Push the route benchmark results into a separate uninlined function
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::blockdata::constants::ChainHash;
13
14 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
15 use bitcoin::secp256k1::{PublicKey, Verification};
16 use bitcoin::secp256k1::Secp256k1;
17 use bitcoin::secp256k1;
18
19 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
20 use bitcoin::hashes::Hash;
21 use bitcoin::network::constants::Network;
22
23 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
24 use crate::ln::ChannelId;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, SocketAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use core::str::FromStr;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy, PartialEq, Eq)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80
81         /// Get the public key as an array from this NodeId
82         pub fn as_array(&self) -> &[u8; PUBLIC_KEY_SIZE] {
83                 &self.0
84         }
85
86         /// Get the public key from this NodeId
87         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
88                 PublicKey::from_slice(&self.0)
89         }
90 }
91
92 impl fmt::Debug for NodeId {
93         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94                 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
95         }
96 }
97 impl fmt::Display for NodeId {
98         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
99                 crate::util::logger::DebugBytes(&self.0).fmt(f)
100         }
101 }
102
103 impl core::hash::Hash for NodeId {
104         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
105                 self.0.hash(hasher);
106         }
107 }
108
109 impl cmp::PartialOrd for NodeId {
110         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
111                 Some(self.cmp(other))
112         }
113 }
114
115 impl Ord for NodeId {
116         fn cmp(&self, other: &Self) -> cmp::Ordering {
117                 self.0[..].cmp(&other.0[..])
118         }
119 }
120
121 impl Writeable for NodeId {
122         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
123                 writer.write_all(&self.0)?;
124                 Ok(())
125         }
126 }
127
128 impl Readable for NodeId {
129         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
130                 let mut buf = [0; PUBLIC_KEY_SIZE];
131                 reader.read_exact(&mut buf)?;
132                 Ok(Self(buf))
133         }
134 }
135
136 impl From<PublicKey> for NodeId {
137         fn from(pubkey: PublicKey) -> Self {
138                 Self::from_pubkey(&pubkey)
139         }
140 }
141
142 impl TryFrom<NodeId> for PublicKey {
143         type Error = secp256k1::Error;
144
145         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
146                 node_id.as_pubkey()
147         }
148 }
149
150 impl FromStr for NodeId {
151         type Err = hex::parse::HexToArrayError;
152
153         fn from_str(s: &str) -> Result<Self, Self::Err> {
154                 let data: [u8; PUBLIC_KEY_SIZE] = hex::FromHex::from_hex(s)?;
155                 Ok(NodeId(data))
156         }
157 }
158
159 /// Represents the network as nodes and channels between them
160 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
161         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
162         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
163         chain_hash: ChainHash,
164         logger: L,
165         // Lock order: channels -> nodes
166         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
167         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
168         removed_node_counters: Mutex<Vec<u32>>,
169         next_node_counter: AtomicUsize,
170         // Lock order: removed_channels -> removed_nodes
171         //
172         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
173         // of `std::time::Instant`s for a few reasons:
174         //   * We want it to be possible to do tracking in no-std environments where we can compare
175         //     a provided current UNIX timestamp with the time at which we started tracking.
176         //   * In the future, if we decide to persist these maps, they will already be serializable.
177         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
178         //     environment should be practical over the time period we are considering (on the order of a
179         //     week).
180         //
181         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
182         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
183         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
184         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
185         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
186         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
187         /// that once some time passes, we can potentially resync it from gossip again.
188         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
189         /// Announcement messages which are awaiting an on-chain lookup to be processed.
190         pub(super) pending_checks: utxo::PendingChecks,
191 }
192
193 /// A read-only view of [`NetworkGraph`].
194 pub struct ReadOnlyNetworkGraph<'a> {
195         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
196         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
197         max_node_counter: u32,
198 }
199
200 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
201 /// return packet by a node along the route. See [BOLT #4] for details.
202 ///
203 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
204 #[derive(Clone, Debug, PartialEq, Eq)]
205 pub enum NetworkUpdate {
206         /// An error indicating a `channel_update` messages should be applied via
207         /// [`NetworkGraph::update_channel`].
208         ChannelUpdateMessage {
209                 /// The update to apply via [`NetworkGraph::update_channel`].
210                 msg: ChannelUpdate,
211         },
212         /// An error indicating that a channel failed to route a payment, which should be applied via
213         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
214         ChannelFailure {
215                 /// The short channel id of the closed channel.
216                 short_channel_id: u64,
217                 /// Whether the channel should be permanently removed or temporarily disabled until a new
218                 /// `channel_update` message is received.
219                 is_permanent: bool,
220         },
221         /// An error indicating that a node failed to route a payment, which should be applied via
222         /// [`NetworkGraph::node_failed_permanent`] if permanent.
223         NodeFailure {
224                 /// The node id of the failed node.
225                 node_id: PublicKey,
226                 /// Whether the node should be permanently removed from consideration or can be restored
227                 /// when a new `channel_update` message is received.
228                 is_permanent: bool,
229         }
230 }
231
232 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
233         (0, ChannelUpdateMessage) => {
234                 (0, msg, required),
235         },
236         (2, ChannelFailure) => {
237                 (0, short_channel_id, required),
238                 (2, is_permanent, required),
239         },
240         (4, NodeFailure) => {
241                 (0, node_id, required),
242                 (2, is_permanent, required),
243         },
244 );
245
246 /// Receives and validates network updates from peers,
247 /// stores authentic and relevant data as a network graph.
248 /// This network graph is then used for routing payments.
249 /// Provides interface to help with initial routing sync by
250 /// serving historical announcements.
251 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
252 where U::Target: UtxoLookup, L::Target: Logger
253 {
254         network_graph: G,
255         utxo_lookup: RwLock<Option<U>>,
256         #[cfg(feature = "std")]
257         full_syncs_requested: AtomicUsize,
258         pending_events: Mutex<Vec<MessageSendEvent>>,
259         logger: L,
260 }
261
262 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
263 where U::Target: UtxoLookup, L::Target: Logger
264 {
265         /// Creates a new tracker of the actual state of the network of channels and nodes,
266         /// assuming an existing [`NetworkGraph`].
267         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
268         /// correct, and the announcement is signed with channel owners' keys.
269         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
270                 P2PGossipSync {
271                         network_graph,
272                         #[cfg(feature = "std")]
273                         full_syncs_requested: AtomicUsize::new(0),
274                         utxo_lookup: RwLock::new(utxo_lookup),
275                         pending_events: Mutex::new(vec![]),
276                         logger,
277                 }
278         }
279
280         /// Adds a provider used to check new announcements. Does not affect
281         /// existing announcements unless they are updated.
282         /// Add, update or remove the provider would replace the current one.
283         pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
284                 *self.utxo_lookup.write().unwrap() = utxo_lookup;
285         }
286
287         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
288         /// [`P2PGossipSync::new`].
289         ///
290         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
291         pub fn network_graph(&self) -> &G {
292                 &self.network_graph
293         }
294
295         #[cfg(feature = "std")]
296         /// Returns true when a full routing table sync should be performed with a peer.
297         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
298                 //TODO: Determine whether to request a full sync based on the network map.
299                 const FULL_SYNCS_TO_REQUEST: usize = 5;
300                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
301                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
302                         true
303                 } else {
304                         false
305                 }
306         }
307
308         /// Used to broadcast forward gossip messages which were validated async.
309         ///
310         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
311         /// data.
312         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
313                 match &mut ev {
314                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
315                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
316                                 if update_msg.as_ref()
317                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
318                                 {
319                                         *update_msg = None;
320                                 }
321                         },
322                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
323                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
324                         },
325                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
326                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
327                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
328                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
329                                 {
330                                         return;
331                                 }
332                         },
333                         _ => return,
334                 }
335                 self.pending_events.lock().unwrap().push(ev);
336         }
337 }
338
339 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
340         /// Handles any network updates originating from [`Event`]s.
341         //
342         /// Note that this will skip applying any [`NetworkUpdate::ChannelUpdateMessage`] to avoid
343         /// leaking possibly identifying information of the sender to the public network.
344         ///
345         /// [`Event`]: crate::events::Event
346         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
347                 match *network_update {
348                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
349                                 let short_channel_id = msg.contents.short_channel_id;
350                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
351                                 let status = if is_enabled { "enabled" } else { "disabled" };
352                                 log_debug!(self.logger, "Skipping application of a channel update from a payment failure. Channel {} is {}.", short_channel_id, status);
353                         },
354                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355                                 if is_permanent {
356                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357                                         self.channel_failed_permanent(short_channel_id);
358                                 }
359                         },
360                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
361                                 if is_permanent {
362                                         log_debug!(self.logger,
363                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364                                         self.node_failed_permanent(node_id);
365                                 };
366                         },
367                 }
368         }
369
370         /// Gets the chain hash for this network graph.
371         pub fn get_chain_hash(&self) -> ChainHash {
372                 self.chain_hash
373         }
374 }
375
376 macro_rules! secp_verify_sig {
377         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
378                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
379                         Ok(_) => {},
380                         Err(_) => {
381                                 return Err(LightningError {
382                                         err: format!("Invalid signature on {} message", $msg_type),
383                                         action: ErrorAction::SendWarningMessage {
384                                                 msg: msgs::WarningMessage {
385                                                         channel_id: ChannelId::new_zero(),
386                                                         data: format!("Invalid signature on {} message", $msg_type),
387                                                 },
388                                                 log_level: Level::Trace,
389                                         },
390                                 });
391                         },
392                 }
393         };
394 }
395
396 macro_rules! get_pubkey_from_node_id {
397         ( $node_id: expr, $msg_type: expr ) => {
398                 PublicKey::from_slice($node_id.as_slice())
399                         .map_err(|_| LightningError {
400                                 err: format!("Invalid public key on {} message", $msg_type),
401                                 action: ErrorAction::SendWarningMessage {
402                                         msg: msgs::WarningMessage {
403                                                 channel_id: ChannelId::new_zero(),
404                                                 data: format!("Invalid public key on {} message", $msg_type),
405                                         },
406                                         log_level: Level::Trace
407                                 }
408                         })?
409         }
410 }
411
412 fn message_sha256d_hash<M: Writeable>(msg: &M) -> Sha256dHash {
413         let mut engine = Sha256dHash::engine();
414         msg.write(&mut engine).expect("In-memory structs should not fail to serialize");
415         Sha256dHash::from_engine(engine)
416 }
417
418 /// Verifies the signature of a [`NodeAnnouncement`].
419 ///
420 /// Returns an error if it is invalid.
421 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
422         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
423         secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
424
425         Ok(())
426 }
427
428 /// Verifies all signatures included in a [`ChannelAnnouncement`].
429 ///
430 /// Returns an error if one of the signatures is invalid.
431 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
432         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
433         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
434         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
435         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
436         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
437
438         Ok(())
439 }
440
441 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
442 where U::Target: UtxoLookup, L::Target: Logger
443 {
444         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
445                 self.network_graph.update_node_from_announcement(msg)?;
446                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
447                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
448                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
449         }
450
451         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
452                 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
453                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
454         }
455
456         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
457                 self.network_graph.update_channel(msg)?;
458                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
459         }
460
461         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
462                 let mut channels = self.network_graph.channels.write().unwrap();
463                 for (_, ref chan) in channels.range(starting_point..) {
464                         if chan.announcement_message.is_some() {
465                                 let chan_announcement = chan.announcement_message.clone().unwrap();
466                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
467                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
468                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
469                                         one_to_two_announcement = one_to_two.last_update_message.clone();
470                                 }
471                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
472                                         two_to_one_announcement = two_to_one.last_update_message.clone();
473                                 }
474                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
475                         } else {
476                                 // TODO: We may end up sending un-announced channel_updates if we are sending
477                                 // initial sync data while receiving announce/updates for this channel.
478                         }
479                 }
480                 None
481         }
482
483         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
484                 let mut nodes = self.network_graph.nodes.write().unwrap();
485                 let iter = if let Some(node_id) = starting_point {
486                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
487                         } else {
488                                 nodes.range(..)
489                         };
490                 for (_, ref node) in iter {
491                         if let Some(node_info) = node.announcement_info.as_ref() {
492                                 if let Some(msg) = node_info.announcement_message.clone() {
493                                         return Some(msg);
494                                 }
495                         }
496                 }
497                 None
498         }
499
500         /// Initiates a stateless sync of routing gossip information with a peer
501         /// using [`gossip_queries`]. The default strategy used by this implementation
502         /// is to sync the full block range with several peers.
503         ///
504         /// We should expect one or more [`reply_channel_range`] messages in response
505         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
506         /// to request gossip messages for each channel. The sync is considered complete
507         /// when the final [`reply_scids_end`] message is received, though we are not
508         /// tracking this directly.
509         ///
510         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
511         /// [`reply_channel_range`]: msgs::ReplyChannelRange
512         /// [`query_channel_range`]: msgs::QueryChannelRange
513         /// [`query_scid`]: msgs::QueryShortChannelIds
514         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
515         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
516                 // We will only perform a sync with peers that support gossip_queries.
517                 if !init_msg.features.supports_gossip_queries() {
518                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
519                         // channels with peers even without being able to exchange gossip.
520                         return Ok(());
521                 }
522
523                 // The lightning network's gossip sync system is completely broken in numerous ways.
524                 //
525                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
526                 // to do a full sync from the first few peers we connect to, and then receive gossip
527                 // updates from all our peers normally.
