Backfill gossip without buffering directly in LDK
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::script::Builder;
20 use bitcoin::blockdata::transaction::TxOut;
21 use bitcoin::blockdata::opcodes;
22 use bitcoin::hash_types::BlockHash;
23
24 use chain;
25 use chain::Access;
26 use ln::features::{ChannelFeatures, NodeFeatures};
27 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use ln::msgs;
31 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use util::logger::{Logger, Level};
33 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
34 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35
36 use io;
37 use io_extras::{copy, sink};
38 use prelude::*;
39 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
40 use core::{cmp, fmt};
41 use sync::{RwLock, RwLockReadGuard};
42 use core::sync::atomic::{AtomicUsize, Ordering};
43 use sync::Mutex;
44 use core::ops::Deref;
45 use bitcoin::hashes::hex::ToHex;
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83
84 impl core::hash::Hash for NodeId {
85         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
86                 self.0.hash(hasher);
87         }
88 }
89
90 impl Eq for NodeId {}
91
92 impl PartialEq for NodeId {
93         fn eq(&self, other: &Self) -> bool {
94                 self.0[..] == other.0[..]
95         }
96 }
97
98 impl cmp::PartialOrd for NodeId {
99         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
100                 Some(self.cmp(other))
101         }
102 }
103
104 impl Ord for NodeId {
105         fn cmp(&self, other: &Self) -> cmp::Ordering {
106                 self.0[..].cmp(&other.0[..])
107         }
108 }
109
110 impl Writeable for NodeId {
111         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
112                 writer.write_all(&self.0)?;
113                 Ok(())
114         }
115 }
116
117 impl Readable for NodeId {
118         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
119                 let mut buf = [0; PUBLIC_KEY_SIZE];
120                 reader.read_exact(&mut buf)?;
121                 Ok(Self(buf))
122         }
123 }
124
125 /// Represents the network as nodes and channels between them
126 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
127         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
128         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
129         genesis_hash: BlockHash,
130         logger: L,
131         // Lock order: channels -> nodes
132         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
133         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
134 }
135
136 /// A read-only view of [`NetworkGraph`].
137 pub struct ReadOnlyNetworkGraph<'a> {
138         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
139         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
140 }
141
142 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
143 /// return packet by a node along the route. See [BOLT #4] for details.
144 ///
145 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
146 #[derive(Clone, Debug, PartialEq)]
147 pub enum NetworkUpdate {
148         /// An error indicating a `channel_update` messages should be applied via
149         /// [`NetworkGraph::update_channel`].
150         ChannelUpdateMessage {
151                 /// The update to apply via [`NetworkGraph::update_channel`].
152                 msg: ChannelUpdate,
153         },
154         /// An error indicating that a channel failed to route a payment, which should be applied via
155         /// [`NetworkGraph::channel_failed`].
156         ChannelFailure {
157                 /// The short channel id of the closed channel.
158                 short_channel_id: u64,
159                 /// Whether the channel should be permanently removed or temporarily disabled until a new
160                 /// `channel_update` message is received.
161                 is_permanent: bool,
162         },
163         /// An error indicating that a node failed to route a payment, which should be applied via
164         /// [`NetworkGraph::node_failed`].
165         NodeFailure {
166                 /// The node id of the failed node.
167                 node_id: PublicKey,
168                 /// Whether the node should be permanently removed from consideration or can be restored
169                 /// when a new `channel_update` message is received.
170                 is_permanent: bool,
171         }
172 }
173
174 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
175         (0, ChannelUpdateMessage) => {
176                 (0, msg, required),
177         },
178         (2, ChannelFailure) => {
179                 (0, short_channel_id, required),
180                 (2, is_permanent, required),
181         },
182         (4, NodeFailure) => {
183                 (0, node_id, required),
184                 (2, is_permanent, required),
185         },
186 );
187
188 /// Receives and validates network updates from peers,
189 /// stores authentic and relevant data as a network graph.
190 /// This network graph is then used for routing payments.
191 /// Provides interface to help with initial routing sync by
192 /// serving historical announcements.
193 ///
194 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
195 /// [`NetworkGraph`].
196 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
197 where C::Target: chain::Access, L::Target: Logger
198 {
199         network_graph: G,
200         chain_access: Option<C>,
201         full_syncs_requested: AtomicUsize,
202         pending_events: Mutex<Vec<MessageSendEvent>>,
203         logger: L,
204 }
205
206 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
207 where C::Target: chain::Access, L::Target: Logger
208 {
209         /// Creates a new tracker of the actual state of the network of channels and nodes,
210         /// assuming an existing Network Graph.
211         /// Chain monitor is used to make sure announced channels exist on-chain,
212         /// channel data is correct, and that the announcement is signed with
213         /// channel owners' keys.
214         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
215                 P2PGossipSync {
216                         network_graph,
217                         full_syncs_requested: AtomicUsize::new(0),
218                         chain_access,
219                         pending_events: Mutex::new(vec![]),
220                         logger,
221                 }
222         }
223
224         /// Adds a provider used to check new announcements. Does not affect
225         /// existing announcements unless they are updated.
226         /// Add, update or remove the provider would replace the current one.
227         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
228                 self.chain_access = chain_access;
229         }
230
231         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
232         /// [`P2PGossipSync::new`].
233         ///
234         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
235         pub fn network_graph(&self) -> &G {
236                 &self.network_graph
237         }
238
239         /// Returns true when a full routing table sync should be performed with a peer.
240         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
241                 //TODO: Determine whether to request a full sync based on the network map.
242                 const FULL_SYNCS_TO_REQUEST: usize = 5;
243                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
244                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
245                         true
246                 } else {
247                         false
248                 }
249         }
250 }
251
252 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
253         fn handle_event(&self, event: &Event) {
254                 if let Event::PaymentPathFailed { network_update, .. } = event {
255                         if let Some(network_update) = network_update {
256                                 match *network_update {
257                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
258                                                 let short_channel_id = msg.contents.short_channel_id;
259                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
260                                                 let status = if is_enabled { "enabled" } else { "disabled" };
261                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
262                                                 let _ = self.update_channel(msg);
263                                         },
264                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
265                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
266                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
267                                                 self.channel_failed(short_channel_id, is_permanent);
268                                         },
269                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
270                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
271                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
272                                                 self.node_failed(node_id, is_permanent);
273                                         },
274                                 }
275                         }
276                 }
277         }
278 }
279
280 macro_rules! secp_verify_sig {
281         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
282                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
283                         Ok(_) => {},
284                         Err(_) => {
285                                 return Err(LightningError {
286                                         err: format!("Invalid signature on {} message", $msg_type),
287                                         action: ErrorAction::SendWarningMessage {
288                                                 msg: msgs::WarningMessage {
289                                                         channel_id: [0; 32],
290                                                         data: format!("Invalid signature on {} message", $msg_type),
291                                                 },
292                                                 log_level: Level::Trace,
293                                         },
294                                 });
295                         },
296                 }
297         };
298 }
299
300 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
301 where C::Target: chain::Access, L::Target: Logger
302 {
303         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
304                 self.network_graph.update_node_from_announcement(msg)?;
305                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
306                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
307                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
308         }
309
310         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
311                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
312                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
313                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
314         }
315
316         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
317                 self.network_graph.update_channel(msg)?;
318                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
319         }
320
321         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
322                 let channels = self.network_graph.channels.read().unwrap();
323                 let mut iter = channels.range(starting_point..);
324                 loop {
325                         if let Some((_, ref chan)) = iter.next() {
326                                 if chan.announcement_message.is_some() {
327                                         let chan_announcement = chan.announcement_message.clone().unwrap();
328                                         let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
329                                         let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
330                                         if let Some(one_to_two) = chan.one_to_two.as_ref() {
331                                                 one_to_two_announcement = one_to_two.last_update_message.clone();
332                                         }
333                                         if let Some(two_to_one) = chan.two_to_one.as_ref() {
334                                                 two_to_one_announcement = two_to_one.last_update_message.clone();
335                                         }
336                                         return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
337                                 } else {
338                                         // TODO: We may end up sending un-announced channel_updates if we are sending
339                                         // initial sync data while receiving announce/updates for this channel.
340                                 }
341                         } else {
342                                 return None;
343                         }
344                 }
345         }
346
347         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
348                 let nodes = self.network_graph.nodes.read().unwrap();
349                 let mut iter = if let Some(pubkey) = starting_point {
350                                 let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..);
351                                 iter.next();
352                                 iter
353                         } else {
354                                 nodes.range::<NodeId, _>(..)
355                         };
356                 loop {
357                         if let Some((_, ref node)) = iter.next() {
358                                 if let Some(node_info) = node.announcement_info.as_ref() {
359                                         if let Some(msg) = node_info.announcement_message.clone() {
360                                                 return Some(msg);
361                                         }
362                                 }
363                         } else {
364                                 return None;
365                         }
366                 }
367         }
368
369         /// Initiates a stateless sync of routing gossip information with a peer
370         /// using gossip_queries. The default strategy used by this implementation
371         /// is to sync the full block range with several peers.
372         ///
373         /// We should expect one or more reply_channel_range messages in response
374         /// to our query_channel_range. Each reply will enqueue a query_scid message
375         /// to request gossip messages for each channel. The sync is considered complete
376         /// when the final reply_scids_end message is received, though we are not
377         /// tracking this directly.
378         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
379                 // We will only perform a sync with peers that support gossip_queries.
380                 if !init_msg.features.supports_gossip_queries() {
381                         return ();
382                 }
383
384                 // The lightning network's gossip sync system is completely broken in numerous ways.
385                 //
386                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
387                 // to do a full sync from the first few peers we connect to, and then receive gossip
388                 // updates from all our peers normally.
389                 //
390                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
391                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
392                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
393                 // seen.
394                 //
395                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
396                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
397                 // channel data which you are missing. Except there was no way at all to identify which
398                 // `channel_update`s you were missing, so you still had to request everything, just in a
399                 // very complicated way with some queries instead of just getting the dump.
400                 //
401                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
402                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
403                 // relying on it useless.
404                 //
405                 // After gossip queries were introduced, support for receiving a full gossip table dump on
406                 // connection was removed from several nodes, making it impossible to get a full sync
407                 // without using the "gossip queries" messages.
408                 //
409                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
410                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
411                 // message, as the name implies, tells the peer to not forward any gossip messages with a
412                 // timestamp older than a given value (not the time the peer received the filter, but the
413                 // timestamp in the update message, which is often hours behind when the peer received the
414                 // message).
415                 //
416                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
417                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
418                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
419                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
420                 // will simply not forward any new updates they see to you which were generated some time
421                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
422                 // ago), you will always get the full routing graph from all your peers.
423                 //
424                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
425                 // propagated some time after it was generated, and, worse, often disable gossiping with
426                 // several peers after their first connection. The second behavior can cause gossip to not
427                 // propagate fully if there are cuts in the gossiping subgraph.
