Replacing (C-not exported) in the docs
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
23
24 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
25 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
26 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
27 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
28 use crate::ln::msgs;
29 use crate::routing::utxo::{self, UtxoLookup};
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
56
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
60
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
64
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
68
69 impl NodeId {
70         /// Create a new NodeId from a public key
71         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72                 NodeId(pubkey.serialize())
73         }
74
75         /// Get the public key slice from this NodeId
76         pub fn as_slice(&self) -> &[u8] {
77                 &self.0
78         }
79 }
80
81 impl fmt::Debug for NodeId {
82         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83                 write!(f, "NodeId({})", log_bytes!(self.0))
84         }
85 }
86 impl fmt::Display for NodeId {
87         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
88                 write!(f, "{}", log_bytes!(self.0))
89         }
90 }
91
92 impl core::hash::Hash for NodeId {
93         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
94                 self.0.hash(hasher);
95         }
96 }
97
98 impl Eq for NodeId {}
99
100 impl PartialEq for NodeId {
101         fn eq(&self, other: &Self) -> bool {
102                 self.0[..] == other.0[..]
103         }
104 }
105
106 impl cmp::PartialOrd for NodeId {
107         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
108                 Some(self.cmp(other))
109         }
110 }
111
112 impl Ord for NodeId {
113         fn cmp(&self, other: &Self) -> cmp::Ordering {
114                 self.0[..].cmp(&other.0[..])
115         }
116 }
117
118 impl Writeable for NodeId {
119         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
120                 writer.write_all(&self.0)?;
121                 Ok(())
122         }
123 }
124
125 impl Readable for NodeId {
126         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
127                 let mut buf = [0; PUBLIC_KEY_SIZE];
128                 reader.read_exact(&mut buf)?;
129                 Ok(Self(buf))
130         }
131 }
132
133 /// Represents the network as nodes and channels between them
134 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
135         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
136         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
137         genesis_hash: BlockHash,
138         logger: L,
139         // Lock order: channels -> nodes
140         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
141         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
142         // Lock order: removed_channels -> removed_nodes
143         //
144         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
145         // of `std::time::Instant`s for a few reasons:
146         //   * We want it to be possible to do tracking in no-std environments where we can compare
147         //     a provided current UNIX timestamp with the time at which we started tracking.
148         //   * In the future, if we decide to persist these maps, they will already be serializable.
149         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
150         //     environment should be practical over the time period we are considering (on the order of a
151         //     week).
152         //
153         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
154         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
155         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
156         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
157         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
158         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
159         /// that once some time passes, we can potentially resync it from gossip again.
160         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
161         /// Announcement messages which are awaiting an on-chain lookup to be processed.
162         pub(super) pending_checks: utxo::PendingChecks,
163 }
164
165 /// A read-only view of [`NetworkGraph`].
166 pub struct ReadOnlyNetworkGraph<'a> {
167         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
168         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
169 }
170
171 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
172 /// return packet by a node along the route. See [BOLT #4] for details.
173 ///
174 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
175 #[derive(Clone, Debug, PartialEq, Eq)]
176 pub enum NetworkUpdate {
177         /// An error indicating a `channel_update` messages should be applied via
178         /// [`NetworkGraph::update_channel`].
179         ChannelUpdateMessage {
180                 /// The update to apply via [`NetworkGraph::update_channel`].
181                 msg: ChannelUpdate,
182         },
183         /// An error indicating that a channel failed to route a payment, which should be applied via
184         /// [`NetworkGraph::channel_failed`].
185         ChannelFailure {
186                 /// The short channel id of the closed channel.
187                 short_channel_id: u64,
188                 /// Whether the channel should be permanently removed or temporarily disabled until a new
189                 /// `channel_update` message is received.
190                 is_permanent: bool,
191         },
192         /// An error indicating that a node failed to route a payment, which should be applied via
193         /// [`NetworkGraph::node_failed_permanent`] if permanent.
194         NodeFailure {
195                 /// The node id of the failed node.
196                 node_id: PublicKey,
197                 /// Whether the node should be permanently removed from consideration or can be restored
198                 /// when a new `channel_update` message is received.
199                 is_permanent: bool,
200         }
201 }
202
203 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
204         (0, ChannelUpdateMessage) => {
205                 (0, msg, required),
206         },
207         (2, ChannelFailure) => {
208                 (0, short_channel_id, required),
209                 (2, is_permanent, required),
210         },
211         (4, NodeFailure) => {
212                 (0, node_id, required),
213                 (2, is_permanent, required),
214         },
215 );
216
217 /// Receives and validates network updates from peers,
218 /// stores authentic and relevant data as a network graph.
219 /// This network graph is then used for routing payments.
220 /// Provides interface to help with initial routing sync by
221 /// serving historical announcements.
222 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
223 where U::Target: UtxoLookup, L::Target: Logger
224 {
225         network_graph: G,
226         utxo_lookup: Option<U>,
227         #[cfg(feature = "std")]
228         full_syncs_requested: AtomicUsize,
229         pending_events: Mutex<Vec<MessageSendEvent>>,
230         logger: L,
231 }
232
233 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
234 where U::Target: UtxoLookup, L::Target: Logger
235 {
236         /// Creates a new tracker of the actual state of the network of channels and nodes,
237         /// assuming an existing [`NetworkGraph`].
238         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
239         /// correct, and the announcement is signed with channel owners' keys.
240         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
241                 P2PGossipSync {
242                         network_graph,
243                         #[cfg(feature = "std")]
244                         full_syncs_requested: AtomicUsize::new(0),
245                         utxo_lookup,
246                         pending_events: Mutex::new(vec![]),
247                         logger,
248                 }
249         }
250
251         /// Adds a provider used to check new announcements. Does not affect
252         /// existing announcements unless they are updated.
253         /// Add, update or remove the provider would replace the current one.
254         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
255                 self.utxo_lookup = utxo_lookup;
256         }
257
258         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259         /// [`P2PGossipSync::new`].
260         ///
261         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
262         pub fn network_graph(&self) -> &G {
263                 &self.network_graph
264         }
265
266         #[cfg(feature = "std")]
267         /// Returns true when a full routing table sync should be performed with a peer.
268         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269                 //TODO: Determine whether to request a full sync based on the network map.
270                 const FULL_SYNCS_TO_REQUEST: usize = 5;
271                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
273                         true
274                 } else {
275                         false
276                 }
277         }
278
279         /// Used to broadcast forward gossip messages which were validated async.
280         ///
281         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
282         /// data.
283         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
284                 match &mut ev {
285                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
286                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
287                                 if update_msg.as_ref()
288                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
289                                 {
290                                         *update_msg = None;
291                                 }
292                         },
293                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
294                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
295                         },
296                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
297                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
298                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
299                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
300                                 {
301                                         return;
302                                 }
303                         },
304                         _ => return,
305                 }
306                 self.pending_events.lock().unwrap().push(ev);
307         }
308 }
309
310 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
311         /// Handles any network updates originating from [`Event`]s.
312         ///
313         /// [`Event`]: crate::util::events::Event
314         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
315                 match *network_update {
316                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
317                                 let short_channel_id = msg.contents.short_channel_id;
318                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
319                                 let status = if is_enabled { "enabled" } else { "disabled" };
320                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
321                                 let _ = self.update_channel(msg);
322                         },
323                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
324                                 let action = if is_permanent { "Removing" } else { "Disabling" };
325                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
326                                 self.channel_failed(short_channel_id, is_permanent);
327                         },
328                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
329                                 if is_permanent {
330                                         log_debug!(self.logger,
331                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
332                                         self.node_failed_permanent(node_id);
333                                 };
334                         },
335                 }
336         }
337 }
338
339 macro_rules! secp_verify_sig {
340         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
341                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
342                         Ok(_) => {},
343                         Err(_) => {
344                                 return Err(LightningError {
345                                         err: format!("Invalid signature on {} message", $msg_type),
346                                         action: ErrorAction::SendWarningMessage {
347                                                 msg: msgs::WarningMessage {
348                                                         channel_id: [0; 32],
349                                                         data: format!("Invalid signature on {} message", $msg_type),
350                                                 },
351                                                 log_level: Level::Trace,
352                                         },
353                                 });
354                         },
355                 }
356         };
357 }
358
359 macro_rules! get_pubkey_from_node_id {
360         ( $node_id: expr, $msg_type: expr ) => {
361                 PublicKey::from_slice($node_id.as_slice())
362                         .map_err(|_| LightningError {
363                                 err: format!("Invalid public key on {} message", $msg_type),
364                                 action: ErrorAction::SendWarningMessage {
365                                         msg: msgs::WarningMessage {
366                                                 channel_id: [0; 32],
367                                                 data: format!("Invalid public key on {} message", $msg_type),
368                                         },
369                                         log_level: Level::Trace
370                                 }
371                         })?
372         }
373 }
374
375 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
376 where U::Target: UtxoLookup, L::Target: Logger
377 {
378         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
379                 self.network_graph.update_node_from_announcement(msg)?;
380                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
381                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
382                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
383         }
384
385         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
386                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
387                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
388         }
389
390         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
391                 self.network_graph.update_channel(msg)?;
392                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
393         }
394
395         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
396                 let mut channels = self.network_graph.channels.write().unwrap();
397                 for (_, ref chan) in channels.range(starting_point..) {
398                         if chan.announcement_message.is_some() {
399                                 let chan_announcement = chan.announcement_message.clone().unwrap();
400                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
401                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
402                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
403                                         one_to_two_announcement = one_to_two.last_update_message.clone();
404                                 }
405                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
406                                         two_to_one_announcement = two_to_one.last_update_message.clone();
407                                 }
408                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
409                         } else {
410                                 // TODO: We may end up sending un-announced channel_updates if we are sending
411                                 // initial sync data while receiving announce/updates for this channel.
412                         }
413                 }
414                 None
415         }
416
417         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
418                 let mut nodes = self.network_graph.nodes.write().unwrap();
419                 let iter = if let Some(node_id) = starting_point {
420                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
421                         } else {
422                                 nodes.range(..)
423                         };
424                 for (_, ref node) in iter {
425                         if let Some(node_info) = node.announcement_info.as_ref() {
426                                 if let Some(msg) = node_info.announcement_message.clone() {
427                                         return Some(msg);
428                                 }
429                         }
430                 }
431                 None
432         }
433
434         /// Initiates a stateless sync of routing gossip information with a peer
435         /// using [`gossip_queries`]. The default strategy used by this implementation
436         /// is to sync the full block range with several peers.
437         ///
438         /// We should expect one or more [`reply_channel_range`] messages in response
439         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
440         /// to request gossip messages for each channel. The sync is considered complete
441         /// when the final [`reply_scids_end`] message is received, though we are not
442         /// tracking this directly.
443         ///
444         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
445         /// [`reply_channel_range`]: msgs::ReplyChannelRange
446         /// [`query_channel_range`]: msgs::QueryChannelRange
447         /// [`query_scid`]: msgs::QueryShortChannelIds
448         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
449         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
450                 // We will only perform a sync with peers that support gossip_queries.
451                 if !init_msg.features.supports_gossip_queries() {
452                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
453                         // channels with peers even without being able to exchange gossip.
454                         return Ok(());
455                 }
456
457                 // The lightning network's gossip sync system is completely broken in numerous ways.
458                 //
459                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
460                 // to do a full sync from the first few peers we connect to, and then receive gossip
461                 // updates from all our peers normally.
462                 //
463                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
464                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
465                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
466                 // seen.
467                 //
468                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
469                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
470                 // channel data which you are missing. Except there was no way at all to identify which
471                 // `channel_update`s you were missing, so you still had to request everything, just in a
472                 // very complicated way with some queries instead of just getting the dump.
473                 //
474                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
475                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
476                 // relying on it useless.
477                 //
478                 // After gossip queries were introduced, support for receiving a full gossip table dump on
479                 // connection was removed from several nodes, making it impossible to get a full sync
480                 // without using the "gossip queries" messages.
