Store the source and destination `node_counter`s in `ChannelInfo`
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::blockdata::constants::ChainHash;
13
14 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
15 use bitcoin::secp256k1::{PublicKey, Verification};
16 use bitcoin::secp256k1::Secp256k1;
17 use bitcoin::secp256k1;
18
19 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
20 use bitcoin::hashes::Hash;
21 use bitcoin::network::constants::Network;
22
23 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
24 use crate::ln::ChannelId;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, SocketAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use core::str::FromStr;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy, PartialEq, Eq)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80
81         /// Get the public key as an array from this NodeId
82         pub fn as_array(&self) -> &[u8; PUBLIC_KEY_SIZE] {
83                 &self.0
84         }
85
86         /// Get the public key from this NodeId
87         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
88                 PublicKey::from_slice(&self.0)
89         }
90 }
91
92 impl fmt::Debug for NodeId {
93         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94                 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
95         }
96 }
97 impl fmt::Display for NodeId {
98         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
99                 crate::util::logger::DebugBytes(&self.0).fmt(f)
100         }
101 }
102
103 impl core::hash::Hash for NodeId {
104         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
105                 self.0.hash(hasher);
106         }
107 }
108
109 impl cmp::PartialOrd for NodeId {
110         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
111                 Some(self.cmp(other))
112         }
113 }
114
115 impl Ord for NodeId {
116         fn cmp(&self, other: &Self) -> cmp::Ordering {
117                 self.0[..].cmp(&other.0[..])
118         }
119 }
120
121 impl Writeable for NodeId {
122         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
123                 writer.write_all(&self.0)?;
124                 Ok(())
125         }
126 }
127
128 impl Readable for NodeId {
129         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
130                 let mut buf = [0; PUBLIC_KEY_SIZE];
131                 reader.read_exact(&mut buf)?;
132                 Ok(Self(buf))
133         }
134 }
135
136 impl From<PublicKey> for NodeId {
137         fn from(pubkey: PublicKey) -> Self {
138                 Self::from_pubkey(&pubkey)
139         }
140 }
141
142 impl TryFrom<NodeId> for PublicKey {
143         type Error = secp256k1::Error;
144
145         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
146                 node_id.as_pubkey()
147         }
148 }
149
150 impl FromStr for NodeId {
151         type Err = hex::parse::HexToArrayError;
152
153         fn from_str(s: &str) -> Result<Self, Self::Err> {
154                 let data: [u8; PUBLIC_KEY_SIZE] = hex::FromHex::from_hex(s)?;
155                 Ok(NodeId(data))
156         }
157 }
158
159 /// Represents the network as nodes and channels between them
160 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
161         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
162         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
163         chain_hash: ChainHash,
164         logger: L,
165         // Lock order: channels -> nodes
166         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
167         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
168         removed_node_counters: Mutex<Vec<u32>>,
169         next_node_counter: AtomicUsize,
170         // Lock order: removed_channels -> removed_nodes
171         //
172         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
173         // of `std::time::Instant`s for a few reasons:
174         //   * We want it to be possible to do tracking in no-std environments where we can compare
175         //     a provided current UNIX timestamp with the time at which we started tracking.
176         //   * In the future, if we decide to persist these maps, they will already be serializable.
177         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
178         //     environment should be practical over the time period we are considering (on the order of a
179         //     week).
180         //
181         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
182         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
183         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
184         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
185         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
186         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
187         /// that once some time passes, we can potentially resync it from gossip again.
188         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
189         /// Announcement messages which are awaiting an on-chain lookup to be processed.
190         pub(super) pending_checks: utxo::PendingChecks,
191 }
192
193 /// A read-only view of [`NetworkGraph`].
194 pub struct ReadOnlyNetworkGraph<'a> {
195         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
196         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
197 }
198
199 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
200 /// return packet by a node along the route. See [BOLT #4] for details.
201 ///
202 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
203 #[derive(Clone, Debug, PartialEq, Eq)]
204 pub enum NetworkUpdate {
205         /// An error indicating a `channel_update` messages should be applied via
206         /// [`NetworkGraph::update_channel`].
207         ChannelUpdateMessage {
208                 /// The update to apply via [`NetworkGraph::update_channel`].
209                 msg: ChannelUpdate,
210         },
211         /// An error indicating that a channel failed to route a payment, which should be applied via
212         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
213         ChannelFailure {
214                 /// The short channel id of the closed channel.
215                 short_channel_id: u64,
216                 /// Whether the channel should be permanently removed or temporarily disabled until a new
217                 /// `channel_update` message is received.
218                 is_permanent: bool,
219         },
220         /// An error indicating that a node failed to route a payment, which should be applied via
221         /// [`NetworkGraph::node_failed_permanent`] if permanent.
222         NodeFailure {
223                 /// The node id of the failed node.
224                 node_id: PublicKey,
225                 /// Whether the node should be permanently removed from consideration or can be restored
226                 /// when a new `channel_update` message is received.
227                 is_permanent: bool,
228         }
229 }
230
231 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
232         (0, ChannelUpdateMessage) => {
233                 (0, msg, required),
234         },
235         (2, ChannelFailure) => {
236                 (0, short_channel_id, required),
237                 (2, is_permanent, required),
238         },
239         (4, NodeFailure) => {
240                 (0, node_id, required),
241                 (2, is_permanent, required),
242         },
243 );
244
245 /// Receives and validates network updates from peers,
246 /// stores authentic and relevant data as a network graph.
247 /// This network graph is then used for routing payments.
248 /// Provides interface to help with initial routing sync by
249 /// serving historical announcements.
