Use UserConfig to determine advertised InitFeatures by ChannelManager
[rust-lightning] / lightning / src / ln / reload_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Functional tests which test for correct behavior across node restarts.
11
12 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
13 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
14 use crate::chain::channelmonitor::ChannelMonitor;
15 use crate::chain::keysinterface::EntropySource;
16 use crate::chain::transaction::OutPoint;
17 use crate::ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId};
18 use crate::ln::msgs;
19 use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
20 use crate::util::enforcing_trait_impls::EnforcingSigner;
21 use crate::util::test_utils;
22 use crate::util::errors::APIError;
23 use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
24 use crate::util::ser::{Writeable, ReadableArgs};
25 use crate::util::config::UserConfig;
26
27 use bitcoin::hash_types::BlockHash;
28
29 use crate::prelude::*;
30 use core::default::Default;
31 use crate::sync::Mutex;
32
33 use crate::ln::functional_test_utils::*;
34
35 #[test]
36 fn test_funding_peer_disconnect() {
37         // Test that we can lock in our funding tx while disconnected
38         let chanmon_cfgs = create_chanmon_cfgs(2);
39         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
40         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
41         let persister: test_utils::TestPersister;
42         let new_chain_monitor: test_utils::TestChainMonitor;
43         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
44         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
45         let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
46
47         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
48         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
49
50         confirm_transaction(&nodes[0], &tx);
51         let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
52         assert!(events_1.is_empty());
53
54         reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
55
56         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
57         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
58
59         confirm_transaction(&nodes[1], &tx);
60         let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
61         assert!(events_2.is_empty());
62
63         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
64         let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
65         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
66         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
67
68         // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
69         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
70         let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
71         assert_eq!(events_3.len(), 1);
72         let as_channel_ready = match events_3[0] {
73                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
74                         assert_eq!(*node_id, nodes[1].node.get_our_node_id());
75                         msg.clone()
76                 },
77                 _ => panic!("Unexpected event {:?}", events_3[0]),
78         };
79
80         // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
81         // announcement_signatures as well as channel_update.
82         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
83         let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
84         assert_eq!(events_4.len(), 3);
85         let chan_id;
86         let bs_channel_ready = match events_4[0] {
87                 MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
88                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
89                         chan_id = msg.channel_id;
90                         msg.clone()
91                 },
92                 _ => panic!("Unexpected event {:?}", events_4[0]),
93         };
94         let bs_announcement_sigs = match events_4[1] {
95                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
96                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
97                         msg.clone()
98                 },
99                 _ => panic!("Unexpected event {:?}", events_4[1]),
100         };
101         match events_4[2] {
102                 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
103                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
104                 },
105                 _ => panic!("Unexpected event {:?}", events_4[2]),
106         }
107
108         // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
109         // generates a duplicative private channel_update
110         nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
111         let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
112         assert_eq!(events_5.len(), 1);
113         match events_5[0] {
114                 MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
115                         assert_eq!(*node_id, nodes[0].node.get_our_node_id());
116                 },
117                 _ => panic!("Unexpected event {:?}", events_5[0]),
118         };
119
120         // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
121         // announcement_signatures.
122         nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
123         let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
124         assert_eq!(events_6.len(), 1);
125         let as_announcement_sigs = match events_6[0] {
126                 MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
127                         assert_eq!(*node_id, nodes[1].node.get_our_node_id());
128                         msg.clone()
129                 },
130                 _ => panic!("Unexpected event {:?}", events_6[0]),
131         };
132         expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
133         expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
134
135         // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
136         // broadcast the channel announcement globally, as well as re-send its (now-public)
137         // channel_update.
138         nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
139         let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
140         assert_eq!(events_7.len(), 1);
141         let (chan_announcement, as_update) = match events_7[0] {
142                 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
143                         (msg.clone(), update_msg.clone())
144                 },
145                 _ => panic!("Unexpected event {:?}", events_7[0]),
146         };
147
148         // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
149         // same channel_announcement.
