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
218         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
219         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
220         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
221
222         let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
223         let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
224         for node in nodes.iter() {
225                 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
226                 node.gossip_sync.handle_channel_update(&as_update).unwrap();
227                 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
228         }
229
230         send_payment(&nodes[0], &[&nodes[1]], 1000000);
231 }
232
233 #[test]
234 fn test_manager_serialize_deserialize_events() {
235         // This test makes sure the events field in ChannelManager survives de/serialization
236         let chanmon_cfgs = create_chanmon_cfgs(2);
237         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
238         let persister;
239         let new_chain_monitor;
240
241         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
242         let nodes_0_deserialized;
243         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
244
245         // Start creating a channel, but stop right before broadcasting the funding transaction
246         let channel_value = 100000;
247         let push_msat = 10001;
248         let node_a = nodes.remove(0);
249         let node_b = nodes.remove(0);
250         node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None, None).unwrap();
251         node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
252         node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
253
254         let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
255
256         node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
257         check_added_monitors!(node_a, 0);
258
259         node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
260         {
261                 let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
262                 assert_eq!(added_monitors.len(), 1);
263                 assert_eq!(added_monitors[0].0, funding_output);
264                 added_monitors.clear();
265         }
266
267         let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
268         node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
269         {
270                 let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
271                 assert_eq!(added_monitors.len(), 1);
272                 assert_eq!(added_monitors[0].0, funding_output);
273                 added_monitors.clear();
274         }
275         // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
276
277         expect_channel_pending_event(&node_a, &node_b.node.get_our_node_id());
278         expect_channel_pending_event(&node_b, &node_a.node.get_our_node_id());
279
280         nodes.push(node_a);
281         nodes.push(node_b);
282
283         // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
284         let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
285         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
286
287         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
288
289         // After deserializing, make sure the funding_transaction is still held by the channel manager
290         let events_4 = nodes[0].node.get_and_clear_pending_events();
291         assert_eq!(events_4.len(), 0);
292         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
293         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
294
295         // Make sure the channel is functioning as though the de/serialization never happened
296         assert_eq!(nodes[0].node.list_channels().len(), 1);
297
298         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
299                 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
300         }, true).unwrap();
301         let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
302         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
303                 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
304         }, false).unwrap();
305         let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
306
307         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
308         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
309         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
310         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
311
312         let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
313         let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
314         for node in nodes.iter() {
315                 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
316                 node.gossip_sync.handle_channel_update(&as_update).unwrap();
317                 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
318         }
319
320         send_payment(&nodes[0], &[&nodes[1]], 1000000);
321 }
322
323 #[test]
324 fn test_simple_manager_serialize_deserialize() {
325         let chanmon_cfgs = create_chanmon_cfgs(2);
326         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
327         let persister;
328         let new_chain_monitor;
329
330         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
331         let nodes_0_deserialized;
332         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
333         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
334
335         let (our_payment_preimage, ..) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
336         let (_, our_payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
337
338         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
339
340         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
341         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
342
343         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
344
345         fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
346         claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
347 }
348
349 #[test]
350 fn test_manager_serialize_deserialize_inconsistent_monitor() {
351         // Test deserializing a ChannelManager with an out-of-date ChannelMonitor
352         let chanmon_cfgs = create_chanmon_cfgs(4);
353         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
354         let logger;
355         let fee_estimator;
356         let persister;
357         let new_chain_monitor;
358
359         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
360         let nodes_0_deserialized;
361         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
362
363         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
364         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0).2;
365         let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3);
366
367         let mut node_0_stale_monitors_serialized = Vec::new();