481                 //
482                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
483                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
484                 // message, as the name implies, tells the peer to not forward any gossip messages with a
485                 // timestamp older than a given value (not the time the peer received the filter, but the
486                 // timestamp in the update message, which is often hours behind when the peer received the
487                 // message).
488                 //
489                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
490                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
491                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
492                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
493                 // will simply not forward any new updates they see to you which were generated some time
494                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
495                 // ago), you will always get the full routing graph from all your peers.
496                 //
497                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
498                 // propagated some time after it was generated, and, worse, often disable gossiping with
499                 // several peers after their first connection. The second behavior can cause gossip to not
500                 // propagate fully if there are cuts in the gossiping subgraph.
501                 //
502                 // In an attempt to cut a middle ground between always fetching the full graph from all of
503                 // our peers and never receiving gossip from peers at all, we send all of our peers a
504                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
505                 //
506                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
507                 #[allow(unused_mut, unused_assignments)]
508                 let mut gossip_start_time = 0;
509                 #[cfg(feature = "std")]
510                 {
511                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
512                         if self.should_request_full_sync(&their_node_id) {
513                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
514                         } else {
515                                 gossip_start_time -= 60 * 60; // an hour ago
516                         }
517                 }
518
519                 let mut pending_events = self.pending_events.lock().unwrap();
520                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
521                         node_id: their_node_id.clone(),
522                         msg: GossipTimestampFilter {
523                                 chain_hash: self.network_graph.genesis_hash,
524                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
525                                 timestamp_range: u32::max_value(),
526                         },
527                 });
528                 Ok(())
529         }
530
531         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
532                 // We don't make queries, so should never receive replies. If, in the future, the set
533                 // reconciliation extensions to gossip queries become broadly supported, we should revert
534                 // this code to its state pre-0.0.106.
535                 Ok(())
536         }
537
538         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
539                 // We don't make queries, so should never receive replies. If, in the future, the set
540                 // reconciliation extensions to gossip queries become broadly supported, we should revert
541                 // this code to its state pre-0.0.106.
542                 Ok(())
543         }
544
545         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
546         /// are in the specified block range. Due to message size limits, large range
547         /// queries may result in several reply messages. This implementation enqueues
548         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
549         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
550         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
551         /// memory constrained systems.
552         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
553                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
554
555                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
556
557                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
558                 // If so, we manually cap the ending block to avoid this overflow.
559                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
560
561                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
562                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
563                         let mut pending_events = self.pending_events.lock().unwrap();
564                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
565                                 node_id: their_node_id.clone(),
566                                 msg: ReplyChannelRange {
567                                         chain_hash: msg.chain_hash.clone(),
568                                         first_blocknum: msg.first_blocknum,
569                                         number_of_blocks: msg.number_of_blocks,
570                                         sync_complete: true,
571                                         short_channel_ids: vec![],
572                                 }
573                         });
574                         return Err(LightningError {
575                                 err: String::from("query_channel_range could not be processed"),
576                                 action: ErrorAction::IgnoreError,
577                         });
578                 }
579
580                 // Creates channel batches. We are not checking if the channel is routable
581                 // (has at least one update). A peer may still want to know the channel
582                 // exists even if its not yet routable.
583                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
584                 let mut channels = self.network_graph.channels.write().unwrap();
585                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
586                         if let Some(chan_announcement) = &chan.announcement_message {
587                                 // Construct a new batch if last one is full
588                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
589                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
590                                 }
591
592                                 let batch = batches.last_mut().unwrap();
593                                 batch.push(chan_announcement.contents.short_channel_id);
594                         }
595                 }
596                 drop(channels);
597
598                 let mut pending_events = self.pending_events.lock().unwrap();
599                 let batch_count = batches.len();
600                 let mut prev_batch_endblock = msg.first_blocknum;
601                 for (batch_index, batch) in batches.into_iter().enumerate() {
602                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
603                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
604                         //
605                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
606                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
607                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
608                         // significant diversion from the requirements set by the spec, and, in case of blocks
609                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
610                         // and *not* derive the first_blocknum from the actual first block of the reply.
611                         let first_blocknum = prev_batch_endblock;
612
613                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
614                         // fit in. Though there is no requirement that we use exactly the number of blocks its
615                         // contents are from, except for the bogus requirements c-lightning enforces, above.
616                         //
617                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
618                         // >= the query's end block. Thus, for the last reply, we calculate the difference
619                         // between the query's end block and the start of the reply.
620                         //
621                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
622                         // first_blocknum will be either msg.first_blocknum or a higher block height.
623                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
624                                 (true, msg.end_blocknum() - first_blocknum)
625                         }
626                         // Prior replies should use the number of blocks that fit into the reply. Overflow
627                         // safe since first_blocknum is always <= last SCID's block.
628                         else {
629                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
630                         };
631
632                         prev_batch_endblock = first_blocknum + number_of_blocks;
633
634                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
635                                 node_id: their_node_id.clone(),
636                                 msg: ReplyChannelRange {
637                                         chain_hash: msg.chain_hash.clone(),
638                                         first_blocknum,
639                                         number_of_blocks,
640                                         sync_complete,
641                                         short_channel_ids: batch,
642                                 }
643                         });
644                 }
645
646                 Ok(())
647         }
648
649         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
650                 // TODO
651                 Err(LightningError {
652                         err: String::from("Not implemented"),
653                         action: ErrorAction::IgnoreError,
654                 })
655         }
656
657         fn provided_node_features(&self) -> NodeFeatures {
658                 let mut features = NodeFeatures::empty();
659                 features.set_gossip_queries_optional();
660                 features
661         }
662
663         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
664                 let mut features = InitFeatures::empty();
665                 features.set_gossip_queries_optional();
666                 features
667         }
668
669         fn processing_queue_high(&self) -> bool {
670                 self.network_graph.pending_checks.too_many_checks_pending()
671         }
672 }
673
674 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
675 where
676         U::Target: UtxoLookup,
677         L::Target: Logger,
678 {
679         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
680                 let mut ret = Vec::new();
681                 let mut pending_events = self.pending_events.lock().unwrap();
682                 core::mem::swap(&mut ret, &mut pending_events);
683                 ret
684         }
685 }
686
687 #[derive(Clone, Debug, PartialEq, Eq)]
688 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
689 pub struct ChannelUpdateInfo {
690         /// When the last update to the channel direction was issued.
691         /// Value is opaque, as set in the announcement.
692         pub last_update: u32,
693         /// Whether the channel can be currently used for payments (in this one direction).
694         pub enabled: bool,
695         /// The difference in CLTV values that you must have when routing through this channel.
696         pub cltv_expiry_delta: u16,
697         /// The minimum value, which must be relayed to the next hop via the channel
698         pub htlc_minimum_msat: u64,
699         /// The maximum value which may be relayed to the next hop via the channel.
700         pub htlc_maximum_msat: u64,
701         /// Fees charged when the channel is used for routing
702         pub fees: RoutingFees,
703         /// Most recent update for the channel received from the network
704         /// Mostly redundant with the data we store in fields explicitly.
705         /// Everything else is useful only for sending out for initial routing sync.
706         /// Not stored if contains excess data to prevent DoS.
707         pub last_update_message: Option<ChannelUpdate>,
708 }
709
710 impl fmt::Display for ChannelUpdateInfo {
711         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
712                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
713                 Ok(())
714         }
715 }
716
717 impl Writeable for ChannelUpdateInfo {
718         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
719                 write_tlv_fields!(writer, {
720                         (0, self.last_update, required),
721                         (2, self.enabled, required),
722                         (4, self.cltv_expiry_delta, required),
723                         (6, self.htlc_minimum_msat, required),
724                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
725                         // compatibility with LDK versions prior to v0.0.110.
726                         (8, Some(self.htlc_maximum_msat), required),
727                         (10, self.fees, required),
728                         (12, self.last_update_message, required),
729                 });
730                 Ok(())
731         }
732 }
733
734 impl Readable for ChannelUpdateInfo {
735         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
736                 _init_tlv_field_var!(last_update, required);
737                 _init_tlv_field_var!(enabled, required);
738                 _init_tlv_field_var!(cltv_expiry_delta, required);
739                 _init_tlv_field_var!(htlc_minimum_msat, required);
740                 _init_tlv_field_var!(htlc_maximum_msat, option);
741                 _init_tlv_field_var!(fees, required);
742                 _init_tlv_field_var!(last_update_message, required);
743
744                 read_tlv_fields!(reader, {
745                         (0, last_update, required),
746                         (2, enabled, required),
747                         (4, cltv_expiry_delta, required),
748                         (6, htlc_minimum_msat, required),
749                         (8, htlc_maximum_msat, required),
750                         (10, fees, required),
751                         (12, last_update_message, required)
752                 });
753
754                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
755                         Ok(ChannelUpdateInfo {
756                                 last_update: _init_tlv_based_struct_field!(last_update, required),
757                                 enabled: _init_tlv_based_struct_field!(enabled, required),
758                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
759                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
760                                 htlc_maximum_msat,
761                                 fees: _init_tlv_based_struct_field!(fees, required),
762                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
763                         })
764                 } else {
765                         Err(DecodeError::InvalidValue)
766                 }
767         }
768 }
769
770 #[derive(Clone, Debug, PartialEq, Eq)]
771 /// Details about a channel (both directions).
772 /// Received within a channel announcement.
773 pub struct ChannelInfo {
774         /// Protocol features of a channel communicated during its announcement
775         pub features: ChannelFeatures,
776         /// Source node of the first direction of a channel
777         pub node_one: NodeId,
778         /// Details about the first direction of a channel
779         pub one_to_two: Option<ChannelUpdateInfo>,
780         /// Source node of the second direction of a channel
781         pub node_two: NodeId,
782         /// Details about the second direction of a channel
783         pub two_to_one: Option<ChannelUpdateInfo>,
784         /// The channel capacity as seen on-chain, if chain lookup is available.
785         pub capacity_sats: Option<u64>,
786         /// An initial announcement of the channel
787         /// Mostly redundant with the data we store in fields explicitly.
788         /// Everything else is useful only for sending out for initial routing sync.
789         /// Not stored if contains excess data to prevent DoS.
790         pub announcement_message: Option<ChannelAnnouncement>,
791         /// The timestamp when we received the announcement, if we are running with feature = "std"
792         /// (which we can probably assume we are - no-std environments probably won't have a full
793         /// network graph in memory!).
794         announcement_received_time: u64,
795 }
796
797 impl ChannelInfo {
798         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
799         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
800         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
801                 let (direction, source) = {
802                         if target == &self.node_one {
803                                 (self.two_to_one.as_ref(), &self.node_two)
804                         } else if target == &self.node_two {
805                                 (self.one_to_two.as_ref(), &self.node_one)
806                         } else {
807                                 return None;
808                         }
809                 };
810                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
811         }
812
813         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
814         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
815         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
816                 let (direction, target) = {
817                         if source == &self.node_one {
818                                 (self.one_to_two.as_ref(), &self.node_two)
819                         } else if source == &self.node_two {
820                                 (self.two_to_one.as_ref(), &self.node_one)
821                         } else {
822                                 return None;
823                         }
824                 };
825                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
826         }
827
828         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
829         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
830                 let direction = channel_flags & 1u8;
831                 if direction == 0 {
832                         self.one_to_two.as_ref()
833                 } else {
834                         self.two_to_one.as_ref()
835                 }
836         }
837 }
838
839 impl fmt::Display for ChannelInfo {
840         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
841                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
842                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
843                 Ok(())
844         }
845 }
846
847 impl Writeable for ChannelInfo {
848         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
849                 write_tlv_fields!(writer, {
850                         (0, self.features, required),
851                         (1, self.announcement_received_time, (default_value, 0)),
852                         (2, self.node_one, required),
853                         (4, self.one_to_two, required),
854                         (6, self.node_two, required),
855                         (8, self.two_to_one, required),
856                         (10, self.capacity_sats, required),
857                         (12, self.announcement_message, required),
858                 });
859                 Ok(())
860         }
861 }
862
863 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
864 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
865 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
866 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
867 // channel updates via the gossip network.