150         nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
151         let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
152         assert_eq!(events_8.len(), 1);
153         let bs_update = match events_8[0] {
154                 MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
155                         assert_eq!(*msg, chan_announcement);
156                         update_msg.clone()
157                 },
158                 _ => panic!("Unexpected event {:?}", events_8[0]),
159         };
160
161         // Provide the channel announcement and public updates to the network graph
162         nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
163         nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
164         nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
165
166         let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
167         let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
168         claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
169
170         // Check that after deserialization and reconnection we can still generate an identical
171         // channel_announcement from the cached signatures.
172         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
173
174         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
175
176         reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
177
178         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
179 }
180
181 #[test]
182 fn test_no_txn_manager_serialize_deserialize() {
183         let chanmon_cfgs = create_chanmon_cfgs(2);
184         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
185         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
186         let persister: test_utils::TestPersister;
187         let new_chain_monitor: test_utils::TestChainMonitor;
188         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
189         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
190
191         let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001);
192
193         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
194
195         let chan_0_monitor_serialized =
196                 get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
197         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
198
199         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
200         let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
201         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
202         let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
203
204         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
205         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
206         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
207         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
208
209         let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
210         let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
211         for node in nodes.iter() {
212                 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
213                 node.gossip_sync.handle_channel_update(&as_update).unwrap();
214                 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
215         }
216
217         send_payment(&nodes[0], &[&nodes[1]], 1000000);
218 }
219
220 #[test]
221 fn test_manager_serialize_deserialize_events() {
222         // This test makes sure the events field in ChannelManager survives de/serialization
223         let chanmon_cfgs = create_chanmon_cfgs(2);
224         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
225         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
226         let persister: test_utils::TestPersister;
227         let new_chain_monitor: test_utils::TestChainMonitor;
228         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
229         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
230
231         // Start creating a channel, but stop right before broadcasting the funding transaction
232         let channel_value = 100000;
233         let push_msat = 10001;
234         let node_a = nodes.remove(0);
235         let node_b = nodes.remove(0);
236         let a_flags = node_a.node.init_features();
237         let b_flags = node_b.node.init_features();
238         node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
239         node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), a_flags, &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
240         node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), b_flags, &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
241
242         let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
243
244         node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
245         check_added_monitors!(node_a, 0);
246
247         node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
248         {
249                 let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
250                 assert_eq!(added_monitors.len(), 1);
251                 assert_eq!(added_monitors[0].0, funding_output);
252                 added_monitors.clear();
253         }
254
255         let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
256         node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
257         {
258                 let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
259                 assert_eq!(added_monitors.len(), 1);
260                 assert_eq!(added_monitors[0].0, funding_output);
261                 added_monitors.clear();
262         }
263         // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
264
265         nodes.push(node_a);
266         nodes.push(node_b);
267
268         // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
269         let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
270         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
271
272         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
273
274         // After deserializing, make sure the funding_transaction is still held by the channel manager
275         let events_4 = nodes[0].node.get_and_clear_pending_events();
276         assert_eq!(events_4.len(), 0);
277         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
278         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
279
280         // Make sure the channel is functioning as though the de/serialization never happened
281         assert_eq!(nodes[0].node.list_channels().len(), 1);
282
283         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
284         let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
285         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
286         let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
287
288         nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
289         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
290         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
291         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
292
293         let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
294         let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
295         for node in nodes.iter() {
296                 assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
297                 node.gossip_sync.handle_channel_update(&as_update).unwrap();
298                 node.gossip_sync.handle_channel_update(&bs_update).unwrap();
299         }
300
301         send_payment(&nodes[0], &[&nodes[1]], 1000000);
302 }
303
304 #[test]
305 fn test_simple_manager_serialize_deserialize() {
306         let chanmon_cfgs = create_chanmon_cfgs(2);
307         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
308         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
309         let persister: test_utils::TestPersister;
310         let new_chain_monitor: test_utils::TestChainMonitor;
311         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
312         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