528                 //
529                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
530                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
531                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
532                 // seen.
533                 //
534                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
535                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
536                 // channel data which you are missing. Except there was no way at all to identify which
537                 // `channel_update`s you were missing, so you still had to request everything, just in a
538                 // very complicated way with some queries instead of just getting the dump.
539                 //
540                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
541                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
542                 // relying on it useless.
543                 //
544                 // After gossip queries were introduced, support for receiving a full gossip table dump on
545                 // connection was removed from several nodes, making it impossible to get a full sync
546                 // without using the "gossip queries" messages.
547                 //
548                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
549                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
550                 // message, as the name implies, tells the peer to not forward any gossip messages with a
551                 // timestamp older than a given value (not the time the peer received the filter, but the
552                 // timestamp in the update message, which is often hours behind when the peer received the
553                 // message).
554                 //
555                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
556                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
557                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
558                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
559                 // will simply not forward any new updates they see to you which were generated some time
560                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
561                 // ago), you will always get the full routing graph from all your peers.
562                 //
563                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
564                 // propagated some time after it was generated, and, worse, often disable gossiping with
565                 // several peers after their first connection. The second behavior can cause gossip to not
566                 // propagate fully if there are cuts in the gossiping subgraph.
567                 //
568                 // In an attempt to cut a middle ground between always fetching the full graph from all of
569                 // our peers and never receiving gossip from peers at all, we send all of our peers a
570                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
571                 //
572                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
573                 #[allow(unused_mut, unused_assignments)]
574                 let mut gossip_start_time = 0;
575                 #[cfg(feature = "std")]
576                 {
577                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
578                         if self.should_request_full_sync(&their_node_id) {
579                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
580                         } else {
581                                 gossip_start_time -= 60 * 60; // an hour ago
582                         }
583                 }
584
585                 let mut pending_events = self.pending_events.lock().unwrap();
586                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
587                         node_id: their_node_id.clone(),
588                         msg: GossipTimestampFilter {
589                                 chain_hash: self.network_graph.chain_hash,
590                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
591                                 timestamp_range: u32::max_value(),
592                         },
593                 });
594                 Ok(())
595         }
596
597         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
598                 // We don't make queries, so should never receive replies. If, in the future, the set
599                 // reconciliation extensions to gossip queries become broadly supported, we should revert
600                 // this code to its state pre-0.0.106.
601                 Ok(())
602         }
603
604         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
605                 // We don't make queries, so should never receive replies. If, in the future, the set
606                 // reconciliation extensions to gossip queries become broadly supported, we should revert
607                 // this code to its state pre-0.0.106.
608                 Ok(())
609         }
610
611         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
612         /// are in the specified block range. Due to message size limits, large range
613         /// queries may result in several reply messages. This implementation enqueues
614         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
615         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
616         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
617         /// memory constrained systems.
618         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
619                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
620
621                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
622
623                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
624                 // If so, we manually cap the ending block to avoid this overflow.
625                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
626
627                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
628                 if msg.chain_hash != self.network_graph.chain_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
629                         let mut pending_events = self.pending_events.lock().unwrap();
630                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
631                                 node_id: their_node_id.clone(),
632                                 msg: ReplyChannelRange {
633                                         chain_hash: msg.chain_hash.clone(),
634                                         first_blocknum: msg.first_blocknum,
635                                         number_of_blocks: msg.number_of_blocks,
636                                         sync_complete: true,
637                                         short_channel_ids: vec![],
638                                 }
639                         });
640                         return Err(LightningError {
641                                 err: String::from("query_channel_range could not be processed"),
642                                 action: ErrorAction::IgnoreError,
643                         });
644                 }
645
646                 // Creates channel batches. We are not checking if the channel is routable
647                 // (has at least one update). A peer may still want to know the channel
648                 // exists even if its not yet routable.
649                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
650                 let mut channels = self.network_graph.channels.write().unwrap();
651                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
652                         if let Some(chan_announcement) = &chan.announcement_message {
653                                 // Construct a new batch if last one is full
654                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
655                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
656                                 }
657
658                                 let batch = batches.last_mut().unwrap();
659                                 batch.push(chan_announcement.contents.short_channel_id);
660                         }
661                 }
662                 drop(channels);
663
664                 let mut pending_events = self.pending_events.lock().unwrap();
665                 let batch_count = batches.len();
666                 let mut prev_batch_endblock = msg.first_blocknum;
667                 for (batch_index, batch) in batches.into_iter().enumerate() {
668                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
669                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
670                         //
671                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
672                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
673                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
674                         // significant diversion from the requirements set by the spec, and, in case of blocks
675                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
676                         // and *not* derive the first_blocknum from the actual first block of the reply.
677                         let first_blocknum = prev_batch_endblock;
678
679                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
680                         // fit in. Though there is no requirement that we use exactly the number of blocks its
681                         // contents are from, except for the bogus requirements c-lightning enforces, above.
682                         //
683                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
684                         // >= the query's end block. Thus, for the last reply, we calculate the difference
685                         // between the query's end block and the start of the reply.
686                         //
687                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
688                         // first_blocknum will be either msg.first_blocknum or a higher block height.
689                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
690                                 (true, msg.end_blocknum() - first_blocknum)
691                         }
692                         // Prior replies should use the number of blocks that fit into the reply. Overflow
693                         // safe since first_blocknum is always <= last SCID's block.
694                         else {
695                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
696                         };
697
698                         prev_batch_endblock = first_blocknum + number_of_blocks;
699
700                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
701                                 node_id: their_node_id.clone(),
702                                 msg: ReplyChannelRange {
703                                         chain_hash: msg.chain_hash.clone(),
704                                         first_blocknum,
705                                         number_of_blocks,
706                                         sync_complete,
707                                         short_channel_ids: batch,
708                                 }
709                         });
710                 }
711
712                 Ok(())
713         }
714
715         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
716                 // TODO
717                 Err(LightningError {
718                         err: String::from("Not implemented"),
719                         action: ErrorAction::IgnoreError,
720                 })
721         }
722
723         fn provided_node_features(&self) -> NodeFeatures {
724                 let mut features = NodeFeatures::empty();
725                 features.set_gossip_queries_optional();
726                 features
727         }
728
729         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
730                 let mut features = InitFeatures::empty();
731                 features.set_gossip_queries_optional();
732                 features
733         }
734
735         fn processing_queue_high(&self) -> bool {
736                 self.network_graph.pending_checks.too_many_checks_pending()
737         }
738 }
739
740 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
741 where
742         U::Target: UtxoLookup,
743         L::Target: Logger,
744 {
745         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
746                 let mut ret = Vec::new();
747                 let mut pending_events = self.pending_events.lock().unwrap();
748                 core::mem::swap(&mut ret, &mut pending_events);
749                 ret
750         }
751 }
752
753 #[derive(Clone, Debug, PartialEq, Eq)]
754 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
755 pub struct ChannelUpdateInfo {
756         /// When the last update to the channel direction was issued.
757         /// Value is opaque, as set in the announcement.
758         pub last_update: u32,
759         /// Whether the channel can be currently used for payments (in this one direction).
760         pub enabled: bool,
761         /// The difference in CLTV values that you must have when routing through this channel.
762         pub cltv_expiry_delta: u16,
763         /// The minimum value, which must be relayed to the next hop via the channel
764         pub htlc_minimum_msat: u64,
765         /// The maximum value which may be relayed to the next hop via the channel.
766         pub htlc_maximum_msat: u64,
767         /// Fees charged when the channel is used for routing
768         pub fees: RoutingFees,
769         /// Most recent update for the channel received from the network
770         /// Mostly redundant with the data we store in fields explicitly.
771         /// Everything else is useful only for sending out for initial routing sync.
772         /// Not stored if contains excess data to prevent DoS.
773         pub last_update_message: Option<ChannelUpdate>,
774 }
775
776 impl fmt::Display for ChannelUpdateInfo {
777         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
778                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
779                 Ok(())
780         }
781 }
782
783 impl Writeable for ChannelUpdateInfo {
784         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
785                 write_tlv_fields!(writer, {
786                         (0, self.last_update, required),
787                         (2, self.enabled, required),
788                         (4, self.cltv_expiry_delta, required),
789                         (6, self.htlc_minimum_msat, required),
790                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
791                         // compatibility with LDK versions prior to v0.0.110.
792                         (8, Some(self.htlc_maximum_msat), required),
793                         (10, self.fees, required),
794                         (12, self.last_update_message, required),
795                 });
796                 Ok(())
797         }
798 }
799
800 impl Readable for ChannelUpdateInfo {
801         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
802                 _init_tlv_field_var!(last_update, required);
803                 _init_tlv_field_var!(enabled, required);
804                 _init_tlv_field_var!(cltv_expiry_delta, required);
805                 _init_tlv_field_var!(htlc_minimum_msat, required);
806                 _init_tlv_field_var!(htlc_maximum_msat, option);
807                 _init_tlv_field_var!(fees, required);
808                 _init_tlv_field_var!(last_update_message, required);
809
810                 read_tlv_fields!(reader, {
811                         (0, last_update, required),
812                         (2, enabled, required),
813                         (4, cltv_expiry_delta, required),
814                         (6, htlc_minimum_msat, required),
815                         (8, htlc_maximum_msat, required),
816                         (10, fees, required),
817                         (12, last_update_message, required)
818                 });
819
820                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
821                         Ok(ChannelUpdateInfo {
822                                 last_update: _init_tlv_based_struct_field!(last_update, required),
823                                 enabled: _init_tlv_based_struct_field!(enabled, required),
824                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
825                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
826                                 htlc_maximum_msat,
827                                 fees: _init_tlv_based_struct_field!(fees, required),
828                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
829                         })
830                 } else {
831                         Err(DecodeError::InvalidValue)
832                 }
833         }
834 }
835
836 #[derive(Clone, Debug, Eq)]
837 /// Details about a channel (both directions).
838 /// Received within a channel announcement.
839 pub struct ChannelInfo {
840         /// Protocol features of a channel communicated during its announcement
841         pub features: ChannelFeatures,
842         /// Source node of the first direction of a channel
843         pub node_one: NodeId,
844         /// Details about the first direction of a channel
845         pub one_to_two: Option<ChannelUpdateInfo>,
846         /// Source node of the second direction of a channel
847         pub node_two: NodeId,
848         /// Details about the second direction of a channel
849         pub two_to_one: Option<ChannelUpdateInfo>,
850         /// The channel capacity as seen on-chain, if chain lookup is available.
851         pub capacity_sats: Option<u64>,
852         /// An initial announcement of the channel
853         /// Mostly redundant with the data we store in fields explicitly.
854         /// Everything else is useful only for sending out for initial routing sync.
855         /// Not stored if contains excess data to prevent DoS.
856         pub announcement_message: Option<ChannelAnnouncement>,
857         /// The timestamp when we received the announcement, if we are running with feature = "std"
858         /// (which we can probably assume we are - no-std environments probably won't have a full
859         /// network graph in memory!).
860         announcement_received_time: u64,
861
862         /// XXX docs
863         pub(crate) node_one_counter: u32,
864         /// XXX docs
865         pub(crate) node_two_counter: u32,
866 }
867
868 impl PartialEq for ChannelInfo {
869         fn eq(&self, o: &ChannelInfo) -> bool {
870                 self.features == o.features &&
871                         self.node_one == o.node_one &&
872                         self.one_to_two == o.one_to_two &&
873                         self.node_two == o.node_two &&
874                         self.two_to_one == o.two_to_one &&
875                         self.capacity_sats == o.capacity_sats &&
876                         self.announcement_message == o.announcement_message &&
877                         self.announcement_received_time == o.announcement_received_time
878         }
879 }
880
881 impl ChannelInfo {
882         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
883         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
884         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
885                 let (direction, source, outbound) = {
886                         if target == &self.node_one {
887                                 (self.two_to_one.as_ref(), &self.node_two, false)
888                         } else if target == &self.node_two {
889                                 (self.one_to_two.as_ref(), &self.node_one, true)
890                         } else {
891                                 return None;
892                         }
893                 };
894                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), source))
895         }
896
897         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
898         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
899         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
900                 let (direction, target, outbound) = {
901                         if source == &self.node_one {
902                                 (self.one_to_two.as_ref(), &self.node_two, true)
903                         } else if source == &self.node_two {
904                                 (self.two_to_one.as_ref(), &self.node_one, false)
905                         } else {
906                                 return None;
907                         }
908                 };
909                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), target))
910         }
911
912         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
913         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
914                 let direction = channel_flags & 1u8;
915                 if direction == 0 {
916                         self.one_to_two.as_ref()
917                 } else {
918                         self.two_to_one.as_ref()
919                 }
920         }
921 }
922
923 impl fmt::Display for ChannelInfo {
924         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
925                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
926                    log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
927                 Ok(())
928         }
929 }
930
931 impl Writeable for ChannelInfo {
932         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
933                 write_tlv_fields!(writer, {
934                         (0, self.features, required),
935                         (1, self.announcement_received_time, (default_value, 0)),
936                         (2, self.node_one, required),
937                         (4, self.one_to_two, required),
938                         (6, self.node_two, required),
939                         (8, self.two_to_one, required),
940                         (10, self.capacity_sats, required),
941                         (12, self.announcement_message, required),
942                 });
943                 Ok(())
944         }
945 }
946
947 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
948 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
949 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
950 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
951 // channel updates via the gossip network.