868 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
869
870 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
871         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
872                 match crate::util::ser::Readable::read(reader) {
873                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
874                         Err(DecodeError::ShortRead) => Ok(None),
875                         Err(DecodeError::InvalidValue) => Ok(None),
876                         Err(err) => Err(err),
877                 }
878         }
879 }
880
881 impl Readable for ChannelInfo {
882         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
883                 _init_tlv_field_var!(features, required);
884                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
885                 _init_tlv_field_var!(node_one, required);
886                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
887                 _init_tlv_field_var!(node_two, required);
888                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
889                 _init_tlv_field_var!(capacity_sats, required);
890                 _init_tlv_field_var!(announcement_message, required);
891                 read_tlv_fields!(reader, {
892                         (0, features, required),
893                         (1, announcement_received_time, (default_value, 0)),
894                         (2, node_one, required),
895                         (4, one_to_two_wrap, upgradable_option),
896                         (6, node_two, required),
897                         (8, two_to_one_wrap, upgradable_option),
898                         (10, capacity_sats, required),
899                         (12, announcement_message, required),
900                 });
901
902                 Ok(ChannelInfo {
903                         features: _init_tlv_based_struct_field!(features, required),
904                         node_one: _init_tlv_based_struct_field!(node_one, required),
905                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
906                         node_two: _init_tlv_based_struct_field!(node_two, required),
907                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
908                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
909                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
910                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
911                 })
912         }
913 }
914
915 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
916 /// source node to a target node.
917 #[derive(Clone)]
918 pub struct DirectedChannelInfo<'a> {
919         channel: &'a ChannelInfo,
920         direction: &'a ChannelUpdateInfo,
921         htlc_maximum_msat: u64,
922         effective_capacity: EffectiveCapacity,
923 }
924
925 impl<'a> DirectedChannelInfo<'a> {
926         #[inline]
927         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
928                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
929                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
930
931                 let effective_capacity = match capacity_msat {
932                         Some(capacity_msat) => {
933                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
934                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
935                         },
936                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
937                 };
938
939                 Self {
940                         channel, direction, htlc_maximum_msat, effective_capacity
941                 }
942         }
943
944         /// Returns information for the channel.
945         #[inline]
946         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
947
948         /// Returns the maximum HTLC amount allowed over the channel in the direction.
949         #[inline]
950         pub fn htlc_maximum_msat(&self) -> u64 {
951                 self.htlc_maximum_msat
952         }
953
954         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
955         ///
956         /// This is either the total capacity from the funding transaction, if known, or the
957         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
958         /// otherwise.
959         pub fn effective_capacity(&self) -> EffectiveCapacity {
960                 self.effective_capacity
961         }
962
963         /// Returns information for the direction.
964         #[inline]
965         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
966 }
967
968 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
969         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
970                 f.debug_struct("DirectedChannelInfo")
971                         .field("channel", &self.channel)
972                         .finish()
973         }
974 }
975
976 /// The effective capacity of a channel for routing purposes.
977 ///
978 /// While this may be smaller than the actual channel capacity, amounts greater than
979 /// [`Self::as_msat`] should not be routed through the channel.
980 #[derive(Clone, Copy, Debug, PartialEq)]
981 pub enum EffectiveCapacity {
982         /// The available liquidity in the channel known from being a channel counterparty, and thus a
983         /// direct hop.
984         ExactLiquidity {
985                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
986                 /// millisatoshi.
987                 liquidity_msat: u64,
988         },
989         /// The maximum HTLC amount in one direction as advertised on the gossip network.
990         MaximumHTLC {
991                 /// The maximum HTLC amount denominated in millisatoshi.
992                 amount_msat: u64,
993         },
994         /// The total capacity of the channel as determined by the funding transaction.
995         Total {
996                 /// The funding amount denominated in millisatoshi.
997                 capacity_msat: u64,
998                 /// The maximum HTLC amount denominated in millisatoshi.
999                 htlc_maximum_msat: u64
1000         },
1001         /// A capacity sufficient to route any payment, typically used for private channels provided by
1002         /// an invoice.
1003         Infinite,
1004         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1005         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1006         Unknown,
1007 }
1008
1009 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1010 /// use when making routing decisions.
1011 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1012
1013 impl EffectiveCapacity {
1014         /// Returns the effective capacity denominated in millisatoshi.
1015         pub fn as_msat(&self) -> u64 {
1016                 match self {
1017                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1018                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1019                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1020                         EffectiveCapacity::Infinite => u64::max_value(),
1021                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1022                 }
1023         }
1024 }
1025
1026 /// Fees for routing via a given channel or a node
1027 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1028 pub struct RoutingFees {
1029         /// Flat routing fee in millisatoshis.
1030         pub base_msat: u32,
1031         /// Liquidity-based routing fee in millionths of a routed amount.
1032         /// In other words, 10000 is 1%.
1033         pub proportional_millionths: u32,
1034 }
1035
1036 impl_writeable_tlv_based!(RoutingFees, {
1037         (0, base_msat, required),
1038         (2, proportional_millionths, required)
1039 });
1040
1041 #[derive(Clone, Debug, PartialEq, Eq)]
1042 /// Information received in the latest node_announcement from this node.
1043 pub struct NodeAnnouncementInfo {
1044         /// Protocol features the node announced support for
1045         pub features: NodeFeatures,
1046         /// When the last known update to the node state was issued.
1047         /// Value is opaque, as set in the announcement.
1048         pub last_update: u32,
1049         /// Color assigned to the node
1050         pub rgb: [u8; 3],
1051         /// Moniker assigned to the node.
1052         /// May be invalid or malicious (eg control chars),
1053         /// should not be exposed to the user.
1054         pub alias: NodeAlias,
1055         /// An initial announcement of the node
1056         /// Mostly redundant with the data we store in fields explicitly.
1057         /// Everything else is useful only for sending out for initial routing sync.
1058         /// Not stored if contains excess data to prevent DoS.
1059         pub announcement_message: Option<NodeAnnouncement>
1060 }
1061
1062 impl NodeAnnouncementInfo {
1063         /// Internet-level addresses via which one can connect to the node
1064         pub fn addresses(&self) -> &[NetAddress] {
1065                 self.announcement_message.as_ref()
1066                         .map(|msg| msg.contents.addresses.as_slice())
1067                         .unwrap_or_default()
1068         }
1069 }
1070
1071 impl Writeable for NodeAnnouncementInfo {
1072         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1073                 let empty_addresses = Vec::<NetAddress>::new();
1074                 write_tlv_fields!(writer, {
1075                         (0, self.features, required),
1076                         (2, self.last_update, required),
1077                         (4, self.rgb, required),
1078                         (6, self.alias, required),
1079                         (8, self.announcement_message, option),
1080                         (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1081                 });
1082                 Ok(())
1083         }
1084 }
1085
1086 impl Readable for NodeAnnouncementInfo {
1087     fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1088                 _init_and_read_tlv_fields!(reader, {
1089                         (0, features, required),
1090                         (2, last_update, required),
1091                         (4, rgb, required),
1092                         (6, alias, required),
1093                         (8, announcement_message, option),
1094                         (10, _addresses, vec_type), // deprecated, not used anymore
1095                 });
1096                 let _: Option<Vec<NetAddress>> = _addresses;
1097                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1098                         alias: alias.0.unwrap(), announcement_message })
1099     }
1100 }
1101
1102 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1103 ///
1104 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1105 /// attacks. Care must be taken when processing.
1106 #[derive(Clone, Debug, PartialEq, Eq)]
1107 pub struct NodeAlias(pub [u8; 32]);
1108
1109 impl fmt::Display for NodeAlias {
1110         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1111                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1112                 let bytes = self.0.split_at(first_null).0;
1113                 match core::str::from_utf8(bytes) {
1114                         Ok(alias) => PrintableString(alias).fmt(f)?,
1115                         Err(_) => {
1116                                 use core::fmt::Write;
1117                                 for c in bytes.iter().map(|b| *b as char) {
1118                                         // Display printable ASCII characters
1119                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1120                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1121                                         f.write_char(c)?;
1122                                 }
1123                         },
1124                 };
1125                 Ok(())
1126         }
1127 }
1128
1129 impl Writeable for NodeAlias {
1130         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1131                 self.0.write(w)
1132         }
1133 }
1134
1135 impl Readable for NodeAlias {
1136         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1137                 Ok(NodeAlias(Readable::read(r)?))
1138         }
1139 }
1140
1141 #[derive(Clone, Debug, PartialEq, Eq)]
1142 /// Details about a node in the network, known from the network announcement.
1143 pub struct NodeInfo {
1144         /// All valid channels a node has announced
1145         pub channels: Vec<u64>,
1146         /// More information about a node from node_announcement.
1147         /// Optional because we store a Node entry after learning about it from
1148         /// a channel announcement, but before receiving a node announcement.
1149         pub announcement_info: Option<NodeAnnouncementInfo>
1150 }
1151
1152 impl fmt::Display for NodeInfo {
1153         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1154                 write!(f, " channels: {:?}, announcement_info: {:?}",
1155                         &self.channels[..], self.announcement_info)?;
1156                 Ok(())
1157         }
1158 }
1159
1160 impl Writeable for NodeInfo {
1161         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1162                 write_tlv_fields!(writer, {
1163                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1164                         (2, self.announcement_info, option),
1165                         (4, self.channels, vec_type),
1166                 });
1167                 Ok(())
1168         }
1169 }
1170
1171 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1172 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1173 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1174 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1175 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1176
1177 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1178         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1179                 match crate::util::ser::Readable::read(reader) {
1180                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1181                         Err(_) => {
1182                                 copy(reader, &mut sink()).unwrap();
1183                                 return Ok(None)
1184                         },
1185                 };
1186         }
1187 }
1188
1189 impl Readable for NodeInfo {
1190         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1191                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1192                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1193                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1194                 // requires additional complexity and lookups during routing, it ends up being a
1195                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1196                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1197                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1198                 _init_tlv_field_var!(channels, vec_type);
1199
1200                 read_tlv_fields!(reader, {
1201                         (0, _lowest_inbound_channel_fees, option),
1202                         (2, announcement_info_wrap, upgradable_option),
1203                         (4, channels, vec_type),
1204                 });
1205
1206                 Ok(NodeInfo {
1207                         announcement_info: announcement_info_wrap.map(|w| w.0),
1208                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1209                 })
1210         }
1211 }
1212
1213 const SERIALIZATION_VERSION: u8 = 1;
1214 const MIN_SERIALIZATION_VERSION: u8 = 1;
1215
1216 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1217         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1218                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1219
1220                 self.genesis_hash.write(writer)?;
1221                 let channels = self.channels.read().unwrap();
1222                 (channels.len() as u64).write(writer)?;
1223                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1224                         (*chan_id).write(writer)?;
1225                         chan_info.write(writer)?;
1226                 }
1227                 let nodes = self.nodes.read().unwrap();
1228                 (nodes.len() as u64).write(writer)?;
1229                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1230                         node_id.write(writer)?;
1231                         node_info.write(writer)?;
1232                 }
1233
1234                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1235                 write_tlv_fields!(writer, {
1236                         (1, last_rapid_gossip_sync_timestamp, option),
1237                 });
1238                 Ok(())
1239         }
1240 }
1241
1242 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1243         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1244                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1245
1246                 let genesis_hash: BlockHash = Readable::read(reader)?;
1247                 let channels_count: u64 = Readable::read(reader)?;
1248                 let mut channels = IndexedMap::new();
1249                 for _ in 0..channels_count {
1250                         let chan_id: u64 = Readable::read(reader)?;
1251                         let chan_info = Readable::read(reader)?;
1252                         channels.insert(chan_id, chan_info);
1253                 }
1254                 let nodes_count: u64 = Readable::read(reader)?;
1255                 let mut nodes = IndexedMap::new();
1256                 for _ in 0..nodes_count {
1257                         let node_id = Readable::read(reader)?;
1258                         let node_info = Readable::read(reader)?;
1259                         nodes.insert(node_id, node_info);
1260                 }
1261
1262                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1263                 read_tlv_fields!(reader, {
1264                         (1, last_rapid_gossip_sync_timestamp, option),
1265                 });
1266
1267                 Ok(NetworkGraph {
1268                         secp_ctx: Secp256k1::verification_only(),
1269                         genesis_hash,
1270                         logger,
1271                         channels: RwLock::new(channels),
1272                         nodes: RwLock::new(nodes),
1273                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1274                         removed_nodes: Mutex::new(HashMap::new()),
1275                         removed_channels: Mutex::new(HashMap::new()),
1276                         pending_checks: utxo::PendingChecks::new(),
1277                 })
1278         }
1279 }
1280
1281 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1282         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1283                 writeln!(f, "Network map\n[Channels]")?;
1284                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1285                         writeln!(f, " {}: {}", key, val)?;
1286                 }
1287                 writeln!(f, "[Nodes]")?;
1288                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1289                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1290                 }
1291                 Ok(())
1292         }
1293 }
1294
1295 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1296 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1297         fn eq(&self, other: &Self) -> bool {
1298                 self.genesis_hash == other.genesis_hash &&
1299                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1300                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1301         }
1302 }
1303
1304 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1305         /// Creates a new, empty, network graph.