368         for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
369                 let mut writer = test_utils::TestVecWriter(Vec::new());
370                 get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
371                 node_0_stale_monitors_serialized.push(writer.0);
372         }
373
374         let (our_payment_preimage, ..) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
375
376         // Serialize the ChannelManager here, but the monitor we keep up-to-date
377         let nodes_0_serialized = nodes[0].node.encode();
378
379         route_payment(&nodes[0], &[&nodes[3]], 1000000);
380         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
381         nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
382         nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id());
383
384         // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
385         // nodes[3])
386         let mut node_0_monitors_serialized = Vec::new();
387         for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
388                 node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
389         }
390
391         logger = test_utils::TestLogger::new();
392         fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
393         persister = test_utils::TestPersister::new();
394         let keys_manager = &chanmon_cfgs[0].keys_manager;
395         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster, &logger, &fee_estimator, &persister, keys_manager);
396         nodes[0].chain_monitor = &new_chain_monitor;
397
398
399         let mut node_0_stale_monitors = Vec::new();
400         for serialized in node_0_stale_monitors_serialized.iter() {
401                 let mut read = &serialized[..];
402                 let (_, monitor) = <(BlockHash, ChannelMonitor<TestChannelSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
403                 assert!(read.is_empty());
404                 node_0_stale_monitors.push(monitor);
405         }
406
407         let mut node_0_monitors = Vec::new();
408         for serialized in node_0_monitors_serialized.iter() {
409                 let mut read = &serialized[..];
410                 let (_, monitor) = <(BlockHash, ChannelMonitor<TestChannelSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
411                 assert!(read.is_empty());
412                 node_0_monitors.push(monitor);
413         }
414
415         let mut nodes_0_read = &nodes_0_serialized[..];
416         if let Err(msgs::DecodeError::InvalidValue) =
417                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
418                 default_config: UserConfig::default(),
419                 entropy_source: keys_manager,
420                 node_signer: keys_manager,
421                 signer_provider: keys_manager,
422                 fee_estimator: &fee_estimator,
423                 router: &nodes[0].router,
424                 chain_monitor: nodes[0].chain_monitor,
425                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
426                 logger: &logger,
427                 channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
428         }) { } else {
429                 panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
430         };
431
432         let mut nodes_0_read = &nodes_0_serialized[..];
433         let (_, nodes_0_deserialized_tmp) =
434                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
435                 default_config: UserConfig::default(),
436                 entropy_source: keys_manager,
437                 node_signer: keys_manager,
438                 signer_provider: keys_manager,
439                 fee_estimator: &fee_estimator,
440                 router: nodes[0].router,
441                 chain_monitor: nodes[0].chain_monitor,
442                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
443                 logger: &logger,
444                 channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
445         }).unwrap();
446         nodes_0_deserialized = nodes_0_deserialized_tmp;
447         assert!(nodes_0_read.is_empty());
448
449         for monitor in node_0_monitors.drain(..) {
450                 assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
451                         Ok(ChannelMonitorUpdateStatus::Completed));
452                 check_added_monitors!(nodes[0], 1);
453         }
454         nodes[0].node = &nodes_0_deserialized;
455
456         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager, [nodes[3].node.get_our_node_id()], 100000);
457         { // Channel close should result in a commitment tx
458                 nodes[0].node.timer_tick_occurred();
459                 let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
460                 assert_eq!(txn.len(), 1);
461                 check_spends!(txn[0], funding_tx);
462                 assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
463         }
464         check_added_monitors!(nodes[0], 1);
465
466         // nodes[1] and nodes[2] have no lost state with nodes[0]...
467         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
468         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[2]));
469         //... and we can even still claim the payment!
470         claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
471
472         nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
473                 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
474         }, true).unwrap();
475         let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
476         nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init {
477                 features: nodes[3].node.init_features(), networks: None, remote_network_address: None
478         }, false).unwrap();
479         nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
480         let mut found_err = false;
481         for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
482                 if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
483                         match action {
484                                 &ErrorAction::SendErrorMessage { ref msg } => {
485                                         assert_eq!(msg.channel_id, channel_id);
486                                         assert!(!found_err);
487                                         found_err = true;
488                                 },
489                                 _ => panic!("Unexpected event!"),
490                         }
491                 }
492         }
493         assert!(found_err);
494 }
495
496 #[cfg(feature = "std")]
497 fn do_test_data_loss_protect(reconnect_panicing: bool) {
498         // When we get a data_loss_protect proving we're behind, we immediately panic as the
499         // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
500         // panic message informs the user they should force-close without broadcasting, which is tested
501         // if `reconnect_panicing` is not set.