250 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
251 where U::Target: UtxoLookup, L::Target: Logger
252 {
253         network_graph: G,
254         utxo_lookup: RwLock<Option<U>>,
255         #[cfg(feature = "std")]
256         full_syncs_requested: AtomicUsize,
257         pending_events: Mutex<Vec<MessageSendEvent>>,
258         logger: L,
259 }
260
261 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
262 where U::Target: UtxoLookup, L::Target: Logger
263 {
264         /// Creates a new tracker of the actual state of the network of channels and nodes,
265         /// assuming an existing [`NetworkGraph`].
266         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
267         /// correct, and the announcement is signed with channel owners' keys.
268         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
269                 P2PGossipSync {
270                         network_graph,
271                         #[cfg(feature = "std")]
272                         full_syncs_requested: AtomicUsize::new(0),
273                         utxo_lookup: RwLock::new(utxo_lookup),
274                         pending_events: Mutex::new(vec![]),
275                         logger,
276                 }
277         }
278
279         /// Adds a provider used to check new announcements. Does not affect
280         /// existing announcements unless they are updated.
281         /// Add, update or remove the provider would replace the current one.
282         pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
283                 *self.utxo_lookup.write().unwrap() = utxo_lookup;
284         }
285
286         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
287         /// [`P2PGossipSync::new`].
288         ///
289         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
290         pub fn network_graph(&self) -> &G {
291                 &self.network_graph
292         }
293
294         #[cfg(feature = "std")]
295         /// Returns true when a full routing table sync should be performed with a peer.
296         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
297                 //TODO: Determine whether to request a full sync based on the network map.
298                 const FULL_SYNCS_TO_REQUEST: usize = 5;
299                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
300                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
301                         true
302                 } else {
303                         false
304                 }
305         }
306
307         /// Used to broadcast forward gossip messages which were validated async.
308         ///
309         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
310         /// data.
311         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
312                 match &mut ev {
313                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
314                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
315                                 if update_msg.as_ref()
316                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
317                                 {
318                                         *update_msg = None;
319                                 }
320                         },
321                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
322                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
323                         },
324                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
325                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
326                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
327                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
328                                 {
329                                         return;
330                                 }
331                         },
332                         _ => return,
333                 }
334                 self.pending_events.lock().unwrap().push(ev);
335         }
336 }
337
338 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
339         /// Handles any network updates originating from [`Event`]s.
340         //
341         /// Note that this will skip applying any [`NetworkUpdate::ChannelUpdateMessage`] to avoid
342         /// leaking possibly identifying information of the sender to the public network.
343         ///
344         /// [`Event`]: crate::events::Event
345         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346                 match *network_update {
347                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348                                 let short_channel_id = msg.contents.short_channel_id;
349                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350                                 let status = if is_enabled { "enabled" } else { "disabled" };
351                                 log_debug!(self.logger, "Skipping application of a channel update from a payment failure. Channel {} is {}.", short_channel_id, status);
352                         },
353                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
354                                 if is_permanent {
355                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
356                                         self.channel_failed_permanent(short_channel_id);
357                                 }
358                         },
359                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
360                                 if is_permanent {
361                                         log_debug!(self.logger,
362                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
363                                         self.node_failed_permanent(node_id);
364                                 };
365                         },
366                 }
367         }
368
369         /// Gets the chain hash for this network graph.
370         pub fn get_chain_hash(&self) -> ChainHash {
371                 self.chain_hash
372         }
373 }
374
375 macro_rules! secp_verify_sig {
376         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
377                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
378                         Ok(_) => {},
379                         Err(_) => {
380                                 return Err(LightningError {
381                                         err: format!("Invalid signature on {} message", $msg_type),
382                                         action: ErrorAction::SendWarningMessage {
383                                                 msg: msgs::WarningMessage {
384                                                         channel_id: ChannelId::new_zero(),
385                                                         data: format!("Invalid signature on {} message", $msg_type),
386                                                 },
387                                                 log_level: Level::Trace,
388                                         },
389                                 });
390                         },
391                 }
392         };
393 }
394
395 macro_rules! get_pubkey_from_node_id {
396         ( $node_id: expr, $msg_type: expr ) => {
397                 PublicKey::from_slice($node_id.as_slice())
398                         .map_err(|_| LightningError {
399                                 err: format!("Invalid public key on {} message", $msg_type),
400                                 action: ErrorAction::SendWarningMessage {
401                                         msg: msgs::WarningMessage {
402                                                 channel_id: ChannelId::new_zero(),
403                                                 data: format!("Invalid public key on {} message", $msg_type),
404                                         },
405                                         log_level: Level::Trace
406                                 }
407                         })?
408         }
409 }
410
411 fn message_sha256d_hash<M: Writeable>(msg: &M) -> Sha256dHash {
412         let mut engine = Sha256dHash::engine();
413         msg.write(&mut engine).expect("In-memory structs should not fail to serialize");
414         Sha256dHash::from_engine(engine)
415 }
416
417 /// Verifies the signature of a [`NodeAnnouncement`].
418 ///
419 /// Returns an error if it is invalid.
420 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
421         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
422         secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
423
424         Ok(())
425 }
426
427 /// Verifies all signatures included in a [`ChannelAnnouncement`].
428 ///
429 /// Returns an error if one of the signatures is invalid.
430 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
431         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
432         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
433         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
434         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
435         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
436
437         Ok(())
438 }
439
440 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
441 where U::Target: UtxoLookup, L::Target: Logger
442 {
443         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
444                 self.network_graph.update_node_from_announcement(msg)?;
445                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
446                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
447                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
448         }
449
450         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
451                 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
452                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
453         }
454
455         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
456                 self.network_graph.update_channel(msg)?;
457                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
458         }
459
460         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
461                 let mut channels = self.network_graph.channels.write().unwrap();
462                 for (_, ref chan) in channels.range(starting_point..) {
463                         if chan.announcement_message.is_some() {
464                                 let chan_announcement = chan.announcement_message.clone().unwrap();
465                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
466                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
467                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
468                                         one_to_two_announcement = one_to_two.last_update_message.clone();
469                                 }
470                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
471                                         two_to_one_announcement = two_to_one.last_update_message.clone();
472                                 }
473                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
474                         } else {
475                                 // TODO: We may end up sending un-announced channel_updates if we are sending
476                                 // initial sync data while receiving announce/updates for this channel.