1306         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1307                 Self {
1308                         secp_ctx: Secp256k1::verification_only(),
1309                         genesis_hash: genesis_block(network).header.block_hash(),
1310                         logger,
1311                         channels: RwLock::new(IndexedMap::new()),
1312                         nodes: RwLock::new(IndexedMap::new()),
1313                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1314                         removed_channels: Mutex::new(HashMap::new()),
1315                         removed_nodes: Mutex::new(HashMap::new()),
1316                         pending_checks: utxo::PendingChecks::new(),
1317                 }
1318         }
1319
1320         /// Returns a read-only view of the network graph.
1321         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1322                 let channels = self.channels.read().unwrap();
1323                 let nodes = self.nodes.read().unwrap();
1324                 ReadOnlyNetworkGraph {
1325                         channels,
1326                         nodes,
1327                 }
1328         }
1329
1330         /// The unix timestamp provided by the most recent rapid gossip sync.
1331         /// It will be set by the rapid sync process after every sync completion.
1332         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1333                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1334         }
1335
1336         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1337         /// This should be done automatically by the rapid sync process after every sync completion.
1338         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1339                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1340         }
1341
1342         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1343         /// purposes.
1344         #[cfg(test)]
1345         pub fn clear_nodes_announcement_info(&self) {
1346                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1347                         node.1.announcement_info = None;
1348                 }
1349         }
1350
1351         /// For an already known node (from channel announcements), update its stored properties from a
1352         /// given node announcement.
1353         ///
1354         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1355         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1356         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1357         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1358                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1359                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1360                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1361         }
1362
1363         /// For an already known node (from channel announcements), update its stored properties from a
1364         /// given node announcement without verifying the associated signatures. Because we aren't
1365         /// given the associated signatures here we cannot relay the node announcement to any of our
1366         /// peers.
1367         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1368                 self.update_node_from_announcement_intern(msg, None)
1369         }
1370
1371         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1372                 let mut nodes = self.nodes.write().unwrap();
1373                 match nodes.get_mut(&msg.node_id) {
1374                         None => {
1375                                 core::mem::drop(nodes);
1376                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1377                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1378                         },
1379                         Some(node) => {
1380                                 if let Some(node_info) = node.announcement_info.as_ref() {
1381                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1382                                         // updates to ensure you always have the latest one, only vaguely suggesting
1383                                         // that it be at least the current time.
1384                                         if node_info.last_update  > msg.timestamp {
1385                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1386                                         } else if node_info.last_update  == msg.timestamp {
1387                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1388                                         }
1389                                 }
1390
1391                                 let should_relay =
1392                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1393                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1394                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1395                                 node.announcement_info = Some(NodeAnnouncementInfo {
1396                                         features: msg.features.clone(),
1397                                         last_update: msg.timestamp,
1398                                         rgb: msg.rgb,
1399                                         alias: NodeAlias(msg.alias),
1400                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1401                                 });
1402
1403                                 Ok(())
1404                         }
1405                 }
1406         }
1407
1408         /// Store or update channel info from a channel announcement.
1409         ///
1410         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1411         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1412         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1413         ///
1414         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1415         /// the corresponding UTXO exists on chain and is correctly-formatted.
1416         pub fn update_channel_from_announcement<U: Deref>(
1417                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1418         ) -> Result<(), LightningError>
1419         where
1420                 U::Target: UtxoLookup,
1421         {
1422                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1423                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1424                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1425                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1426                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1427                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1428         }
1429
1430         /// Store or update channel info from a channel announcement without verifying the associated
1431         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1432         /// channel announcement to any of our peers.
1433         ///
1434         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1435         /// the corresponding UTXO exists on chain and is correctly-formatted.
1436         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1437                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1438         ) -> Result<(), LightningError>
1439         where
1440                 U::Target: UtxoLookup,
1441         {
1442                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1443         }
1444
1445         /// Update channel from partial announcement data received via rapid gossip sync
1446         ///
1447         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1448         /// rapid gossip sync server)
1449         ///
1450         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1451         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1452                 if node_id_1 == node_id_2 {
1453                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1454                 };
1455
1456                 let node_1 = NodeId::from_pubkey(&node_id_1);
1457                 let node_2 = NodeId::from_pubkey(&node_id_2);
1458                 let channel_info = ChannelInfo {
1459                         features,
1460                         node_one: node_1.clone(),
1461                         one_to_two: None,
1462                         node_two: node_2.clone(),
1463                         two_to_one: None,
1464                         capacity_sats: None,
1465                         announcement_message: None,
1466                         announcement_received_time: timestamp,
1467                 };
1468
1469                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1470         }
1471
1472         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1473                 let mut channels = self.channels.write().unwrap();
1474                 let mut nodes = self.nodes.write().unwrap();
1475
1476                 let node_id_a = channel_info.node_one.clone();
1477                 let node_id_b = channel_info.node_two.clone();
1478
1479                 match channels.entry(short_channel_id) {
1480                         IndexedMapEntry::Occupied(mut entry) => {
1481                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1482                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1483                                 //exactly how...
1484                                 if utxo_value.is_some() {
1485                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1486                                         // only sometimes returns results. In any case remove the previous entry. Note
1487                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1488                                         // do that because
1489                                         // a) we don't *require* a UTXO provider that always returns results.
1490                                         // b) we don't track UTXOs of channels we know about and remove them if they
1491                                         //    get reorg'd out.
1492                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1493                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1494                                         *entry.get_mut() = channel_info;
1495                                 } else {
1496                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1497                                 }
1498                         },
1499                         IndexedMapEntry::Vacant(entry) => {
1500                                 entry.insert(channel_info);
1501                         }
1502                 };
1503
1504                 for current_node_id in [node_id_a, node_id_b].iter() {
1505                         match nodes.entry(current_node_id.clone()) {
1506                                 IndexedMapEntry::Occupied(node_entry) => {
1507                                         node_entry.into_mut().channels.push(short_channel_id);
1508                                 },
1509                                 IndexedMapEntry::Vacant(node_entry) => {
1510                                         node_entry.insert(NodeInfo {
1511                                                 channels: vec!(short_channel_id),
1512                                                 announcement_info: None,
1513                                         });
1514                                 }
1515                         };
1516                 };
1517
1518                 Ok(())
1519         }
1520
1521         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1522                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1523         ) -> Result<(), LightningError>
1524         where
1525                 U::Target: UtxoLookup,
1526         {
1527                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1528                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1529                 }
1530
1531                 {
1532                         let channels = self.channels.read().unwrap();
1533
1534                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1535                                 if chan.capacity_sats.is_some() {
1536                                         // If we'd previously looked up the channel on-chain and checked the script
1537                                         // against what appears on-chain, ignore the duplicate announcement.
1538                                         //
1539                                         // Because a reorg could replace one channel with another at the same SCID, if
1540                                         // the channel appears to be different, we re-validate. This doesn't expose us
1541                                         // to any more DoS risk than not, as a peer can always flood us with
1542                                         // randomly-generated SCID values anyway.
1543                                         //
1544                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1545                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1546                                         // if the peers on the channel changed anyway.
1547                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1548                                                 return Err(LightningError {
1549                                                         err: "Already have chain-validated channel".to_owned(),
1550                                                         action: ErrorAction::IgnoreDuplicateGossip
1551                                                 });
1552                                         }
1553                                 } else if utxo_lookup.is_none() {
1554                                         // Similarly, if we can't check the chain right now anyway, ignore the
1555                                         // duplicate announcement without bothering to take the channels write lock.
1556                                         return Err(LightningError {
1557                                                 err: "Already have non-chain-validated channel".to_owned(),
1558                                                 action: ErrorAction::IgnoreDuplicateGossip
1559                                         });
1560                                 }
1561                         }
1562                 }
1563
1564                 {
1565                         let removed_channels = self.removed_channels.lock().unwrap();
1566                         let removed_nodes = self.removed_nodes.lock().unwrap();
1567                         if removed_channels.contains_key(&msg.short_channel_id) ||
1568                                 removed_nodes.contains_key(&msg.node_id_1) ||
1569                                 removed_nodes.contains_key(&msg.node_id_2) {
1570                                 return Err(LightningError{
1571                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1572                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1573                         }
1574                 }
1575
1576                 let utxo_value = self.pending_checks.check_channel_announcement(
1577                         utxo_lookup, msg, full_msg)?;
1578
1579                 #[allow(unused_mut, unused_assignments)]
1580                 let mut announcement_received_time = 0;
1581                 #[cfg(feature = "std")]
1582                 {
1583                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1584                 }
1585
1586                 let chan_info = ChannelInfo {
1587                         features: msg.features.clone(),
1588                         node_one: msg.node_id_1,
1589                         one_to_two: None,
1590                         node_two: msg.node_id_2,
1591                         two_to_one: None,
1592                         capacity_sats: utxo_value,
1593                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1594                                 { full_msg.cloned() } else { None },
1595                         announcement_received_time,
1596                 };
1597
1598                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1599
1600                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1601                 Ok(())
1602         }
1603
1604         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1605         /// If permanent, removes a channel from the local storage.
1606         /// May cause the removal of nodes too, if this was their last channel.
1607         /// If not permanent, makes channels unavailable for routing.
1608         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1609                 #[cfg(feature = "std")]
1610                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1611                 #[cfg(not(feature = "std"))]
1612                 let current_time_unix = None;
1613
1614                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1615         }
1616
1617         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1618         /// If permanent, removes a channel from the local storage.
1619         /// May cause the removal of nodes too, if this was their last channel.
1620         /// If not permanent, makes channels unavailable for routing.
1621         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1622                 let mut channels = self.channels.write().unwrap();
1623                 if is_permanent {
1624                         if let Some(chan) = channels.remove(&short_channel_id) {
1625                                 let mut nodes = self.nodes.write().unwrap();
1626                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1627                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1628                         }
1629                 } else {
1630                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1631                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1632                                         one_to_two.enabled = false;
1633                                 }
1634                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1635                                         two_to_one.enabled = false;
1636                                 }
1637                         }
1638                 }
1639         }
1640
1641         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1642         /// from local storage.