952 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
953
954 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
955         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
956                 match crate::util::ser::Readable::read(reader) {
957                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
958                         Err(DecodeError::ShortRead) => Ok(None),
959                         Err(DecodeError::InvalidValue) => Ok(None),
960                         Err(err) => Err(err),
961                 }
962         }
963 }
964
965 impl Readable for ChannelInfo {
966         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
967                 _init_tlv_field_var!(features, required);
968                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
969                 _init_tlv_field_var!(node_one, required);
970                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
971                 _init_tlv_field_var!(node_two, required);
972                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
973                 _init_tlv_field_var!(capacity_sats, required);
974                 _init_tlv_field_var!(announcement_message, required);
975                 read_tlv_fields!(reader, {
976                         (0, features, required),
977                         (1, announcement_received_time, (default_value, 0)),
978                         (2, node_one, required),
979                         (4, one_to_two_wrap, upgradable_option),
980                         (6, node_two, required),
981                         (8, two_to_one_wrap, upgradable_option),
982                         (10, capacity_sats, required),
983                         (12, announcement_message, required),
984                 });
985
986                 Ok(ChannelInfo {
987                         features: _init_tlv_based_struct_field!(features, required),
988                         node_one: _init_tlv_based_struct_field!(node_one, required),
989                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
990                         node_two: _init_tlv_based_struct_field!(node_two, required),
991                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
992                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
993                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
994                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
995                         node_one_counter: u32::max_value(),
996                         node_two_counter: u32::max_value(),
997                 })
998         }
999 }
1000
1001 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
1002 /// source node to a target node.
1003 #[derive(Clone)]
1004 pub struct DirectedChannelInfo<'a> {
1005         channel: &'a ChannelInfo,
1006         direction: &'a ChannelUpdateInfo,
1007         source_counter: u32,
1008         target_counter: u32,
1009         /// The direction this channel is in - if set, it indicates that we're traversing the channel
1010         /// from [`ChannelInfo::node_one`] to [`ChannelInfo::node_two`].
1011         from_node_one: bool,
1012 }
1013
1014 impl<'a> DirectedChannelInfo<'a> {
1015         #[inline]
1016         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo, from_node_one: bool) -> Self {
1017                 let (source_counter, target_counter) = if from_node_one {
1018                         (channel.node_one_counter, channel.node_two_counter)
1019                 } else {
1020                         (channel.node_two_counter, channel.node_one_counter)
1021                 };
1022                 Self { channel, direction, from_node_one, source_counter, target_counter }
1023         }
1024
1025         /// Returns information for the channel.
1026         #[inline]
1027         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1028
1029         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1030         ///
1031         /// This is either the total capacity from the funding transaction, if known, or the
1032         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1033         /// otherwise.
1034         #[inline]
1035         pub fn effective_capacity(&self) -> EffectiveCapacity {
1036                 let mut htlc_maximum_msat = self.direction().htlc_maximum_msat;
1037                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
1038
1039                 match capacity_msat {
1040                         Some(capacity_msat) => {
1041                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
1042                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat }
1043                         },
1044                         None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1045                 }
1046         }
1047
1048         /// Returns information for the direction.
1049         #[inline]
1050         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1051
1052         /// Returns the `node_id` of the source hop.
1053         ///
1054         /// Refers to the `node_id` forwarding the payment to the next hop.
1055         #[inline]
1056         pub(super) fn source(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_one } else { &self.channel.node_two } }
1057
1058         /// Returns the `node_id` of the target hop.
1059         ///
1060         /// Refers to the `node_id` receiving the payment from the previous hop.
1061         #[inline]
1062         pub(super) fn target(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_two } else { &self.channel.node_one } }
1063
1064         /// Returns the source node's counter
1065         #[inline(always)]
1066         pub(super) fn source_counter(&self) -> u32 { self.source_counter }
1067
1068         /// Returns the target node's counter
1069         #[inline(always)]
1070         pub(super) fn target_counter(&self) -> u32 { self.target_counter }
1071 }
1072
1073 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1074         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1075                 f.debug_struct("DirectedChannelInfo")
1076                         .field("channel", &self.channel)
1077                         .finish()
1078         }
1079 }
1080
1081 /// The effective capacity of a channel for routing purposes.
1082 ///
1083 /// While this may be smaller than the actual channel capacity, amounts greater than
1084 /// [`Self::as_msat`] should not be routed through the channel.
1085 #[derive(Clone, Copy, Debug, PartialEq)]
1086 pub enum EffectiveCapacity {
1087         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1088         /// direct hop.
1089         ExactLiquidity {
1090                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1091                 /// millisatoshi.
1092                 liquidity_msat: u64,
1093         },
1094         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1095         AdvertisedMaxHTLC {
1096                 /// The maximum HTLC amount denominated in millisatoshi.
1097                 amount_msat: u64,
1098         },
1099         /// The total capacity of the channel as determined by the funding transaction.
1100         Total {
1101                 /// The funding amount denominated in millisatoshi.
1102                 capacity_msat: u64,
1103                 /// The maximum HTLC amount denominated in millisatoshi.
1104                 htlc_maximum_msat: u64
1105         },
1106         /// A capacity sufficient to route any payment, typically used for private channels provided by
1107         /// an invoice.
1108         Infinite,
1109         /// The maximum HTLC amount as provided by an invoice route hint.
1110         HintMaxHTLC {
1111                 /// The maximum HTLC amount denominated in millisatoshi.
1112                 amount_msat: u64,
1113         },
1114         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1115         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1116         Unknown,
1117 }
1118
1119 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1120 /// use when making routing decisions.
1121 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1122
1123 impl EffectiveCapacity {
1124         /// Returns the effective capacity denominated in millisatoshi.
1125         pub fn as_msat(&self) -> u64 {
1126                 match self {
1127                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1128                         EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1129                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1130                         EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1131                         EffectiveCapacity::Infinite => u64::max_value(),
1132                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1133                 }
1134         }
1135 }
1136
1137 /// Fees for routing via a given channel or a node
1138 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1139 pub struct RoutingFees {
1140         /// Flat routing fee in millisatoshis.
1141         pub base_msat: u32,
1142         /// Liquidity-based routing fee in millionths of a routed amount.
1143         /// In other words, 10000 is 1%.
1144         pub proportional_millionths: u32,
1145 }
1146
1147 impl_writeable_tlv_based!(RoutingFees, {
1148         (0, base_msat, required),
1149         (2, proportional_millionths, required)
1150 });
1151
1152 #[derive(Clone, Debug, PartialEq, Eq)]
1153 /// Information received in the latest node_announcement from this node.
1154 pub struct NodeAnnouncementInfo {
1155         /// Protocol features the node announced support for
1156         pub features: NodeFeatures,
1157         /// When the last known update to the node state was issued.
1158         /// Value is opaque, as set in the announcement.
1159         pub last_update: u32,
1160         /// Color assigned to the node
1161         pub rgb: [u8; 3],
1162         /// Moniker assigned to the node.
1163         /// May be invalid or malicious (eg control chars),
1164         /// should not be exposed to the user.
1165         pub alias: NodeAlias,
1166         /// An initial announcement of the node
1167         /// Mostly redundant with the data we store in fields explicitly.
1168         /// Everything else is useful only for sending out for initial routing sync.
1169         /// Not stored if contains excess data to prevent DoS.
1170         pub announcement_message: Option<NodeAnnouncement>
1171 }
1172
1173 impl NodeAnnouncementInfo {
1174         /// Internet-level addresses via which one can connect to the node
1175         pub fn addresses(&self) -> &[SocketAddress] {
1176                 self.announcement_message.as_ref()
1177                         .map(|msg| msg.contents.addresses.as_slice())
1178                         .unwrap_or_default()
1179         }
1180 }
1181
1182 impl Writeable for NodeAnnouncementInfo {
1183         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1184                 let empty_addresses = Vec::<SocketAddress>::new();
1185                 write_tlv_fields!(writer, {
1186                         (0, self.features, required),
1187                         (2, self.last_update, required),
1188                         (4, self.rgb, required),
1189                         (6, self.alias, required),
1190                         (8, self.announcement_message, option),
1191                         (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1192                 });
1193                 Ok(())
1194         }
1195 }
1196
1197 impl Readable for NodeAnnouncementInfo {
1198         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1199                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1200                         (0, features, required),
1201                         (2, last_update, required),
1202                         (4, rgb, required),
1203                         (6, alias, required),
1204                         (8, announcement_message, option),
1205                         (10, _addresses, optional_vec), // deprecated, not used anymore
1206                 });
1207                 let _: Option<Vec<SocketAddress>> = _addresses;
1208                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1209                         alias: alias.0.unwrap(), announcement_message })
1210         }
1211 }
1212
1213 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1214 ///
1215 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1216 /// attacks. Care must be taken when processing.
1217 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
1218 pub struct NodeAlias(pub [u8; 32]);
1219
1220 impl fmt::Display for NodeAlias {
1221         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1222                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1223                 let bytes = self.0.split_at(first_null).0;
1224                 match core::str::from_utf8(bytes) {
1225                         Ok(alias) => PrintableString(alias).fmt(f)?,
1226                         Err(_) => {
1227                                 use core::fmt::Write;
1228                                 for c in bytes.iter().map(|b| *b as char) {
1229                                         // Display printable ASCII characters
1230                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1231                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1232                                         f.write_char(c)?;
1233                                 }
1234                         },
1235                 };
1236                 Ok(())
1237         }
1238 }
1239
1240 impl Writeable for NodeAlias {
1241         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1242                 self.0.write(w)
1243         }
1244 }
1245
1246 impl Readable for NodeAlias {
1247         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1248                 Ok(NodeAlias(Readable::read(r)?))
1249         }
1250 }
1251
1252 #[derive(Clone, Debug, Eq)]
1253 /// Details about a node in the network, known from the network announcement.
1254 pub struct NodeInfo {
1255         /// All valid channels a node has announced
1256         pub channels: Vec<u64>,
1257         /// More information about a node from node_announcement.
1258         /// Optional because we store a Node entry after learning about it from
1259         /// a channel announcement, but before receiving a node announcement.
1260         pub announcement_info: Option<NodeAnnouncementInfo>,
1261         /// XXX: Docs
1262         pub(crate) node_counter: u32,
1263 }
1264
1265 impl PartialEq for NodeInfo {
1266         fn eq(&self, o: &NodeInfo) -> bool {
1267                 self.channels == o.channels && self.announcement_info == o.announcement_info
1268         }
1269 }
1270
1271 impl fmt::Display for NodeInfo {
1272         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1273                 write!(f, " channels: {:?}, announcement_info: {:?}",
1274                         &self.channels[..], self.announcement_info)?;
1275                 Ok(())
1276         }
1277 }
1278
1279 impl Writeable for NodeInfo {
1280         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1281                 write_tlv_fields!(writer, {
1282                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1283                         (2, self.announcement_info, option),
1284                         (4, self.channels, required_vec),
1285                 });
1286                 Ok(())
1287         }
1288 }
1289
1290 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1291 // necessary to maintain compatibility with previous serializations of `SocketAddress` that have an
1292 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1293 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1294 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1295
1296 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1297         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1298                 match crate::util::ser::Readable::read(reader) {
1299                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1300                         Err(_) => {
1301                                 copy(reader, &mut sink()).unwrap();
1302                                 return Ok(None)
1303                         },
1304                 };
1305         }
1306 }
1307
1308 impl Readable for NodeInfo {
1309         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1310                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1311                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1312                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1313                 // requires additional complexity and lookups during routing, it ends up being a
1314                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1315                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1316                         (0, _lowest_inbound_channel_fees, option),
1317                         (2, announcement_info_wrap, upgradable_option),
1318                         (4, channels, required_vec),
1319                 });
1320                 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1321                 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1322
1323                 Ok(NodeInfo {
1324                         announcement_info: announcement_info_wrap.map(|w| w.0),
1325                         channels,
1326                         node_counter: u32::max_value(),
1327                 })
1328         }
1329 }
1330
1331 const SERIALIZATION_VERSION: u8 = 1;
1332 const MIN_SERIALIZATION_VERSION: u8 = 1;
1333
1334 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1335         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1336                 self.test_node_counter_consistency();
1337
1338                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1339
1340                 self.chain_hash.write(writer)?;
1341                 let channels = self.channels.read().unwrap();
1342                 (channels.len() as u64).write(writer)?;
1343                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1344                         (*chan_id).write(writer)?;
1345                         chan_info.write(writer)?;
1346                 }
1347                 let nodes = self.nodes.read().unwrap();
1348                 (nodes.len() as u64).write(writer)?;
1349                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1350                         node_id.write(writer)?;
1351                         node_info.write(writer)?;
1352                 }
1353
1354                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1355                 write_tlv_fields!(writer, {
1356                         (1, last_rapid_gossip_sync_timestamp, option),
1357                 });
1358                 Ok(())
1359         }
1360 }
1361
1362 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1363         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1364                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1365
1366                 let chain_hash: ChainHash = Readable::read(reader)?;
1367                 let channels_count: u64 = Readable::read(reader)?;
1368                 // In Nov, 2023 there were about 15,000 nodes; we cap allocations to 1.5x that.