502         let mut chanmon_cfgs = create_chanmon_cfgs(2);
503         // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
504         // during signing due to revoked tx
505         chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
506         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
507         let persister;
508         let new_chain_monitor;
509
510         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
511         let nodes_0_deserialized;
512
513         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
514
515         let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000);
516
517         // Cache node A state before any channel update
518         let previous_node_state = nodes[0].node.encode();
519         let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
520
521         send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
522         send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
523
524         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
525         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
526
527         reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
528
529         if reconnect_panicing {
530                 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
531                         features: nodes[1].node.init_features(), networks: None, remote_network_address: None
532                 }, true).unwrap();
533                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
534                         features: nodes[0].node.init_features(), networks: None, remote_network_address: None
535                 }, false).unwrap();
536
537                 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
538
539                 // Check we close channel detecting A is fallen-behind
540                 // Check that we sent the warning message when we detected that A has fallen behind,
541                 // and give the possibility for A to recover from the warning.
542                 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
543                 let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction: 0 (received) vs 4 (expected)".to_owned();
544
545                 let warn_reestablish = nodes[1].node.get_and_clear_pending_msg_events();
546                 assert_eq!(warn_reestablish.len(), 2);
547                 match warn_reestablish[1] {
548                         MessageSendEvent::HandleError { action: ErrorAction::SendWarningMessage { ref msg, .. }, .. } => {
549                                 assert_eq!(msg.data, warn_msg);
550                         },
551                         _ => panic!("Unexpected event"),
552                 }
553                 let reestablish_msg = match &warn_reestablish[0] {
554                         MessageSendEvent::SendChannelReestablish { msg, .. } => msg.clone(),
555                         _ => panic!("Unexpected event"),
556                 };
557
558                 {
559                         let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
560                         // The node B should not broadcast the transaction to force close the channel!
561                         assert!(node_txn.is_empty());
562                 }
563
564                 // Check A panics upon seeing proof it has fallen behind.
565                 assert!(std::panic::catch_unwind(|| {
566                         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_msg);
567                 }).is_err());
568                 std::mem::forget(nodes); // Skip the `Drop` handler for `Node`
569                 return; // By this point we should have panic'ed!
570         }
571
572         nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
573         check_added_monitors!(nodes[0], 1);
574         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 1000000);
575         {
576                 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
577                 assert_eq!(node_txn.len(), 0);
578         }
579
580         for msg in nodes[0].node.get_and_clear_pending_msg_events() {
581                 if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
582                 } else if let MessageSendEvent::HandleError { ref action, .. } = msg {
583                         match action {
584                                 &ErrorAction::DisconnectPeer { ref msg } => {
585                                         assert_eq!(msg.as_ref().unwrap().data, "Channel force-closed");
586                                 },
587                                 _ => panic!("Unexpected event!"),
588                         }
589                 } else {
590                         panic!("Unexpected event {:?}", msg)
591                 }
592         }
593
594         // after the warning message sent by B, we should not able to
595         // use the channel, or reconnect with success to the channel.
596         assert!(nodes[0].node.list_usable_channels().is_empty());
597         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
598                 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
599         }, true).unwrap();
600         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
601                 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
602         }, false).unwrap();
603         let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
604
605         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
606         let mut err_msgs_0 = Vec::with_capacity(1);
607         if let MessageSendEvent::HandleError { ref action, .. } = nodes[0].node.get_and_clear_pending_msg_events()[1] {
608                 match action {
609                         &ErrorAction::SendErrorMessage { ref msg } => {
610                                 assert_eq!(msg.data, format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()));
611                                 err_msgs_0.push(msg.clone());
612                         },
613                         _ => panic!("Unexpected event!"),
614                 }
615         } else {
616                 panic!("Unexpected event!");
617         }
618         assert_eq!(err_msgs_0.len(), 1);
619         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
620         assert!(nodes[1].node.list_usable_channels().is_empty());
621         check_added_monitors!(nodes[1], 1);
622         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) }
623                 , [nodes[0].node.get_our_node_id()], 1000000);
624         check_closed_broadcast!(nodes[1], false);
625 }
626
627 #[test]
628 #[cfg(feature = "std")]
629 fn test_data_loss_protect() {
630         do_test_data_loss_protect(true);
631         do_test_data_loss_protect(false);
632 }
633
634 #[test]
635 fn test_forwardable_regen() {
636         // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
637         // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
638         // HTLCs.
639         // We test it for both payment receipt and payment forwarding.