477                         }
478                 }
479                 None
480         }
481
482         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
483                 let mut nodes = self.network_graph.nodes.write().unwrap();
484                 let iter = if let Some(node_id) = starting_point {
485                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
486                         } else {
487                                 nodes.range(..)
488                         };
489                 for (_, ref node) in iter {
490                         if let Some(node_info) = node.announcement_info.as_ref() {
491                                 if let Some(msg) = node_info.announcement_message.clone() {
492                                         return Some(msg);
493                                 }
494                         }
495                 }
496                 None
497         }
498
499         /// Initiates a stateless sync of routing gossip information with a peer
500         /// using [`gossip_queries`]. The default strategy used by this implementation
501         /// is to sync the full block range with several peers.
502         ///
503         /// We should expect one or more [`reply_channel_range`] messages in response
504         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
505         /// to request gossip messages for each channel. The sync is considered complete
506         /// when the final [`reply_scids_end`] message is received, though we are not
507         /// tracking this directly.
508         ///
509         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
510         /// [`reply_channel_range`]: msgs::ReplyChannelRange
511         /// [`query_channel_range`]: msgs::QueryChannelRange
512         /// [`query_scid`]: msgs::QueryShortChannelIds
513         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
514         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
515                 // We will only perform a sync with peers that support gossip_queries.
516                 if !init_msg.features.supports_gossip_queries() {
517                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
518                         // channels with peers even without being able to exchange gossip.
519                         return Ok(());
520                 }
521
522                 // The lightning network's gossip sync system is completely broken in numerous ways.
523                 //
524                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
525                 // to do a full sync from the first few peers we connect to, and then receive gossip
526                 // updates from all our peers normally.
527                 //
528                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
529                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
530                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
531                 // seen.
532                 //
533                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
534                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
535                 // channel data which you are missing. Except there was no way at all to identify which
536                 // `channel_update`s you were missing, so you still had to request everything, just in a
537                 // very complicated way with some queries instead of just getting the dump.
538                 //
539                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
540                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
541                 // relying on it useless.
542                 //
543                 // After gossip queries were introduced, support for receiving a full gossip table dump on
544                 // connection was removed from several nodes, making it impossible to get a full sync
545                 // without using the "gossip queries" messages.
546                 //
547                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
548                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
549                 // message, as the name implies, tells the peer to not forward any gossip messages with a
550                 // timestamp older than a given value (not the time the peer received the filter, but the
551                 // timestamp in the update message, which is often hours behind when the peer received the
552                 // message).
553                 //
554                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
555                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
556                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
557                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
558                 // will simply not forward any new updates they see to you which were generated some time
559                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
560                 // ago), you will always get the full routing graph from all your peers.
561                 //
562                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
563                 // propagated some time after it was generated, and, worse, often disable gossiping with
564                 // several peers after their first connection. The second behavior can cause gossip to not
565                 // propagate fully if there are cuts in the gossiping subgraph.
566                 //
567                 // In an attempt to cut a middle ground between always fetching the full graph from all of
568                 // our peers and never receiving gossip from peers at all, we send all of our peers a
569                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
570                 //
571                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
572                 #[allow(unused_mut, unused_assignments)]
573                 let mut gossip_start_time = 0;
574                 #[cfg(feature = "std")]
575                 {
576                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
577                         if self.should_request_full_sync(&their_node_id) {
578                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
579                         } else {
580                                 gossip_start_time -= 60 * 60; // an hour ago
581                         }
582                 }
583
584                 let mut pending_events = self.pending_events.lock().unwrap();
585                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
586                         node_id: their_node_id.clone(),
587                         msg: GossipTimestampFilter {
588                                 chain_hash: self.network_graph.chain_hash,
589                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
590                                 timestamp_range: u32::max_value(),
591                         },
592                 });
593                 Ok(())
594         }
595
596         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
597                 // We don't make queries, so should never receive replies. If, in the future, the set
598                 // reconciliation extensions to gossip queries become broadly supported, we should revert
599                 // this code to its state pre-0.0.106.
600                 Ok(())
601         }
602
603         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
604                 // We don't make queries, so should never receive replies. If, in the future, the set
605                 // reconciliation extensions to gossip queries become broadly supported, we should revert
606                 // this code to its state pre-0.0.106.
607                 Ok(())
608         }
609
610         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
611         /// are in the specified block range. Due to message size limits, large range
612         /// queries may result in several reply messages. This implementation enqueues
613         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
614         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
615         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
616         /// memory constrained systems.
617         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
618                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
619
620                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
621
622                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
623                 // If so, we manually cap the ending block to avoid this overflow.
624                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
625
626                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
627                 if msg.chain_hash != self.network_graph.chain_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
628                         let mut pending_events = self.pending_events.lock().unwrap();
629                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
630                                 node_id: their_node_id.clone(),
631                                 msg: ReplyChannelRange {
632                                         chain_hash: msg.chain_hash.clone(),
633                                         first_blocknum: msg.first_blocknum,
634                                         number_of_blocks: msg.number_of_blocks,
635                                         sync_complete: true,
636                                         short_channel_ids: vec![],
637                                 }
638                         });
639                         return Err(LightningError {
640                                 err: String::from("query_channel_range could not be processed"),
641                                 action: ErrorAction::IgnoreError,
642                         });
643                 }
644
645                 // Creates channel batches. We are not checking if the channel is routable
646                 // (has at least one update). A peer may still want to know the channel
647                 // exists even if its not yet routable.