313         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
314
315         let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
316         let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
317
318         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
319
320         let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
321         reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
322
323         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
324
325         fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
326         claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
327 }
328
329 #[test]
330 fn test_manager_serialize_deserialize_inconsistent_monitor() {
331         // Test deserializing a ChannelManager with an out-of-date ChannelMonitor
332         let chanmon_cfgs = create_chanmon_cfgs(4);
333         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
334         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
335         let logger: test_utils::TestLogger;
336         let fee_estimator: test_utils::TestFeeEstimator;
337         let persister: test_utils::TestPersister;
338         let new_chain_monitor: test_utils::TestChainMonitor;
339         let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
340         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
341         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
342         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0).2;
343         let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3);
344
345         let mut node_0_stale_monitors_serialized = Vec::new();
346         for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
347                 let mut writer = test_utils::TestVecWriter(Vec::new());
348                 get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
349                 node_0_stale_monitors_serialized.push(writer.0);
350         }
351
352         let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
353
354         // Serialize the ChannelManager here, but the monitor we keep up-to-date
355         let nodes_0_serialized = nodes[0].node.encode();
356
357         route_payment(&nodes[0], &[&nodes[3]], 1000000);
358         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
359         nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
360         nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
361
362         // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
363         // nodes[3])
364         let mut node_0_monitors_serialized = Vec::new();
365         for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
366                 node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
367         }
368
369         logger = test_utils::TestLogger::new();
370         fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
371         persister = test_utils::TestPersister::new();
372         let keys_manager = &chanmon_cfgs[0].keys_manager;
373         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager);
374         nodes[0].chain_monitor = &new_chain_monitor;
375
376
377         let mut node_0_stale_monitors = Vec::new();
378         for serialized in node_0_stale_monitors_serialized.iter() {
379                 let mut read = &serialized[..];
380                 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
381                 assert!(read.is_empty());
382                 node_0_stale_monitors.push(monitor);
383         }
384
385         let mut node_0_monitors = Vec::new();
386         for serialized in node_0_monitors_serialized.iter() {
387                 let mut read = &serialized[..];
388                 let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, (keys_manager, keys_manager)).unwrap();
389                 assert!(read.is_empty());
390                 node_0_monitors.push(monitor);
391         }
392
393         let mut nodes_0_read = &nodes_0_serialized[..];
394         if let Err(msgs::DecodeError::InvalidValue) =
395                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
396                 default_config: UserConfig::default(),
397                 entropy_source: keys_manager,
398                 node_signer: keys_manager,
399                 signer_provider: keys_manager,
400                 fee_estimator: &fee_estimator,
401                 router: &nodes[0].router,
402                 chain_monitor: nodes[0].chain_monitor,
403                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
404                 logger: &logger,
405                 channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
406         }) { } else {
407                 panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
408         };
409
410         let mut nodes_0_read = &nodes_0_serialized[..];
411         let (_, nodes_0_deserialized_tmp) =
412                 <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
413                 default_config: UserConfig::default(),
414                 entropy_source: keys_manager,
415                 node_signer: keys_manager,
416                 signer_provider: keys_manager,
417                 fee_estimator: &fee_estimator,
418                 router: nodes[0].router,
419                 chain_monitor: nodes[0].chain_monitor,
420                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
421                 logger: &logger,
422                 channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
423         }).unwrap();
424         nodes_0_deserialized = nodes_0_deserialized_tmp;
425         assert!(nodes_0_read.is_empty());
426
427         { // Channel close should result in a commitment tx
428                 let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
429                 assert_eq!(txn.len(), 1);
430                 check_spends!(txn[0], funding_tx);
431                 assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
432         }
433
434         for monitor in node_0_monitors.drain(..) {
435                 assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
436                         ChannelMonitorUpdateStatus::Completed);
437                 check_added_monitors!(nodes[0], 1);
438         }
439         nodes[0].node = &nodes_0_deserialized;
440         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
441
442         // nodes[1] and nodes[2] have no lost state with nodes[0]...
443         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
444         reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
445         //... and we can even still claim the payment!
446         claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
447
448         nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
449         let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
450         nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }).unwrap();
451         nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
452         let mut found_err = false;
453         for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
454                 if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
455                         match action {
456                                 &ErrorAction::SendErrorMessage { ref msg } => {
457                                         assert_eq!(msg.channel_id, channel_id);
458                                         assert!(!found_err);
459                                         found_err = true;
460                                 },
461                                 _ => panic!("Unexpected event!"),
462                         }
463                 }
464         }
465         assert!(found_err);
466 }
467
468 fn do_test_data_loss_protect(reconnect_panicing: bool) {
469         // When we get a data_loss_protect proving we're behind, we immediately panic as the
470         // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
471         // panic message informs the user they should force-close without broadcasting, which is tested
472         // if `reconnect_panicing` is not set.