640
641         let chanmon_cfgs = create_chanmon_cfgs(3);
642         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
643         let persister;
644         let new_chain_monitor;
645         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
646         let nodes_1_deserialized;
647         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
648         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
649         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
650
651         // First send a payment to nodes[1]
652         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
653         nodes[0].node.send_payment_with_route(&route, payment_hash,
654                 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
655         check_added_monitors!(nodes[0], 1);
656
657         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
658         assert_eq!(events.len(), 1);
659         let payment_event = SendEvent::from_event(events.pop().unwrap());
660         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
661         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
662
663         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
664
665         // Next send a payment which is forwarded by nodes[1]
666         let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
667         nodes[0].node.send_payment_with_route(&route_2, payment_hash_2,
668                 RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
669         check_added_monitors!(nodes[0], 1);
670
671         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
672         assert_eq!(events.len(), 1);
673         let payment_event = SendEvent::from_event(events.pop().unwrap());
674         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
675         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
676
677         // There is already a PendingHTLCsForwardable event "pending" so another one will not be
678         // generated
679         assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
680
681         // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
682         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
683         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
684
685         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
686         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
687         reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
688
689         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
690         // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
691         // the commitment state.
692         let mut reconnect_args = ReconnectArgs::new(&nodes[1], &nodes[2]);
693         reconnect_args.send_channel_ready = (true, true);
694         reconnect_nodes(reconnect_args);
695
696         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
697
698         expect_pending_htlcs_forwardable!(nodes[1]);
699         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000);
700         check_added_monitors!(nodes[1], 1);
701
702         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
703         assert_eq!(events.len(), 1);
704         let payment_event = SendEvent::from_event(events.pop().unwrap());
705         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
706         commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
707         expect_pending_htlcs_forwardable!(nodes[2]);
708         expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
709
710         claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
711         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
712 }
713
714 fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
715         // Test what happens if a node receives an MPP payment, claims it, but crashes before
716         // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
717         // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
718         // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the
719         // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
720         // not have the preimage tied to the still-pending HTLC.
721         //
722         // To get to the correct state, on startup we should propagate the preimage to the
723         // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
724         // receiving the preimage without a state update.
725         //
726         // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
727         // definitely claimed.
728         let chanmon_cfgs = create_chanmon_cfgs(4);
729         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
730         let persister;
731         let new_chain_monitor;
732
733         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
734         let nodes_3_deserialized;
735
736         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
737
738         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0);
739         create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0);
740         let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0).2;
741         let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0).2;
742
743         // Create an MPP route for 15k sats, more than the default htlc-max of 10%
744         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
745         assert_eq!(route.paths.len(), 2);
746         route.paths.sort_by(|path_a, _| {
747                 // Sort the path so that the path through nodes[1] comes first
748                 if path_a.hops[0].pubkey == nodes[1].node.get_our_node_id() {
749                         core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
750         });
751
752         nodes[0].node.send_payment_with_route(&route, payment_hash,
753                 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
754         check_added_monitors!(nodes[0], 2);
755
756         // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event
757         let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
758         assert_eq!(send_events.len(), 2);
759         let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut send_events);
760         let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut send_events);
761         do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_1_msgs, true, false, None, false);
762         do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_2_msgs, true, false, None, false);
763
764         // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
765         // monitors and ChannelManager, for use later, if we don't want to persist both monitors.
766         let mut original_monitor = test_utils::TestVecWriter(Vec::new());
767         if !persist_both_monitors {
768                 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
769                         if outpoint.to_channel_id() == chan_id_not_persisted {
770                                 assert!(original_monitor.0.is_empty());
771                                 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
772                         }
773                 }
774         }
775
776         let original_manager = nodes[3].node.encode();
777
778         expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000);
779
780         nodes[3].node.claim_funds(payment_preimage);
781         check_added_monitors!(nodes[3], 2);
782         expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
783
784         // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
785         // crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
786         // with the old ChannelManager.
787         let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
788         for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
789                 if outpoint.to_channel_id() == chan_id_persisted {
790                         assert!(updated_monitor.0.is_empty());
791                         nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
792                 }
793         }
794         // If `persist_both_monitors` is set, get the second monitor here as well
795         if persist_both_monitors {
796                 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
797                         if outpoint.to_channel_id() == chan_id_not_persisted {
798                                 assert!(original_monitor.0.is_empty());
799                                 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
800                         }
801                 }
802         }
803
804         // Now restart nodes[3].