428                 //
429                 // In an attempt to cut a middle ground between always fetching the full graph from all of
430                 // our peers and never receiving gossip from peers at all, we send all of our peers a
431                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
432                 //
433                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
434                 let should_request_full_sync = self.should_request_full_sync(&their_node_id);
435                 #[allow(unused_mut, unused_assignments)]
436                 let mut gossip_start_time = 0;
437                 #[cfg(feature = "std")]
438                 {
439                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
440                         if should_request_full_sync {
441                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
442                         } else {
443                                 gossip_start_time -= 60 * 60; // an hour ago
444                         }
445                 }
446
447                 let mut pending_events = self.pending_events.lock().unwrap();
448                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
449                         node_id: their_node_id.clone(),
450                         msg: GossipTimestampFilter {
451                                 chain_hash: self.network_graph.genesis_hash,
452                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
453                                 timestamp_range: u32::max_value(),
454                         },
455                 });
456         }
457
458         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
459                 // We don't make queries, so should never receive replies. If, in the future, the set
460                 // reconciliation extensions to gossip queries become broadly supported, we should revert
461                 // this code to its state pre-0.0.106.
462                 Ok(())
463         }
464
465         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
466                 // We don't make queries, so should never receive replies. If, in the future, the set
467                 // reconciliation extensions to gossip queries become broadly supported, we should revert
468                 // this code to its state pre-0.0.106.
469                 Ok(())
470         }
471
472         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
473         /// are in the specified block range. Due to message size limits, large range
474         /// queries may result in several reply messages. This implementation enqueues
475         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
476         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
477         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
478         /// memory constrained systems.
479         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
480                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
481
482                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
483
484                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
485                 // If so, we manually cap the ending block to avoid this overflow.
486                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
487
488                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
489                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
490                         let mut pending_events = self.pending_events.lock().unwrap();
491                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
492                                 node_id: their_node_id.clone(),
493                                 msg: ReplyChannelRange {
494                                         chain_hash: msg.chain_hash.clone(),
495                                         first_blocknum: msg.first_blocknum,
496                                         number_of_blocks: msg.number_of_blocks,
497                                         sync_complete: true,
498                                         short_channel_ids: vec![],
499                                 }
500                         });
501                         return Err(LightningError {
502                                 err: String::from("query_channel_range could not be processed"),
503                                 action: ErrorAction::IgnoreError,
504                         });
505                 }
506
507                 // Creates channel batches. We are not checking if the channel is routable
508                 // (has at least one update). A peer may still want to know the channel
509                 // exists even if its not yet routable.
510                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
511                 let channels = self.network_graph.channels.read().unwrap();
512                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
513                         if let Some(chan_announcement) = &chan.announcement_message {
514                                 // Construct a new batch if last one is full
515                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
516                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
517                                 }
518
519                                 let batch = batches.last_mut().unwrap();
520                                 batch.push(chan_announcement.contents.short_channel_id);
521                         }
522                 }
523                 drop(channels);
524
525                 let mut pending_events = self.pending_events.lock().unwrap();
526                 let batch_count = batches.len();
527                 let mut prev_batch_endblock = msg.first_blocknum;
528                 for (batch_index, batch) in batches.into_iter().enumerate() {
529                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
530                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
531                         //
532                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
533                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
534                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
535                         // significant diversion from the requirements set by the spec, and, in case of blocks
536                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
537                         // and *not* derive the first_blocknum from the actual first block of the reply.
538                         let first_blocknum = prev_batch_endblock;
539
540                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
541                         // fit in. Though there is no requirement that we use exactly the number of blocks its
542                         // contents are from, except for the bogus requirements c-lightning enforces, above.
543                         //
544                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
545                         // >= the query's end block. Thus, for the last reply, we calculate the difference
546                         // between the query's end block and the start of the reply.
547                         //
548                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
549                         // first_blocknum will be either msg.first_blocknum or a higher block height.
550                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
551                                 (true, msg.end_blocknum() - first_blocknum)
552                         }
553                         // Prior replies should use the number of blocks that fit into the reply. Overflow
554                         // safe since first_blocknum is always <= last SCID's block.
555                         else {
556                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
557                         };
558
559                         prev_batch_endblock = first_blocknum + number_of_blocks;
560
561                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
562                                 node_id: their_node_id.clone(),
563                                 msg: ReplyChannelRange {
564                                         chain_hash: msg.chain_hash.clone(),
565                                         first_blocknum,
566                                         number_of_blocks,
567                                         sync_complete,
568                                         short_channel_ids: batch,
569                                 }
570                         });
571                 }
572
573                 Ok(())
574         }
575
576         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
577                 // TODO
578                 Err(LightningError {
579                         err: String::from("Not implemented"),
580                         action: ErrorAction::IgnoreError,
581                 })
582         }
583 }
584
585 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
586 where
587         C::Target: chain::Access,
588         L::Target: Logger,
589 {
590         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
591                 let mut ret = Vec::new();
592                 let mut pending_events = self.pending_events.lock().unwrap();
593                 core::mem::swap(&mut ret, &mut pending_events);
594                 ret
595         }
596 }
597
598 #[derive(Clone, Debug, PartialEq)]
599 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
600 pub struct ChannelUpdateInfo {
601         /// When the last update to the channel direction was issued.
602         /// Value is opaque, as set in the announcement.
603         pub last_update: u32,
604         /// Whether the channel can be currently used for payments (in this one direction).
605         pub enabled: bool,
606         /// The difference in CLTV values that you must have when routing through this channel.
607         pub cltv_expiry_delta: u16,
608         /// The minimum value, which must be relayed to the next hop via the channel
609         pub htlc_minimum_msat: u64,
610         /// The maximum value which may be relayed to the next hop via the channel.
611         pub htlc_maximum_msat: u64,
612         /// Fees charged when the channel is used for routing
613         pub fees: RoutingFees,
614         /// Most recent update for the channel received from the network
615         /// Mostly redundant with the data we store in fields explicitly.
616         /// Everything else is useful only for sending out for initial routing sync.
617         /// Not stored if contains excess data to prevent DoS.
618         pub last_update_message: Option<ChannelUpdate>,
619 }
620
621 impl fmt::Display for ChannelUpdateInfo {
622         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
623                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
624                 Ok(())
625         }
626 }
627
628 impl Writeable for ChannelUpdateInfo {
629         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
630                 write_tlv_fields!(writer, {
631                         (0, self.last_update, required),
632                         (2, self.enabled, required),
633                         (4, self.cltv_expiry_delta, required),
634                         (6, self.htlc_minimum_msat, required),
635                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
636                         // compatibility with LDK versions prior to v0.0.110.
637                         (8, Some(self.htlc_maximum_msat), required),
638                         (10, self.fees, required),
639                         (12, self.last_update_message, required),
640                 });
641                 Ok(())
642         }
643 }
644
645 impl Readable for ChannelUpdateInfo {
646         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
647                 init_tlv_field_var!(last_update, required);
648                 init_tlv_field_var!(enabled, required);
649                 init_tlv_field_var!(cltv_expiry_delta, required);
650                 init_tlv_field_var!(htlc_minimum_msat, required);
651                 init_tlv_field_var!(htlc_maximum_msat, option);
652                 init_tlv_field_var!(fees, required);
653                 init_tlv_field_var!(last_update_message, required);
654
655                 read_tlv_fields!(reader, {
656                         (0, last_update, required),
657                         (2, enabled, required),
658                         (4, cltv_expiry_delta, required),
659                         (6, htlc_minimum_msat, required),
660                         (8, htlc_maximum_msat, required),
661                         (10, fees, required),
662                         (12, last_update_message, required)
663                 });
664
665                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
666                         Ok(ChannelUpdateInfo {
667                                 last_update: init_tlv_based_struct_field!(last_update, required),
668                                 enabled: init_tlv_based_struct_field!(enabled, required),
669                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
670                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
671                                 htlc_maximum_msat,
672                                 fees: init_tlv_based_struct_field!(fees, required),
673                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
674                         })
675                 } else {
676                         Err(DecodeError::InvalidValue)
677                 }
678         }
679 }
680
681 #[derive(Clone, Debug, PartialEq)]
682 /// Details about a channel (both directions).
683 /// Received within a channel announcement.
684 pub struct ChannelInfo {
685         /// Protocol features of a channel communicated during its announcement
686         pub features: ChannelFeatures,
687         /// Source node of the first direction of a channel
688         pub node_one: NodeId,
689         /// Details about the first direction of a channel
690         pub one_to_two: Option<ChannelUpdateInfo>,
691         /// Source node of the second direction of a channel
692         pub node_two: NodeId,
693         /// Details about the second direction of a channel
694         pub two_to_one: Option<ChannelUpdateInfo>,
695         /// The channel capacity as seen on-chain, if chain lookup is available.
696         pub capacity_sats: Option<u64>,
697         /// An initial announcement of the channel
698         /// Mostly redundant with the data we store in fields explicitly.
699         /// Everything else is useful only for sending out for initial routing sync.
700         /// Not stored if contains excess data to prevent DoS.
701         pub announcement_message: Option<ChannelAnnouncement>,
702         /// The timestamp when we received the announcement, if we are running with feature = "std"
703         /// (which we can probably assume we are - no-std environments probably won't have a full
704         /// network graph in memory!).
705         announcement_received_time: u64,
706 }
707
708 impl ChannelInfo {
709         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
710         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
711         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
712                 let (direction, source) = {
713                         if target == &self.node_one {
714                                 (self.two_to_one.as_ref(), &self.node_two)
715                         } else if target == &self.node_two {
716                                 (self.one_to_two.as_ref(), &self.node_one)
717                         } else {
718                                 return None;
719                         }
720                 };
721                 Some((DirectedChannelInfo::new(self, direction), source))
722         }
723
724         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
725         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
726         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
727                 let (direction, target) = {
728                         if source == &self.node_one {
729                                 (self.one_to_two.as_ref(), &self.node_two)
730                         } else if source == &self.node_two {
731                                 (self.two_to_one.as_ref(), &self.node_one)
732                         } else {
733                                 return None;
734                         }
735                 };
736                 Some((DirectedChannelInfo::new(self, direction), target))
737         }
738
739         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
740         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
741                 let direction = channel_flags & 1u8;
742                 if direction == 0 {
743                         self.one_to_two.as_ref()
744                 } else {
745                         self.two_to_one.as_ref()
746                 }
747         }
748 }
749
750 impl fmt::Display for ChannelInfo {
751         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
752                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
753                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
754                 Ok(())
755         }
756 }
757
758 impl Writeable for ChannelInfo {
759         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
760                 write_tlv_fields!(writer, {
761                         (0, self.features, required),
762                         (1, self.announcement_received_time, (default_value, 0)),
763                         (2, self.node_one, required),
764                         (4, self.one_to_two, required),
765                         (6, self.node_two, required),
766                         (8, self.two_to_one, required),
767                         (10, self.capacity_sats, required),
768                         (12, self.announcement_message, required),
769                 });
770                 Ok(())
771         }
772 }
773
774 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
775 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
776 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
777 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
778 // channel updates via the gossip network.