1369                 let mut channels = IndexedMap::with_capacity(cmp::min(channels_count as usize, 22500));
1370                 for _ in 0..channels_count {
1371                         let chan_id: u64 = Readable::read(reader)?;
1372                         let chan_info: ChannelInfo = Readable::read(reader)?;
1373                         channels.insert(chan_id, chan_info);
1374                 }
1375                 let nodes_count: u64 = Readable::read(reader)?;
1376                 if nodes_count > u32::max_value() as u64 / 2 { return Err(DecodeError::InvalidValue); }
1377                 // In Nov, 2023 there were about 69K channels; we cap allocations to 1.5x that.
1378                 let mut nodes = IndexedMap::with_capacity(cmp::min(nodes_count as usize, 103500));
1379                 for i in 0..nodes_count {
1380                         let node_id = Readable::read(reader)?;
1381                         let mut node_info: NodeInfo = Readable::read(reader)?;
1382                         node_info.node_counter = i as u32;
1383                         nodes.insert(node_id, node_info);
1384                 }
1385
1386                 for (_, chan) in channels.unordered_iter_mut() {
1387                         chan.node_one_counter =
1388                                 nodes.get(&chan.node_one).ok_or(DecodeError::InvalidValue)?.node_counter;
1389                         chan.node_two_counter =
1390                                 nodes.get(&chan.node_two).ok_or(DecodeError::InvalidValue)?.node_counter;
1391                 }
1392
1393                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1394                 read_tlv_fields!(reader, {
1395                         (1, last_rapid_gossip_sync_timestamp, option),
1396                 });
1397
1398                 Ok(NetworkGraph {
1399                         secp_ctx: Secp256k1::verification_only(),
1400                         chain_hash,
1401                         logger,
1402                         channels: RwLock::new(channels),
1403                         nodes: RwLock::new(nodes),
1404                         removed_node_counters: Mutex::new(Vec::new()),
1405                         next_node_counter: AtomicUsize::new(nodes_count as usize),
1406                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1407                         removed_nodes: Mutex::new(HashMap::new()),
1408                         removed_channels: Mutex::new(HashMap::new()),
1409                         pending_checks: utxo::PendingChecks::new(),
1410                 })
1411         }
1412 }
1413
1414 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1415         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1416                 writeln!(f, "Network map\n[Channels]")?;
1417                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1418                         writeln!(f, " {}: {}", key, val)?;
1419                 }
1420                 writeln!(f, "[Nodes]")?;
1421                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1422                         writeln!(f, " {}: {}", &node_id, val)?;
1423                 }
1424                 Ok(())
1425         }
1426 }
1427
1428 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1429 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1430         fn eq(&self, other: &Self) -> bool {
1431                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1432                 // (Assumes that we can't move within memory while a lock is held).
1433                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1434                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1435                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1436                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1437                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1438                 self.chain_hash.eq(&other.chain_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1439         }
1440 }
1441
1442 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1443         /// Creates a new, empty, network graph.
1444         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1445                 Self {
1446                         secp_ctx: Secp256k1::verification_only(),
1447                         chain_hash: ChainHash::using_genesis_block(network),
1448                         logger,
1449                         channels: RwLock::new(IndexedMap::new()),
1450                         nodes: RwLock::new(IndexedMap::new()),
1451                         next_node_counter: AtomicUsize::new(0),
1452                         removed_node_counters: Mutex::new(Vec::new()),
1453                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1454                         removed_channels: Mutex::new(HashMap::new()),
1455                         removed_nodes: Mutex::new(HashMap::new()),
1456                         pending_checks: utxo::PendingChecks::new(),
1457                 }
1458         }
1459
1460         fn test_node_counter_consistency(&self) {
1461                 #[cfg(debug_assertions)] {
1462                         let channels = self.channels.read().unwrap();
1463                         let nodes = self.nodes.read().unwrap();
1464                         let removed_node_counters = self.removed_node_counters.lock().unwrap();
1465                         let next_counter = self.next_node_counter.load(Ordering::Acquire);
1466                         assert!(next_counter < (u32::max_value() as usize) / 2);
1467                         let mut used_node_counters = vec![0u8; next_counter / 8 + 1];
1468
1469                         for counter in removed_node_counters.iter() {
1470                                 let pos = (*counter as usize) / 8;
1471                                 let bit = 1 << (counter % 8);
1472                                 assert_eq!(used_node_counters[pos] & bit, 0);
1473                                 used_node_counters[pos] |= bit;
1474                         }
1475                         for (_, node) in nodes.unordered_iter() {
1476                                 assert!((node.node_counter as usize) < next_counter);
1477                                 let pos = (node.node_counter as usize) / 8;
1478                                 let bit = 1 << (node.node_counter % 8);
1479                                 assert_eq!(used_node_counters[pos] & bit, 0);
1480                                 used_node_counters[pos] |= bit;
1481                         }
1482
1483                         for (_, chan) in channels.unordered_iter() {
1484                                 assert_eq!(chan.node_one_counter, nodes.get(&chan.node_one).unwrap().node_counter);
1485                                 assert_eq!(chan.node_two_counter, nodes.get(&chan.node_two).unwrap().node_counter);
1486                         }
1487                 }
1488         }
1489
1490         /// Returns a read-only view of the network graph.
1491         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1492                 self.test_node_counter_consistency();
1493                 let channels = self.channels.read().unwrap();
1494                 let nodes = self.nodes.read().unwrap();
1495                 ReadOnlyNetworkGraph {
1496                         channels,
1497                         nodes,
1498                         max_node_counter: (self.next_node_counter.load(Ordering::Acquire) as u32).saturating_sub(1),
1499                 }
1500         }
1501
1502         /// The unix timestamp provided by the most recent rapid gossip sync.
1503         /// It will be set by the rapid sync process after every sync completion.
1504         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1505                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1506         }
1507
1508         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1509         /// This should be done automatically by the rapid sync process after every sync completion.
1510         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1511                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1512         }
1513
1514         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1515         /// purposes.
1516         #[cfg(test)]
1517         pub fn clear_nodes_announcement_info(&self) {
1518                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1519                         node.1.announcement_info = None;
1520                 }
1521         }
1522
1523         /// For an already known node (from channel announcements), update its stored properties from a
1524         /// given node announcement.
1525         ///
1526         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1527         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1528         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1529         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1530                 verify_node_announcement(msg, &self.secp_ctx)?;
1531                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1532         }
1533
1534         /// For an already known node (from channel announcements), update its stored properties from a
1535         /// given node announcement without verifying the associated signatures. Because we aren't
1536         /// given the associated signatures here we cannot relay the node announcement to any of our
1537         /// peers.
1538         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1539                 self.update_node_from_announcement_intern(msg, None)
1540         }
1541
1542         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1543                 let mut nodes = self.nodes.write().unwrap();
1544                 match nodes.get_mut(&msg.node_id) {
1545                         None => {
1546                                 core::mem::drop(nodes);
1547                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1548                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1549                         },
1550                         Some(node) => {
1551                                 if let Some(node_info) = node.announcement_info.as_ref() {
1552                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1553                                         // updates to ensure you always have the latest one, only vaguely suggesting
1554                                         // that it be at least the current time.
1555                                         if node_info.last_update  > msg.timestamp {
1556                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1557                                         } else if node_info.last_update  == msg.timestamp {
1558                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1559                                         }
1560                                 }
1561
1562                                 let should_relay =
1563                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1564                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1565                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1566                                 node.announcement_info = Some(NodeAnnouncementInfo {
1567                                         features: msg.features.clone(),
1568                                         last_update: msg.timestamp,
1569                                         rgb: msg.rgb,
1570                                         alias: msg.alias,
1571                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1572                                 });
1573
1574                                 Ok(())
1575                         }
1576                 }
1577         }
1578
1579         /// Store or update channel info from a channel announcement.
1580         ///
1581         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1582         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1583         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1584         ///
1585         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1586         /// the corresponding UTXO exists on chain and is correctly-formatted.
1587         pub fn update_channel_from_announcement<U: Deref>(
1588                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1589         ) -> Result<(), LightningError>
1590         where
1591                 U::Target: UtxoLookup,
1592         {
1593                 verify_channel_announcement(msg, &self.secp_ctx)?;
1594                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1595         }
1596
1597         /// Store or update channel info from a channel announcement.
1598         ///
1599         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1600         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1601         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1602         ///
1603         /// This will skip verification of if the channel is actually on-chain.
1604         pub fn update_channel_from_announcement_no_lookup(
1605                 &self, msg: &ChannelAnnouncement
1606         ) -> Result<(), LightningError> {
1607                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1608         }
1609
1610         /// Store or update channel info from a channel announcement without verifying the associated
1611         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1612         /// channel announcement to any of our peers.
1613         ///
1614         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1615         /// the corresponding UTXO exists on chain and is correctly-formatted.
1616         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1617                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1618         ) -> Result<(), LightningError>
1619         where
1620                 U::Target: UtxoLookup,
1621         {
1622                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1623         }
1624
1625         /// Update channel from partial announcement data received via rapid gossip sync
1626         ///
1627         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1628         /// rapid gossip sync server)
1629         ///
1630         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1631         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1632                 if node_id_1 == node_id_2 {
1633                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1634                 };
1635
1636                 let node_1 = NodeId::from_pubkey(&node_id_1);
1637                 let node_2 = NodeId::from_pubkey(&node_id_2);
1638                 let channel_info = ChannelInfo {
1639                         features,
1640                         node_one: node_1.clone(),
1641                         one_to_two: None,
1642                         node_two: node_2.clone(),
1643                         two_to_one: None,
1644                         capacity_sats: None,
1645                         announcement_message: None,
1646                         announcement_received_time: timestamp,
1647                         node_one_counter: u32::max_value(),
1648                         node_two_counter: u32::max_value(),
1649                 };
1650
1651                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1652         }
1653
1654         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1655                 let mut channels = self.channels.write().unwrap();
1656                 let mut nodes = self.nodes.write().unwrap();
1657
1658                 let node_id_a = channel_info.node_one.clone();
1659                 let node_id_b = channel_info.node_two.clone();
1660
1661                 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1662
1663                 let channel_entry = channels.entry(short_channel_id);
1664                 let channel_info = match channel_entry {
1665                         IndexedMapEntry::Occupied(mut entry) => {
1666                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1667                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1668                                 //exactly how...
1669                                 if utxo_value.is_some() {
1670                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1671                                         // only sometimes returns results. In any case remove the previous entry. Note
1672                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1673                                         // do that because
1674                                         // a) we don't *require* a UTXO provider that always returns results.
1675                                         // b) we don't track UTXOs of channels we know about and remove them if they
1676                                         //    get reorg'd out.
1677                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1678                                         self.remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1679                                         *entry.get_mut() = channel_info;
1680                                         entry.into_mut()
1681                                 } else {
1682                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1683                                 }
1684                         },
1685                         IndexedMapEntry::Vacant(entry) => {
1686                                 entry.insert(channel_info)
1687                         }
1688                 };
1689
1690                 let mut node_counter_id = [
1691                         (&mut channel_info.node_one_counter, node_id_a),
1692                         (&mut channel_info.node_two_counter, node_id_b)
1693                 ];
1694                 for (node_counter, current_node_id) in node_counter_id.iter_mut() {
1695                         match nodes.entry(current_node_id.clone()) {
1696                                 IndexedMapEntry::Occupied(node_entry) => {
1697                                         let node = node_entry.into_mut();
1698                                         node.channels.push(short_channel_id);
1699                                         **node_counter = node.node_counter;
1700                                 },
1701                                 IndexedMapEntry::Vacant(node_entry) => {
1702                                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1703                                         **node_counter = removed_node_counters.pop()
1704                                                 .unwrap_or(self.next_node_counter.fetch_add(1, Ordering::Relaxed) as u32);
1705                                         node_entry.insert(NodeInfo {
1706                                                 channels: vec!(short_channel_id),
1707                                                 announcement_info: None,
1708                                                 node_counter: **node_counter,
1709                                         });
1710                                 }
1711                         };
1712                 };
1713
1714                 Ok(())
1715         }
1716
1717         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1718                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1719         ) -> Result<(), LightningError>
1720         where
1721                 U::Target: UtxoLookup,
1722         {
1723                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1724                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1725                 }
1726
1727                 if msg.chain_hash != self.chain_hash {
1728                         return Err(LightningError {
1729                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1730                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1731                         });
1732                 }
1733
1734                 {
1735                         let channels = self.channels.read().unwrap();
1736
1737                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1738                                 if chan.capacity_sats.is_some() {
1739                                         // If we'd previously looked up the channel on-chain and checked the script
1740                                         // against what appears on-chain, ignore the duplicate announcement.
1741                                         //
1742                                         // Because a reorg could replace one channel with another at the same SCID, if
1743                                         // the channel appears to be different, we re-validate. This doesn't expose us
1744                                         // to any more DoS risk than not, as a peer can always flood us with
1745                                         // randomly-generated SCID values anyway.
1746                                         //
1747                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1748                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1749                                         // if the peers on the channel changed anyway.
1750                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1751                                                 return Err(LightningError {
1752                                                         err: "Already have chain-validated channel".to_owned(),
1753                                                         action: ErrorAction::IgnoreDuplicateGossip
1754                                                 });
1755                                         }
1756                                 } else if utxo_lookup.is_none() {
1757                                         // Similarly, if we can't check the chain right now anyway, ignore the
1758                                         // duplicate announcement without bothering to take the channels write lock.