805         reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
806
807         // On startup the preimage should have been copied into the non-persisted monitor:
808         assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
809         assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
810
811         nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
812         nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
813
814         // During deserialization, we should have closed one channel and broadcast its latest
815         // commitment transaction. We should also still have the original PaymentClaimable event we
816         // never finished processing.
817         let events = nodes[3].node.get_and_clear_pending_events();
818         assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
819         if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
820         if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
821         if persist_both_monitors {
822                 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
823                 check_added_monitors(&nodes[3], 2);
824         } else {
825                 check_added_monitors(&nodes[3], 1);
826         }
827
828         // On restart, we should also get a duplicate PaymentClaimed event as we persisted the
829         // ChannelManager prior to handling the original one.
830         if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
831                 events[if persist_both_monitors { 3 } else { 2 }]
832         {
833                 assert_eq!(payment_hash, our_payment_hash);
834         } else { panic!(); }
835
836         assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
837         if !persist_both_monitors {
838                 // If one of the two channels is still live, reveal the payment preimage over it.
839
840                 nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
841                         features: nodes[2].node.init_features(), networks: None, remote_network_address: None
842                 }, true).unwrap();
843                 let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
844                 nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init {
845                         features: nodes[3].node.init_features(), networks: None, remote_network_address: None
846                 }, false).unwrap();
847                 let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
848
849                 nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
850                 get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
851                 assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
852
853                 nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
854
855                 // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
856                 // claim should fly.
857                 let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
858                 check_added_monitors!(nodes[3], 1);
859                 assert_eq!(ds_msgs.len(), 2);
860                 if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); }
861
862                 let cs_updates = match ds_msgs[1] {
863                         MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
864                                 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
865                                 check_added_monitors!(nodes[2], 1);
866                                 let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
867                                 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
868                                 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
869                                 cs_updates
870                         }
871                         _ => panic!(),
872                 };
873
874                 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
875                 commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
876                 expect_payment_sent!(nodes[0], payment_preimage);
877         }
878 }
879
880 #[test]
881 fn test_partial_claim_before_restart() {
882         do_test_partial_claim_before_restart(false);
883         do_test_partial_claim_before_restart(true);
884 }
885
886 fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool, use_intercept: bool) {
887         if !use_cs_commitment { assert!(!claim_htlc); }
888         // If we go to forward a payment, and the ChannelMonitor persistence completes, but the
889         // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail
890         // it back until the ChannelMonitor decides the fate of the HTLC.
891         // This was never an issue, but it may be easy to regress here going forward.
892         let chanmon_cfgs = create_chanmon_cfgs(3);
893         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
894         let persister;
895         let new_chain_monitor;
896
897         let mut intercept_forwards_config = test_default_channel_config();
898         intercept_forwards_config.accept_intercept_htlcs = true;
899         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), None]);
900         let nodes_1_deserialized;
901
902         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
903
904         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
905         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
906
907         let intercept_scid = nodes[1].node.get_intercept_scid();
908
909         let (mut route, payment_hash, payment_preimage, payment_secret) =
910                 get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
911         if use_intercept {
912                 route.paths[0].hops[1].short_channel_id = intercept_scid;
913         }
914         let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
915         let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV;
916         nodes[0].node.send_payment_with_route(&route, payment_hash,
917                 RecipientOnionFields::secret_only(payment_secret), payment_id).unwrap();
918         check_added_monitors!(nodes[0], 1);
919
920         let payment_event = SendEvent::from_node(&nodes[0]);
921         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
922         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
923
924         // Store the `ChannelManager` before handling the `PendingHTLCsForwardable`/`HTLCIntercepted`
925         // events, expecting either event (and the HTLC itself) to be missing on reload even though its
926         // present when we serialized.