779 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
780
781 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
782         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
783                 match ::util::ser::Readable::read(reader) {
784                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
785                         Err(DecodeError::ShortRead) => Ok(None),
786                         Err(DecodeError::InvalidValue) => Ok(None),
787                         Err(err) => Err(err),
788                 }
789         }
790 }
791
792 impl Readable for ChannelInfo {
793         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
794                 init_tlv_field_var!(features, required);
795                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
796                 init_tlv_field_var!(node_one, required);
797                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
798                 init_tlv_field_var!(node_two, required);
799                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
800                 init_tlv_field_var!(capacity_sats, required);
801                 init_tlv_field_var!(announcement_message, required);
802                 read_tlv_fields!(reader, {
803                         (0, features, required),
804                         (1, announcement_received_time, (default_value, 0)),
805                         (2, node_one, required),
806                         (4, one_to_two_wrap, ignorable),
807                         (6, node_two, required),
808                         (8, two_to_one_wrap, ignorable),
809                         (10, capacity_sats, required),
810                         (12, announcement_message, required),
811                 });
812
813                 Ok(ChannelInfo {
814                         features: init_tlv_based_struct_field!(features, required),
815                         node_one: init_tlv_based_struct_field!(node_one, required),
816                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
817                         node_two: init_tlv_based_struct_field!(node_two, required),
818                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
819                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
820                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
821                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
822                 })
823         }
824 }
825
826 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
827 /// source node to a target node.
828 #[derive(Clone)]
829 pub struct DirectedChannelInfo<'a> {
830         channel: &'a ChannelInfo,
831         direction: Option<&'a ChannelUpdateInfo>,
832         htlc_maximum_msat: u64,
833         effective_capacity: EffectiveCapacity,
834 }
835
836 impl<'a> DirectedChannelInfo<'a> {
837         #[inline]
838         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
839                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
840                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
841
842                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
843                         (Some(amount_msat), Some(capacity_msat)) => {
844                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
845                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
846                         },
847                         (Some(amount_msat), None) => {
848                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
849                         },
850                         (None, Some(capacity_msat)) => {
851                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
852                         },
853                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
854                 };
855
856                 Self {
857                         channel, direction, htlc_maximum_msat, effective_capacity
858                 }
859         }
860
861         /// Returns information for the channel.
862         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
863
864         /// Returns information for the direction.
865         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
866
867         /// Returns the maximum HTLC amount allowed over the channel in the direction.
868         pub fn htlc_maximum_msat(&self) -> u64 {
869                 self.htlc_maximum_msat
870         }
871
872         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
873         ///
874         /// This is either the total capacity from the funding transaction, if known, or the
875         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
876         /// otherwise.
877         pub fn effective_capacity(&self) -> EffectiveCapacity {
878                 self.effective_capacity
879         }
880
881         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
882         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
883                 match self.direction {
884                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
885                         None => None,
886                 }
887         }
888 }
889
890 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
891         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
892                 f.debug_struct("DirectedChannelInfo")
893                         .field("channel", &self.channel)
894                         .finish()
895         }
896 }
897
898 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
899 #[derive(Clone)]
900 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
901         inner: DirectedChannelInfo<'a>,
902 }
903
904 impl<'a> DirectedChannelInfoWithUpdate<'a> {
905         /// Returns information for the channel.
906         #[inline]
907         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
908
909         /// Returns information for the direction.
910         #[inline]
911         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
912
913         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
914         #[inline]
915         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
916 }
917
918 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
919         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
920                 self.inner.fmt(f)
921         }
922 }
923
924 /// The effective capacity of a channel for routing purposes.
925 ///
926 /// While this may be smaller than the actual channel capacity, amounts greater than
927 /// [`Self::as_msat`] should not be routed through the channel.
928 #[derive(Clone, Copy)]
929 pub enum EffectiveCapacity {
930         /// The available liquidity in the channel known from being a channel counterparty, and thus a
931         /// direct hop.
932         ExactLiquidity {
933                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
934                 /// millisatoshi.
935                 liquidity_msat: u64,
936         },
937         /// The maximum HTLC amount in one direction as advertised on the gossip network.
938         MaximumHTLC {
939                 /// The maximum HTLC amount denominated in millisatoshi.
940                 amount_msat: u64,
941         },
942         /// The total capacity of the channel as determined by the funding transaction.
943         Total {
944                 /// The funding amount denominated in millisatoshi.
945                 capacity_msat: u64,
946                 /// The maximum HTLC amount denominated in millisatoshi.
947                 htlc_maximum_msat: Option<u64>
948         },
949         /// A capacity sufficient to route any payment, typically used for private channels provided by
950         /// an invoice.
951         Infinite,
952         /// A capacity that is unknown possibly because either the chain state is unavailable to know
953         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
954         Unknown,
955 }
956
957 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
958 /// use when making routing decisions.
959 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
960
961 impl EffectiveCapacity {
962         /// Returns the effective capacity denominated in millisatoshi.
963         pub fn as_msat(&self) -> u64 {
964                 match self {
965                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
966                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
967                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
968                         EffectiveCapacity::Infinite => u64::max_value(),
969                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
970                 }
971         }
972 }
973
974 /// Fees for routing via a given channel or a node
975 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
976 pub struct RoutingFees {
977         /// Flat routing fee in satoshis
978         pub base_msat: u32,
979         /// Liquidity-based routing fee in millionths of a routed amount.
980         /// In other words, 10000 is 1%.
981         pub proportional_millionths: u32,
982 }
983
984 impl_writeable_tlv_based!(RoutingFees, {
985         (0, base_msat, required),
986         (2, proportional_millionths, required)
987 });
988
989 #[derive(Clone, Debug, PartialEq)]
990 /// Information received in the latest node_announcement from this node.
991 pub struct NodeAnnouncementInfo {
992         /// Protocol features the node announced support for
993         pub features: NodeFeatures,
994         /// When the last known update to the node state was issued.
995         /// Value is opaque, as set in the announcement.
996         pub last_update: u32,
997         /// Color assigned to the node
998         pub rgb: [u8; 3],
999         /// Moniker assigned to the node.
1000         /// May be invalid or malicious (eg control chars),
1001         /// should not be exposed to the user.
1002         pub alias: NodeAlias,
1003         /// Internet-level addresses via which one can connect to the node
1004         pub addresses: Vec<NetAddress>,
1005         /// An initial announcement of the node
1006         /// Mostly redundant with the data we store in fields explicitly.
1007         /// Everything else is useful only for sending out for initial routing sync.
1008         /// Not stored if contains excess data to prevent DoS.
1009         pub announcement_message: Option<NodeAnnouncement>
1010 }
1011
1012 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1013         (0, features, required),
1014         (2, last_update, required),
1015         (4, rgb, required),
1016         (6, alias, required),
1017         (8, announcement_message, option),
1018         (10, addresses, vec_type),
1019 });
1020
1021 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1022 ///
1023 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1024 /// attacks. Care must be taken when processing.
1025 #[derive(Clone, Debug, PartialEq)]
1026 pub struct NodeAlias(pub [u8; 32]);
1027
1028 impl fmt::Display for NodeAlias {
1029         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1030                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1031                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1032                 let bytes = self.0.split_at(first_null).0;
1033                 match core::str::from_utf8(bytes) {
1034                         Ok(alias) => {
1035                                 for c in alias.chars() {
1036                                         let mut bytes = [0u8; 4];
1037                                         let c = if !c.is_control() { c } else { control_symbol };
1038                                         f.write_str(c.encode_utf8(&mut bytes))?;
1039                                 }
1040                         },
1041                         Err(_) => {
1042                                 for c in bytes.iter().map(|b| *b as char) {
1043                                         // Display printable ASCII characters
1044                                         let mut bytes = [0u8; 4];
1045                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1046                                         f.write_str(c.encode_utf8(&mut bytes))?;
1047                                 }
1048                         },
1049                 };
1050                 Ok(())
1051         }
1052 }
1053
1054 impl Writeable for NodeAlias {
1055         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1056                 self.0.write(w)
1057         }
1058 }
1059
1060 impl Readable for NodeAlias {
1061         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1062                 Ok(NodeAlias(Readable::read(r)?))
1063         }
1064 }
1065
1066 #[derive(Clone, Debug, PartialEq)]
1067 /// Details about a node in the network, known from the network announcement.
1068 pub struct NodeInfo {
1069         /// All valid channels a node has announced
1070         pub channels: Vec<u64>,
1071         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1072         /// The two fields (flat and proportional fee) are independent,
1073         /// meaning they don't have to refer to the same channel.
1074         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1075         /// More information about a node from node_announcement.
1076         /// Optional because we store a Node entry after learning about it from
1077         /// a channel announcement, but before receiving a node announcement.
1078         pub announcement_info: Option<NodeAnnouncementInfo>
1079 }
1080
1081 impl fmt::Display for NodeInfo {
1082         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1083                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1084                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1085                 Ok(())
1086         }
1087 }
1088
1089 impl Writeable for NodeInfo {
1090         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1091                 write_tlv_fields!(writer, {
1092                         (0, self.lowest_inbound_channel_fees, option),
1093                         (2, self.announcement_info, option),
1094                         (4, self.channels, vec_type),
1095                 });
1096                 Ok(())
1097         }
1098 }
1099
1100 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1101 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1102 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1103 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1104 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1105
1106 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1107         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1108                 match ::util::ser::Readable::read(reader) {
1109                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1110                         Err(_) => {
1111                                 copy(reader, &mut sink()).unwrap();
1112                                 return Ok(None)
1113                         },
1114                 };
1115         }
1116 }
1117
1118 impl Readable for NodeInfo {
1119         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1120                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1121                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1122                 init_tlv_field_var!(channels, vec_type);
1123
1124                 read_tlv_fields!(reader, {
1125                         (0, lowest_inbound_channel_fees, option),
1126                         (2, announcement_info_wrap, ignorable),
1127                         (4, channels, vec_type),
1128                 });
1129
1130                 Ok(NodeInfo {
1131                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1132                         announcement_info: announcement_info_wrap.map(|w| w.0),
1133                         channels: init_tlv_based_struct_field!(channels, vec_type),
1134                 })
1135         }
1136 }
1137
1138 const SERIALIZATION_VERSION: u8 = 1;
1139 const MIN_SERIALIZATION_VERSION: u8 = 1;
1140
1141 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1142         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1143                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1144
1145                 self.genesis_hash.write(writer)?;
1146                 let channels = self.channels.read().unwrap();
1147                 (channels.len() as u64).write(writer)?;
1148                 for (ref chan_id, ref chan_info) in channels.iter() {
1149                         (*chan_id).write(writer)?;
1150                         chan_info.write(writer)?;
1151                 }
1152                 let nodes = self.nodes.read().unwrap();
1153                 (nodes.len() as u64).write(writer)?;
1154                 for (ref node_id, ref node_info) in nodes.iter() {
1155                         node_id.write(writer)?;
1156                         node_info.write(writer)?;
1157                 }
1158
1159                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1160                 write_tlv_fields!(writer, {
1161                         (1, last_rapid_gossip_sync_timestamp, option),
1162                 });
1163                 Ok(())
1164         }
1165 }
1166
1167 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1168         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1169                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1170
1171                 let genesis_hash: BlockHash = Readable::read(reader)?;
1172                 let channels_count: u64 = Readable::read(reader)?;
1173                 let mut channels = BTreeMap::new();
1174                 for _ in 0..channels_count {
1175                         let chan_id: u64 = Readable::read(reader)?;
1176                         let chan_info = Readable::read(reader)?;
1177                         channels.insert(chan_id, chan_info);
1178                 }
1179                 let nodes_count: u64 = Readable::read(reader)?;
1180                 let mut nodes = BTreeMap::new();
1181                 for _ in 0..nodes_count {
1182                         let node_id = Readable::read(reader)?;
1183                         let node_info = Readable::read(reader)?;
1184                         nodes.insert(node_id, node_info);
1185                 }
1186
1187                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1188                 read_tlv_fields!(reader, {
1189                         (1, last_rapid_gossip_sync_timestamp, option),
1190                 });
1191
1192                 Ok(NetworkGraph {
1193                         secp_ctx: Secp256k1::verification_only(),
1194                         genesis_hash,
1195                         logger,
1196                         channels: RwLock::new(channels),
1197                         nodes: RwLock::new(nodes),
1198                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1199                 })
1200         }
1201 }
1202
1203 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1204         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1205                 writeln!(f, "Network map\n[Channels]")?;
1206                 for (key, val) in self.channels.read().unwrap().iter() {
1207                         writeln!(f, " {}: {}", key, val)?;
1208                 }
1209                 writeln!(f, "[Nodes]")?;
1210                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1211                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1212                 }
1213                 Ok(())
1214         }
1215 }
1216
1217 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1218         fn eq(&self, other: &Self) -> bool {
1219                 self.genesis_hash == other.genesis_hash &&
1220                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1221                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1222         }
1223 }
1224
1225 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1226         /// Creates a new, empty, network graph.