1759                                         return Err(LightningError {
1760                                                 err: "Already have non-chain-validated channel".to_owned(),
1761                                                 action: ErrorAction::IgnoreDuplicateGossip
1762                                         });
1763                                 }
1764                         }
1765                 }
1766
1767                 {
1768                         let removed_channels = self.removed_channels.lock().unwrap();
1769                         let removed_nodes = self.removed_nodes.lock().unwrap();
1770                         if removed_channels.contains_key(&msg.short_channel_id) ||
1771                                 removed_nodes.contains_key(&msg.node_id_1) ||
1772                                 removed_nodes.contains_key(&msg.node_id_2) {
1773                                 return Err(LightningError{
1774                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1775                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1776                         }
1777                 }
1778
1779                 let utxo_value = self.pending_checks.check_channel_announcement(
1780                         utxo_lookup, msg, full_msg)?;
1781
1782                 #[allow(unused_mut, unused_assignments)]
1783                 let mut announcement_received_time = 0;
1784                 #[cfg(feature = "std")]
1785                 {
1786                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1787                 }
1788
1789                 let chan_info = ChannelInfo {
1790                         features: msg.features.clone(),
1791                         node_one: msg.node_id_1,
1792                         one_to_two: None,
1793                         node_two: msg.node_id_2,
1794                         two_to_one: None,
1795                         capacity_sats: utxo_value,
1796                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1797                                 { full_msg.cloned() } else { None },
1798                         announcement_received_time,
1799                         node_one_counter: u32::max_value(),
1800                         node_two_counter: u32::max_value(),
1801                 };
1802
1803                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1804
1805                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1806                 Ok(())
1807         }
1808
1809         /// Marks a channel in the graph as failed permanently.
1810         ///
1811         /// The channel and any node for which this was their last channel are removed from the graph.
1812         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1813                 #[cfg(feature = "std")]
1814                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1815                 #[cfg(not(feature = "std"))]
1816                 let current_time_unix = None;
1817
1818                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1819         }
1820
1821         /// Marks a channel in the graph as failed permanently.
1822         ///
1823         /// The channel and any node for which this was their last channel are removed from the graph.
1824         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1825                 let mut channels = self.channels.write().unwrap();
1826                 if let Some(chan) = channels.remove(&short_channel_id) {
1827                         let mut nodes = self.nodes.write().unwrap();
1828                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1829                         self.remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1830                 }
1831         }
1832
1833         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1834         /// from local storage.
1835         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1836                 #[cfg(feature = "std")]
1837                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1838                 #[cfg(not(feature = "std"))]
1839                 let current_time_unix = None;
1840
1841                 let node_id = NodeId::from_pubkey(node_id);
1842                 let mut channels = self.channels.write().unwrap();
1843                 let mut nodes = self.nodes.write().unwrap();
1844                 let mut removed_channels = self.removed_channels.lock().unwrap();
1845                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1846
1847                 if let Some(node) = nodes.remove(&node_id) {
1848                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1849                         for scid in node.channels.iter() {
1850                                 if let Some(chan_info) = channels.remove(scid) {
1851                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1852                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1853                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1854                                                         *scid != *chan_id
1855                                                 });
1856                                                 if other_node_entry.get().channels.is_empty() {
1857                                                         removed_node_counters.push(other_node_entry.get().node_counter);
1858                                                         other_node_entry.remove_entry();
1859                                                 }
1860                                         }
1861                                         removed_channels.insert(*scid, current_time_unix);
1862                                 }
1863                         }
1864                         removed_node_counters.push(node.node_counter);
1865                         removed_nodes.insert(node_id, current_time_unix);
1866                 }
1867         }
1868
1869         #[cfg(feature = "std")]
1870         /// Removes information about channels that we haven't heard any updates about in some time.
1871         /// This can be used regularly to prune the network graph of channels that likely no longer
1872         /// exist.
1873         ///
1874         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1875         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1876         /// pruning occur for updates which are at least two weeks old, which we implement here.
1877         ///
1878         /// Note that for users of the `lightning-background-processor` crate this method may be
1879         /// automatically called regularly for you.
1880         ///
1881         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1882         /// in the map for a while so that these can be resynced from gossip in the future.
1883         ///
1884         /// This method is only available with the `std` feature. See
1885         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1886         pub fn remove_stale_channels_and_tracking(&self) {
1887                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1888                 self.remove_stale_channels_and_tracking_with_time(time);
1889         }
1890
1891         /// Removes information about channels that we haven't heard any updates about in some time.
1892         /// This can be used regularly to prune the network graph of channels that likely no longer
1893         /// exist.
1894         ///
1895         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1896         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1897         /// pruning occur for updates which are at least two weeks old, which we implement here.
1898         ///
1899         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1900         /// in the map for a while so that these can be resynced from gossip in the future.
1901         ///
1902         /// This function takes the current unix time as an argument. For users with the `std` feature
1903         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1904         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1905                 let mut channels = self.channels.write().unwrap();
1906                 // Time out if we haven't received an update in at least 14 days.
1907                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1908                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1909                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1910                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1911                 // time.
1912                 let mut scids_to_remove = Vec::new();
1913                 for (scid, info) in channels.unordered_iter_mut() {
1914                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1915                                 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1916                                         scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1917                                 info.one_to_two = None;
1918                         }
1919                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1920                                 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1921                                         scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1922                                 info.two_to_one = None;
1923                         }
1924                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1925                                 // We check the announcement_received_time here to ensure we don't drop
1926                                 // announcements that we just received and are just waiting for our peer to send a
1927                                 // channel_update for.
1928                                 let announcement_received_timestamp = info.announcement_received_time;
1929                                 if announcement_received_timestamp < min_time_unix as u64 {
1930                                         log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1931                                                 scid, announcement_received_timestamp, min_time_unix);
1932                                         scids_to_remove.push(*scid);
1933                                 }
1934                         }
1935                 }
1936                 if !scids_to_remove.is_empty() {
1937                         let mut nodes = self.nodes.write().unwrap();
1938                         for scid in scids_to_remove {
1939                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1940                                 self.remove_channel_in_nodes(&mut nodes, &info, scid);
1941                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1942                         }
1943                 }
1944
1945                 let should_keep_tracking = |time: &mut Option<u64>| {
1946                         if let Some(time) = time {
1947                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1948                         } else {
1949                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1950                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1951                                 // of this function.
1952                                 #[cfg(feature = "no-std")]
1953                                 {
1954                                         let mut tracked_time = Some(current_time_unix);
1955                                         core::mem::swap(time, &mut tracked_time);
1956                                         return true;
1957                                 }
1958                                 #[allow(unreachable_code)]
1959                                 false
1960                         }};
1961
1962                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1963                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1964         }
1965
1966         /// For an already known (from announcement) channel, update info about one of the directions
1967         /// of the channel.
1968         ///
1969         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1970         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1971         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1972         ///
1973         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1974         /// materially in the future will be rejected.
1975         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1976                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), false)
1977         }
1978
1979         /// For an already known (from announcement) channel, update info about one of the directions
1980         /// of the channel without verifying the associated signatures. Because we aren't given the
1981         /// associated signatures here we cannot relay the channel update to any of our peers.
1982         ///
1983         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1984         /// materially in the future will be rejected.
1985         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1986                 self.update_channel_internal(msg, None, None, false)
1987         }
1988
1989         /// For an already known (from announcement) channel, verify the given [`ChannelUpdate`].
1990         ///
1991         /// This checks whether the update currently is applicable by [`Self::update_channel`].
1992         ///
1993         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1994         /// materially in the future will be rejected.
1995         pub fn verify_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1996                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), true)
1997         }
1998
1999         fn update_channel_internal(&self, msg: &msgs::UnsignedChannelUpdate,
2000                 full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>,
2001                 only_verify: bool) -> Result<(), LightningError>
2002         {
2003                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
2004
2005                 if msg.chain_hash != self.chain_hash {
2006                         return Err(LightningError {
2007                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
2008                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
2009                         });
2010                 }
2011
2012                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
2013                 {
2014                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
2015                         // disable this check during tests!
2016                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2017                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
2018                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2019                         }
2020                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
2021                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2022                         }
2023                 }
2024
2025                 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
2026
2027                 let mut channels = self.channels.write().unwrap();
2028                 match channels.get_mut(&msg.short_channel_id) {
2029                         None => {
2030                                 core::mem::drop(channels);
2031                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
2032                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
2033                         },
2034                         Some(channel) => {
2035                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
2036                                         return Err(LightningError{err:
2037                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
2038                                                 action: ErrorAction::IgnoreError});
2039                                 }
2040
2041                                 if let Some(capacity_sats) = channel.capacity_sats {
2042                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
2043                                         // Don't query UTXO set here to reduce DoS risks.
2044                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
2045                                                 return Err(LightningError{err:
2046                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
2047                                                         action: ErrorAction::IgnoreError});
2048                                         }
2049                                 }
2050                                 macro_rules! check_update_latest {
2051                                         ($target: expr) => {
2052                                                 if let Some(existing_chan_info) = $target.as_ref() {
2053                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
2054                                                         // order updates to ensure you always have the latest one, only
2055                                                         // suggesting  that it be at least the current time. For
2056                                                         // channel_updates specifically, the BOLTs discuss the possibility of
2057                                                         // pruning based on the timestamp field being more than two weeks old,
2058                                                         // but only in the non-normative section.
2059                                                         if existing_chan_info.last_update > msg.timestamp {
2060                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2061                                                         } else if existing_chan_info.last_update == msg.timestamp {
2062                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2063                                                         }
2064                                                 }
2065                                         }
2066                                 }
2067
2068                                 macro_rules! get_new_channel_info {
2069                                         () => { {
2070                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
2071                                                         { full_msg.cloned() } else { None };
2072
2073                                                 let updated_channel_update_info = ChannelUpdateInfo {
2074                                                         enabled: chan_enabled,
2075                                                         last_update: msg.timestamp,
2076                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
2077                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
2078                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
2079                                                         fees: RoutingFees {
2080                                                                 base_msat: msg.fee_base_msat,
2081                                                                 proportional_millionths: msg.fee_proportional_millionths,
2082                                                         },
2083                                                         last_update_message
2084                                                 };
2085                                                 Some(updated_channel_update_info)
2086                                         } }
2087                                 }
2088
2089                                 let msg_hash = hash_to_message!(&message_sha256d_hash(&msg)[..]);
2090                                 if msg.flags & 1 == 1 {
2091                                         check_update_latest!(channel.two_to_one);
2092                                         if let Some(sig) = sig {
2093                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
2094                                                         err: "Couldn't parse source node pubkey".to_owned(),
2095                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2096                                                 })?, "channel_update");
2097                                         }
2098                                         if !only_verify {
2099                                                 channel.two_to_one = get_new_channel_info!();
2100                                         }
2101                                 } else {
2102                                         check_update_latest!(channel.one_to_two);
2103                                         if let Some(sig) = sig {
2104                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
2105                                                         err: "Couldn't parse destination node pubkey".to_owned(),
2106                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2107                                                 })?, "channel_update");
2108                                         }
2109                                         if !only_verify {
2110                                                 channel.one_to_two = get_new_channel_info!();
2111                                         }
2112                                 }
2113                         }
2114                 }
2115
2116                 Ok(())
2117         }
2118
2119         fn remove_channel_in_nodes(&self, nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
2120                 macro_rules! remove_from_node {
2121                         ($node_id: expr) => {
2122                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
2123                                         entry.get_mut().channels.retain(|chan_id| {
2124                                                 short_channel_id != *chan_id
2125                                         });
2126                                         if entry.get().channels.is_empty() {
2127                                                 self.removed_node_counters.lock().unwrap().push(entry.get().node_counter);
2128                                                 entry.remove_entry();
2129                                         }
2130                                 } else {
2131                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
2132                                 }
2133                         }
2134                 }
2135
2136                 remove_from_node!(chan.node_one);
2137                 remove_from_node!(chan.node_two);
2138         }
2139 }
2140
2141 impl ReadOnlyNetworkGraph<'_> {
2142         /// Returns all known valid channels' short ids along with announced channel info.
2143         ///
2144         /// This is not exported to bindings users because we don't want to return lifetime'd references
2145         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2146                 &*self.channels
2147         }
2148
2149         /// Returns information on a channel with the given id.
2150         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2151                 self.channels.get(&short_channel_id)
2152         }
2153
2154         #[cfg(c_bindings)] // Non-bindings users should use `channels`
2155         /// Returns the list of channels in the graph
2156         pub fn list_channels(&self) -> Vec<u64> {
2157                 self.channels.unordered_keys().map(|c| *c).collect()
2158         }
2159
2160         /// Returns all known nodes' public keys along with announced node info.
2161         ///
2162         /// This is not exported to bindings users because we don't want to return lifetime'd references
2163         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2164                 &*self.nodes
2165         }
2166
2167         /// Returns information on a node with the given id.
2168         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2169                 self.nodes.get(node_id)
2170         }
2171
2172         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2173         /// Returns the list of nodes in the graph
2174         pub fn list_nodes(&self) -> Vec<NodeId> {
2175                 self.nodes.unordered_keys().map(|n| *n).collect()
2176         }
2177
2178         /// Get network addresses by node id.
2179         /// Returns None if the requested node is completely unknown,
2180         /// or if node announcement for the node was never received.