473         let mut chanmon_cfgs = create_chanmon_cfgs(2);
474         // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
475         // during signing due to revoked tx
476         chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
477         let persister;
478         let new_chain_monitor;
479         let nodes_0_deserialized;
480         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
481         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
482         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
483
484         let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000);
485
486         // Cache node A state before any channel update
487         let previous_node_state = nodes[0].node.encode();
488         let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
489
490         send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
491         send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
492
493         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
494         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
495
496         reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
497
498         if reconnect_panicing {
499                 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
500                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
501
502                 let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
503
504                 // Check we close channel detecting A is fallen-behind
505                 // Check that we sent the warning message when we detected that A has fallen behind,
506                 // and give the possibility for A to recover from the warning.
507                 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
508                 let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
509                 assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
510
511                 {
512                         let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
513                         // The node B should not broadcast the transaction to force close the channel!
514                         assert!(node_txn.is_empty());
515                 }
516
517                 let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
518                 // Check A panics upon seeing proof it has fallen behind.
519                 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
520                 return; // By this point we should have panic'ed!
521         }
522
523         nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
524         check_added_monitors!(nodes[0], 1);
525         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
526         {
527                 let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
528                 assert_eq!(node_txn.len(), 0);
529         }
530
531         for msg in nodes[0].node.get_and_clear_pending_msg_events() {
532                 if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
533                 } else if let MessageSendEvent::HandleError { ref action, .. } = msg {
534                         match action {
535                                 &ErrorAction::SendErrorMessage { ref msg } => {
536                                         assert_eq!(msg.data, "Channel force-closed");
537                                 },
538                                 _ => panic!("Unexpected event!"),
539                         }
540                 } else {
541                         panic!("Unexpected event {:?}", msg)
542                 }
543         }
544
545         // after the warning message sent by B, we should not able to
546         // use the channel, or reconnect with success to the channel.
547         assert!(nodes[0].node.list_usable_channels().is_empty());
548         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }).unwrap();
549         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }).unwrap();
550         let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
551
552         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
553         let mut err_msgs_0 = Vec::with_capacity(1);
554         for msg in nodes[0].node.get_and_clear_pending_msg_events() {
555                 if let MessageSendEvent::HandleError { ref action, .. } = msg {
556                         match action {
557                                 &ErrorAction::SendErrorMessage { ref msg } => {
558                                         assert_eq!(msg.data, format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()));
559                                         err_msgs_0.push(msg.clone());
560                                 },
561                                 _ => panic!("Unexpected event!"),
562                         }
563                 } else {
564                         panic!("Unexpected event!");
565                 }
566         }
567         assert_eq!(err_msgs_0.len(), 1);
568         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
569         assert!(nodes[1].node.list_usable_channels().is_empty());
570         check_added_monitors!(nodes[1], 1);
571         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) });
572         check_closed_broadcast!(nodes[1], false);
573 }
574
575 #[test]
576 #[should_panic]
577 fn test_data_loss_protect_showing_stale_state_panics() {
578         do_test_data_loss_protect(true);
579 }
580
581 #[test]
582 fn test_force_close_without_broadcast() {
583         do_test_data_loss_protect(false);
584 }
585
586 #[test]
587 fn test_forwardable_regen() {
588         // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
589         // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
590         // HTLCs.
591         // We test it for both payment receipt and payment forwarding.
592
593         let chanmon_cfgs = create_chanmon_cfgs(3);
594         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
595         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
596         let persister: test_utils::TestPersister;
597         let new_chain_monitor: test_utils::TestChainMonitor;
598         let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
599         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
600         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
601         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
602
603         // First send a payment to nodes[1]
604         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
605         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
606         check_added_monitors!(nodes[0], 1);
607
608         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
609         assert_eq!(events.len(), 1);
610         let payment_event = SendEvent::from_event(events.pop().unwrap());
611         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
612         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
613
614         expect_pending_htlcs_forwardable_ignore!(nodes[1]);
615
616         // Next send a payment which is forwarded by nodes[1]
617         let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
618         nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
619         check_added_monitors!(nodes[0], 1);
620
621         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
622         assert_eq!(events.len(), 1);
623         let payment_event = SendEvent::from_event(events.pop().unwrap());
624         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
625         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
626
627         // There is already a PendingHTLCsForwardable event "pending" so another one will not be
628         // generated
629         assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
630
631         // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
632         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
633         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
634
635         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
636         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
637         reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
638
639         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
640         // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
641         // the commitment state.