1227         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1228                 Self {
1229                         secp_ctx: Secp256k1::verification_only(),
1230                         genesis_hash,
1231                         logger,
1232                         channels: RwLock::new(BTreeMap::new()),
1233                         nodes: RwLock::new(BTreeMap::new()),
1234                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1235                 }
1236         }
1237
1238         /// Returns a read-only view of the network graph.
1239         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1240                 let channels = self.channels.read().unwrap();
1241                 let nodes = self.nodes.read().unwrap();
1242                 ReadOnlyNetworkGraph {
1243                         channels,
1244                         nodes,
1245                 }
1246         }
1247
1248         /// The unix timestamp provided by the most recent rapid gossip sync.
1249         /// It will be set by the rapid sync process after every sync completion.
1250         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1251                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1252         }
1253
1254         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1255         /// This should be done automatically by the rapid sync process after every sync completion.
1256         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1257                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1258         }
1259
1260         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1261         /// purposes.
1262         #[cfg(test)]
1263         pub fn clear_nodes_announcement_info(&self) {
1264                 for node in self.nodes.write().unwrap().iter_mut() {
1265                         node.1.announcement_info = None;
1266                 }
1267         }
1268
1269         /// For an already known node (from channel announcements), update its stored properties from a
1270         /// given node announcement.
1271         ///
1272         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1273         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1274         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1275         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1276                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1277                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1278                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1279         }
1280
1281         /// For an already known node (from channel announcements), update its stored properties from a
1282         /// given node announcement without verifying the associated signatures. Because we aren't
1283         /// given the associated signatures here we cannot relay the node announcement to any of our
1284         /// peers.
1285         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1286                 self.update_node_from_announcement_intern(msg, None)
1287         }
1288
1289         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1290                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1291                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1292                         Some(node) => {
1293                                 if let Some(node_info) = node.announcement_info.as_ref() {
1294                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1295                                         // updates to ensure you always have the latest one, only vaguely suggesting
1296                                         // that it be at least the current time.
1297                                         if node_info.last_update  > msg.timestamp {
1298                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1299                                         } else if node_info.last_update  == msg.timestamp {
1300                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1301                                         }
1302                                 }
1303
1304                                 let should_relay =
1305                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1306                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1307                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1308                                 node.announcement_info = Some(NodeAnnouncementInfo {
1309                                         features: msg.features.clone(),
1310                                         last_update: msg.timestamp,
1311                                         rgb: msg.rgb,
1312                                         alias: NodeAlias(msg.alias),
1313                                         addresses: msg.addresses.clone(),
1314                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1315                                 });
1316
1317                                 Ok(())
1318                         }
1319                 }
1320         }
1321
1322         /// Store or update channel info from a channel announcement.
1323         ///
1324         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1325         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1326         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1327         ///
1328         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1329         /// the corresponding UTXO exists on chain and is correctly-formatted.
1330         pub fn update_channel_from_announcement<C: Deref>(
1331                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1332         ) -> Result<(), LightningError>
1333         where
1334                 C::Target: chain::Access,
1335         {
1336                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1337                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1338                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1339                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1340                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1341                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1342         }
1343
1344         /// Store or update channel info from a channel announcement without verifying the associated
1345         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1346         /// channel announcement to any of our peers.
1347         ///
1348         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1349         /// the corresponding UTXO exists on chain and is correctly-formatted.
1350         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1351                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1352         ) -> Result<(), LightningError>
1353         where
1354                 C::Target: chain::Access,
1355         {
1356                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1357         }
1358
1359         /// Update channel from partial announcement data received via rapid gossip sync
1360         ///
1361         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1362         /// rapid gossip sync server)
1363         ///
1364         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1365         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1366                 if node_id_1 == node_id_2 {
1367                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1368                 };
1369
1370                 let node_1 = NodeId::from_pubkey(&node_id_1);
1371                 let node_2 = NodeId::from_pubkey(&node_id_2);
1372                 let channel_info = ChannelInfo {
1373                         features,
1374                         node_one: node_1.clone(),
1375                         one_to_two: None,
1376                         node_two: node_2.clone(),
1377                         two_to_one: None,
1378                         capacity_sats: None,
1379                         announcement_message: None,
1380                         announcement_received_time: timestamp,
1381                 };
1382
1383                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1384         }
1385
1386         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1387                 let mut channels = self.channels.write().unwrap();
1388                 let mut nodes = self.nodes.write().unwrap();
1389
1390                 let node_id_a = channel_info.node_one.clone();
1391                 let node_id_b = channel_info.node_two.clone();
1392
1393                 match channels.entry(short_channel_id) {
1394                         BtreeEntry::Occupied(mut entry) => {
1395                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1396                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1397                                 //exactly how...
1398                                 if utxo_value.is_some() {
1399                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1400                                         // only sometimes returns results. In any case remove the previous entry. Note
1401                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1402                                         // do that because
1403                                         // a) we don't *require* a UTXO provider that always returns results.
1404                                         // b) we don't track UTXOs of channels we know about and remove them if they
1405                                         //    get reorg'd out.
1406                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1407                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1408                                         *entry.get_mut() = channel_info;
1409                                 } else {
1410                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1411                                 }
1412                         },
1413                         BtreeEntry::Vacant(entry) => {
1414                                 entry.insert(channel_info);
1415                         }
1416                 };
1417
1418                 for current_node_id in [node_id_a, node_id_b].iter() {
1419                         match nodes.entry(current_node_id.clone()) {
1420                                 BtreeEntry::Occupied(node_entry) => {
1421                                         node_entry.into_mut().channels.push(short_channel_id);
1422                                 },
1423                                 BtreeEntry::Vacant(node_entry) => {
1424                                         node_entry.insert(NodeInfo {
1425                                                 channels: vec!(short_channel_id),
1426                                                 lowest_inbound_channel_fees: None,
1427                                                 announcement_info: None,
1428                                         });
1429                                 }
1430                         };
1431                 };
1432
1433                 Ok(())
1434         }
1435
1436         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1437                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1438         ) -> Result<(), LightningError>
1439         where
1440                 C::Target: chain::Access,
1441         {
1442                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1443                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1444                 }
1445
1446                 let utxo_value = match &chain_access {
1447                         &None => {
1448                                 // Tentatively accept, potentially exposing us to DoS attacks
1449                                 None
1450                         },
1451                         &Some(ref chain_access) => {
1452                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1453                                         Ok(TxOut { value, script_pubkey }) => {
1454                                                 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1455                                                                                     .push_slice(&msg.bitcoin_key_1.serialize())
1456                                                                                     .push_slice(&msg.bitcoin_key_2.serialize())
1457                                                                                     .push_opcode(opcodes::all::OP_PUSHNUM_2)
1458                                                                                     .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1459                                                 if script_pubkey != expected_script {
1460                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
1461                                                 }
1462                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1463                                                 //to the new HTLC max field in channel_update
1464                                                 Some(value)
1465                                         },
1466                                         Err(chain::AccessError::UnknownChain) => {
1467                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1468                                         },
1469                                         Err(chain::AccessError::UnknownTx) => {
1470                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1471                                         },
1472                                 }
1473                         },
1474                 };
1475
1476                 #[allow(unused_mut, unused_assignments)]
1477                 let mut announcement_received_time = 0;
1478                 #[cfg(feature = "std")]
1479                 {
1480                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1481                 }
1482
1483                 let chan_info = ChannelInfo {
1484                         features: msg.features.clone(),
1485                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1486                         one_to_two: None,
1487                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1488                         two_to_one: None,
1489                         capacity_sats: utxo_value,
1490                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1491                                 { full_msg.cloned() } else { None },
1492                         announcement_received_time,
1493                 };
1494
1495                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1496         }
1497
1498         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1499         /// If permanent, removes a channel from the local storage.
1500         /// May cause the removal of nodes too, if this was their last channel.
1501         /// If not permanent, makes channels unavailable for routing.
1502         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1503                 let mut channels = self.channels.write().unwrap();
1504                 if is_permanent {
1505                         if let Some(chan) = channels.remove(&short_channel_id) {
1506                                 let mut nodes = self.nodes.write().unwrap();
1507                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1508                         }
1509                 } else {
1510                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1511                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1512                                         one_to_two.enabled = false;
1513                                 }
1514                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1515                                         two_to_one.enabled = false;
1516                                 }
1517                         }
1518                 }
1519         }
1520
1521         /// Marks a node in the graph as failed.
1522         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1523                 if is_permanent {
1524                         // TODO: Wholly remove the node
1525                 } else {
1526                         // TODO: downgrade the node
1527                 }
1528         }
1529
1530         #[cfg(feature = "std")]
1531         /// Removes information about channels that we haven't heard any updates about in some time.
1532         /// This can be used regularly to prune the network graph of channels that likely no longer
1533         /// exist.
1534         ///
1535         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1536         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1537         /// pruning occur for updates which are at least two weeks old, which we implement here.
1538         ///
1539         /// Note that for users of the `lightning-background-processor` crate this method may be
1540         /// automatically called regularly for you.