2181         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<SocketAddress>> {
2182                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2183                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2184         }
2185
2186         /// Gets the maximum possible node_counter for a node in this graph
2187         pub(crate) fn max_node_counter(&self) -> u32 {
2188                 self.max_node_counter
2189         }
2190 }
2191
2192 #[cfg(test)]
2193 pub(crate) mod tests {
2194         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2195         use crate::ln::channelmanager;
2196         use crate::ln::chan_utils::make_funding_redeemscript;
2197         #[cfg(feature = "std")]
2198         use crate::ln::features::InitFeatures;
2199         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2200         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2201         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2202                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2203                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2204         use crate::util::config::UserConfig;
2205         use crate::util::test_utils;
2206         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2207         use crate::util::scid_utils::scid_from_parts;
2208
2209         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2210         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2211
2212         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2213         use bitcoin::hashes::Hash;
2214         use bitcoin::hashes::hex::FromHex;
2215         use bitcoin::network::constants::Network;
2216         use bitcoin::blockdata::constants::ChainHash;
2217         use bitcoin::blockdata::script::ScriptBuf;
2218         use bitcoin::blockdata::transaction::TxOut;
2219         use bitcoin::secp256k1::{PublicKey, SecretKey};
2220         use bitcoin::secp256k1::{All, Secp256k1};
2221
2222         use crate::io;
2223         use bitcoin::secp256k1;
2224         use crate::prelude::*;
2225         use crate::sync::Arc;
2226
2227         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2228                 let logger = Arc::new(test_utils::TestLogger::new());
2229                 NetworkGraph::new(Network::Testnet, logger)
2230         }
2231
2232         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2233                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2234                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2235         ) {
2236                 let secp_ctx = Secp256k1::new();
2237                 let logger = Arc::new(test_utils::TestLogger::new());
2238                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2239                 (secp_ctx, gossip_sync)
2240         }
2241
2242         #[test]
2243         #[cfg(feature = "std")]
2244         fn request_full_sync_finite_times() {
2245                 let network_graph = create_network_graph();
2246                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2247                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&<Vec<u8>>::from_hex("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2248
2249                 assert!(gossip_sync.should_request_full_sync(&node_id));
2250                 assert!(gossip_sync.should_request_full_sync(&node_id));
2251                 assert!(gossip_sync.should_request_full_sync(&node_id));
2252                 assert!(gossip_sync.should_request_full_sync(&node_id));
2253                 assert!(gossip_sync.should_request_full_sync(&node_id));
2254                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2255         }
2256
2257         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2258                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2259                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2260                         features: channelmanager::provided_node_features(&UserConfig::default()),
2261                         timestamp: 100,
2262                         node_id,
2263                         rgb: [0; 3],
2264                         alias: NodeAlias([0; 32]),
2265                         addresses: Vec::new(),
2266                         excess_address_data: Vec::new(),
2267                         excess_data: Vec::new(),
2268                 };
2269                 f(&mut unsigned_announcement);
2270                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2271                 NodeAnnouncement {
2272                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2273                         contents: unsigned_announcement
2274                 }
2275         }
2276
2277         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2278                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2279                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2280                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2281                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2282
2283                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2284                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2285                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2286                         short_channel_id: 0,
2287                         node_id_1: NodeId::from_pubkey(&node_id_1),
2288                         node_id_2: NodeId::from_pubkey(&node_id_2),
2289                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2290                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2291                         excess_data: Vec::new(),
2292                 };
2293                 f(&mut unsigned_announcement);
2294                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2295                 ChannelAnnouncement {
2296                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2297                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2298                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2299                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2300                         contents: unsigned_announcement,
2301                 }
2302         }
2303
2304         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> ScriptBuf {
2305                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2306                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2307                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2308                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2309         }
2310
2311         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2312                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2313                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2314                         short_channel_id: 0,
2315                         timestamp: 100,
2316                         flags: 0,
2317                         cltv_expiry_delta: 144,
2318                         htlc_minimum_msat: 1_000_000,
2319                         htlc_maximum_msat: 1_000_000,
2320                         fee_base_msat: 10_000,
2321                         fee_proportional_millionths: 20,
2322                         excess_data: Vec::new()
2323                 };
2324                 f(&mut unsigned_channel_update);
2325                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2326                 ChannelUpdate {
2327                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2328                         contents: unsigned_channel_update
2329                 }
2330         }
2331
2332         #[test]
2333         fn handling_node_announcements() {
2334                 let network_graph = create_network_graph();
2335                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2336
2337                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2338                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2339                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2340
2341                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2342                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2343                         Ok(_) => panic!(),
2344                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2345                 };
2346
2347                 {
2348                         // Announce a channel to add a corresponding node.
2349                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2350                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2351                                 Ok(res) => assert!(res),
2352                                 _ => panic!()
2353                         };
2354                 }
2355
2356                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2357                         Ok(res) => assert!(res),
2358                         Err(_) => panic!()
2359                 };
2360
2361                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2362                 match gossip_sync.handle_node_announcement(
2363                         &NodeAnnouncement {
2364                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2365                                 contents: valid_announcement.contents.clone()
2366                 }) {
2367                         Ok(_) => panic!(),
2368                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2369                 };
2370
2371                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2372                         unsigned_announcement.timestamp += 1000;
2373                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2374                 }, node_1_privkey, &secp_ctx);
2375                 // Return false because contains excess data.
2376                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2377                         Ok(res) => assert!(!res),
2378                         Err(_) => panic!()
2379                 };
2380
2381                 // Even though previous announcement was not relayed further, we still accepted it,
2382                 // so we now won't accept announcements before the previous one.
2383                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2384                         unsigned_announcement.timestamp += 1000 - 10;
2385                 }, node_1_privkey, &secp_ctx);
2386                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2387                         Ok(_) => panic!(),
2388                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2389                 };
2390         }
2391
2392         #[test]
2393         fn handling_channel_announcements() {
2394                 let secp_ctx = Secp256k1::new();
2395                 let logger = test_utils::TestLogger::new();
2396
2397                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2398                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2399
2400                 let good_script = get_channel_script(&secp_ctx);
2401                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2402
2403                 // Test if the UTXO lookups were not supported
2404                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2405                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2406                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2407                         Ok(res) => assert!(res),
2408                         _ => panic!()
2409                 };
2410
2411                 {
2412                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2413                                 None => panic!(),
2414                                 Some(_) => ()
2415                         };
2416                 }
2417
2418                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2419                 // drop new one on the floor, since we can't see any changes.
2420                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2421                         Ok(_) => panic!(),
2422                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2423                 };
2424
2425                 // Test if an associated transaction were not on-chain (or not confirmed).
2426                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2427                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2428                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2429                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2430
2431                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2432                         unsigned_announcement.short_channel_id += 1;
2433                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2434                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2435                         Ok(_) => panic!(),
2436                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2437                 };
2438
2439                 // Now test if the transaction is found in the UTXO set and the script is correct.
2440                 *chain_source.utxo_ret.lock().unwrap() =
2441                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2442                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2443                         unsigned_announcement.short_channel_id += 2;
2444                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2445                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2446                         Ok(res) => assert!(res),
2447                         _ => panic!()
2448                 };
2449
2450                 {
2451                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2452                                 None => panic!(),
2453                                 Some(_) => ()
2454                         };
2455                 }
2456
2457                 // If we receive announcement for the same channel, once we've validated it against the
2458                 // chain, we simply ignore all new (duplicate) announcements.
2459                 *chain_source.utxo_ret.lock().unwrap() =
2460                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2461                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2462                         Ok(_) => panic!(),
2463                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2464                 };
2465
2466                 #[cfg(feature = "std")]
2467                 {
2468                         use std::time::{SystemTime, UNIX_EPOCH};
2469
2470                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2471                         // Mark a node as permanently failed so it's tracked as removed.
2472                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2473
2474                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2475                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2476                                 unsigned_announcement.short_channel_id += 3;
2477                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2478                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2479                                 Ok(_) => panic!(),
2480                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2481                         }
2482
2483                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2484
2485                         // The above channel announcement should be handled as per normal now.
2486                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2487                                 Ok(res) => assert!(res),
2488                                 _ => panic!()
2489                         }
2490                 }
2491
2492                 // Don't relay valid channels with excess data
2493                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2494                         unsigned_announcement.short_channel_id += 4;
2495                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2496                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2497                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2498                         Ok(res) => assert!(!res),
2499                         _ => panic!()
2500                 };
2501
2502                 let mut invalid_sig_announcement = valid_announcement.clone();
2503                 invalid_sig_announcement.contents.excess_data = Vec::new();
2504                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2505                         Ok(_) => panic!(),
2506                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2507                 };
2508
2509                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2510                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2511                         Ok(_) => panic!(),
2512                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2513                 };
2514
2515                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2516                 // announcement is mainnet).
2517                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2518                         unsigned_announcement.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2519                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2520                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2521                         Ok(_) => panic!(),
2522                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2523                 };
2524         }
2525
2526         #[test]
2527         fn handling_channel_update() {
2528                 let secp_ctx = Secp256k1::new();
2529                 let logger = test_utils::TestLogger::new();
2530                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2531                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2532                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2533
2534                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2535                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2536
2537                 let amount_sats = 1000_000;
2538                 let short_channel_id;
2539
2540                 {
2541                         // Announce a channel we will update
2542                         let good_script = get_channel_script(&secp_ctx);
2543                         *chain_source.utxo_ret.lock().unwrap() =
2544                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2545
2546                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2547                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2548                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2549                                 Ok(_) => (),
2550                                 Err(_) => panic!()
2551                         };
2552
2553                 }
2554
2555                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2556                 network_graph.verify_channel_update(&valid_channel_update).unwrap();
2557                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2558                         Ok(res) => assert!(res),
2559                         _ => panic!(),
2560                 };
2561
2562                 {
2563                         match network_graph.read_only().channels().get(&short_channel_id) {
2564                                 None => panic!(),
2565                                 Some(channel_info) => {
2566                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2567                                         assert!(channel_info.two_to_one.is_none());
2568                                 }
2569                         };
2570                 }
2571
2572                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2573                         unsigned_channel_update.timestamp += 100;
2574                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2575                 }, node_1_privkey, &secp_ctx);
2576                 // Return false because contains excess data
2577                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2578                         Ok(res) => assert!(!res),
2579                         _ => panic!()
2580                 };
2581
2582                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2583                         unsigned_channel_update.timestamp += 110;
2584                         unsigned_channel_update.short_channel_id += 1;
2585                 }, node_1_privkey, &secp_ctx);
2586                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2587                         Ok(_) => panic!(),
2588                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2589                 };
2590
2591                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2592                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2593                         unsigned_channel_update.timestamp += 110;
2594                 }, node_1_privkey, &secp_ctx);
2595                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2596                         Ok(_) => panic!(),
2597                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2598                 };
2599
2600                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2601                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2602                         unsigned_channel_update.timestamp += 110;
2603                 }, node_1_privkey, &secp_ctx);
2604                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2605                         Ok(_) => panic!(),
2606                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2607                 };
2608
2609                 // Even though previous update was not relayed further, we still accepted it,
2610                 // so we now won't accept update before the previous one.
2611                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2612                         unsigned_channel_update.timestamp += 100;
2613                 }, node_1_privkey, &secp_ctx);
2614                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2615                         Ok(_) => panic!(),
2616                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2617                 };
2618
2619                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2620                         unsigned_channel_update.timestamp += 500;
2621                 }, node_1_privkey, &secp_ctx);
2622                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2623                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2624                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2625                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2626                         Ok(_) => panic!(),
2627                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2628                 };
2629
2630                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2631                 // update is mainet).
2632                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2633                         unsigned_channel_update.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2634                 }, node_1_privkey, &secp_ctx);
2635
2636                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2637                         Ok(_) => panic!(),
2638                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2639                 };
2640         }
2641
2642         #[test]
2643         fn handling_network_update() {
2644                 let logger = test_utils::TestLogger::new();
2645                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2646                 let secp_ctx = Secp256k1::new();
2647
2648                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2649                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2650                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2651
2652                 {
2653                         // There is no nodes in the table at the beginning.
2654                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2655                 }
2656
2657                 let short_channel_id;
2658                 {
2659                         // Check we won't apply an update via `handle_network_update` for privacy reasons, but
2660                         // can continue fine if we manually apply it.