648                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
649                 let mut channels = self.network_graph.channels.write().unwrap();
650                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
651                         if let Some(chan_announcement) = &chan.announcement_message {
652                                 // Construct a new batch if last one is full
653                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
654                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
655                                 }
656
657                                 let batch = batches.last_mut().unwrap();
658                                 batch.push(chan_announcement.contents.short_channel_id);
659                         }
660                 }
661                 drop(channels);
662
663                 let mut pending_events = self.pending_events.lock().unwrap();
664                 let batch_count = batches.len();
665                 let mut prev_batch_endblock = msg.first_blocknum;
666                 for (batch_index, batch) in batches.into_iter().enumerate() {
667                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
668                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
669                         //
670                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
671                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
672                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
673                         // significant diversion from the requirements set by the spec, and, in case of blocks
674                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
675                         // and *not* derive the first_blocknum from the actual first block of the reply.
676                         let first_blocknum = prev_batch_endblock;
677
678                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
679                         // fit in. Though there is no requirement that we use exactly the number of blocks its
680                         // contents are from, except for the bogus requirements c-lightning enforces, above.
681                         //
682                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
683                         // >= the query's end block. Thus, for the last reply, we calculate the difference
684                         // between the query's end block and the start of the reply.
685                         //
686                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
687                         // first_blocknum will be either msg.first_blocknum or a higher block height.
688                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
689                                 (true, msg.end_blocknum() - first_blocknum)
690                         }
691                         // Prior replies should use the number of blocks that fit into the reply. Overflow
692                         // safe since first_blocknum is always <= last SCID's block.
693                         else {
694                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
695                         };
696
697                         prev_batch_endblock = first_blocknum + number_of_blocks;
698
699                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
700                                 node_id: their_node_id.clone(),
701                                 msg: ReplyChannelRange {
702                                         chain_hash: msg.chain_hash.clone(),
703                                         first_blocknum,
704                                         number_of_blocks,
705                                         sync_complete,
706                                         short_channel_ids: batch,
707                                 }
708                         });
709                 }
710
711                 Ok(())
712         }
713
714         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
715                 // TODO
716                 Err(LightningError {
717                         err: String::from("Not implemented"),
718                         action: ErrorAction::IgnoreError,
719                 })
720         }
721
722         fn provided_node_features(&self) -> NodeFeatures {
723                 let mut features = NodeFeatures::empty();
724                 features.set_gossip_queries_optional();
725                 features
726         }
727
728         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
729                 let mut features = InitFeatures::empty();
730                 features.set_gossip_queries_optional();
731                 features
732         }
733
734         fn processing_queue_high(&self) -> bool {
735                 self.network_graph.pending_checks.too_many_checks_pending()
736         }
737 }
738
739 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
740 where
741         U::Target: UtxoLookup,
742         L::Target: Logger,
743 {
744         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
745                 let mut ret = Vec::new();
746                 let mut pending_events = self.pending_events.lock().unwrap();
747                 core::mem::swap(&mut ret, &mut pending_events);
748                 ret
749         }
750 }
751
752 #[derive(Clone, Debug, PartialEq, Eq)]
753 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
754 pub struct ChannelUpdateInfo {
755         /// When the last update to the channel direction was issued.
756         /// Value is opaque, as set in the announcement.
757         pub last_update: u32,
758         /// Whether the channel can be currently used for payments (in this one direction).
759         pub enabled: bool,
760         /// The difference in CLTV values that you must have when routing through this channel.
761         pub cltv_expiry_delta: u16,
762         /// The minimum value, which must be relayed to the next hop via the channel
763         pub htlc_minimum_msat: u64,
764         /// The maximum value which may be relayed to the next hop via the channel.
765         pub htlc_maximum_msat: u64,
766         /// Fees charged when the channel is used for routing
767         pub fees: RoutingFees,
768         /// Most recent update for the channel received from the network
769         /// Mostly redundant with the data we store in fields explicitly.
770         /// Everything else is useful only for sending out for initial routing sync.
771         /// Not stored if contains excess data to prevent DoS.
772         pub last_update_message: Option<ChannelUpdate>,
773 }
774
775 impl fmt::Display for ChannelUpdateInfo {
776         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
777                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
778                 Ok(())
779         }
780 }
781
782 impl Writeable for ChannelUpdateInfo {
783         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
784                 write_tlv_fields!(writer, {
785                         (0, self.last_update, required),
786                         (2, self.enabled, required),
787                         (4, self.cltv_expiry_delta, required),
788                         (6, self.htlc_minimum_msat, required),
789                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
790                         // compatibility with LDK versions prior to v0.0.110.
791                         (8, Some(self.htlc_maximum_msat), required),
792                         (10, self.fees, required),
793                         (12, self.last_update_message, required),
794                 });
795                 Ok(())
796         }
797 }
798
799 impl Readable for ChannelUpdateInfo {
800         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
801                 _init_tlv_field_var!(last_update, required);
802                 _init_tlv_field_var!(enabled, required);
803                 _init_tlv_field_var!(cltv_expiry_delta, required);
804                 _init_tlv_field_var!(htlc_minimum_msat, required);
805                 _init_tlv_field_var!(htlc_maximum_msat, option);
806                 _init_tlv_field_var!(fees, required);
807                 _init_tlv_field_var!(last_update_message, required);
808
809                 read_tlv_fields!(reader, {
810                         (0, last_update, required),
811                         (2, enabled, required),
812                         (4, cltv_expiry_delta, required),
813                         (6, htlc_minimum_msat, required),
814                         (8, htlc_maximum_msat, required),
815                         (10, fees, required),
816                         (12, last_update_message, required)
817                 });
818
819                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
820                         Ok(ChannelUpdateInfo {
821                                 last_update: _init_tlv_based_struct_field!(last_update, required),
822                                 enabled: _init_tlv_based_struct_field!(enabled, required),
823                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
824                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
825                                 htlc_maximum_msat,
826                                 fees: _init_tlv_based_struct_field!(fees, required),
827                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
828                         })
829                 } else {
830                         Err(DecodeError::InvalidValue)
831                 }
832         }
833 }
834
835 #[derive(Clone, Debug, Eq)]
836 /// Details about a channel (both directions).