1541         ///
1542         /// This method is only available with the `std` feature. See
1543         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1544         pub fn remove_stale_channels(&self) {
1545                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1546                 self.remove_stale_channels_with_time(time);
1547         }
1548
1549         /// Removes information about channels that we haven't heard any updates about in some time.
1550         /// This can be used regularly to prune the network graph of channels that likely no longer
1551         /// exist.
1552         ///
1553         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1554         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1555         /// pruning occur for updates which are at least two weeks old, which we implement here.
1556         ///
1557         /// This function takes the current unix time as an argument. For users with the `std` feature
1558         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1559         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1560                 let mut channels = self.channels.write().unwrap();
1561                 // Time out if we haven't received an update in at least 14 days.
1562                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1563                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1564                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1565                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1566                 // time.
1567                 let mut scids_to_remove = Vec::new();
1568                 for (scid, info) in channels.iter_mut() {
1569                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1570                                 info.one_to_two = None;
1571                         }
1572                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1573                                 info.two_to_one = None;
1574                         }
1575                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1576                                 // We check the announcement_received_time here to ensure we don't drop
1577                                 // announcements that we just received and are just waiting for our peer to send a
1578                                 // channel_update for.
1579                                 if info.announcement_received_time < min_time_unix as u64 {
1580                                         scids_to_remove.push(*scid);
1581                                 }
1582                         }
1583                 }
1584                 if !scids_to_remove.is_empty() {
1585                         let mut nodes = self.nodes.write().unwrap();
1586                         for scid in scids_to_remove {
1587                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1588                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1589                         }
1590                 }
1591         }
1592
1593         /// For an already known (from announcement) channel, update info about one of the directions
1594         /// of the channel.
1595         ///
1596         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1597         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1598         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1599         ///
1600         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1601         /// materially in the future will be rejected.
1602         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1603                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1604         }
1605
1606         /// For an already known (from announcement) channel, update info about one of the directions
1607         /// of the channel without verifying the associated signatures. Because we aren't given the
1608         /// associated signatures here we cannot relay the channel update to any of our peers.
1609         ///
1610         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1611         /// materially in the future will be rejected.
1612         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1613                 self.update_channel_intern(msg, None, None)
1614         }
1615
1616         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1617                 let dest_node_id;
1618                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1619                 let chan_was_enabled;
1620
1621                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1622                 {
1623                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1624                         // disable this check during tests!
1625                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1626                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1627                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1628                         }
1629                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1630                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1631                         }
1632                 }
1633
1634                 let mut channels = self.channels.write().unwrap();
1635                 match channels.get_mut(&msg.short_channel_id) {
1636                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1637                         Some(channel) => {
1638                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1639                                         return Err(LightningError{err:
1640                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1641                                                 action: ErrorAction::IgnoreError});
1642                                 }
1643
1644                                 if let Some(capacity_sats) = channel.capacity_sats {
1645                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1646                                         // Don't query UTXO set here to reduce DoS risks.
1647                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1648                                                 return Err(LightningError{err:
1649                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1650                                                         action: ErrorAction::IgnoreError});
1651                                         }
1652                                 }
1653                                 macro_rules! check_update_latest {
1654                                         ($target: expr) => {
1655                                                 if let Some(existing_chan_info) = $target.as_ref() {
1656                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1657                                                         // order updates to ensure you always have the latest one, only
1658                                                         // suggesting  that it be at least the current time. For
1659                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1660                                                         // pruning based on the timestamp field being more than two weeks old,
1661                                                         // but only in the non-normative section.
1662                                                         if existing_chan_info.last_update > msg.timestamp {
1663                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1664                                                         } else if existing_chan_info.last_update == msg.timestamp {
1665                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1666                                                         }
1667                                                         chan_was_enabled = existing_chan_info.enabled;
1668                                                 } else {
1669                                                         chan_was_enabled = false;
1670                                                 }
1671                                         }
1672                                 }
1673
1674                                 macro_rules! get_new_channel_info {
1675                                         () => { {
1676                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1677                                                         { full_msg.cloned() } else { None };
1678
1679                                                 let updated_channel_update_info = ChannelUpdateInfo {
1680                                                         enabled: chan_enabled,
1681                                                         last_update: msg.timestamp,
1682                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1683                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1684                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1685                                                         fees: RoutingFees {
1686                                                                 base_msat: msg.fee_base_msat,
1687                                                                 proportional_millionths: msg.fee_proportional_millionths,
1688                                                         },
1689                                                         last_update_message
1690                                                 };
1691                                                 Some(updated_channel_update_info)
1692                                         } }
1693                                 }
1694
1695                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1696                                 if msg.flags & 1 == 1 {
1697                                         dest_node_id = channel.node_one.clone();
1698                                         check_update_latest!(channel.two_to_one);
1699                                         if let Some(sig) = sig {
1700                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1701                                                         err: "Couldn't parse source node pubkey".to_owned(),
1702                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1703                                                 })?, "channel_update");
1704                                         }
1705                                         channel.two_to_one = get_new_channel_info!();
1706                                 } else {
1707                                         dest_node_id = channel.node_two.clone();
1708                                         check_update_latest!(channel.one_to_two);
1709                                         if let Some(sig) = sig {
1710                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1711                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1712                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1713                                                 })?, "channel_update");
1714                                         }
1715                                         channel.one_to_two = get_new_channel_info!();
1716                                 }
1717                         }
1718                 }
1719
1720                 let mut nodes = self.nodes.write().unwrap();
1721                 if chan_enabled {
1722                         let node = nodes.get_mut(&dest_node_id).unwrap();
1723                         let mut base_msat = msg.fee_base_msat;
1724                         let mut proportional_millionths = msg.fee_proportional_millionths;
1725                         if let Some(fees) = node.lowest_inbound_channel_fees {
1726                                 base_msat = cmp::min(base_msat, fees.base_msat);
1727                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1728                         }
1729                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1730                                 base_msat,
1731                                 proportional_millionths
1732                         });
1733                 } else if chan_was_enabled {
1734                         let node = nodes.get_mut(&dest_node_id).unwrap();
1735                         let mut lowest_inbound_channel_fees = None;
1736
1737                         for chan_id in node.channels.iter() {
1738                                 let chan = channels.get(chan_id).unwrap();
1739                                 let chan_info_opt;
1740                                 if chan.node_one == dest_node_id {
1741                                         chan_info_opt = chan.two_to_one.as_ref();
1742                                 } else {
1743                                         chan_info_opt = chan.one_to_two.as_ref();
1744                                 }
1745                                 if let Some(chan_info) = chan_info_opt {
1746                                         if chan_info.enabled {
1747                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1748                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1749                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1750                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1751                                         }
1752                                 }
1753                         }
1754
1755                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1756                 }
1757
1758                 Ok(())
1759         }
1760
1761         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1762                 macro_rules! remove_from_node {
1763                         ($node_id: expr) => {
1764                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1765                                         entry.get_mut().channels.retain(|chan_id| {
1766                                                 short_channel_id != *chan_id
1767                                         });
1768                                         if entry.get().channels.is_empty() {
1769                                                 entry.remove_entry();
1770                                         }
1771                                 } else {
1772                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1773                                 }
1774                         }
1775                 }
1776
1777                 remove_from_node!(chan.node_one);
1778                 remove_from_node!(chan.node_two);
1779         }
1780 }
1781
1782 impl ReadOnlyNetworkGraph<'_> {
1783         /// Returns all known valid channels' short ids along with announced channel info.
1784         ///
1785         /// (C-not exported) because we have no mapping for `BTreeMap`s
1786         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1787                 &*self.channels
1788         }
1789
1790         /// Returns information on a channel with the given id.
1791         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1792                 self.channels.get(&short_channel_id)
1793         }
1794
1795         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1796         /// Returns the list of channels in the graph
1797         pub fn list_channels(&self) -> Vec<u64> {
1798                 self.channels.keys().map(|c| *c).collect()
1799         }
1800
1801         /// Returns all known nodes' public keys along with announced node info.
1802         ///
1803         /// (C-not exported) because we have no mapping for `BTreeMap`s
1804         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1805                 &*self.nodes
1806         }
1807
1808         /// Returns information on a node with the given id.
1809         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1810                 self.nodes.get(node_id)
1811         }
1812
1813         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1814         /// Returns the list of nodes in the graph
1815         pub fn list_nodes(&self) -> Vec<NodeId> {
1816                 self.nodes.keys().map(|n| *n).collect()
1817         }
1818
1819         /// Get network addresses by node id.
1820         /// Returns None if the requested node is completely unknown,
1821         /// or if node announcement for the node was never received.
1822         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1823                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1824                         if let Some(node_info) = node.announcement_info.as_ref() {
1825                                 return Some(node_info.addresses.clone())
1826                         }
1827                 }
1828                 None
1829         }
1830 }
1831
1832 #[cfg(test)]
1833 mod tests {
1834         use chain;
1835         use ln::PaymentHash;
1836         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1837         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1838         use ln::msgs::{Init, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1839                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1840                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1841         use util::test_utils;
1842         use util::ser::{ReadableArgs, Writeable};
1843         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1844         use util::scid_utils::scid_from_parts;
1845
1846         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1847
1848         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1849         use bitcoin::hashes::Hash;
1850         use bitcoin::network::constants::Network;
1851         use bitcoin::blockdata::constants::genesis_block;
1852         use bitcoin::blockdata::script::{Builder, Script};
1853         use bitcoin::blockdata::transaction::TxOut;
1854         use bitcoin::blockdata::opcodes;
1855
1856         use hex;
1857
1858         use bitcoin::secp256k1::{PublicKey, SecretKey};
1859         use bitcoin::secp256k1::{All, Secp256k1};
1860
1861         use io;
1862         use bitcoin::secp256k1;
1863         use prelude::*;
1864         use sync::Arc;
1865
1866         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1867                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1868                 let logger = Arc::new(test_utils::TestLogger::new());
1869                 NetworkGraph::new(genesis_hash, logger)
1870         }
1871
1872         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1873                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1874                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1875         ) {
1876                 let secp_ctx = Secp256k1::new();
1877                 let logger = Arc::new(test_utils::TestLogger::new());
1878                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1879                 (secp_ctx, gossip_sync)
1880         }
1881
1882         #[test]
1883         fn request_full_sync_finite_times() {
1884                 let network_graph = create_network_graph();
1885                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1886                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1887
1888                 assert!(gossip_sync.should_request_full_sync(&node_id));
1889                 assert!(gossip_sync.should_request_full_sync(&node_id));
1890                 assert!(gossip_sync.should_request_full_sync(&node_id));
1891                 assert!(gossip_sync.should_request_full_sync(&node_id));
1892                 assert!(gossip_sync.should_request_full_sync(&node_id));
1893                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1894         }
1895
1896         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1897                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1898                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1899                         features: NodeFeatures::known(),
1900                         timestamp: 100,
1901                         node_id: node_id,
1902                         rgb: [0; 3],
1903                         alias: [0; 32],
1904                         addresses: Vec::new(),
1905                         excess_address_data: Vec::new(),
1906                         excess_data: Vec::new(),
1907                 };
1908                 f(&mut unsigned_announcement);
1909                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1910                 NodeAnnouncement {
1911                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1912                         contents: unsigned_announcement
1913                 }
1914         }
1915
1916         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1917                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1918                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1919                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1920                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1921
1922                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1923                         features: ChannelFeatures::known(),
1924                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1925                         short_channel_id: 0,
1926                         node_id_1,
1927                         node_id_2,
1928                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1929                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1930                         excess_data: Vec::new(),
1931                 };
1932                 f(&mut unsigned_announcement);
1933                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1934                 ChannelAnnouncement {
1935                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1936                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1937                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1938                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1939                         contents: unsigned_announcement,
1940                 }
1941         }
1942
1943         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1944                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1945                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1946                 Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1947                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1948                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1949                               .push_opcode(opcodes::all::OP_PUSHNUM_2)
1950                               .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
1951                               .to_v0_p2wsh()
1952         }
1953
1954         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1955                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1956                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1957                         short_channel_id: 0,
1958                         timestamp: 100,
1959                         flags: 0,
1960                         cltv_expiry_delta: 144,
1961                         htlc_minimum_msat: 1_000_000,
1962                         htlc_maximum_msat: 1_000_000,
1963                         fee_base_msat: 10_000,
1964                         fee_proportional_millionths: 20,
1965                         excess_data: Vec::new()
1966                 };
1967                 f(&mut unsigned_channel_update);
1968                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1969                 ChannelUpdate {
1970                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1971                         contents: unsigned_channel_update
1972                 }
1973         }
1974
1975         #[test]
1976         fn handling_node_announcements() {
1977                 let network_graph = create_network_graph();
1978                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1979
1980                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1981                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1982                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1983
1984                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1985                 match gossip_sync.handle_node_announcement(&valid_announcement) {
1986                         Ok(_) => panic!(),
1987                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1988                 };
1989
1990                 {
1991                         // Announce a channel to add a corresponding node.