2661                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2662                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2663                         let chain_source: Option<&test_utils::TestChainSource> = None;
2664                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2665                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2666
2667                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2668                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2669
2670                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2671                                 msg: valid_channel_update.clone(),
2672                         });
2673
2674                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2675                         network_graph.update_channel(&valid_channel_update).unwrap();
2676                 }
2677
2678                 // Non-permanent failure doesn't touch the channel at all
2679                 {
2680                         match network_graph.read_only().channels().get(&short_channel_id) {
2681                                 None => panic!(),
2682                                 Some(channel_info) => {
2683                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2684                                 }
2685                         };
2686
2687                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2688                                 short_channel_id,
2689                                 is_permanent: false,
2690                         });
2691
2692                         match network_graph.read_only().channels().get(&short_channel_id) {
2693                                 None => panic!(),
2694                                 Some(channel_info) => {
2695                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2696                                 }
2697                         };
2698                 }
2699
2700                 // Permanent closing deletes a channel
2701                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2702                         short_channel_id,
2703                         is_permanent: true,
2704                 });
2705
2706                 assert_eq!(network_graph.read_only().channels().len(), 0);
2707                 // Nodes are also deleted because there are no associated channels anymore
2708                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2709
2710                 {
2711                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2712                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2713
2714                         // Announce a channel to test permanent node failure
2715                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2716                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2717                         let chain_source: Option<&test_utils::TestChainSource> = None;
2718                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2719                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2720
2721                         // Non-permanent node failure does not delete any nodes or channels
2722                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2723                                 node_id: node_2_id,
2724                                 is_permanent: false,
2725                         });
2726
2727                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2728                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2729
2730                         // Permanent node failure deletes node and its channels
2731                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2732                                 node_id: node_2_id,
2733                                 is_permanent: true,
2734                         });
2735
2736                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2737                         // Channels are also deleted because the associated node has been deleted
2738                         assert_eq!(network_graph.read_only().channels().len(), 0);
2739                 }
2740         }
2741
2742         #[test]
2743         fn test_channel_timeouts() {
2744                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2745                 let logger = test_utils::TestLogger::new();
2746                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2747                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2748                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2749                 let secp_ctx = Secp256k1::new();
2750
2751                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2752                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2753
2754                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2755                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2756                 let chain_source: Option<&test_utils::TestChainSource> = None;
2757                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2758                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2759
2760                 // Submit two channel updates for each channel direction (update.flags bit).
2761                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2762                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2763                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2764
2765                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2766                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2767                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2768
2769                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2770                 assert_eq!(network_graph.read_only().channels().len(), 1);
2771                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2772
2773                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2774                 #[cfg(not(feature = "std"))] {
2775                         // Make sure removed channels are tracked.
2776                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2777                 }
2778                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2779                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2780
2781                 #[cfg(feature = "std")]
2782                 {
2783                         // In std mode, a further check is performed before fully removing the channel -
2784                         // the channel_announcement must have been received at least two weeks ago. We
2785                         // fudge that here by indicating the time has jumped two weeks.
2786                         assert_eq!(network_graph.read_only().channels().len(), 1);
2787                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2788
2789                         // Note that the directional channel information will have been removed already..
2790                         // We want to check that this will work even if *one* of the channel updates is recent,
2791                         // so we should add it with a recent timestamp.
2792                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2793                         use std::time::{SystemTime, UNIX_EPOCH};
2794                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2795                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2796                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2797                         }, node_1_privkey, &secp_ctx);
2798                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2799                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2800                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2801                         // Make sure removed channels are tracked.
2802                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2803                         // Provide a later time so that sufficient time has passed
2804                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2805                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2806                 }
2807
2808                 assert_eq!(network_graph.read_only().channels().len(), 0);
2809                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2810                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2811
2812                 #[cfg(feature = "std")]
2813                 {
2814                         use std::time::{SystemTime, UNIX_EPOCH};
2815
2816                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2817
2818                         // Clear tracked nodes and channels for clean slate
2819                         network_graph.removed_channels.lock().unwrap().clear();
2820                         network_graph.removed_nodes.lock().unwrap().clear();
2821
2822                         // Add a channel and nodes from channel announcement. So our network graph will
2823                         // now only consist of two nodes and one channel between them.
2824                         assert!(network_graph.update_channel_from_announcement(
2825                                 &valid_channel_announcement, &chain_source).is_ok());
2826
2827                         // Mark the channel as permanently failed. This will also remove the two nodes
2828                         // and all of the entries will be tracked as removed.
2829                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2830
2831                         // Should not remove from tracking if insufficient time has passed
2832                         network_graph.remove_stale_channels_and_tracking_with_time(
2833                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2834                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2835
2836                         // Provide a later time so that sufficient time has passed
2837                         network_graph.remove_stale_channels_and_tracking_with_time(
2838                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2839                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2840                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2841                 }
2842
2843                 #[cfg(not(feature = "std"))]
2844                 {
2845                         // When we don't have access to the system clock, the time we started tracking removal will only
2846                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2847                         // only if sufficient time has passed after that first call, will the next call remove it from
2848                         // tracking.
2849                         let removal_time = 1664619654;
2850
2851                         // Clear removed nodes and channels for clean slate
2852                         network_graph.removed_channels.lock().unwrap().clear();
2853                         network_graph.removed_nodes.lock().unwrap().clear();
2854
2855                         // Add a channel and nodes from channel announcement. So our network graph will
2856                         // now only consist of two nodes and one channel between them.
2857                         assert!(network_graph.update_channel_from_announcement(
2858                                 &valid_channel_announcement, &chain_source).is_ok());
2859
2860                         // Mark the channel as permanently failed. This will also remove the two nodes
2861                         // and all of the entries will be tracked as removed.
2862                         network_graph.channel_failed_permanent(short_channel_id);
2863
2864                         // The first time we call the following, the channel will have a removal time assigned.
2865                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2866                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2867
2868                         // Provide a later time so that sufficient time has passed
2869                         network_graph.remove_stale_channels_and_tracking_with_time(
2870                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2871                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2872                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2873                 }
2874         }
2875
2876         #[test]
2877         fn getting_next_channel_announcements() {
2878                 let network_graph = create_network_graph();
2879                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2880                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2881                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2882
2883                 // Channels were not announced yet.
2884                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2885                 assert!(channels_with_announcements.is_none());
2886
2887                 let short_channel_id;
2888                 {
2889                         // Announce a channel we will update
2890                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2891                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2892                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2893                                 Ok(_) => (),
2894                                 Err(_) => panic!()
2895                         };
2896                 }
2897
2898                 // Contains initial channel announcement now.
2899                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2900                 if let Some(channel_announcements) = channels_with_announcements {
2901                         let (_, ref update_1, ref update_2) = channel_announcements;
2902                         assert_eq!(update_1, &None);
2903                         assert_eq!(update_2, &None);
2904                 } else {
2905                         panic!();
2906                 }
2907
2908                 {
2909                         // Valid channel update
2910                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2911                                 unsigned_channel_update.timestamp = 101;
2912                         }, node_1_privkey, &secp_ctx);
2913                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2914                                 Ok(_) => (),
2915                                 Err(_) => panic!()
2916                         };
2917                 }
2918
2919                 // Now contains an initial announcement and an update.
2920                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2921                 if let Some(channel_announcements) = channels_with_announcements {
2922                         let (_, ref update_1, ref update_2) = channel_announcements;
2923                         assert_ne!(update_1, &None);
2924                         assert_eq!(update_2, &None);
2925                 } else {
2926                         panic!();
2927                 }
2928
2929                 {
2930                         // Channel update with excess data.
2931                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2932                                 unsigned_channel_update.timestamp = 102;
2933                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2934                         }, node_1_privkey, &secp_ctx);
2935                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2936                                 Ok(_) => (),
2937                                 Err(_) => panic!()
2938                         };
2939                 }
2940
2941                 // Test that announcements with excess data won't be returned
2942                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2943                 if let Some(channel_announcements) = channels_with_announcements {
2944                         let (_, ref update_1, ref update_2) = channel_announcements;
2945                         assert_eq!(update_1, &None);
2946                         assert_eq!(update_2, &None);
2947                 } else {
2948                         panic!();
2949                 }
2950
2951                 // Further starting point have no channels after it
2952                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2953                 assert!(channels_with_announcements.is_none());
2954         }
2955
2956         #[test]
2957         fn getting_next_node_announcements() {
2958                 let network_graph = create_network_graph();
2959                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2960                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2961                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2962                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2963
2964                 // No nodes yet.
2965                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2966                 assert!(next_announcements.is_none());
2967
2968                 {
2969                         // Announce a channel to add 2 nodes
2970                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2971                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2972                                 Ok(_) => (),
2973                                 Err(_) => panic!()
2974                         };
2975                 }
2976
2977                 // Nodes were never announced
2978                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2979                 assert!(next_announcements.is_none());
2980
2981                 {
2982                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2983                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2984                                 Ok(_) => (),
2985                                 Err(_) => panic!()
2986                         };
2987
2988                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2989                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2990                                 Ok(_) => (),
2991                                 Err(_) => panic!()
2992                         };
2993                 }
2994
2995                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2996                 assert!(next_announcements.is_some());
2997
2998                 // Skip the first node.
2999                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
3000                 assert!(next_announcements.is_some());
3001
3002                 {
3003                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
3004                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
3005                                 unsigned_announcement.timestamp += 10;
3006                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
3007                         }, node_2_privkey, &secp_ctx);
3008                         match gossip_sync.handle_node_announcement(&valid_announcement) {
3009                                 Ok(res) => assert!(!res),
3010                                 Err(_) => panic!()
3011                         };
3012                 }
3013
3014                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
3015                 assert!(next_announcements.is_none());
3016         }
3017
3018         #[test]
3019         fn network_graph_serialization() {
3020                 let network_graph = create_network_graph();
3021                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3022
3023                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3024                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3025
3026                 // Announce a channel to add a corresponding node.
3027                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
3028                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
3029                         Ok(res) => assert!(res),
3030                         _ => panic!()
3031                 };
3032
3033                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
3034                 match gossip_sync.handle_node_announcement(&valid_announcement) {
3035                         Ok(_) => (),
3036                         Err(_) => panic!()
3037                 };
3038
3039                 let mut w = test_utils::TestVecWriter(Vec::new());
3040                 assert!(!network_graph.read_only().nodes().is_empty());
3041                 assert!(!network_graph.read_only().channels().is_empty());
3042                 network_graph.write(&mut w).unwrap();
3043
3044                 let logger = Arc::new(test_utils::TestLogger::new());
3045                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
3046         }
3047
3048         #[test]
3049         fn network_graph_tlv_serialization() {
3050                 let network_graph = create_network_graph();
3051                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
3052
3053                 let mut w = test_utils::TestVecWriter(Vec::new());
3054                 network_graph.write(&mut w).unwrap();
3055
3056                 let logger = Arc::new(test_utils::TestLogger::new());
3057                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
3058                 assert!(reassembled_network_graph == network_graph);
3059                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
3060         }
3061
3062         #[test]
3063         #[cfg(feature = "std")]
3064         fn calling_sync_routing_table() {
3065                 use std::time::{SystemTime, UNIX_EPOCH};
3066                 use crate::ln::msgs::Init;
3067
3068                 let network_graph = create_network_graph();
3069                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3070                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
3071                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
3072
3073                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3074
3075                 // It should ignore if gossip_queries feature is not enabled
3076                 {
3077                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
3078                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3079                         let events = gossip_sync.get_and_clear_pending_msg_events();
3080                         assert_eq!(events.len(), 0);
3081                 }
3082
3083                 // It should send a gossip_timestamp_filter with the correct information
3084                 {
3085                         let mut features = InitFeatures::empty();
3086                         features.set_gossip_queries_optional();
3087                         let init_msg = Init { features, networks: None, remote_network_address: None };
3088                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3089                         let events = gossip_sync.get_and_clear_pending_msg_events();
3090                         assert_eq!(events.len(), 1);
3091                         match &events[0] {
3092                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
3093                                         assert_eq!(node_id, &node_id_1);
3094                                         assert_eq!(msg.chain_hash, chain_hash);
3095                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
3096                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
3097                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
3098                                         assert_eq!(msg.timestamp_range, u32::max_value());
3099                                 },
3100                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
3101                         };
3102                 }
3103         }
3104
3105         #[test]
3106         fn handling_query_channel_range() {
3107                 let network_graph = create_network_graph();
3108                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3109
3110                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3111                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3112                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3113                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
3114
3115                 let mut scids: Vec<u64> = vec![
3116                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
3117                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
3118                 ];
3119
3120                 // used for testing multipart reply across blocks
3121                 for block in 100000..=108001 {
3122                         scids.push(scid_from_parts(block, 0, 0).unwrap());
3123                 }
3124
3125                 // used for testing resumption on same block
3126                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
3127
3128                 for scid in scids {
3129                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
3130                                 unsigned_announcement.short_channel_id = scid;