642         reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
643
644         assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
645
646         expect_pending_htlcs_forwardable!(nodes[1]);
647         expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000);
648         check_added_monitors!(nodes[1], 1);
649
650         let mut events = nodes[1].node.get_and_clear_pending_msg_events();
651         assert_eq!(events.len(), 1);
652         let payment_event = SendEvent::from_event(events.pop().unwrap());
653         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
654         commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
655         expect_pending_htlcs_forwardable!(nodes[2]);
656         expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
657
658         claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
659         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
660 }
661
662 fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
663         // Test what happens if a node receives an MPP payment, claims it, but crashes before
664         // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
665         // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
666         // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the
667         // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
668         // not have the preimage tied to the still-pending HTLC.
669         //
670         // To get to the correct state, on startup we should propagate the preimage to the
671         // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
672         // receiving the preimage without a state update.
673         //
674         // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
675         // definitely claimed.
676         let chanmon_cfgs = create_chanmon_cfgs(4);
677         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
678         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
679
680         let persister: test_utils::TestPersister;
681         let new_chain_monitor: test_utils::TestChainMonitor;
682         let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
683
684         let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
685
686         create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0);
687         create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0);
688         let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0).2;
689         let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0).2;
690
691         // Create an MPP route for 15k sats, more than the default htlc-max of 10%
692         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
693         assert_eq!(route.paths.len(), 2);
694         route.paths.sort_by(|path_a, _| {
695                 // Sort the path so that the path through nodes[1] comes first
696                 if path_a[0].pubkey == nodes[1].node.get_our_node_id() {
697                         core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
698         });
699
700         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
701         check_added_monitors!(nodes[0], 2);
702
703         // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event
704         let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
705         assert_eq!(send_events.len(), 2);
706         let (node_1_msgs, mut send_events) = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &send_events);
707         let (node_2_msgs, _send_events) = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &send_events);
708         do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_1_msgs, true, false, None);
709         do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_2_msgs, true, false, None);
710
711         // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
712         // monitors and ChannelManager, for use later, if we don't want to persist both monitors.
713         let mut original_monitor = test_utils::TestVecWriter(Vec::new());
714         if !persist_both_monitors {
715                 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
716                         if outpoint.to_channel_id() == chan_id_not_persisted {
717                                 assert!(original_monitor.0.is_empty());
718                                 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
719                         }
720                 }
721         }
722
723         let original_manager = nodes[3].node.encode();
724
725         expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000);
726
727         nodes[3].node.claim_funds(payment_preimage);
728         check_added_monitors!(nodes[3], 2);
729         expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
730
731         // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
732         // crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
733         // with the old ChannelManager.
734         let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
735         for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
736                 if outpoint.to_channel_id() == chan_id_persisted {
737                         assert!(updated_monitor.0.is_empty());
738                         nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
739                 }
740         }
741         // If `persist_both_monitors` is set, get the second monitor here as well
742         if persist_both_monitors {
743                 for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
744                         if outpoint.to_channel_id() == chan_id_not_persisted {
745                                 assert!(original_monitor.0.is_empty());
746                                 nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
747                         }
748                 }
749         }
750
751         // Now restart nodes[3].
752         reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
753
754         // On startup the preimage should have been copied into the non-persisted monitor:
755         assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
756         assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
757
758         nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
759         nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
760
761         // During deserialization, we should have closed one channel and broadcast its latest
762         // commitment transaction. We should also still have the original PaymentClaimable event we
763         // never finished processing.
764         let events = nodes[3].node.get_and_clear_pending_events();
765         assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
766         if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
767         if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
768         if persist_both_monitors {
769                 if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
770         }
771
772         // On restart, we should also get a duplicate PaymentClaimed event as we persisted the
773         // ChannelManager prior to handling the original one.