1992                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1993                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
1994                                 Ok(res) => assert!(res),
1995                                 _ => panic!()
1996                         };
1997                 }
1998
1999                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2000                         Ok(res) => assert!(res),
2001                         Err(_) => panic!()
2002                 };
2003
2004                 let fake_msghash = hash_to_message!(&zero_hash);
2005                 match gossip_sync.handle_node_announcement(
2006                         &NodeAnnouncement {
2007                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2008                                 contents: valid_announcement.contents.clone()
2009                 }) {
2010                         Ok(_) => panic!(),
2011                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2012                 };
2013
2014                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2015                         unsigned_announcement.timestamp += 1000;
2016                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2017                 }, node_1_privkey, &secp_ctx);
2018                 // Return false because contains excess data.
2019                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2020                         Ok(res) => assert!(!res),
2021                         Err(_) => panic!()
2022                 };
2023
2024                 // Even though previous announcement was not relayed further, we still accepted it,
2025                 // so we now won't accept announcements before the previous one.
2026                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2027                         unsigned_announcement.timestamp += 1000 - 10;
2028                 }, node_1_privkey, &secp_ctx);
2029                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2030                         Ok(_) => panic!(),
2031                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2032                 };
2033         }
2034
2035         #[test]
2036         fn handling_channel_announcements() {
2037                 let secp_ctx = Secp256k1::new();
2038                 let logger = test_utils::TestLogger::new();
2039
2040                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2041                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2042
2043                 let good_script = get_channel_script(&secp_ctx);
2044                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2045
2046                 // Test if the UTXO lookups were not supported
2047                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2048                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2049                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2050                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2051                         Ok(res) => assert!(res),
2052                         _ => panic!()
2053                 };
2054
2055                 {
2056                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2057                                 None => panic!(),
2058                                 Some(_) => ()
2059                         };
2060                 }
2061
2062                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2063                 // drop new one on the floor, since we can't see any changes.
2064                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2065                         Ok(_) => panic!(),
2066                         Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
2067                 };
2068
2069                 // Test if an associated transaction were not on-chain (or not confirmed).
2070                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2071                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2072                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2073                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2074
2075                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2076                         unsigned_announcement.short_channel_id += 1;
2077                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2078                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2079                         Ok(_) => panic!(),
2080                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2081                 };
2082
2083                 // Now test if the transaction is found in the UTXO set and the script is correct.
2084                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2085                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2086                         unsigned_announcement.short_channel_id += 2;
2087                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2088                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2089                         Ok(res) => assert!(res),
2090                         _ => panic!()
2091                 };
2092
2093                 {
2094                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2095                                 None => panic!(),
2096                                 Some(_) => ()
2097                         };
2098                 }
2099
2100                 // If we receive announcement for the same channel (but TX is not confirmed),
2101                 // drop new one on the floor, since we can't see any changes.
2102                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2103                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2104                         Ok(_) => panic!(),
2105                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2106                 };
2107
2108                 // But if it is confirmed, replace the channel
2109                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2110                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2111                         unsigned_announcement.features = ChannelFeatures::empty();
2112                         unsigned_announcement.short_channel_id += 2;
2113                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2114                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2115                         Ok(res) => assert!(res),
2116                         _ => panic!()
2117                 };
2118                 {
2119                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2120                                 Some(channel_entry) => {
2121                                         assert_eq!(channel_entry.features, ChannelFeatures::empty());
2122                                 },
2123                                 _ => panic!()
2124                         };
2125                 }
2126
2127                 // Don't relay valid channels with excess data
2128                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2129                         unsigned_announcement.short_channel_id += 3;
2130                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2131                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2132                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2133                         Ok(res) => assert!(!res),
2134                         _ => panic!()
2135                 };
2136
2137                 let mut invalid_sig_announcement = valid_announcement.clone();
2138                 invalid_sig_announcement.contents.excess_data = Vec::new();
2139                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2140                         Ok(_) => panic!(),
2141                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2142                 };
2143
2144                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2145                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2146                         Ok(_) => panic!(),
2147                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2148                 };
2149         }
2150
2151         #[test]
2152         fn handling_channel_update() {
2153                 let secp_ctx = Secp256k1::new();
2154                 let logger = test_utils::TestLogger::new();
2155                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2156                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2157                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2158                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2159
2160                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2161                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2162
2163                 let amount_sats = 1000_000;
2164                 let short_channel_id;
2165
2166                 {
2167                         // Announce a channel we will update
2168                         let good_script = get_channel_script(&secp_ctx);
2169                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2170
2171                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2172                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2173                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2174                                 Ok(_) => (),
2175                                 Err(_) => panic!()
2176                         };
2177
2178                 }
2179
2180                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2181                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2182                         Ok(res) => assert!(res),
2183                         _ => panic!(),
2184                 };
2185
2186                 {
2187                         match network_graph.read_only().channels().get(&short_channel_id) {
2188                                 None => panic!(),
2189                                 Some(channel_info) => {
2190                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2191                                         assert!(channel_info.two_to_one.is_none());
2192                                 }
2193                         };
2194                 }
2195
2196                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2197                         unsigned_channel_update.timestamp += 100;
2198                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2199                 }, node_1_privkey, &secp_ctx);
2200                 // Return false because contains excess data
2201                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2202                         Ok(res) => assert!(!res),
2203                         _ => panic!()
2204                 };
2205
2206                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2207                         unsigned_channel_update.timestamp += 110;
2208                         unsigned_channel_update.short_channel_id += 1;
2209                 }, node_1_privkey, &secp_ctx);
2210                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2211                         Ok(_) => panic!(),
2212                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2213                 };
2214
2215                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2216                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2217                         unsigned_channel_update.timestamp += 110;
2218                 }, node_1_privkey, &secp_ctx);
2219                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2220                         Ok(_) => panic!(),
2221                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2222                 };
2223
2224                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2225                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2226                         unsigned_channel_update.timestamp += 110;
2227                 }, node_1_privkey, &secp_ctx);
2228                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2229                         Ok(_) => panic!(),
2230                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2231                 };
2232
2233                 // Even though previous update was not relayed further, we still accepted it,
2234                 // so we now won't accept update before the previous one.
2235                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2236                         unsigned_channel_update.timestamp += 100;
2237                 }, node_1_privkey, &secp_ctx);
2238                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2239                         Ok(_) => panic!(),
2240                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2241                 };
2242
2243                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2244                         unsigned_channel_update.timestamp += 500;
2245                 }, node_1_privkey, &secp_ctx);
2246                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2247                 let fake_msghash = hash_to_message!(&zero_hash);
2248                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2249                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2250                         Ok(_) => panic!(),
2251                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2252                 };
2253         }
2254
2255         #[test]
2256         fn handling_network_update() {
2257                 let logger = test_utils::TestLogger::new();
2258                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2259                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2260                 let secp_ctx = Secp256k1::new();
2261
2262                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2263                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2264
2265                 {
2266                         // There is no nodes in the table at the beginning.
2267                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2268                 }
2269
2270                 let short_channel_id;
2271                 {
2272                         // Announce a channel we will update
2273                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2274                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2275                         let chain_source: Option<&test_utils::TestChainSource> = None;
2276                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2277                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2278
2279                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2280                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2281
2282                         network_graph.handle_event(&Event::PaymentPathFailed {
2283                                 payment_id: None,
2284                                 payment_hash: PaymentHash([0; 32]),
2285                                 rejected_by_dest: false,
2286                                 all_paths_failed: true,
2287                                 path: vec![],
2288                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2289                                         msg: valid_channel_update,
2290                                 }),
2291                                 short_channel_id: None,
2292                                 retry: None,
2293                                 error_code: None,
2294                                 error_data: None,
2295                         });
2296
2297                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2298                 }
2299
2300                 // Non-permanent closing just disables a channel
2301                 {
2302                         match network_graph.read_only().channels().get(&short_channel_id) {
2303                                 None => panic!(),
2304                                 Some(channel_info) => {
2305                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2306                                 }
2307                         };
2308
2309                         network_graph.handle_event(&Event::PaymentPathFailed {
2310                                 payment_id: None,
2311                                 payment_hash: PaymentHash([0; 32]),
2312                                 rejected_by_dest: false,
2313                                 all_paths_failed: true,
2314                                 path: vec![],
2315                                 network_update: Some(NetworkUpdate::ChannelFailure {
2316                                         short_channel_id,
2317                                         is_permanent: false,
2318                                 }),
2319                                 short_channel_id: None,
2320                                 retry: None,
2321                                 error_code: None,
2322                                 error_data: None,
2323                         });
2324
2325                         match network_graph.read_only().channels().get(&short_channel_id) {
2326                                 None => panic!(),
2327                                 Some(channel_info) => {
2328                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2329                                 }
2330                         };
2331                 }
2332
2333                 // Permanent closing deletes a channel
2334                 network_graph.handle_event(&Event::PaymentPathFailed {
2335                         payment_id: None,
2336                         payment_hash: PaymentHash([0; 32]),
2337                         rejected_by_dest: false,
2338                         all_paths_failed: true,
2339                         path: vec![],
2340                         network_update: Some(NetworkUpdate::ChannelFailure {
2341                                 short_channel_id,
2342                                 is_permanent: true,
2343                         }),
2344                         short_channel_id: None,
2345                         retry: None,
2346                         error_code: None,
2347                         error_data: None,
2348                 });
2349
2350                 assert_eq!(network_graph.read_only().channels().len(), 0);
2351                 // Nodes are also deleted because there are no associated channels anymore
2352                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2353                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2354         }
2355
2356         #[test]
2357         fn test_channel_timeouts() {
2358                 // Test the removal of channels with `remove_stale_channels`.