1643         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1644                 #[cfg(feature = "std")]
1645                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1646                 #[cfg(not(feature = "std"))]
1647                 let current_time_unix = None;
1648
1649                 let node_id = NodeId::from_pubkey(node_id);
1650                 let mut channels = self.channels.write().unwrap();
1651                 let mut nodes = self.nodes.write().unwrap();
1652                 let mut removed_channels = self.removed_channels.lock().unwrap();
1653                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1654
1655                 if let Some(node) = nodes.remove(&node_id) {
1656                         for scid in node.channels.iter() {
1657                                 if let Some(chan_info) = channels.remove(scid) {
1658                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1659                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1660                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1661                                                         *scid != *chan_id
1662                                                 });
1663                                                 if other_node_entry.get().channels.is_empty() {
1664                                                         other_node_entry.remove_entry();
1665                                                 }
1666                                         }
1667                                         removed_channels.insert(*scid, current_time_unix);
1668                                 }
1669                         }
1670                         removed_nodes.insert(node_id, current_time_unix);
1671                 }
1672         }
1673
1674         #[cfg(feature = "std")]
1675         /// Removes information about channels that we haven't heard any updates about in some time.
1676         /// This can be used regularly to prune the network graph of channels that likely no longer
1677         /// exist.
1678         ///
1679         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1680         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1681         /// pruning occur for updates which are at least two weeks old, which we implement here.
1682         ///
1683         /// Note that for users of the `lightning-background-processor` crate this method may be
1684         /// automatically called regularly for you.
1685         ///
1686         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1687         /// in the map for a while so that these can be resynced from gossip in the future.
1688         ///
1689         /// This method is only available with the `std` feature. See
1690         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1691         pub fn remove_stale_channels_and_tracking(&self) {
1692                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1693                 self.remove_stale_channels_and_tracking_with_time(time);
1694         }
1695
1696         /// Removes information about channels that we haven't heard any updates about in some time.
1697         /// This can be used regularly to prune the network graph of channels that likely no longer
1698         /// exist.
1699         ///
1700         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1701         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1702         /// pruning occur for updates which are at least two weeks old, which we implement here.
1703         ///
1704         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1705         /// in the map for a while so that these can be resynced from gossip in the future.
1706         ///
1707         /// This function takes the current unix time as an argument. For users with the `std` feature
1708         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1709         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1710                 let mut channels = self.channels.write().unwrap();
1711                 // Time out if we haven't received an update in at least 14 days.
1712                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1713                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1714                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1715                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1716                 // time.
1717                 let mut scids_to_remove = Vec::new();
1718                 for (scid, info) in channels.unordered_iter_mut() {
1719                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1720                                 info.one_to_two = None;
1721                         }
1722                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1723                                 info.two_to_one = None;
1724                         }
1725                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1726                                 // We check the announcement_received_time here to ensure we don't drop
1727                                 // announcements that we just received and are just waiting for our peer to send a
1728                                 // channel_update for.
1729                                 if info.announcement_received_time < min_time_unix as u64 {
1730                                         scids_to_remove.push(*scid);
1731                                 }
1732                         }
1733                 }
1734                 if !scids_to_remove.is_empty() {
1735                         let mut nodes = self.nodes.write().unwrap();
1736                         for scid in scids_to_remove {
1737                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1738                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1739                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1740                         }
1741                 }
1742
1743                 let should_keep_tracking = |time: &mut Option<u64>| {
1744                         if let Some(time) = time {
1745                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1746                         } else {
1747                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1748                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1749                                 // of this function.
1750                                 #[cfg(feature = "no-std")]
1751                                 {
1752                                         let mut tracked_time = Some(current_time_unix);
1753                                         core::mem::swap(time, &mut tracked_time);
1754                                         return true;
1755                                 }
1756                                 #[allow(unreachable_code)]
1757                                 false
1758                         }};
1759
1760                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1761                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1762         }
1763
1764         /// For an already known (from announcement) channel, update info about one of the directions
1765         /// of the channel.
1766         ///
1767         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1768         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1769         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1770         ///
1771         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1772         /// materially in the future will be rejected.
1773         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1774                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1775         }
1776
1777         /// For an already known (from announcement) channel, update info about one of the directions
1778         /// of the channel without verifying the associated signatures. Because we aren't given the
1779         /// associated signatures here we cannot relay the channel update to any of our peers.
1780         ///
1781         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1782         /// materially in the future will be rejected.
1783         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1784                 self.update_channel_intern(msg, None, None)
1785         }
1786
1787         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1788                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1789
1790                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1791                 {
1792                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1793                         // disable this check during tests!
1794                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1795                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1796                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1797                         }
1798                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1799                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1800                         }
1801                 }
1802
1803                 let mut channels = self.channels.write().unwrap();
1804                 match channels.get_mut(&msg.short_channel_id) {
1805                         None => {
1806                                 core::mem::drop(channels);
1807                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1808                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1809                         },
1810                         Some(channel) => {
1811                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1812                                         return Err(LightningError{err:
1813                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1814                                                 action: ErrorAction::IgnoreError});
1815                                 }
1816
1817                                 if let Some(capacity_sats) = channel.capacity_sats {
1818                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1819                                         // Don't query UTXO set here to reduce DoS risks.
1820                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1821                                                 return Err(LightningError{err:
1822                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1823                                                         action: ErrorAction::IgnoreError});
1824                                         }
1825                                 }
1826                                 macro_rules! check_update_latest {
1827                                         ($target: expr) => {
1828                                                 if let Some(existing_chan_info) = $target.as_ref() {
1829                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1830                                                         // order updates to ensure you always have the latest one, only
1831                                                         // suggesting  that it be at least the current time. For
1832                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1833                                                         // pruning based on the timestamp field being more than two weeks old,
1834                                                         // but only in the non-normative section.
1835                                                         if existing_chan_info.last_update > msg.timestamp {
1836                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1837                                                         } else if existing_chan_info.last_update == msg.timestamp {
1838                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1839                                                         }
1840                                                 }
1841                                         }
1842                                 }
1843
1844                                 macro_rules! get_new_channel_info {
1845                                         () => { {
1846                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1847                                                         { full_msg.cloned() } else { None };
1848
1849                                                 let updated_channel_update_info = ChannelUpdateInfo {
1850                                                         enabled: chan_enabled,
1851                                                         last_update: msg.timestamp,
1852                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1853                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1854                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1855                                                         fees: RoutingFees {
1856                                                                 base_msat: msg.fee_base_msat,
1857                                                                 proportional_millionths: msg.fee_proportional_millionths,
1858                                                         },
1859                                                         last_update_message
1860                                                 };
1861                                                 Some(updated_channel_update_info)
1862                                         } }
1863                                 }
1864
1865                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1866                                 if msg.flags & 1 == 1 {
1867                                         check_update_latest!(channel.two_to_one);
1868                                         if let Some(sig) = sig {
1869                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1870                                                         err: "Couldn't parse source node pubkey".to_owned(),
1871                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1872                                                 })?, "channel_update");
1873                                         }
1874                                         channel.two_to_one = get_new_channel_info!();
1875                                 } else {
1876                                         check_update_latest!(channel.one_to_two);
1877                                         if let Some(sig) = sig {
1878                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1879                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1880                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1881                                                 })?, "channel_update");
1882                                         }
1883                                         channel.one_to_two = get_new_channel_info!();
1884                                 }
1885                         }
1886                 }
1887
1888                 Ok(())
1889         }
1890
1891         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1892                 macro_rules! remove_from_node {
1893                         ($node_id: expr) => {
1894                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1895                                         entry.get_mut().channels.retain(|chan_id| {
1896                                                 short_channel_id != *chan_id
1897                                         });
1898                                         if entry.get().channels.is_empty() {
1899                                                 entry.remove_entry();
1900                                         }
1901                                 } else {
1902                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1903                                 }
1904                         }
1905                 }
1906
1907                 remove_from_node!(chan.node_one);
1908                 remove_from_node!(chan.node_two);
1909         }
1910 }
1911
1912 impl ReadOnlyNetworkGraph<'_> {
1913         /// Returns all known valid channels' short ids along with announced channel info.
1914         ///
1915         /// This is not exported to bindings users because we don't want to return lifetime'd references
1916         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1917                 &*self.channels
1918         }
1919
1920         /// Returns information on a channel with the given id.
1921         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1922                 self.channels.get(&short_channel_id)
1923         }
1924
1925         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1926         /// Returns the list of channels in the graph
1927         pub fn list_channels(&self) -> Vec<u64> {
1928                 self.channels.unordered_keys().map(|c| *c).collect()
1929         }
1930
1931         /// Returns all known nodes' public keys along with announced node info.
1932         ///
1933         /// This is not exported to bindings users because we don't want to return lifetime'd references
1934         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1935                 &*self.nodes
1936         }
1937
1938         /// Returns information on a node with the given id.
1939         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1940                 self.nodes.get(node_id)
1941         }
1942
1943         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1944         /// Returns the list of nodes in the graph
1945         pub fn list_nodes(&self) -> Vec<NodeId> {
1946                 self.nodes.unordered_keys().map(|n| *n).collect()
1947         }
1948
1949         /// Get network addresses by node id.
1950         /// Returns None if the requested node is completely unknown,
1951         /// or if node announcement for the node was never received.
1952         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1953                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1954                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1955         }
1956 }
1957
1958 #[cfg(test)]
1959 pub(crate) mod tests {
1960         use crate::ln::channelmanager;
1961         use crate::ln::chan_utils::make_funding_redeemscript;
1962         #[cfg(feature = "std")]
1963         use crate::ln::features::InitFeatures;
1964         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1965         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1966         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1967                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1968                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1969         use crate::util::config::UserConfig;
1970         use crate::util::test_utils;
1971         use crate::util::ser::{ReadableArgs, Readable, Writeable};
1972         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1973         use crate::util::scid_utils::scid_from_parts;
1974
1975         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1976         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1977
1978         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1979         use bitcoin::hashes::Hash;
1980         use bitcoin::network::constants::Network;
1981         use bitcoin::blockdata::constants::genesis_block;
1982         use bitcoin::blockdata::script::Script;
1983         use bitcoin::blockdata::transaction::TxOut;
1984
1985         use hex;
1986
1987         use bitcoin::secp256k1::{PublicKey, SecretKey};
1988         use bitcoin::secp256k1::{All, Secp256k1};
1989
1990         use crate::io;
1991         use bitcoin::secp256k1;
1992         use crate::prelude::*;
1993         use crate::sync::Arc;
1994
1995         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1996                 let logger = Arc::new(test_utils::TestLogger::new());
1997                 NetworkGraph::new(Network::Testnet, logger)
1998         }
1999
2000         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2001                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2002                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2003         ) {
2004                 let secp_ctx = Secp256k1::new();
2005                 let logger = Arc::new(test_utils::TestLogger::new());
2006                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2007                 (secp_ctx, gossip_sync)
2008         }
2009
2010         #[test]
2011         #[cfg(feature = "std")]
2012         fn request_full_sync_finite_times() {
2013                 let network_graph = create_network_graph();
2014                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2015                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2016
2017                 assert!(gossip_sync.should_request_full_sync(&node_id));
2018                 assert!(gossip_sync.should_request_full_sync(&node_id));
2019                 assert!(gossip_sync.should_request_full_sync(&node_id));
2020                 assert!(gossip_sync.should_request_full_sync(&node_id));
2021                 assert!(gossip_sync.should_request_full_sync(&node_id));
2022                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2023         }
2024
2025         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2026                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2027                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2028                         features: channelmanager::provided_node_features(&UserConfig::default()),
2029                         timestamp: 100,
2030                         node_id,
2031                         rgb: [0; 3],
2032                         alias: [0; 32],
2033                         addresses: Vec::new(),
2034                         excess_address_data: Vec::new(),
2035                         excess_data: Vec::new(),
2036                 };
2037                 f(&mut unsigned_announcement);
2038                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2039                 NodeAnnouncement {
2040                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2041                         contents: unsigned_announcement
2042                 }
2043         }
2044
2045         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2046                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2047                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2048                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2049                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2050
2051                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2052                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2053                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2054                         short_channel_id: 0,
2055                         node_id_1: NodeId::from_pubkey(&node_id_1),
2056                         node_id_2: NodeId::from_pubkey(&node_id_2),
2057                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2058                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2059                         excess_data: Vec::new(),
2060                 };
2061                 f(&mut unsigned_announcement);
2062                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2063                 ChannelAnnouncement {
2064                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2065                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2066                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2067                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2068                         contents: unsigned_announcement,
2069                 }
2070         }
2071
2072         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2073                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2074                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2075                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2076                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2077         }
2078
2079         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2080                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2081                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2082                         short_channel_id: 0,
2083                         timestamp: 100,
2084                         flags: 0,
2085                         cltv_expiry_delta: 144,
2086                         htlc_minimum_msat: 1_000_000,
2087                         htlc_maximum_msat: 1_000_000,
2088                         fee_base_msat: 10_000,
2089                         fee_proportional_millionths: 20,
2090                         excess_data: Vec::new()
2091                 };
2092                 f(&mut unsigned_channel_update);
2093                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2094                 ChannelUpdate {
2095                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2096                         contents: unsigned_channel_update
2097                 }
2098         }
2099
2100         #[test]
2101         fn handling_node_announcements() {
2102                 let network_graph = create_network_graph();
2103                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2104
2105                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2106                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2107                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2108
2109                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2110                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2111                         Ok(_) => panic!(),
2112                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2113                 };
2114
2115                 {
2116                         // Announce a channel to add a corresponding node.