837 /// Received within a channel announcement.
838 pub struct ChannelInfo {
839         /// Protocol features of a channel communicated during its announcement
840         pub features: ChannelFeatures,
841         /// Source node of the first direction of a channel
842         pub node_one: NodeId,
843         /// Details about the first direction of a channel
844         pub one_to_two: Option<ChannelUpdateInfo>,
845         /// Source node of the second direction of a channel
846         pub node_two: NodeId,
847         /// Details about the second direction of a channel
848         pub two_to_one: Option<ChannelUpdateInfo>,
849         /// The channel capacity as seen on-chain, if chain lookup is available.
850         pub capacity_sats: Option<u64>,
851         /// An initial announcement of the channel
852         /// Mostly redundant with the data we store in fields explicitly.
853         /// Everything else is useful only for sending out for initial routing sync.
854         /// Not stored if contains excess data to prevent DoS.
855         pub announcement_message: Option<ChannelAnnouncement>,
856         /// The timestamp when we received the announcement, if we are running with feature = "std"
857         /// (which we can probably assume we are - no-std environments probably won't have a full
858         /// network graph in memory!).
859         announcement_received_time: u64,
860
861         /// XXX docs
862         pub(crate) node_one_counter: u32,
863         /// XXX docs
864         pub(crate) node_two_counter: u32,
865 }
866
867 impl PartialEq for ChannelInfo {
868         fn eq(&self, o: &ChannelInfo) -> bool {
869                 self.features == o.features &&
870                         self.node_one == o.node_one &&
871                         self.one_to_two == o.one_to_two &&
872                         self.node_two == o.node_two &&
873                         self.two_to_one == o.two_to_one &&
874                         self.capacity_sats == o.capacity_sats &&
875                         self.announcement_message == o.announcement_message &&
876                         self.announcement_received_time == o.announcement_received_time
877         }
878 }
879
880 impl ChannelInfo {
881         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
882         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
883         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
884                 let (direction, source, outbound) = {
885                         if target == &self.node_one {
886                                 (self.two_to_one.as_ref(), &self.node_two, false)
887                         } else if target == &self.node_two {
888                                 (self.one_to_two.as_ref(), &self.node_one, true)
889                         } else {
890                                 return None;
891                         }
892                 };
893                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), source))
894         }
895
896         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
897         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
898         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
899                 let (direction, target, outbound) = {
900                         if source == &self.node_one {
901                                 (self.one_to_two.as_ref(), &self.node_two, true)
902                         } else if source == &self.node_two {
903                                 (self.two_to_one.as_ref(), &self.node_one, false)
904                         } else {
905                                 return None;
906                         }
907                 };
908                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), target))
909         }
910
911         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
912         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
913                 let direction = channel_flags & 1u8;
914                 if direction == 0 {
915                         self.one_to_two.as_ref()
916                 } else {
917                         self.two_to_one.as_ref()
918                 }
919         }
920 }
921
922 impl fmt::Display for ChannelInfo {
923         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
924                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
925                    log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
926                 Ok(())
927         }
928 }
929
930 impl Writeable for ChannelInfo {
931         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
932                 write_tlv_fields!(writer, {
933                         (0, self.features, required),
934                         (1, self.announcement_received_time, (default_value, 0)),
935                         (2, self.node_one, required),
936                         (4, self.one_to_two, required),
937                         (6, self.node_two, required),
938                         (8, self.two_to_one, required),
939                         (10, self.capacity_sats, required),
940                         (12, self.announcement_message, required),
941                 });
942                 Ok(())
943         }
944 }
945
946 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
947 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
948 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
949 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
950 // channel updates via the gossip network.
951 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
952
953 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
954         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
955                 match crate::util::ser::Readable::read(reader) {
956                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
957                         Err(DecodeError::ShortRead) => Ok(None),
958                         Err(DecodeError::InvalidValue) => Ok(None),
959                         Err(err) => Err(err),
960                 }
961         }
962 }
963
964 impl Readable for ChannelInfo {
965         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
966                 _init_tlv_field_var!(features, required);
967                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
968                 _init_tlv_field_var!(node_one, required);
969                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
970                 _init_tlv_field_var!(node_two, required);
971                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
972                 _init_tlv_field_var!(capacity_sats, required);
973                 _init_tlv_field_var!(announcement_message, required);
974                 read_tlv_fields!(reader, {
975                         (0, features, required),
976                         (1, announcement_received_time, (default_value, 0)),
977                         (2, node_one, required),
978                         (4, one_to_two_wrap, upgradable_option),
979                         (6, node_two, required),
980                         (8, two_to_one_wrap, upgradable_option),
981                         (10, capacity_sats, required),
982                         (12, announcement_message, required),
983                 });
984
985                 Ok(ChannelInfo {
986                         features: _init_tlv_based_struct_field!(features, required),
987                         node_one: _init_tlv_based_struct_field!(node_one, required),
988                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
989                         node_two: _init_tlv_based_struct_field!(node_two, required),
990                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
991                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
992                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
993                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
994                         node_one_counter: u32::max_value(),
995                         node_two_counter: u32::max_value(),
996                 })
997         }
998 }
999
1000 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
1001 /// source node to a target node.