774         if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
775                 events[if persist_both_monitors { 3 } else { 2 }]
776         {
777                 assert_eq!(payment_hash, our_payment_hash);
778         } else { panic!(); }
779
780         assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
781         if !persist_both_monitors {
782                 // If one of the two channels is still live, reveal the payment preimage over it.
783
784                 nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: nodes[2].node.init_features(), remote_network_address: None }).unwrap();
785                 let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
786                 nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }).unwrap();
787                 let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
788
789                 nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
790                 get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
791                 assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
792
793                 nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
794
795                 // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
796                 // claim should fly.
797                 let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
798                 check_added_monitors!(nodes[3], 1);
799                 assert_eq!(ds_msgs.len(), 2);
800                 if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); }
801
802                 let cs_updates = match ds_msgs[1] {
803                         MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
804                                 nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
805                                 check_added_monitors!(nodes[2], 1);
806                                 let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
807                                 expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
808                                 commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
809                                 cs_updates
810                         }
811                         _ => panic!(),
812                 };
813
814                 nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
815                 commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
816                 expect_payment_sent!(nodes[0], payment_preimage);
817         }
818 }
819
820 #[test]
821 fn test_partial_claim_before_restart() {
822         do_test_partial_claim_before_restart(false);
823         do_test_partial_claim_before_restart(true);
824 }
825
826 fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool, use_intercept: bool) {
827         if !use_cs_commitment { assert!(!claim_htlc); }
828         // If we go to forward a payment, and the ChannelMonitor persistence completes, but the
829         // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail
830         // it back until the ChannelMonitor decides the fate of the HTLC.
831         // This was never an issue, but it may be easy to regress here going forward.
832         let chanmon_cfgs = create_chanmon_cfgs(3);
833         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
834         let mut intercept_forwards_config = test_default_channel_config();
835         intercept_forwards_config.accept_intercept_htlcs = true;
836         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), None]);
837
838         let persister;
839         let new_chain_monitor;
840         let nodes_1_deserialized;
841
842         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
843
844         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
845         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
846
847         let intercept_scid = nodes[1].node.get_intercept_scid();
848
849         let (mut route, payment_hash, payment_preimage, payment_secret) =
850                 get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
851         if use_intercept {
852                 route.paths[0][1].short_channel_id = intercept_scid;
853         }
854         let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
855         let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV;
856         nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap();
857         check_added_monitors!(nodes[0], 1);
858
859         let payment_event = SendEvent::from_node(&nodes[0]);
860         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
861         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
862
863         // Store the `ChannelManager` before handling the `PendingHTLCsForwardable`/`HTLCIntercepted`
864         // events, expecting either event (and the HTLC itself) to be missing on reload even though its
865         // present when we serialized.
866         let node_encoded = nodes[1].node.encode();
867
868         let mut intercept_id = None;
869         let mut expected_outbound_amount_msat = None;
870         if use_intercept {
871                 let events = nodes[1].node.get_and_clear_pending_events();
872                 assert_eq!(events.len(), 1);
873                 match events[0] {
874                         Event::HTLCIntercepted { intercept_id: ev_id, expected_outbound_amount_msat: ev_amt, .. } => {
875                                 intercept_id = Some(ev_id);
876                                 expected_outbound_amount_msat = Some(ev_amt);
877                         },
878                         _ => panic!()
879                 }
880                 nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_2,
881                         nodes[2].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap();
882         }
883
884         expect_pending_htlcs_forwardable!(nodes[1]);
885
886         let payment_event = SendEvent::from_node(&nodes[1]);
887         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
888         nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg);
889         check_added_monitors!(nodes[2], 1);
890
891         if claim_htlc {
892                 get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage,
893                         &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger);
894         }
895         assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
896
897         let _ = nodes[2].node.get_and_clear_pending_msg_events();
898
899         nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap();
900         let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
901         assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 });
902
903         check_added_monitors!(nodes[2], 1);
904         check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed);
905         check_closed_broadcast!(nodes[2], true);
906
907         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
908         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
909         reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
910
911         // Note that this checks that this is the only event on nodes[1], implying the
912         // `HTLCIntercepted` event has been removed in the `use_intercept` case.
913         check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager);
914
915         if use_intercept {
916                 // Attempt to forward the HTLC back out over nodes[1]' still-open channel, ensuring we get
917                 // a intercept-doesn't-exist error.