927         let node_encoded = nodes[1].node.encode();
928
929         let mut intercept_id = None;
930         let mut expected_outbound_amount_msat = None;
931         if use_intercept {
932                 let events = nodes[1].node.get_and_clear_pending_events();
933                 assert_eq!(events.len(), 1);
934                 match events[0] {
935                         Event::HTLCIntercepted { intercept_id: ev_id, expected_outbound_amount_msat: ev_amt, .. } => {
936                                 intercept_id = Some(ev_id);
937                                 expected_outbound_amount_msat = Some(ev_amt);
938                         },
939                         _ => panic!()
940                 }
941                 nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_2,
942                         nodes[2].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap();
943         }
944
945         expect_pending_htlcs_forwardable!(nodes[1]);
946
947         let payment_event = SendEvent::from_node(&nodes[1]);
948         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
949         nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg);
950         check_added_monitors!(nodes[2], 1);
951
952         if claim_htlc {
953                 get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage,
954                         &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger);
955         }
956         assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
957
958         let _ = nodes[2].node.get_and_clear_pending_msg_events();
959
960         nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap();
961         let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
962         assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 });
963
964         check_added_monitors!(nodes[2], 1);
965         check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
966         check_closed_broadcast!(nodes[2], true);
967
968         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
969         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
970         reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
971
972         // Note that this checks that this is the only event on nodes[1], implying the
973         // `HTLCIntercepted` event has been removed in the `use_intercept` case.
974         check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager, [nodes[2].node.get_our_node_id()], 100000);
975
976         if use_intercept {
977                 // Attempt to forward the HTLC back out over nodes[1]' still-open channel, ensuring we get
978                 // a intercept-doesn't-exist error.
979                 let forward_err = nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_1,
980                         nodes[0].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap_err();
981                 assert_eq!(forward_err, APIError::APIMisuseError {
982                         err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.unwrap().0))
983                 });
984         }
985
986         nodes[1].node.timer_tick_occurred();
987         let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
988         assert_eq!(bs_commitment_tx.len(), 1);
989         check_added_monitors!(nodes[1], 1);
990
991         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
992         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
993
994         if use_cs_commitment {
995                 // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait
996                 // for an HTLC-spending transaction before it does anything with the HTLC upstream.
997                 confirm_transaction(&nodes[1], &cs_commitment_tx[0]);
998                 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
999                 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
1000
1001                 if claim_htlc {
1002                         confirm_transaction(&nodes[1], &cs_commitment_tx[1]);
1003                 } else {
1004                         connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1 + 1);
1005                         let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
1006                         assert_eq!(bs_htlc_timeout_tx.len(), 1);
1007                         confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]);
1008                 }
1009         } else {
1010                 confirm_transaction(&nodes[1], &bs_commitment_tx[0]);
1011         }
1012
1013         if !claim_htlc {
1014                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1015         } else {
1016                 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true);
1017         }
1018         check_added_monitors!(nodes[1], 1);
1019
1020         let events = nodes[1].node.get_and_clear_pending_msg_events();
1021         assert_eq!(events.len(), 1);
1022         match &events[0] {
1023                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => {
1024                         if claim_htlc {
1025                                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]);
1026                         } else {
1027                                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1028                         }
1029                         commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1030                 },
1031                 _ => panic!("Unexpected event"),
1032         }
1033
1034         if claim_htlc {
1035                 expect_payment_sent!(nodes[0], payment_preimage);
1036         } else {
1037                 expect_payment_failed!(nodes[0], payment_hash, false);
1038         }
1039 }
1040
1041 #[test]
1042 fn forwarded_payment_no_manager_persistence() {
1043         do_forwarded_payment_no_manager_persistence(true, true, false);
1044         do_forwarded_payment_no_manager_persistence(true, false, false);
1045         do_forwarded_payment_no_manager_persistence(false, false, false);
1046 }
1047
1048 #[test]
1049 fn intercepted_payment_no_manager_persistence() {
1050         do_forwarded_payment_no_manager_persistence(true, true, true);
1051         do_forwarded_payment_no_manager_persistence(true, false, true);
1052         do_forwarded_payment_no_manager_persistence(false, false, true);
1053 }
1054
1055 #[test]
1056 fn removed_payment_no_manager_persistence() {
1057         // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but
1058         // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is
1059         // still failed back to the previous hop even though the ChannelMonitor now no longer is aware
1060         // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs
1061         // were left dangling when a channel was force-closed due to a stale ChannelManager.