3131                         }, node_1_privkey, node_2_privkey, &secp_ctx);
3132                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
3133                                 Ok(_) => (),
3134                                 _ => panic!()
3135                         };
3136                 }
3137
3138                 // Error when number_of_blocks=0
3139                 do_handling_query_channel_range(
3140                         &gossip_sync,
3141                         &node_id_2,
3142                         QueryChannelRange {
3143                                 chain_hash: chain_hash.clone(),
3144                                 first_blocknum: 0,
3145                                 number_of_blocks: 0,
3146                         },
3147                         false,
3148                         vec![ReplyChannelRange {
3149                                 chain_hash: chain_hash.clone(),
3150                                 first_blocknum: 0,
3151                                 number_of_blocks: 0,
3152                                 sync_complete: true,
3153                                 short_channel_ids: vec![]
3154                         }]
3155                 );
3156
3157                 // Error when wrong chain
3158                 do_handling_query_channel_range(
3159                         &gossip_sync,
3160                         &node_id_2,
3161                         QueryChannelRange {
3162                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3163                                 first_blocknum: 0,
3164                                 number_of_blocks: 0xffff_ffff,
3165                         },
3166                         false,
3167                         vec![ReplyChannelRange {
3168                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3169                                 first_blocknum: 0,
3170                                 number_of_blocks: 0xffff_ffff,
3171                                 sync_complete: true,
3172                                 short_channel_ids: vec![],
3173                         }]
3174                 );
3175
3176                 // Error when first_blocknum > 0xffffff
3177                 do_handling_query_channel_range(
3178                         &gossip_sync,
3179                         &node_id_2,
3180                         QueryChannelRange {
3181                                 chain_hash: chain_hash.clone(),
3182                                 first_blocknum: 0x01000000,
3183                                 number_of_blocks: 0xffff_ffff,
3184                         },
3185                         false,
3186                         vec![ReplyChannelRange {
3187                                 chain_hash: chain_hash.clone(),
3188                                 first_blocknum: 0x01000000,
3189                                 number_of_blocks: 0xffff_ffff,
3190                                 sync_complete: true,
3191                                 short_channel_ids: vec![]
3192                         }]
3193                 );
3194
3195                 // Empty reply when max valid SCID block num
3196                 do_handling_query_channel_range(
3197                         &gossip_sync,
3198                         &node_id_2,
3199                         QueryChannelRange {
3200                                 chain_hash: chain_hash.clone(),
3201                                 first_blocknum: 0xffffff,
3202                                 number_of_blocks: 1,
3203                         },
3204                         true,
3205                         vec![
3206                                 ReplyChannelRange {
3207                                         chain_hash: chain_hash.clone(),
3208                                         first_blocknum: 0xffffff,
3209                                         number_of_blocks: 1,
3210                                         sync_complete: true,
3211                                         short_channel_ids: vec![]
3212                                 },
3213                         ]
3214                 );
3215
3216                 // No results in valid query range
3217                 do_handling_query_channel_range(
3218                         &gossip_sync,
3219                         &node_id_2,
3220                         QueryChannelRange {
3221                                 chain_hash: chain_hash.clone(),
3222                                 first_blocknum: 1000,
3223                                 number_of_blocks: 1000,
3224                         },
3225                         true,
3226                         vec![
3227                                 ReplyChannelRange {
3228                                         chain_hash: chain_hash.clone(),
3229                                         first_blocknum: 1000,
3230                                         number_of_blocks: 1000,
3231                                         sync_complete: true,
3232                                         short_channel_ids: vec![],
3233                                 }
3234                         ]
3235                 );
3236
3237                 // Overflow first_blocknum + number_of_blocks
3238                 do_handling_query_channel_range(
3239                         &gossip_sync,
3240                         &node_id_2,
3241                         QueryChannelRange {
3242                                 chain_hash: chain_hash.clone(),
3243                                 first_blocknum: 0xfe0000,
3244                                 number_of_blocks: 0xffffffff,
3245                         },
3246                         true,
3247                         vec![
3248                                 ReplyChannelRange {
3249                                         chain_hash: chain_hash.clone(),
3250                                         first_blocknum: 0xfe0000,
3251                                         number_of_blocks: 0xffffffff - 0xfe0000,
3252                                         sync_complete: true,
3253                                         short_channel_ids: vec![
3254                                                 0xfffffe_ffffff_ffff, // max
3255                                         ]
3256                                 }
3257                         ]
3258                 );
3259
3260                 // Single block exactly full
3261                 do_handling_query_channel_range(
3262                         &gossip_sync,
3263                         &node_id_2,
3264                         QueryChannelRange {
3265                                 chain_hash: chain_hash.clone(),
3266                                 first_blocknum: 100000,
3267                                 number_of_blocks: 8000,
3268                         },
3269                         true,
3270                         vec![
3271                                 ReplyChannelRange {
3272                                         chain_hash: chain_hash.clone(),
3273                                         first_blocknum: 100000,
3274                                         number_of_blocks: 8000,
3275                                         sync_complete: true,
3276                                         short_channel_ids: (100000..=107999)
3277                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3278                                                 .collect(),
3279                                 },
3280                         ]
3281                 );
3282
3283                 // Multiple split on new block
3284                 do_handling_query_channel_range(
3285                         &gossip_sync,
3286                         &node_id_2,
3287                         QueryChannelRange {
3288                                 chain_hash: chain_hash.clone(),
3289                                 first_blocknum: 100000,
3290                                 number_of_blocks: 8001,
3291                         },
3292                         true,
3293                         vec![
3294                                 ReplyChannelRange {
3295                                         chain_hash: chain_hash.clone(),
3296                                         first_blocknum: 100000,
3297                                         number_of_blocks: 7999,
3298                                         sync_complete: false,
3299                                         short_channel_ids: (100000..=107999)
3300                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3301                                                 .collect(),
3302                                 },
3303                                 ReplyChannelRange {
3304                                         chain_hash: chain_hash.clone(),
3305                                         first_blocknum: 107999,
3306                                         number_of_blocks: 2,
3307                                         sync_complete: true,
3308                                         short_channel_ids: vec![
3309                                                 scid_from_parts(108000, 0, 0).unwrap(),
3310                                         ],
3311                                 }
3312                         ]
3313                 );
3314
3315                 // Multiple split on same block
3316                 do_handling_query_channel_range(
3317                         &gossip_sync,
3318                         &node_id_2,
3319                         QueryChannelRange {
3320                                 chain_hash: chain_hash.clone(),
3321                                 first_blocknum: 100002,
3322                                 number_of_blocks: 8000,
3323                         },
3324                         true,
3325                         vec![
3326                                 ReplyChannelRange {
3327                                         chain_hash: chain_hash.clone(),
3328                                         first_blocknum: 100002,
3329                                         number_of_blocks: 7999,
3330                                         sync_complete: false,
3331                                         short_channel_ids: (100002..=108001)
3332                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3333                                                 .collect(),
3334                                 },
3335                                 ReplyChannelRange {
3336                                         chain_hash: chain_hash.clone(),
3337                                         first_blocknum: 108001,
3338                                         number_of_blocks: 1,
3339                                         sync_complete: true,
3340                                         short_channel_ids: vec![
3341                                                 scid_from_parts(108001, 1, 0).unwrap(),
3342                                         ],
3343                                 }
3344                         ]
3345                 );
3346         }
3347
3348         fn do_handling_query_channel_range(
3349                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3350                 test_node_id: &PublicKey,
3351                 msg: QueryChannelRange,
3352                 expected_ok: bool,
3353                 expected_replies: Vec<ReplyChannelRange>
3354         ) {
3355                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3356                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3357                 let query_end_blocknum = msg.end_blocknum();
3358                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3359
3360                 if expected_ok {
3361                         assert!(result.is_ok());
3362                 } else {
3363                         assert!(result.is_err());
3364                 }
3365
3366                 let events = gossip_sync.get_and_clear_pending_msg_events();
3367                 assert_eq!(events.len(), expected_replies.len());
3368
3369                 for i in 0..events.len() {
3370                         let expected_reply = &expected_replies[i];
3371                         match &events[i] {
3372                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3373                                         assert_eq!(node_id, test_node_id);
3374                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3375                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3376                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3377                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3378                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3379
3380                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3381                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3382                                         assert!(msg.first_blocknum >= max_firstblocknum);
3383                                         max_firstblocknum = msg.first_blocknum;
3384                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3385
3386                                         // Check that the last block count is >= the query's end_blocknum
3387                                         if i == events.len() - 1 {
3388                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3389                                         }
3390                                 },
3391                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3392                         }
3393                 }
3394         }
3395
3396         #[test]
3397         fn handling_query_short_channel_ids() {
3398                 let network_graph = create_network_graph();
3399                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3400                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3401                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3402
3403                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3404
3405                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3406                         chain_hash,
3407                         short_channel_ids: vec![0x0003e8_000000_0000],
3408                 });
3409                 assert!(result.is_err());
3410         }
3411
3412         #[test]
3413         fn displays_node_alias() {
3414                 let format_str_alias = |alias: &str| {
3415                         let mut bytes = [0u8; 32];
3416                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3417                         format!("{}", NodeAlias(bytes))
3418                 };
3419
3420                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3421                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3422                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3423
3424                 let format_bytes_alias = |alias: &[u8]| {
3425                         let mut bytes = [0u8; 32];
3426                         bytes[..alias.len()].copy_from_slice(alias);
3427                         format!("{}", NodeAlias(bytes))
3428                 };
3429
3430                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3431                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3432                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3433         }
3434
3435         #[test]
3436         fn channel_info_is_readable() {
3437                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3438                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3439                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3440                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3441                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3442
3443                 // 1. Test encoding/decoding of ChannelUpdateInfo
3444                 let chan_update_info = ChannelUpdateInfo {
3445                         last_update: 23,
3446                         enabled: true,
3447                         cltv_expiry_delta: 42,
3448                         htlc_minimum_msat: 1234,
3449                         htlc_maximum_msat: 5678,
3450                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3451                         last_update_message: None,
3452                 };
3453
3454                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3455                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3456
3457                 // First make sure we can read ChannelUpdateInfos we just wrote
3458                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3459                 assert_eq!(chan_update_info, read_chan_update_info);
3460
3461                 // Check the serialization hasn't changed.
3462                 let legacy_chan_update_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3463                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3464
3465                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3466                 // or the ChannelUpdate enclosed with `last_update_message`.
3467                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = <Vec<u8>>::from_hex("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3468                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3469                 assert!(read_chan_update_info_res.is_err());
3470
3471                 let legacy_chan_update_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3472                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3473                 assert!(read_chan_update_info_res.is_err());
3474
3475                 // 2. Test encoding/decoding of ChannelInfo
3476                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3477                 let chan_info_none_updates = ChannelInfo {
3478                         features: channelmanager::provided_channel_features(&config),
3479                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3480                         one_to_two: None,
3481                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3482                         two_to_one: None,
3483                         capacity_sats: None,
3484                         announcement_message: None,
3485                         announcement_received_time: 87654,
3486                         node_one_counter: 0,
3487                         node_two_counter: 1,
3488                 };
3489
3490                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3491                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3492
3493                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3494                 assert_eq!(chan_info_none_updates, read_chan_info);
3495
3496                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3497                 let chan_info_some_updates = ChannelInfo {
3498                         features: channelmanager::provided_channel_features(&config),
3499                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3500                         one_to_two: Some(chan_update_info.clone()),
3501                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3502                         two_to_one: Some(chan_update_info.clone()),
3503                         capacity_sats: None,
3504                         announcement_message: None,
3505                         announcement_received_time: 87654,
3506                         node_one_counter: 0,
3507                         node_two_counter: 1,
3508                 };
3509
3510                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3511                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3512
3513                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3514                 assert_eq!(chan_info_some_updates, read_chan_info);
3515
3516                 // Check the serialization hasn't changed.
3517                 let legacy_chan_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3518                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3519
3520                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3521                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3522                 let legacy_chan_info_with_some_and_fail_update = <Vec<u8>>::from_hex("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3523                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3524                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3525                 assert_eq!(read_chan_info.one_to_two, None);
3526                 assert_eq!(read_chan_info.two_to_one, None);
3527
3528                 let legacy_chan_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3529                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3530                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3531                 assert_eq!(read_chan_info.one_to_two, None);
3532                 assert_eq!(read_chan_info.two_to_one, None);
3533         }
3534
3535         #[test]
3536         fn node_info_is_readable() {
3537                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3538                 let announcement_message = <Vec<u8>>::from_hex("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3539                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3540                 let valid_node_ann_info = NodeAnnouncementInfo {
3541                         features: channelmanager::provided_node_features(&UserConfig::default()),
3542                         last_update: 0,
3543                         rgb: [0u8; 3],
3544                         alias: NodeAlias([0u8; 32]),
3545                         announcement_message: Some(announcement_message)
3546                 };
3547
3548                 let mut encoded_valid_node_ann_info = Vec::new();
3549                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3550                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3551                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3552                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3553
3554                 let encoded_invalid_node_ann_info = <Vec<u8>>::from_hex("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3555                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3556                 assert!(read_invalid_node_ann_info_res.is_err());
3557
3558                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3559                 let valid_node_info = NodeInfo {
3560                         channels: Vec::new(),
3561                         announcement_info: Some(valid_node_ann_info),
3562                         node_counter: 0,
3563                 };
3564
3565                 let mut encoded_valid_node_info = Vec::new();
3566                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3567                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3568                 assert_eq!(read_valid_node_info, valid_node_info);
3569
3570                 let encoded_invalid_node_info_hex = <Vec<u8>>::from_hex("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3571                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3572                 assert_eq!(read_invalid_node_info.announcement_info, None);
3573         }
3574
3575         #[test]
3576         fn test_node_info_keeps_compatibility() {
3577                 let old_ann_info_with_addresses = <Vec<u8>>::from_hex("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3578                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3579                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3580                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3581                 assert!(ann_info_with_addresses.addresses().is_empty());
3582         }
3583
3584         #[test]
3585         fn test_node_id_display() {
3586                 let node_id = NodeId([42; 33]);
3587                 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3588         }
3589 }
3590
3591 #[cfg(ldk_bench)]
3592 pub mod benches {
3593         use super::*;
3594         use std::io::Read;
3595         use criterion::{black_box, Criterion};
3596
3597         pub fn read_network_graph(bench: &mut Criterion) {
3598                 let logger = crate::util::test_utils::TestLogger::new();
3599                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3600                 let mut v = Vec::new();
3601                 d.read_to_end(&mut v).unwrap();
3602                 bench.bench_function("read_network_graph", |b| b.iter(||
3603                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3604                 ));
3605         }
3606
3607         pub fn write_network_graph(bench: &mut Criterion) {
3608                 let logger = crate::util::test_utils::TestLogger::new();
3609                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3610                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3611                 bench.bench_function("write_network_graph", |b| b.iter(||
3612                         black_box(&net_graph).encode()
3613                 ));
3614         }
3615 }