2359                 let logger = test_utils::TestLogger::new();
2360                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2361                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2362                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2363                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2364                 let secp_ctx = Secp256k1::new();
2365
2366                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2367                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2368
2369                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2370                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2371                 let chain_source: Option<&test_utils::TestChainSource> = None;
2372                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2373                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2374
2375                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2376                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2377                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2378
2379                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2380                 assert_eq!(network_graph.read_only().channels().len(), 1);
2381                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2382
2383                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2384                 #[cfg(feature = "std")]
2385                 {
2386                         // In std mode, a further check is performed before fully removing the channel -
2387                         // the channel_announcement must have been received at least two weeks ago. We
2388                         // fudge that here by indicating the time has jumped two weeks. Note that the
2389                         // directional channel information will have been removed already..
2390                         assert_eq!(network_graph.read_only().channels().len(), 1);
2391                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2392                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2393
2394                         use std::time::{SystemTime, UNIX_EPOCH};
2395                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2396                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2397                 }
2398
2399                 assert_eq!(network_graph.read_only().channels().len(), 0);
2400                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2401         }
2402
2403         #[test]
2404         fn getting_next_channel_announcements() {
2405                 let network_graph = create_network_graph();
2406                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2407                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2408                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2409
2410                 // Channels were not announced yet.
2411                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2412                 assert!(channels_with_announcements.is_none());
2413
2414                 let short_channel_id;
2415                 {
2416                         // Announce a channel we will update
2417                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2418                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2419                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2420                                 Ok(_) => (),
2421                                 Err(_) => panic!()
2422                         };
2423                 }
2424
2425                 // Contains initial channel announcement now.
2426                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2427                 if let Some(channel_announcements) = channels_with_announcements {
2428                         let (_, ref update_1, ref update_2) = channel_announcements;
2429                         assert_eq!(update_1, &None);
2430                         assert_eq!(update_2, &None);
2431                 } else {
2432                         panic!();
2433                 }
2434
2435                 {
2436                         // Valid channel update
2437                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2438                                 unsigned_channel_update.timestamp = 101;
2439                         }, node_1_privkey, &secp_ctx);
2440                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2441                                 Ok(_) => (),
2442                                 Err(_) => panic!()
2443                         };
2444                 }
2445
2446                 // Now contains an initial announcement and an update.
2447                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2448                 if let Some(channel_announcements) = channels_with_announcements {
2449                         let (_, ref update_1, ref update_2) = channel_announcements;
2450                         assert_ne!(update_1, &None);
2451                         assert_eq!(update_2, &None);
2452                 } else {
2453                         panic!();
2454                 }
2455
2456                 {
2457                         // Channel update with excess data.
2458                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2459                                 unsigned_channel_update.timestamp = 102;
2460                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2461                         }, node_1_privkey, &secp_ctx);
2462                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2463                                 Ok(_) => (),
2464                                 Err(_) => panic!()
2465                         };
2466                 }
2467
2468                 // Test that announcements with excess data won't be returned
2469                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2470                 if let Some(channel_announcements) = channels_with_announcements {
2471                         let (_, ref update_1, ref update_2) = channel_announcements;
2472                         assert_eq!(update_1, &None);
2473                         assert_eq!(update_2, &None);
2474                 } else {
2475                         panic!();
2476                 }
2477
2478                 // Further starting point have no channels after it
2479                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2480                 assert!(channels_with_announcements.is_none());
2481         }
2482
2483         #[test]
2484         fn getting_next_node_announcements() {
2485                 let network_graph = create_network_graph();
2486                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2487                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2488                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2489                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2490
2491                 // No nodes yet.
2492                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2493                 assert!(next_announcements.is_none());
2494
2495                 {
2496                         // Announce a channel to add 2 nodes
2497                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2498                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2499                                 Ok(_) => (),
2500                                 Err(_) => panic!()
2501                         };
2502                 }
2503
2504                 // Nodes were never announced
2505                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2506                 assert!(next_announcements.is_none());
2507
2508                 {
2509                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2510                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2511                                 Ok(_) => (),
2512                                 Err(_) => panic!()
2513                         };
2514
2515                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2516                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2517                                 Ok(_) => (),
2518                                 Err(_) => panic!()
2519                         };
2520                 }
2521
2522                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2523                 assert!(next_announcements.is_some());
2524
2525                 // Skip the first node.
2526                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2527                 assert!(next_announcements.is_some());
2528
2529                 {
2530                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2531                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2532                                 unsigned_announcement.timestamp += 10;
2533                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2534                         }, node_2_privkey, &secp_ctx);
2535                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2536                                 Ok(res) => assert!(!res),
2537                                 Err(_) => panic!()
2538                         };
2539                 }
2540
2541                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2542                 assert!(next_announcements.is_none());
2543         }
2544
2545         #[test]
2546         fn network_graph_serialization() {
2547                 let network_graph = create_network_graph();
2548                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2549
2550                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2551                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2552
2553                 // Announce a channel to add a corresponding node.
2554                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2555                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2556                         Ok(res) => assert!(res),
2557                         _ => panic!()
2558                 };
2559
2560                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2561                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2562                         Ok(_) => (),
2563                         Err(_) => panic!()
2564                 };
2565
2566                 let mut w = test_utils::TestVecWriter(Vec::new());
2567                 assert!(!network_graph.read_only().nodes().is_empty());
2568                 assert!(!network_graph.read_only().channels().is_empty());
2569                 network_graph.write(&mut w).unwrap();
2570
2571                 let logger = Arc::new(test_utils::TestLogger::new());
2572                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2573         }
2574
2575         #[test]
2576         fn network_graph_tlv_serialization() {
2577                 let network_graph = create_network_graph();
2578                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2579
2580                 let mut w = test_utils::TestVecWriter(Vec::new());
2581                 network_graph.write(&mut w).unwrap();
2582
2583                 let logger = Arc::new(test_utils::TestLogger::new());
2584                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2585                 assert!(reassembled_network_graph == network_graph);
2586                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2587         }
2588
2589         #[test]
2590         #[cfg(feature = "std")]
2591         fn calling_sync_routing_table() {
2592                 use std::time::{SystemTime, UNIX_EPOCH};
2593
2594                 let network_graph = create_network_graph();
2595                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2596                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2597                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2598
2599                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2600
2601                 // It should ignore if gossip_queries feature is not enabled
2602                 {
2603                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2604                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2605                         let events = gossip_sync.get_and_clear_pending_msg_events();
2606                         assert_eq!(events.len(), 0);
2607                 }
2608
2609                 // It should send a gossip_timestamp_filter with the correct information
2610                 {
2611                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2612                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2613                         let events = gossip_sync.get_and_clear_pending_msg_events();
2614                         assert_eq!(events.len(), 1);
2615                         match &events[0] {
2616                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2617                                         assert_eq!(node_id, &node_id_1);
2618                                         assert_eq!(msg.chain_hash, chain_hash);
2619                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2620                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2621                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2622                                         assert_eq!(msg.timestamp_range, u32::max_value());
2623                                 },
2624                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2625                         };
2626                 }
2627         }
2628
2629         #[test]
2630         fn handling_query_channel_range() {
2631                 let network_graph = create_network_graph();
2632                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2633
2634                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2635                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2636                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2637                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2638
2639                 let mut scids: Vec<u64> = vec![
2640                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2641                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2642                 ];
2643
2644                 // used for testing multipart reply across blocks
2645                 for block in 100000..=108001 {
2646                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2647                 }
2648
2649                 // used for testing resumption on same block
2650                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2651
2652                 for scid in scids {
2653                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2654                                 unsigned_announcement.short_channel_id = scid;
2655                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2656                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2657                                 Ok(_) => (),
2658                                 _ => panic!()
2659                         };
2660                 }
2661
2662                 // Error when number_of_blocks=0
2663                 do_handling_query_channel_range(
2664                         &gossip_sync,
2665                         &node_id_2,
2666                         QueryChannelRange {
2667                                 chain_hash: chain_hash.clone(),
2668                                 first_blocknum: 0,
2669                                 number_of_blocks: 0,
2670                         },
2671                         false,
2672                         vec![ReplyChannelRange {
2673                                 chain_hash: chain_hash.clone(),
2674                                 first_blocknum: 0,
2675                                 number_of_blocks: 0,
2676                                 sync_complete: true,
2677                                 short_channel_ids: vec![]
2678                         }]
2679                 );
2680
2681                 // Error when wrong chain
2682                 do_handling_query_channel_range(
2683                         &gossip_sync,
2684                         &node_id_2,
2685                         QueryChannelRange {
2686                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2687                                 first_blocknum: 0,
2688                                 number_of_blocks: 0xffff_ffff,
2689                         },
2690                         false,
2691                         vec![ReplyChannelRange {
2692                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2693                                 first_blocknum: 0,
2694                                 number_of_blocks: 0xffff_ffff,
2695                                 sync_complete: true,
2696                                 short_channel_ids: vec![],
2697                         }]
2698                 );
2699
2700                 // Error when first_blocknum > 0xffffff
2701                 do_handling_query_channel_range(
2702                         &gossip_sync,
2703                         &node_id_2,
2704                         QueryChannelRange {
2705                                 chain_hash: chain_hash.clone(),
2706                                 first_blocknum: 0x01000000,
2707                                 number_of_blocks: 0xffff_ffff,
2708                         },
2709                         false,
2710                         vec![ReplyChannelRange {
2711                                 chain_hash: chain_hash.clone(),
2712                                 first_blocknum: 0x01000000,
2713                                 number_of_blocks: 0xffff_ffff,
2714                                 sync_complete: true,
2715                                 short_channel_ids: vec![]
2716                         }]
2717                 );
2718
2719                 // Empty reply when max valid SCID block num
2720                 do_handling_query_channel_range(
2721                         &gossip_sync,
2722                         &node_id_2,
2723                         QueryChannelRange {
2724                                 chain_hash: chain_hash.clone(),
2725                                 first_blocknum: 0xffffff,
2726                                 number_of_blocks: 1,
2727                         },
2728                         true,
2729                         vec![
2730                                 ReplyChannelRange {
2731                                         chain_hash: chain_hash.clone(),
2732                                         first_blocknum: 0xffffff,
2733                                         number_of_blocks: 1,
2734                                         sync_complete: true,
2735                                         short_channel_ids: vec![]
2736                                 },
2737                         ]
2738                 );
2739
2740                 // No results in valid query range
2741                 do_handling_query_channel_range(
2742                         &gossip_sync,
2743                         &node_id_2,
2744                         QueryChannelRange {