2117                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2118                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2119                                 Ok(res) => assert!(res),
2120                                 _ => panic!()
2121                         };
2122                 }
2123
2124                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2125                         Ok(res) => assert!(res),
2126                         Err(_) => panic!()
2127                 };
2128
2129                 let fake_msghash = hash_to_message!(&zero_hash);
2130                 match gossip_sync.handle_node_announcement(
2131                         &NodeAnnouncement {
2132                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2133                                 contents: valid_announcement.contents.clone()
2134                 }) {
2135                         Ok(_) => panic!(),
2136                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2137                 };
2138
2139                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2140                         unsigned_announcement.timestamp += 1000;
2141                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2142                 }, node_1_privkey, &secp_ctx);
2143                 // Return false because contains excess data.
2144                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2145                         Ok(res) => assert!(!res),
2146                         Err(_) => panic!()
2147                 };
2148
2149                 // Even though previous announcement was not relayed further, we still accepted it,
2150                 // so we now won't accept announcements before the previous one.
2151                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2152                         unsigned_announcement.timestamp += 1000 - 10;
2153                 }, node_1_privkey, &secp_ctx);
2154                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2155                         Ok(_) => panic!(),
2156                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2157                 };
2158         }
2159
2160         #[test]
2161         fn handling_channel_announcements() {
2162                 let secp_ctx = Secp256k1::new();
2163                 let logger = test_utils::TestLogger::new();
2164
2165                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2166                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2167
2168                 let good_script = get_channel_script(&secp_ctx);
2169                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2170
2171                 // Test if the UTXO lookups were not supported
2172                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2173                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2174                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2175                         Ok(res) => assert!(res),
2176                         _ => panic!()
2177                 };
2178
2179                 {
2180                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2181                                 None => panic!(),
2182                                 Some(_) => ()
2183                         };
2184                 }
2185
2186                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2187                 // drop new one on the floor, since we can't see any changes.
2188                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2189                         Ok(_) => panic!(),
2190                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2191                 };
2192
2193                 // Test if an associated transaction were not on-chain (or not confirmed).
2194                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2195                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2196                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2197                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2198
2199                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2200                         unsigned_announcement.short_channel_id += 1;
2201                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2202                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2203                         Ok(_) => panic!(),
2204                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2205                 };
2206
2207                 // Now test if the transaction is found in the UTXO set and the script is correct.
2208                 *chain_source.utxo_ret.lock().unwrap() =
2209                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2210                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2211                         unsigned_announcement.short_channel_id += 2;
2212                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2213                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2214                         Ok(res) => assert!(res),
2215                         _ => panic!()
2216                 };
2217
2218                 {
2219                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2220                                 None => panic!(),
2221                                 Some(_) => ()
2222                         };
2223                 }
2224
2225                 // If we receive announcement for the same channel, once we've validated it against the
2226                 // chain, we simply ignore all new (duplicate) announcements.
2227                 *chain_source.utxo_ret.lock().unwrap() =
2228                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2229                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2230                         Ok(_) => panic!(),
2231                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2232                 };
2233
2234                 #[cfg(feature = "std")]
2235                 {
2236                         use std::time::{SystemTime, UNIX_EPOCH};
2237
2238                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2239                         // Mark a node as permanently failed so it's tracked as removed.
2240                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2241
2242                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2243                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2244                                 unsigned_announcement.short_channel_id += 3;
2245                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2246                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2247                                 Ok(_) => panic!(),
2248                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2249                         }
2250
2251                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2252
2253                         // The above channel announcement should be handled as per normal now.
2254                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2255                                 Ok(res) => assert!(res),
2256                                 _ => panic!()
2257                         }
2258                 }
2259
2260                 // Don't relay valid channels with excess data
2261                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2262                         unsigned_announcement.short_channel_id += 4;
2263                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2264                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2265                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2266                         Ok(res) => assert!(!res),
2267                         _ => panic!()
2268                 };
2269
2270                 let mut invalid_sig_announcement = valid_announcement.clone();
2271                 invalid_sig_announcement.contents.excess_data = Vec::new();
2272                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2273                         Ok(_) => panic!(),
2274                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2275                 };
2276
2277                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2278                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2279                         Ok(_) => panic!(),
2280                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2281                 };
2282         }
2283
2284         #[test]
2285         fn handling_channel_update() {
2286                 let secp_ctx = Secp256k1::new();
2287                 let logger = test_utils::TestLogger::new();
2288                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2289                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2290                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2291
2292                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2293                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2294
2295                 let amount_sats = 1000_000;
2296                 let short_channel_id;
2297
2298                 {
2299                         // Announce a channel we will update
2300                         let good_script = get_channel_script(&secp_ctx);
2301                         *chain_source.utxo_ret.lock().unwrap() =
2302                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2303
2304                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2305                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2306                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2307                                 Ok(_) => (),
2308                                 Err(_) => panic!()
2309                         };
2310
2311                 }
2312
2313                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2314                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2315                         Ok(res) => assert!(res),
2316                         _ => panic!(),
2317                 };
2318
2319                 {
2320                         match network_graph.read_only().channels().get(&short_channel_id) {
2321                                 None => panic!(),
2322                                 Some(channel_info) => {
2323                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2324                                         assert!(channel_info.two_to_one.is_none());
2325                                 }
2326                         };
2327                 }
2328
2329                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2330                         unsigned_channel_update.timestamp += 100;
2331                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2332                 }, node_1_privkey, &secp_ctx);
2333                 // Return false because contains excess data
2334                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2335                         Ok(res) => assert!(!res),
2336                         _ => panic!()
2337                 };
2338
2339                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2340                         unsigned_channel_update.timestamp += 110;
2341                         unsigned_channel_update.short_channel_id += 1;
2342                 }, node_1_privkey, &secp_ctx);
2343                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2344                         Ok(_) => panic!(),
2345                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2346                 };
2347
2348                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2349                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2350                         unsigned_channel_update.timestamp += 110;
2351                 }, node_1_privkey, &secp_ctx);
2352                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2353                         Ok(_) => panic!(),
2354                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2355                 };
2356
2357                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2358                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2359                         unsigned_channel_update.timestamp += 110;
2360                 }, node_1_privkey, &secp_ctx);
2361                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2362                         Ok(_) => panic!(),
2363                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2364                 };
2365
2366                 // Even though previous update was not relayed further, we still accepted it,
2367                 // so we now won't accept update before the previous one.
2368                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2369                         unsigned_channel_update.timestamp += 100;
2370                 }, node_1_privkey, &secp_ctx);
2371                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2372                         Ok(_) => panic!(),
2373                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2374                 };
2375
2376                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2377                         unsigned_channel_update.timestamp += 500;
2378                 }, node_1_privkey, &secp_ctx);
2379                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2380                 let fake_msghash = hash_to_message!(&zero_hash);
2381                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2382                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2383                         Ok(_) => panic!(),
2384                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2385                 };
2386         }
2387
2388         #[test]
2389         fn handling_network_update() {
2390                 let logger = test_utils::TestLogger::new();
2391                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2392                 let secp_ctx = Secp256k1::new();
2393
2394                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2395                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2396                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2397
2398                 {
2399                         // There is no nodes in the table at the beginning.
2400                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2401                 }
2402
2403                 let short_channel_id;
2404                 {
2405                         // Announce a channel we will update
2406                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2407                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2408                         let chain_source: Option<&test_utils::TestChainSource> = None;
2409                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2410                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2411
2412                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2413                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2414
2415                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2416                                 msg: valid_channel_update,
2417                         });
2418
2419                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2420                 }
2421
2422                 // Non-permanent closing just disables a channel
2423                 {
2424                         match network_graph.read_only().channels().get(&short_channel_id) {
2425                                 None => panic!(),
2426                                 Some(channel_info) => {
2427                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2428                                 }
2429                         };
2430
2431                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2432                                 short_channel_id,
2433                                 is_permanent: false,
2434                         });
2435
2436                         match network_graph.read_only().channels().get(&short_channel_id) {
2437                                 None => panic!(),
2438                                 Some(channel_info) => {
2439                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2440                                 }
2441                         };
2442                 }
2443
2444                 // Permanent closing deletes a channel
2445                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2446                         short_channel_id,
2447                         is_permanent: true,
2448                 });
2449
2450                 assert_eq!(network_graph.read_only().channels().len(), 0);
2451                 // Nodes are also deleted because there are no associated channels anymore
2452                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2453
2454                 {
2455                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2456                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2457
2458                         // Announce a channel to test permanent node failure
2459                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2460                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2461                         let chain_source: Option<&test_utils::TestChainSource> = None;
2462                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2463                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2464
2465                         // Non-permanent node failure does not delete any nodes or channels
2466                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2467                                 node_id: node_2_id,
2468                                 is_permanent: false,
2469                         });
2470
2471                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2472                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2473
2474                         // Permanent node failure deletes node and its channels
2475                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2476                                 node_id: node_2_id,
2477                                 is_permanent: true,
2478                         });
2479
2480                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2481                         // Channels are also deleted because the associated node has been deleted
2482                         assert_eq!(network_graph.read_only().channels().len(), 0);
2483                 }
2484         }
2485
2486         #[test]
2487         fn test_channel_timeouts() {
2488                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2489                 let logger = test_utils::TestLogger::new();
2490                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2491                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2492                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2493                 let secp_ctx = Secp256k1::new();
2494
2495                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2496                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2497
2498                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2499                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2500                 let chain_source: Option<&test_utils::TestChainSource> = None;
2501                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2502                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2503
2504                 // Submit two channel updates for each channel direction (update.flags bit).
2505                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2506                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2507                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2508
2509                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2510                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2511                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2512
2513                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2514                 assert_eq!(network_graph.read_only().channels().len(), 1);
2515                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2516
2517                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2518                 #[cfg(not(feature = "std"))] {
2519                         // Make sure removed channels are tracked.
2520                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2521                 }
2522                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2523                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2524
2525                 #[cfg(feature = "std")]
2526                 {
2527                         // In std mode, a further check is performed before fully removing the channel -
2528                         // the channel_announcement must have been received at least two weeks ago. We
2529                         // fudge that here by indicating the time has jumped two weeks.
2530                         assert_eq!(network_graph.read_only().channels().len(), 1);
2531                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2532
2533                         // Note that the directional channel information will have been removed already..