1002 #[derive(Clone)]
1003 pub struct DirectedChannelInfo<'a> {
1004         channel: &'a ChannelInfo,
1005         direction: &'a ChannelUpdateInfo,
1006         /// The direction this channel is in - if set, it indicates that we're traversing the channel
1007         /// from [`ChannelInfo::node_one`] to [`ChannelInfo::node_two`].
1008         from_node_one: bool,
1009 }
1010
1011 impl<'a> DirectedChannelInfo<'a> {
1012         #[inline]
1013         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo, from_node_one: bool) -> Self {
1014                 Self { channel, direction, from_node_one }
1015         }
1016
1017         /// Returns information for the channel.
1018         #[inline]
1019         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1020
1021         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1022         ///
1023         /// This is either the total capacity from the funding transaction, if known, or the
1024         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1025         /// otherwise.
1026         #[inline]
1027         pub fn effective_capacity(&self) -> EffectiveCapacity {
1028                 let mut htlc_maximum_msat = self.direction().htlc_maximum_msat;
1029                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
1030
1031                 match capacity_msat {
1032                         Some(capacity_msat) => {
1033                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
1034                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat }
1035                         },
1036                         None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1037                 }
1038         }
1039
1040         /// Returns information for the direction.
1041         #[inline]
1042         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1043
1044         /// Returns the `node_id` of the source hop.
1045         ///
1046         /// Refers to the `node_id` forwarding the payment to the next hop.
1047         #[inline]
1048         pub(super) fn source(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_one } else { &self.channel.node_two } }
1049
1050         /// Returns the `node_id` of the target hop.
1051         ///
1052         /// Refers to the `node_id` receiving the payment from the previous hop.
1053         #[inline]
1054         pub(super) fn target(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_two } else { &self.channel.node_one } }
1055 }
1056
1057 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1058         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1059                 f.debug_struct("DirectedChannelInfo")
1060                         .field("channel", &self.channel)
1061                         .finish()
1062         }
1063 }
1064
1065 /// The effective capacity of a channel for routing purposes.
1066 ///
1067 /// While this may be smaller than the actual channel capacity, amounts greater than
1068 /// [`Self::as_msat`] should not be routed through the channel.
1069 #[derive(Clone, Copy, Debug, PartialEq)]
1070 pub enum EffectiveCapacity {
1071         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1072         /// direct hop.
1073         ExactLiquidity {
1074                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1075                 /// millisatoshi.
1076                 liquidity_msat: u64,
1077         },
1078         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1079         AdvertisedMaxHTLC {
1080                 /// The maximum HTLC amount denominated in millisatoshi.
1081                 amount_msat: u64,
1082         },
1083         /// The total capacity of the channel as determined by the funding transaction.
1084         Total {
1085                 /// The funding amount denominated in millisatoshi.
1086                 capacity_msat: u64,
1087                 /// The maximum HTLC amount denominated in millisatoshi.
1088                 htlc_maximum_msat: u64
1089         },
1090         /// A capacity sufficient to route any payment, typically used for private channels provided by
1091         /// an invoice.
1092         Infinite,
1093         /// The maximum HTLC amount as provided by an invoice route hint.
1094         HintMaxHTLC {
1095                 /// The maximum HTLC amount denominated in millisatoshi.
1096                 amount_msat: u64,
1097         },
1098         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1099         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1100         Unknown,
1101 }
1102
1103 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1104 /// use when making routing decisions.
1105 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1106
1107 impl EffectiveCapacity {
1108         /// Returns the effective capacity denominated in millisatoshi.
1109         pub fn as_msat(&self) -> u64 {
1110                 match self {
1111                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1112                         EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1113                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1114                         EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1115                         EffectiveCapacity::Infinite => u64::max_value(),
1116                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1117                 }
1118         }
1119 }
1120
1121 /// Fees for routing via a given channel or a node
1122 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1123 pub struct RoutingFees {
1124         /// Flat routing fee in millisatoshis.
1125         pub base_msat: u32,
1126         /// Liquidity-based routing fee in millionths of a routed amount.
1127         /// In other words, 10000 is 1%.
1128         pub proportional_millionths: u32,
1129 }
1130
1131 impl_writeable_tlv_based!(RoutingFees, {
1132         (0, base_msat, required),
1133         (2, proportional_millionths, required)
1134 });
1135
1136 #[derive(Clone, Debug, PartialEq, Eq)]
1137 /// Information received in the latest node_announcement from this node.
1138 pub struct NodeAnnouncementInfo {
1139         /// Protocol features the node announced support for
1140         pub features: NodeFeatures,
1141         /// When the last known update to the node state was issued.
1142         /// Value is opaque, as set in the announcement.
1143         pub last_update: u32,
1144         /// Color assigned to the node
1145         pub rgb: [u8; 3],
1146         /// Moniker assigned to the node.
1147         /// May be invalid or malicious (eg control chars),
1148         /// should not be exposed to the user.
1149         pub alias: NodeAlias,
1150         /// An initial announcement of the node
1151         /// Mostly redundant with the data we store in fields explicitly.
1152         /// Everything else is useful only for sending out for initial routing sync.
1153         /// Not stored if contains excess data to prevent DoS.