918                 let forward_err = nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_1,
919                         nodes[0].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap_err();
920                 assert_eq!(forward_err, APIError::APIMisuseError {
921                         err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.unwrap().0))
922                 });
923         }
924
925         let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
926         assert_eq!(bs_commitment_tx.len(), 1);
927
928         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), true);
929         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
930
931         if use_cs_commitment {
932                 // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait
933                 // for an HTLC-spending transaction before it does anything with the HTLC upstream.
934                 confirm_transaction(&nodes[1], &cs_commitment_tx[0]);
935                 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
936                 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
937
938                 if claim_htlc {
939                         confirm_transaction(&nodes[1], &cs_commitment_tx[1]);
940                 } else {
941                         connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1);
942                         let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
943                         assert_eq!(bs_htlc_timeout_tx.len(), 1);
944                         confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]);
945                 }
946         } else {
947                 confirm_transaction(&nodes[1], &bs_commitment_tx[0]);
948         }
949
950         if !claim_htlc {
951                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
952         } else {
953                 expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true);
954         }
955         check_added_monitors!(nodes[1], 1);
956
957         let events = nodes[1].node.get_and_clear_pending_msg_events();
958         assert_eq!(events.len(), 1);
959         match &events[0] {
960                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => {
961                         if claim_htlc {
962                                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]);
963                         } else {
964                                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
965                         }
966                         commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
967                 },
968                 _ => panic!("Unexpected event"),
969         }
970
971         if claim_htlc {
972                 expect_payment_sent!(nodes[0], payment_preimage);
973         } else {
974                 expect_payment_failed!(nodes[0], payment_hash, false);
975         }
976 }
977
978 #[test]
979 fn forwarded_payment_no_manager_persistence() {
980         do_forwarded_payment_no_manager_persistence(true, true, false);
981         do_forwarded_payment_no_manager_persistence(true, false, false);
982         do_forwarded_payment_no_manager_persistence(false, false, false);
983 }
984
985 #[test]
986 fn intercepted_payment_no_manager_persistence() {
987         do_forwarded_payment_no_manager_persistence(true, true, true);
988         do_forwarded_payment_no_manager_persistence(true, false, true);
989         do_forwarded_payment_no_manager_persistence(false, false, true);
990 }
991
992 #[test]
993 fn removed_payment_no_manager_persistence() {
994         // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but
995         // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is
996         // still failed back to the previous hop even though the ChannelMonitor now no longer is aware
997         // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs
998         // were left dangling when a channel was force-closed due to a stale ChannelManager.
999         let chanmon_cfgs = create_chanmon_cfgs(3);
1000         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1001         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1002
1003         let persister;
1004         let new_chain_monitor;
1005         let nodes_1_deserialized;
1006
1007         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1008
1009         let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
1010         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
1011
1012         let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
1013
1014         let node_encoded = nodes[1].node.encode();
1015
1016         nodes[2].node.fail_htlc_backwards(&payment_hash);
1017         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
1018         check_added_monitors!(nodes[2], 1);
1019         let events = nodes[2].node.get_and_clear_pending_msg_events();
1020         assert_eq!(events.len(), 1);
1021         match &events[0] {
1022                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1023                         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]);
1024                         commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false);
1025                 },
1026                 _ => panic!("Unexpected event"),
1027         }
1028
1029         let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
1030         let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
1031         reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
1032
1033         match nodes[1].node.pop_pending_event().unwrap() {
1034                 Event::ChannelClosed { ref reason, .. } => {
1035                         assert_eq!(*reason, ClosureReason::OutdatedChannelManager);
1036                 },
1037                 _ => panic!("Unexpected event"),
1038         }
1039
1040         // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is
1041         // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload,
1042         // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set.
1043         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), true);
1044         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
1045
1046         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
1047         check_added_monitors!(nodes[1], 1);
1048         let events = nodes[1].node.get_and_clear_pending_msg_events();
1049         assert_eq!(events.len(), 1);
1050         match &events[0] {
1051                 MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => {
1052                         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]);
1053                         commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false);
1054                 },
1055                 _ => panic!("Unexpected event"),
1056         }
1057
1058         expect_payment_failed!(nodes[0], payment_hash, false);
1059 }