1062         let chanmon_cfgs = create_chanmon_cfgs(3);
1063         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1064         let persister;
1065         let new_chain_monitor;
1066
1067         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1068         let nodes_1_deserialized;
1069
1070         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1071
1072         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1073         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
1074
1075         let (_, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
1076
1077         let node_encoded = nodes[1].node.encode();
1078
1079         nodes[2].node.fail_htlc_backwards(&payment_hash);
1080         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
1081         check_added_monitors!(nodes[2], 1);
1082         let events = nodes[2].node.get_and_clear_pending_msg_events();
1083         assert_eq!(events.len(), 1);
1084         match &events[0] {
1085                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1086                         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]);
1087                         commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false);
1088                 },
1089                 _ => panic!("Unexpected event"),
1090         }
1091
1092         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
1093         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
1094         reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
1095
1096         match nodes[1].node.pop_pending_event().unwrap() {
1097                 Event::ChannelClosed { ref reason, .. } => {
1098                         assert_eq!(*reason, ClosureReason::OutdatedChannelManager);
1099                 },
1100                 _ => panic!("Unexpected event"),
1101         }
1102
1103         nodes[1].node.test_process_background_events();
1104         check_added_monitors(&nodes[1], 1);
1105
1106         // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is
1107         // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload,
1108         // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set.
1109         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
1110         reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
1111
1112         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1113         check_added_monitors!(nodes[1], 1);
1114         let events = nodes[1].node.get_and_clear_pending_msg_events();
1115         assert_eq!(events.len(), 1);
1116         match &events[0] {
1117                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1118                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1119                         commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1120                 },
1121                 _ => panic!("Unexpected event"),
1122         }
1123
1124         expect_payment_failed!(nodes[0], payment_hash, false);
1125 }
1126
1127 #[test]
1128 fn test_reload_partial_funding_batch() {
1129         let chanmon_cfgs = create_chanmon_cfgs(3);
1130         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1131         let new_persister;
1132         let new_chain_monitor;
1133
1134         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1135         let new_channel_manager;
1136         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1137
1138         // Initiate channel opening and create the batch channel funding transaction.
1139         let (tx, funding_created_msgs) = create_batch_channel_funding(&nodes[0], &[
1140                 (&nodes[1], 100_000, 0, 42, None),
1141                 (&nodes[2], 200_000, 0, 43, None),
1142         ]);
1143
1144         // Go through the funding_created and funding_signed flow with node 1.
1145         nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msgs[0]);
1146         check_added_monitors(&nodes[1], 1);
1147         expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
1148
1149         // The monitor is persisted when receiving funding_signed.
1150         let funding_signed_msg = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
1151         nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed_msg);
1152         check_added_monitors(&nodes[0], 1);
1153
1154         // The transaction should not have been broadcast before all channels are ready.
1155         assert_eq!(nodes[0].tx_broadcaster.txn_broadcast().len(), 0);
1156
1157         // Reload the node while a subset of the channels in the funding batch have persisted monitors.
1158         let channel_id_1 = OutPoint { txid: tx.txid(), index: 0 }.to_channel_id();
1159         let node_encoded = nodes[0].node.encode();
1160         let channel_monitor_1_serialized = get_monitor!(nodes[0], channel_id_1).encode();
1161         reload_node!(nodes[0], node_encoded, &[&channel_monitor_1_serialized], new_persister, new_chain_monitor, new_channel_manager);
1162
1163         // Process monitor events.
1164         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
1165
1166         // The monitor should become closed.
1167         check_added_monitors(&nodes[0], 1);
1168         {
1169                 let mut monitor_updates = nodes[0].chain_monitor.monitor_updates.lock().unwrap();
1170                 let monitor_updates_1 = monitor_updates.get(&channel_id_1).unwrap();
1171                 assert_eq!(monitor_updates_1.len(), 1);
1172                 assert_eq!(monitor_updates_1[0].update_id, CLOSED_CHANNEL_UPDATE_ID);
1173         }
1174
1175         // The funding transaction should not have been broadcast, but we broadcast the force-close
1176         // transaction as part of closing the monitor.
1177         {
1178                 let broadcasted_txs = nodes[0].tx_broadcaster.txn_broadcast();
1179                 assert_eq!(broadcasted_txs.len(), 1);
1180                 assert!(broadcasted_txs[0].txid() != tx.txid());
1181                 assert_eq!(broadcasted_txs[0].input.len(), 1);
1182                 assert_eq!(broadcasted_txs[0].input[0].previous_output.txid, tx.txid());
1183         }
1184
1185         // Ensure the channels don't exist anymore.
1186         assert!(nodes[0].node.list_channels().is_empty());
1187 }