1154         pub announcement_message: Option<NodeAnnouncement>
1155 }
1156
1157 impl NodeAnnouncementInfo {
1158         /// Internet-level addresses via which one can connect to the node
1159         pub fn addresses(&self) -> &[SocketAddress] {
1160                 self.announcement_message.as_ref()
1161                         .map(|msg| msg.contents.addresses.as_slice())
1162                         .unwrap_or_default()
1163         }
1164 }
1165
1166 impl Writeable for NodeAnnouncementInfo {
1167         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1168                 let empty_addresses = Vec::<SocketAddress>::new();
1169                 write_tlv_fields!(writer, {
1170                         (0, self.features, required),
1171                         (2, self.last_update, required),
1172                         (4, self.rgb, required),
1173                         (6, self.alias, required),
1174                         (8, self.announcement_message, option),
1175                         (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1176                 });
1177                 Ok(())
1178         }
1179 }
1180
1181 impl Readable for NodeAnnouncementInfo {
1182         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1183                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1184                         (0, features, required),
1185                         (2, last_update, required),
1186                         (4, rgb, required),
1187                         (6, alias, required),
1188                         (8, announcement_message, option),
1189                         (10, _addresses, optional_vec), // deprecated, not used anymore
1190                 });
1191                 let _: Option<Vec<SocketAddress>> = _addresses;
1192                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1193                         alias: alias.0.unwrap(), announcement_message })
1194         }
1195 }
1196
1197 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1198 ///
1199 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1200 /// attacks. Care must be taken when processing.
1201 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
1202 pub struct NodeAlias(pub [u8; 32]);
1203
1204 impl fmt::Display for NodeAlias {
1205         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1206                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1207                 let bytes = self.0.split_at(first_null).0;
1208                 match core::str::from_utf8(bytes) {
1209                         Ok(alias) => PrintableString(alias).fmt(f)?,
1210                         Err(_) => {
1211                                 use core::fmt::Write;
1212                                 for c in bytes.iter().map(|b| *b as char) {
1213                                         // Display printable ASCII characters
1214                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1215                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1216                                         f.write_char(c)?;
1217                                 }
1218                         },
1219                 };
1220                 Ok(())
1221         }
1222 }
1223
1224 impl Writeable for NodeAlias {
1225         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1226                 self.0.write(w)
1227         }
1228 }
1229
1230 impl Readable for NodeAlias {
1231         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1232                 Ok(NodeAlias(Readable::read(r)?))
1233         }
1234 }
1235
1236 #[derive(Clone, Debug, Eq)]
1237 /// Details about a node in the network, known from the network announcement.
1238 pub struct NodeInfo {
1239         /// All valid channels a node has announced
1240         pub channels: Vec<u64>,
1241         /// More information about a node from node_announcement.
1242         /// Optional because we store a Node entry after learning about it from
1243         /// a channel announcement, but before receiving a node announcement.
1244         pub announcement_info: Option<NodeAnnouncementInfo>,
1245         /// XXX: Docs
1246         pub(crate) node_counter: u32,
1247 }
1248
1249 impl PartialEq for NodeInfo {
1250         fn eq(&self, o: &NodeInfo) -> bool {
1251                 self.channels == o.channels && self.announcement_info == o.announcement_info
1252         }
1253 }
1254
1255 impl fmt::Display for NodeInfo {
1256         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1257                 write!(f, " channels: {:?}, announcement_info: {:?}",
1258                         &self.channels[..], self.announcement_info)?;
1259                 Ok(())
1260         }
1261 }
1262
1263 impl Writeable for NodeInfo {
1264         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1265                 write_tlv_fields!(writer, {
1266                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1267                         (2, self.announcement_info, option),
1268                         (4, self.channels, required_vec),
1269                 });
1270                 Ok(())
1271         }
1272 }
1273
1274 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1275 // necessary to maintain compatibility with previous serializations of `SocketAddress` that have an
1276 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1277 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1278 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1279
1280 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1281         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1282                 match crate::util::ser::Readable::read(reader) {
1283                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1284                         Err(_) => {
1285                                 copy(reader, &mut sink()).unwrap();
1286                                 return Ok(None)
1287                         },
1288                 };
1289         }
1290 }
1291
1292 impl Readable for NodeInfo {
1293         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1294                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1295                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1296                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1297                 // requires additional complexity and lookups during routing, it ends up being a
1298                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1299                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1300                         (0, _lowest_inbound_channel_fees, option),
1301                         (2, announcement_info_wrap, upgradable_option),
1302                         (4, channels, required_vec),
1303                 });
1304                 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1305                 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1306
1307                 Ok(NodeInfo {
1308                         announcement_info: announcement_info_wrap.map(|w| w.0),
1309                         channels,
1310                         node_counter: u32::max_value(),
1311                 })
1312         }
1313 }
1314
1315 const SERIALIZATION_VERSION: u8 = 1;
1316 const MIN_SERIALIZATION_VERSION: u8 = 1;
1317
1318 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1319         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1320                 self.test_node_counter_consistency();
1321
1322                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1323
1324                 self.chain_hash.write(writer)?;
1325                 let channels = self.channels.read().unwrap();
1326                 (channels.len() as u64).write(writer)?;
1327                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1328                         (*chan_id).write(writer)?;
1329                         chan_info.write(writer)?;
1330                 }
1331                 let nodes = self.nodes.read().unwrap();
1332                 (nodes.len() as u64).write(writer)?;
1333                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1334                         node_id.write(writer)?;
1335                         node_info.write(writer)?;
1336                 }
1337
1338                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1339                 write_tlv_fields!(writer, {
1340                         (1, last_rapid_gossip_sync_timestamp, option),
1341                 });
1342                 Ok(())
1343         }
1344 }
1345
1346 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1347         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1348                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1349
1350                 let chain_hash: ChainHash = Readable::read(reader)?;
1351                 let channels_count: u64 = Readable::read(reader)?;
1352                 // In Nov, 2023 there were about 15,000 nodes; we cap allocations to 1.5x that.