2745                                 chain_hash: chain_hash.clone(),
2746                                 first_blocknum: 1000,
2747                                 number_of_blocks: 1000,
2748                         },
2749                         true,
2750                         vec![
2751                                 ReplyChannelRange {
2752                                         chain_hash: chain_hash.clone(),
2753                                         first_blocknum: 1000,
2754                                         number_of_blocks: 1000,
2755                                         sync_complete: true,
2756                                         short_channel_ids: vec![],
2757                                 }
2758                         ]
2759                 );
2760
2761                 // Overflow first_blocknum + number_of_blocks
2762                 do_handling_query_channel_range(
2763                         &gossip_sync,
2764                         &node_id_2,
2765                         QueryChannelRange {
2766                                 chain_hash: chain_hash.clone(),
2767                                 first_blocknum: 0xfe0000,
2768                                 number_of_blocks: 0xffffffff,
2769                         },
2770                         true,
2771                         vec![
2772                                 ReplyChannelRange {
2773                                         chain_hash: chain_hash.clone(),
2774                                         first_blocknum: 0xfe0000,
2775                                         number_of_blocks: 0xffffffff - 0xfe0000,
2776                                         sync_complete: true,
2777                                         short_channel_ids: vec![
2778                                                 0xfffffe_ffffff_ffff, // max
2779                                         ]
2780                                 }
2781                         ]
2782                 );
2783
2784                 // Single block exactly full
2785                 do_handling_query_channel_range(
2786                         &gossip_sync,
2787                         &node_id_2,
2788                         QueryChannelRange {
2789                                 chain_hash: chain_hash.clone(),
2790                                 first_blocknum: 100000,
2791                                 number_of_blocks: 8000,
2792                         },
2793                         true,
2794                         vec![
2795                                 ReplyChannelRange {
2796                                         chain_hash: chain_hash.clone(),
2797                                         first_blocknum: 100000,
2798                                         number_of_blocks: 8000,
2799                                         sync_complete: true,
2800                                         short_channel_ids: (100000..=107999)
2801                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2802                                                 .collect(),
2803                                 },
2804                         ]
2805                 );
2806
2807                 // Multiple split on new block
2808                 do_handling_query_channel_range(
2809                         &gossip_sync,
2810                         &node_id_2,
2811                         QueryChannelRange {
2812                                 chain_hash: chain_hash.clone(),
2813                                 first_blocknum: 100000,
2814                                 number_of_blocks: 8001,
2815                         },
2816                         true,
2817                         vec![
2818                                 ReplyChannelRange {
2819                                         chain_hash: chain_hash.clone(),
2820                                         first_blocknum: 100000,
2821                                         number_of_blocks: 7999,
2822                                         sync_complete: false,
2823                                         short_channel_ids: (100000..=107999)
2824                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2825                                                 .collect(),
2826                                 },
2827                                 ReplyChannelRange {
2828                                         chain_hash: chain_hash.clone(),
2829                                         first_blocknum: 107999,
2830                                         number_of_blocks: 2,
2831                                         sync_complete: true,
2832                                         short_channel_ids: vec![
2833                                                 scid_from_parts(108000, 0, 0).unwrap(),
2834                                         ],
2835                                 }
2836                         ]
2837                 );
2838
2839                 // Multiple split on same block
2840                 do_handling_query_channel_range(
2841                         &gossip_sync,
2842                         &node_id_2,
2843                         QueryChannelRange {
2844                                 chain_hash: chain_hash.clone(),
2845                                 first_blocknum: 100002,
2846                                 number_of_blocks: 8000,
2847                         },
2848                         true,
2849                         vec![
2850                                 ReplyChannelRange {
2851                                         chain_hash: chain_hash.clone(),
2852                                         first_blocknum: 100002,
2853                                         number_of_blocks: 7999,
2854                                         sync_complete: false,
2855                                         short_channel_ids: (100002..=108001)
2856                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2857                                                 .collect(),
2858                                 },
2859                                 ReplyChannelRange {
2860                                         chain_hash: chain_hash.clone(),
2861                                         first_blocknum: 108001,
2862                                         number_of_blocks: 1,
2863                                         sync_complete: true,
2864                                         short_channel_ids: vec![
2865                                                 scid_from_parts(108001, 1, 0).unwrap(),
2866                                         ],
2867                                 }
2868                         ]
2869                 );
2870         }
2871
2872         fn do_handling_query_channel_range(
2873                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2874                 test_node_id: &PublicKey,
2875                 msg: QueryChannelRange,
2876                 expected_ok: bool,
2877                 expected_replies: Vec<ReplyChannelRange>
2878         ) {
2879                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2880                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2881                 let query_end_blocknum = msg.end_blocknum();
2882                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2883
2884                 if expected_ok {
2885                         assert!(result.is_ok());
2886                 } else {
2887                         assert!(result.is_err());
2888                 }
2889
2890                 let events = gossip_sync.get_and_clear_pending_msg_events();
2891                 assert_eq!(events.len(), expected_replies.len());
2892
2893                 for i in 0..events.len() {
2894                         let expected_reply = &expected_replies[i];
2895                         match &events[i] {
2896                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2897                                         assert_eq!(node_id, test_node_id);
2898                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2899                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2900                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2901                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2902                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2903
2904                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2905                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2906                                         assert!(msg.first_blocknum >= max_firstblocknum);
2907                                         max_firstblocknum = msg.first_blocknum;
2908                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2909
2910                                         // Check that the last block count is >= the query's end_blocknum
2911                                         if i == events.len() - 1 {
2912                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2913                                         }
2914                                 },
2915                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2916                         }
2917                 }
2918         }
2919
2920         #[test]
2921         fn handling_query_short_channel_ids() {
2922                 let network_graph = create_network_graph();
2923                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2924                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2925                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2926
2927                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2928
2929                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2930                         chain_hash,
2931                         short_channel_ids: vec![0x0003e8_000000_0000],
2932                 });
2933                 assert!(result.is_err());
2934         }
2935
2936         #[test]
2937         fn displays_node_alias() {
2938                 let format_str_alias = |alias: &str| {
2939                         let mut bytes = [0u8; 32];
2940                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2941                         format!("{}", NodeAlias(bytes))
2942                 };
2943
2944                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2945                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2946                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2947
2948                 let format_bytes_alias = |alias: &[u8]| {
2949                         let mut bytes = [0u8; 32];
2950                         bytes[..alias.len()].copy_from_slice(alias);
2951                         format!("{}", NodeAlias(bytes))
2952                 };
2953
2954                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2955                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2956                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2957         }
2958
2959         #[test]
2960         fn channel_info_is_readable() {
2961                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2962                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2963                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2964                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2965
2966                 // 1. Test encoding/decoding of ChannelUpdateInfo
2967                 let chan_update_info = ChannelUpdateInfo {
2968                         last_update: 23,
2969                         enabled: true,
2970                         cltv_expiry_delta: 42,
2971                         htlc_minimum_msat: 1234,
2972                         htlc_maximum_msat: 5678,
2973                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2974                         last_update_message: None,
2975                 };
2976
2977                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2978                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2979
2980                 // First make sure we can read ChannelUpdateInfos we just wrote
2981                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2982                 assert_eq!(chan_update_info, read_chan_update_info);
2983
2984                 // Check the serialization hasn't changed.
2985                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2986                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
2987
2988                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
2989                 // or the ChannelUpdate enclosed with `last_update_message`.
2990                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
2991                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
2992                 assert!(read_chan_update_info_res.is_err());
2993
2994                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
2995                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
2996                 assert!(read_chan_update_info_res.is_err());
2997                         
2998                 // 2. Test encoding/decoding of ChannelInfo
2999                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3000                 let chan_info_none_updates = ChannelInfo {
3001                         features: ChannelFeatures::known(),
3002                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3003                         one_to_two: None,
3004                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3005                         two_to_one: None,
3006                         capacity_sats: None,
3007                         announcement_message: None,
3008                         announcement_received_time: 87654,
3009                 };
3010
3011                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3012                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3013
3014                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3015                 assert_eq!(chan_info_none_updates, read_chan_info);
3016
3017                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3018                 let chan_info_some_updates = ChannelInfo {
3019                         features: ChannelFeatures::known(),
3020                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3021                         one_to_two: Some(chan_update_info.clone()),
3022                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3023                         two_to_one: Some(chan_update_info.clone()),
3024                         capacity_sats: None,
3025                         announcement_message: None,
3026                         announcement_received_time: 87654,
3027                 };
3028
3029                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3030                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3031
3032                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3033                 assert_eq!(chan_info_some_updates, read_chan_info);
3034
3035                 // Check the serialization hasn't changed.
3036                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3037                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3038
3039                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3040                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3041                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3042                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3043                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3044                 assert_eq!(read_chan_info.one_to_two, None);
3045                 assert_eq!(read_chan_info.two_to_one, None);
3046
3047                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3048                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3049                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3050                 assert_eq!(read_chan_info.one_to_two, None);
3051                 assert_eq!(read_chan_info.two_to_one, None);
3052         }
3053
3054         #[test]
3055         fn node_info_is_readable() {
3056                 use std::convert::TryFrom;
3057
3058                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3059                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3060                 let valid_node_ann_info = NodeAnnouncementInfo {
3061                         features: NodeFeatures::known(),
3062                         last_update: 0,
3063                         rgb: [0u8; 3],
3064                         alias: NodeAlias([0u8; 32]),
3065                         addresses: vec![valid_netaddr],
3066                         announcement_message: None,
3067                 };
3068
3069                 let mut encoded_valid_node_ann_info = Vec::new();
3070                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3071                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3072                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3073
3074                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3075                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3076                 assert!(read_invalid_node_ann_info_res.is_err());
3077
3078                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3079                 let valid_node_info = NodeInfo {
3080                         channels: Vec::new(),
3081                         lowest_inbound_channel_fees: None,
3082                         announcement_info: Some(valid_node_ann_info),
3083                 };
3084
3085                 let mut encoded_valid_node_info = Vec::new();
3086                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3087                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3088                 assert_eq!(read_valid_node_info, valid_node_info);
3089
3090                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3091                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3092                 assert_eq!(read_invalid_node_info.announcement_info, None);
3093         }
3094 }
3095
3096 #[cfg(all(test, feature = "_bench_unstable"))]
3097 mod benches {
3098         use super::*;
3099
3100         use test::Bencher;
3101         use std::io::Read;
3102
3103         #[bench]
3104         fn read_network_graph(bench: &mut Bencher) {
3105                 let logger = ::util::test_utils::TestLogger::new();
3106                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3107                 let mut v = Vec::new();
3108                 d.read_to_end(&mut v).unwrap();
3109                 bench.iter(|| {
3110                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3111                 });
3112         }
3113
3114         #[bench]
3115         fn write_network_graph(bench: &mut Bencher) {
3116                 let logger = ::util::test_utils::TestLogger::new();
3117                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3118                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3119                 bench.iter(|| {
3120                         let _ = net_graph.encode();
3121                 });
3122         }
3123 }