2534                         // We want to check that this will work even if *one* of the channel updates is recent,
2535                         // so we should add it with a recent timestamp.
2536                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2537                         use std::time::{SystemTime, UNIX_EPOCH};
2538                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2539                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2540                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2541                         }, node_1_privkey, &secp_ctx);
2542                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2543                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2544                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2545                         // Make sure removed channels are tracked.
2546                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2547                         // Provide a later time so that sufficient time has passed
2548                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2549                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2550                 }
2551
2552                 assert_eq!(network_graph.read_only().channels().len(), 0);
2553                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2554                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2555
2556                 #[cfg(feature = "std")]
2557                 {
2558                         use std::time::{SystemTime, UNIX_EPOCH};
2559
2560                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2561
2562                         // Clear tracked nodes and channels for clean slate
2563                         network_graph.removed_channels.lock().unwrap().clear();
2564                         network_graph.removed_nodes.lock().unwrap().clear();
2565
2566                         // Add a channel and nodes from channel announcement. So our network graph will
2567                         // now only consist of two nodes and one channel between them.
2568                         assert!(network_graph.update_channel_from_announcement(
2569                                 &valid_channel_announcement, &chain_source).is_ok());
2570
2571                         // Mark the channel as permanently failed. This will also remove the two nodes
2572                         // and all of the entries will be tracked as removed.
2573                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2574
2575                         // Should not remove from tracking if insufficient time has passed
2576                         network_graph.remove_stale_channels_and_tracking_with_time(
2577                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2578                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2579
2580                         // Provide a later time so that sufficient time has passed
2581                         network_graph.remove_stale_channels_and_tracking_with_time(
2582                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2583                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2584                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2585                 }
2586
2587                 #[cfg(not(feature = "std"))]
2588                 {
2589                         // When we don't have access to the system clock, the time we started tracking removal will only
2590                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2591                         // only if sufficient time has passed after that first call, will the next call remove it from
2592                         // tracking.
2593                         let removal_time = 1664619654;
2594
2595                         // Clear removed nodes and channels for clean slate
2596                         network_graph.removed_channels.lock().unwrap().clear();
2597                         network_graph.removed_nodes.lock().unwrap().clear();
2598
2599                         // Add a channel and nodes from channel announcement. So our network graph will
2600                         // now only consist of two nodes and one channel between them.
2601                         assert!(network_graph.update_channel_from_announcement(
2602                                 &valid_channel_announcement, &chain_source).is_ok());
2603
2604                         // Mark the channel as permanently failed. This will also remove the two nodes
2605                         // and all of the entries will be tracked as removed.
2606                         network_graph.channel_failed(short_channel_id, true);
2607
2608                         // The first time we call the following, the channel will have a removal time assigned.
2609                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2610                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2611
2612                         // Provide a later time so that sufficient time has passed
2613                         network_graph.remove_stale_channels_and_tracking_with_time(
2614                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2615                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2616                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2617                 }
2618         }
2619
2620         #[test]
2621         fn getting_next_channel_announcements() {
2622                 let network_graph = create_network_graph();
2623                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2624                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2625                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2626
2627                 // Channels were not announced yet.
2628                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2629                 assert!(channels_with_announcements.is_none());
2630
2631                 let short_channel_id;
2632                 {
2633                         // Announce a channel we will update
2634                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2635                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2636                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2637                                 Ok(_) => (),
2638                                 Err(_) => panic!()
2639                         };
2640                 }
2641
2642                 // Contains initial channel announcement now.
2643                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2644                 if let Some(channel_announcements) = channels_with_announcements {
2645                         let (_, ref update_1, ref update_2) = channel_announcements;
2646                         assert_eq!(update_1, &None);
2647                         assert_eq!(update_2, &None);
2648                 } else {
2649                         panic!();
2650                 }
2651
2652                 {
2653                         // Valid channel update
2654                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2655                                 unsigned_channel_update.timestamp = 101;
2656                         }, node_1_privkey, &secp_ctx);
2657                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2658                                 Ok(_) => (),
2659                                 Err(_) => panic!()
2660                         };
2661                 }
2662
2663                 // Now contains an initial announcement and an update.
2664                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2665                 if let Some(channel_announcements) = channels_with_announcements {
2666                         let (_, ref update_1, ref update_2) = channel_announcements;
2667                         assert_ne!(update_1, &None);
2668                         assert_eq!(update_2, &None);
2669                 } else {
2670                         panic!();
2671                 }
2672
2673                 {
2674                         // Channel update with excess data.
2675                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2676                                 unsigned_channel_update.timestamp = 102;
2677                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2678                         }, node_1_privkey, &secp_ctx);
2679                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2680                                 Ok(_) => (),
2681                                 Err(_) => panic!()
2682                         };
2683                 }
2684
2685                 // Test that announcements with excess data won't be returned
2686                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2687                 if let Some(channel_announcements) = channels_with_announcements {
2688                         let (_, ref update_1, ref update_2) = channel_announcements;
2689                         assert_eq!(update_1, &None);
2690                         assert_eq!(update_2, &None);
2691                 } else {
2692                         panic!();
2693                 }
2694
2695                 // Further starting point have no channels after it
2696                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2697                 assert!(channels_with_announcements.is_none());
2698         }
2699
2700         #[test]
2701         fn getting_next_node_announcements() {
2702                 let network_graph = create_network_graph();
2703                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2704                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2705                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2706                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2707
2708                 // No nodes yet.
2709                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2710                 assert!(next_announcements.is_none());
2711
2712                 {
2713                         // Announce a channel to add 2 nodes
2714                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2715                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2716                                 Ok(_) => (),
2717                                 Err(_) => panic!()
2718                         };
2719                 }
2720
2721                 // Nodes were never announced
2722                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2723                 assert!(next_announcements.is_none());
2724
2725                 {
2726                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2727                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2728                                 Ok(_) => (),
2729                                 Err(_) => panic!()
2730                         };
2731
2732                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2733                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2734                                 Ok(_) => (),
2735                                 Err(_) => panic!()
2736                         };
2737                 }
2738
2739                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2740                 assert!(next_announcements.is_some());
2741
2742                 // Skip the first node.
2743                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2744                 assert!(next_announcements.is_some());
2745
2746                 {
2747                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2748                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2749                                 unsigned_announcement.timestamp += 10;
2750                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2751                         }, node_2_privkey, &secp_ctx);
2752                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2753                                 Ok(res) => assert!(!res),
2754                                 Err(_) => panic!()
2755                         };
2756                 }
2757
2758                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2759                 assert!(next_announcements.is_none());
2760         }
2761
2762         #[test]
2763         fn network_graph_serialization() {
2764                 let network_graph = create_network_graph();
2765                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2766
2767                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2768                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2769
2770                 // Announce a channel to add a corresponding node.
2771                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2772                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2773                         Ok(res) => assert!(res),
2774                         _ => panic!()
2775                 };
2776
2777                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2778                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2779                         Ok(_) => (),
2780                         Err(_) => panic!()
2781                 };
2782
2783                 let mut w = test_utils::TestVecWriter(Vec::new());
2784                 assert!(!network_graph.read_only().nodes().is_empty());
2785                 assert!(!network_graph.read_only().channels().is_empty());
2786                 network_graph.write(&mut w).unwrap();
2787
2788                 let logger = Arc::new(test_utils::TestLogger::new());
2789                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2790         }
2791
2792         #[test]
2793         fn network_graph_tlv_serialization() {
2794                 let network_graph = create_network_graph();
2795                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2796
2797                 let mut w = test_utils::TestVecWriter(Vec::new());
2798                 network_graph.write(&mut w).unwrap();
2799
2800                 let logger = Arc::new(test_utils::TestLogger::new());
2801                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2802                 assert!(reassembled_network_graph == network_graph);
2803                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2804         }
2805
2806         #[test]
2807         #[cfg(feature = "std")]
2808         fn calling_sync_routing_table() {
2809                 use std::time::{SystemTime, UNIX_EPOCH};
2810                 use crate::ln::msgs::Init;
2811
2812                 let network_graph = create_network_graph();
2813                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2814                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2815                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2816
2817                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2818
2819                 // It should ignore if gossip_queries feature is not enabled
2820                 {
2821                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2822                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2823                         let events = gossip_sync.get_and_clear_pending_msg_events();
2824                         assert_eq!(events.len(), 0);
2825                 }
2826
2827                 // It should send a gossip_timestamp_filter with the correct information
2828                 {
2829                         let mut features = InitFeatures::empty();
2830                         features.set_gossip_queries_optional();
2831                         let init_msg = Init { features, remote_network_address: None };
2832                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2833                         let events = gossip_sync.get_and_clear_pending_msg_events();
2834                         assert_eq!(events.len(), 1);
2835                         match &events[0] {
2836                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2837                                         assert_eq!(node_id, &node_id_1);
2838                                         assert_eq!(msg.chain_hash, chain_hash);
2839                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2840                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2841                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2842                                         assert_eq!(msg.timestamp_range, u32::max_value());
2843                                 },
2844                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2845                         };
2846                 }
2847         }
2848
2849         #[test]
2850         fn handling_query_channel_range() {
2851                 let network_graph = create_network_graph();
2852                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2853
2854                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2855                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2856                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2857                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2858
2859                 let mut scids: Vec<u64> = vec![
2860                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2861                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2862                 ];
2863
2864                 // used for testing multipart reply across blocks
2865                 for block in 100000..=108001 {
2866                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2867                 }
2868
2869                 // used for testing resumption on same block
2870                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2871
2872                 for scid in scids {
2873                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2874                                 unsigned_announcement.short_channel_id = scid;
2875                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2876                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2877                                 Ok(_) => (),
2878                                 _ => panic!()
2879                         };
2880                 }
2881
2882                 // Error when number_of_blocks=0
2883                 do_handling_query_channel_range(
2884                         &gossip_sync,
2885                         &node_id_2,
2886                         QueryChannelRange {
2887                                 chain_hash: chain_hash.clone(),
2888                                 first_blocknum: 0,
2889                                 number_of_blocks: 0,
2890                         },
2891                         false,
2892                         vec![ReplyChannelRange {
2893                                 chain_hash: chain_hash.clone(),
2894                                 first_blocknum: 0,
2895                                 number_of_blocks: 0,
2896                                 sync_complete: true,
2897                                 short_channel_ids: vec![]
2898                         }]
2899                 );
2900
2901                 // Error when wrong chain
2902                 do_handling_query_channel_range(
2903                         &gossip_sync,
2904                         &node_id_2,
2905                         QueryChannelRange {
2906                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2907                                 first_blocknum: 0,
2908                                 number_of_blocks: 0xffff_ffff,
2909                         },
2910                         false,
2911                         vec![ReplyChannelRange {
2912                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2913                                 first_blocknum: 0,
2914                                 number_of_blocks: 0xffff_ffff,
2915                                 sync_complete: true,
2916                                 short_channel_ids: vec![],
2917                         }]
2918                 );
2919
2920                 // Error when first_blocknum > 0xffffff
2921                 do_handling_query_channel_range(
2922                         &gossip_sync,
2923                         &node_id_2,
2924                         QueryChannelRange {
2925                                 chain_hash: chain_hash.clone(),
2926                                 first_blocknum: 0x01000000,
2927                                 number_of_blocks: 0xffff_ffff,
2928                         },
2929                         false,
2930                         vec![ReplyChannelRange {
2931                                 chain_hash: chain_hash.clone(),
2932                                 first_blocknum: 0x01000000,
2933                                 number_of_blocks: 0xffff_ffff,
2934                                 sync_complete: true,
2935                                 short_channel_ids: vec![]
2936                         }]
2937                 );
2938
2939                 // Empty reply when max valid SCID block num
2940                 do_handling_query_channel_range(
2941                         &gossip_sync,
2942                         &node_id_2,
2943                         QueryChannelRange {
2944                                 chain_hash: chain_hash.clone(),
2945                                 first_blocknum: 0xffffff,
2946                                 number_of_blocks: 1,
2947                         },
2948                         true,
2949                         vec![
2950                                 ReplyChannelRange {
2951                                         chain_hash: chain_hash.clone(),
2952                                         first_blocknum: 0xffffff,
2953                                         number_of_blocks: 1,
2954                                         sync_complete: true,
2955                                         short_channel_ids: vec![]
2956                                 },
2957                         ]
2958                 );
2959
2960                 // No results in valid query range
2961                 do_handling_query_channel_range(
2962                         &gossip_sync,
2963                         &node_id_2,
2964                         QueryChannelRange {
2965                                 chain_hash: chain_hash.clone(),
2966                                 first_blocknum: 1000,
2967                                 number_of_blocks: 1000,
2968                         },
2969                         true,
2970                         vec![
2971                                 ReplyChannelRange {
2972                                         chain_hash: chain_hash.clone(),
2973                                         first_blocknum: 1000,
2974                                         number_of_blocks: 1000,
2975                                         sync_complete: true,
2976                                         short_channel_ids: vec![],
2977                                 }
2978                         ]
2979                 );
2980
2981                 // Overflow first_blocknum + number_of_blocks
2982                 do_handling_query_channel_range(
2983                         &gossip_sync,
2984                         &node_id_2,
2985                         QueryChannelRange {
2986                                 chain_hash: chain_hash.clone(),
2987                                 first_blocknum: 0xfe0000,
2988                                 number_of_blocks: 0xffffffff,
2989                         },
2990                         true,
2991                         vec![
2992                                 ReplyChannelRange {
2993                                         chain_hash: chain_hash.clone(),
2994                                         first_blocknum: 0xfe0000,
2995                                         number_of_blocks: 0xffffffff - 0xfe0000,
2996                                         sync_complete: true,
2997                                         short_channel_ids: vec![
2998                                                 0xfffffe_ffffff_ffff, // max
2999                                         ]
3000                                 }
3001                         ]
3002                 );
3003
3004                 // Single block exactly full
3005                 do_handling_query_channel_range(
3006                         &gossip_sync,
3007                         &node_id_2,
3008                         QueryChannelRange {
3009                                 chain_hash: chain_hash.clone(),
3010                                 first_blocknum: 100000,
3011                                 number_of_blocks: 8000,
3012                         },
3013                         true,
3014                         vec![
3015                                 ReplyChannelRange {
3016                                         chain_hash: chain_hash.clone(),
3017                                         first_blocknum: 100000,
3018                                         number_of_blocks: 8000,
3019                                         sync_complete: true,
3020                                         short_channel_ids: (100000..=107999)
3021                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3022                                                 .collect(),
3023                                 },
3024                         ]
3025                 );
3026
3027                 // Multiple split on new block
3028                 do_handling_query_channel_range(
3029                         &gossip_sync,
3030                         &node_id_2,
3031                         QueryChannelRange {
3032                                 chain_hash: chain_hash.clone(),
3033                                 first_blocknum: 100000,
3034                                 number_of_blocks: 8001,
3035                         },
3036                         true,
3037                         vec![
3038                                 ReplyChannelRange {
3039                                         chain_hash: chain_hash.clone(),
3040                                         first_blocknum: 100000,
3041                                         number_of_blocks: 7999,
3042                                         sync_complete: false,
3043                                         short_channel_ids: (100000..=107999)
3044                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3045                                                 .collect(),
3046                                 },
3047                                 ReplyChannelRange {
3048                                         chain_hash: chain_hash.clone(),
3049                                         first_blocknum: 107999,
3050                                         number_of_blocks: 2,
3051                                         sync_complete: true,
3052                                         short_channel_ids: vec![
3053                                                 scid_from_parts(108000, 0, 0).unwrap(),
3054                                         ],
3055                                 }
3056                         ]
3057                 );
3058
3059                 // Multiple split on same block
3060                 do_handling_query_channel_range(
3061                         &gossip_sync,
3062                         &node_id_2,
3063                         QueryChannelRange {
3064                                 chain_hash: chain_hash.clone(),
3065                                 first_blocknum: 100002,
3066                                 number_of_blocks: 8000,
3067                         },
3068                         true,
3069                         vec![
3070                                 ReplyChannelRange {
3071                                         chain_hash: chain_hash.clone(),
3072                                         first_blocknum: 100002,
3073                                         number_of_blocks: 7999,
3074                                         sync_complete: false,
3075                                         short_channel_ids: (100002..=108001)
3076                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3077                                                 .collect(),
3078                                 },
3079                                 ReplyChannelRange {
3080                                         chain_hash: chain_hash.clone(),
3081                                         first_blocknum: 108001,
3082                                         number_of_blocks: 1,
3083                                         sync_complete: true,
3084                                         short_channel_ids: vec![
3085                                                 scid_from_parts(108001, 1, 0).unwrap(),
3086                                         ],
3087                                 }
3088                         ]
3089                 );
3090         }
3091
3092         fn do_handling_query_channel_range(
3093                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3094                 test_node_id: &PublicKey,
3095                 msg: QueryChannelRange,
3096                 expected_ok: bool,
3097                 expected_replies: Vec<ReplyChannelRange>
3098         ) {
3099                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3100                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3101                 let query_end_blocknum = msg.end_blocknum();
3102                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3103
3104                 if expected_ok {
3105                         assert!(result.is_ok());
3106                 } else {
3107                         assert!(result.is_err());
3108                 }
3109
3110                 let events = gossip_sync.get_and_clear_pending_msg_events();
3111                 assert_eq!(events.len(), expected_replies.len());
3112
3113                 for i in 0..events.len() {
3114                         let expected_reply = &expected_replies[i];
3115                         match &events[i] {
3116                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3117                                         assert_eq!(node_id, test_node_id);
3118                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3119                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3120                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3121                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3122                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3123
3124                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3125                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3126                                         assert!(msg.first_blocknum >= max_firstblocknum);
3127                                         max_firstblocknum = msg.first_blocknum;
3128                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3129
3130                                         // Check that the last block count is >= the query's end_blocknum
3131                                         if i == events.len() - 1 {
3132                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3133                                         }
3134                                 },
3135                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3136                         }
3137                 }
3138         }
3139
3140         #[test]
3141         fn handling_query_short_channel_ids() {
3142                 let network_graph = create_network_graph();
3143                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3144                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3145                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3146
3147                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3148
3149                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3150                         chain_hash,
3151                         short_channel_ids: vec![0x0003e8_000000_0000],
3152                 });
3153                 assert!(result.is_err());
3154         }
3155
3156         #[test]
3157         fn displays_node_alias() {
3158                 let format_str_alias = |alias: &str| {
3159                         let mut bytes = [0u8; 32];
3160                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3161                         format!("{}", NodeAlias(bytes))
3162                 };
3163
3164                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3165                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3166                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3167
3168                 let format_bytes_alias = |alias: &[u8]| {
3169                         let mut bytes = [0u8; 32];
3170                         bytes[..alias.len()].copy_from_slice(alias);
3171                         format!("{}", NodeAlias(bytes))
3172                 };
3173
3174                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3175                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3176                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3177         }
3178
3179         #[test]
3180         fn channel_info_is_readable() {
3181                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3182                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3183                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3184                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3185                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3186
3187                 // 1. Test encoding/decoding of ChannelUpdateInfo
3188                 let chan_update_info = ChannelUpdateInfo {
3189                         last_update: 23,
3190                         enabled: true,
3191                         cltv_expiry_delta: 42,
3192                         htlc_minimum_msat: 1234,
3193                         htlc_maximum_msat: 5678,
3194                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3195                         last_update_message: None,
3196                 };
3197
3198                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3199                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3200
3201                 // First make sure we can read ChannelUpdateInfos we just wrote
3202                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3203                 assert_eq!(chan_update_info, read_chan_update_info);
3204
3205                 // Check the serialization hasn't changed.
3206                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3207                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3208
3209                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3210                 // or the ChannelUpdate enclosed with `last_update_message`.
3211                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3212                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3213                 assert!(read_chan_update_info_res.is_err());
3214
3215                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3216                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3217                 assert!(read_chan_update_info_res.is_err());
3218
3219                 // 2. Test encoding/decoding of ChannelInfo
3220                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3221                 let chan_info_none_updates = ChannelInfo {
3222                         features: channelmanager::provided_channel_features(&config),
3223                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3224                         one_to_two: None,
3225                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3226                         two_to_one: None,
3227                         capacity_sats: None,
3228                         announcement_message: None,
3229                         announcement_received_time: 87654,
3230                 };
3231
3232                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3233                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3234
3235                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3236                 assert_eq!(chan_info_none_updates, read_chan_info);
3237
3238                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3239                 let chan_info_some_updates = ChannelInfo {
3240                         features: channelmanager::provided_channel_features(&config),
3241                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3242                         one_to_two: Some(chan_update_info.clone()),
3243                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3244                         two_to_one: Some(chan_update_info.clone()),
3245                         capacity_sats: None,
3246                         announcement_message: None,
3247                         announcement_received_time: 87654,
3248                 };
3249
3250                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3251                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3252
3253                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3254                 assert_eq!(chan_info_some_updates, read_chan_info);
3255
3256                 // Check the serialization hasn't changed.
3257                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3258                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3259
3260                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3261                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3262                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3263                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3264                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3265                 assert_eq!(read_chan_info.one_to_two, None);
3266                 assert_eq!(read_chan_info.two_to_one, None);
3267
3268                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3269                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3270                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3271                 assert_eq!(read_chan_info.one_to_two, None);
3272                 assert_eq!(read_chan_info.two_to_one, None);
3273         }
3274
3275         #[test]
3276         fn node_info_is_readable() {
3277                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3278                 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3279                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3280                 let valid_node_ann_info = NodeAnnouncementInfo {
3281                         features: channelmanager::provided_node_features(&UserConfig::default()),
3282                         last_update: 0,
3283                         rgb: [0u8; 3],
3284                         alias: NodeAlias([0u8; 32]),
3285                         announcement_message: Some(announcement_message)
3286                 };
3287
3288                 let mut encoded_valid_node_ann_info = Vec::new();
3289                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3290                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3291                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3292                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3293
3294                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3295                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3296                 assert!(read_invalid_node_ann_info_res.is_err());
3297
3298                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3299                 let valid_node_info = NodeInfo {
3300                         channels: Vec::new(),
3301                         announcement_info: Some(valid_node_ann_info),
3302                 };
3303
3304                 let mut encoded_valid_node_info = Vec::new();
3305                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3306                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3307                 assert_eq!(read_valid_node_info, valid_node_info);
3308
3309                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3310                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3311                 assert_eq!(read_invalid_node_info.announcement_info, None);
3312         }
3313
3314         #[test]
3315         fn test_node_info_keeps_compatibility() {
3316                 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3317                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3318                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3319                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3320                 assert!(ann_info_with_addresses.addresses().is_empty());
3321         }
3322 }
3323
3324 #[cfg(all(test, feature = "_bench_unstable"))]
3325 mod benches {
3326         use super::*;
3327
3328         use test::Bencher;
3329         use std::io::Read;
3330
3331         #[bench]
3332         fn read_network_graph(bench: &mut Bencher) {
3333                 let logger = crate::util::test_utils::TestLogger::new();
3334                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3335                 let mut v = Vec::new();
3336                 d.read_to_end(&mut v).unwrap();
3337                 bench.iter(|| {
3338                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3339                 });
3340         }
3341
3342         #[bench]
3343         fn write_network_graph(bench: &mut Bencher) {
3344                 let logger = crate::util::test_utils::TestLogger::new();
3345                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3346                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3347                 bench.iter(|| {
3348                         let _ = net_graph.encode();
3349                 });
3350         }
3351 }