1353                 let mut channels = IndexedMap::with_capacity(cmp::min(channels_count as usize, 22500));
1354                 for _ in 0..channels_count {
1355                         let chan_id: u64 = Readable::read(reader)?;
1356                         let chan_info: ChannelInfo = Readable::read(reader)?;
1357                         channels.insert(chan_id, chan_info);
1358                 }
1359                 let nodes_count: u64 = Readable::read(reader)?;
1360                 if nodes_count > u32::max_value() as u64 / 2 { return Err(DecodeError::InvalidValue); }
1361                 // In Nov, 2023 there were about 69K channels; we cap allocations to 1.5x that.
1362                 let mut nodes = IndexedMap::with_capacity(cmp::min(nodes_count as usize, 103500));
1363                 for i in 0..nodes_count {
1364                         let node_id = Readable::read(reader)?;
1365                         let mut node_info: NodeInfo = Readable::read(reader)?;
1366                         node_info.node_counter = i as u32;
1367                         nodes.insert(node_id, node_info);
1368                 }
1369
1370                 for (_, chan) in channels.unordered_iter_mut() {
1371                         chan.node_one_counter =
1372                                 nodes.get(&chan.node_one).ok_or(DecodeError::InvalidValue)?.node_counter;
1373                         chan.node_two_counter =
1374                                 nodes.get(&chan.node_two).ok_or(DecodeError::InvalidValue)?.node_counter;
1375                 }
1376
1377                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1378                 read_tlv_fields!(reader, {
1379                         (1, last_rapid_gossip_sync_timestamp, option),
1380                 });
1381
1382                 Ok(NetworkGraph {
1383                         secp_ctx: Secp256k1::verification_only(),
1384                         chain_hash,
1385                         logger,
1386                         channels: RwLock::new(channels),
1387                         nodes: RwLock::new(nodes),
1388                         removed_node_counters: Mutex::new(Vec::new()),
1389                         next_node_counter: AtomicUsize::new(nodes_count as usize),
1390                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1391                         removed_nodes: Mutex::new(HashMap::new()),
1392                         removed_channels: Mutex::new(HashMap::new()),
1393                         pending_checks: utxo::PendingChecks::new(),
1394                 })
1395         }
1396 }
1397
1398 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1399         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1400                 writeln!(f, "Network map\n[Channels]")?;
1401                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1402                         writeln!(f, " {}: {}", key, val)?;
1403                 }
1404                 writeln!(f, "[Nodes]")?;
1405                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1406                         writeln!(f, " {}: {}", &node_id, val)?;
1407                 }
1408                 Ok(())
1409         }
1410 }
1411
1412 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1413 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1414         fn eq(&self, other: &Self) -> bool {
1415                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1416                 // (Assumes that we can't move within memory while a lock is held).
1417                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1418                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1419                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1420                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1421                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1422                 self.chain_hash.eq(&other.chain_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1423         }
1424 }
1425
1426 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1427         /// Creates a new, empty, network graph.
1428         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1429                 Self {
1430                         secp_ctx: Secp256k1::verification_only(),
1431                         chain_hash: ChainHash::using_genesis_block(network),
1432                         logger,
1433                         channels: RwLock::new(IndexedMap::new()),
1434                         nodes: RwLock::new(IndexedMap::new()),
1435                         next_node_counter: AtomicUsize::new(0),
1436                         removed_node_counters: Mutex::new(Vec::new()),
1437                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1438                         removed_channels: Mutex::new(HashMap::new()),
1439                         removed_nodes: Mutex::new(HashMap::new()),
1440                         pending_checks: utxo::PendingChecks::new(),
1441                 }
1442         }
1443
1444         fn test_node_counter_consistency(&self) {
1445                 #[cfg(debug_assertions)] {
1446                         let channels = self.channels.read().unwrap();
1447                         let nodes = self.nodes.read().unwrap();
1448                         let removed_node_counters = self.removed_node_counters.lock().unwrap();
1449                         let next_counter = self.next_node_counter.load(Ordering::Acquire);
1450                         assert!(next_counter < (u32::max_value() as usize) / 2);
1451                         let mut used_node_counters = vec![0u8; next_counter / 8 + 1];
1452
1453                         for counter in removed_node_counters.iter() {
1454                                 let pos = (*counter as usize) / 8;
1455                                 let bit = 1 << (counter % 8);
1456                                 assert_eq!(used_node_counters[pos] & bit, 0);
1457                                 used_node_counters[pos] |= bit;
1458                         }
1459                         for (_, node) in nodes.unordered_iter() {
1460                                 assert!((node.node_counter as usize) < next_counter);
1461                                 let pos = (node.node_counter as usize) / 8;
1462                                 let bit = 1 << (node.node_counter % 8);
1463                                 assert_eq!(used_node_counters[pos] & bit, 0);
1464                                 used_node_counters[pos] |= bit;
1465                         }
1466
1467                         for (_, chan) in channels.unordered_iter() {
1468                                 assert_eq!(chan.node_one_counter, nodes.get(&chan.node_one).unwrap().node_counter);
1469                                 assert_eq!(chan.node_two_counter, nodes.get(&chan.node_two).unwrap().node_counter);
1470                         }
1471                 }
1472         }
1473
1474         /// Returns a read-only view of the network graph.
1475         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1476                 self.test_node_counter_consistency();
1477                 let channels = self.channels.read().unwrap();
1478                 let nodes = self.nodes.read().unwrap();
1479                 ReadOnlyNetworkGraph {
1480                         channels,
1481                         nodes,
1482                 }
1483         }
1484
1485         /// The unix timestamp provided by the most recent rapid gossip sync.
1486         /// It will be set by the rapid sync process after every sync completion.
1487         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1488                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1489         }
1490
1491         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1492         /// This should be done automatically by the rapid sync process after every sync completion.
1493         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1494                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1495         }
1496
1497         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1498         /// purposes.
1499         #[cfg(test)]
1500         pub fn clear_nodes_announcement_info(&self) {
1501                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1502                         node.1.announcement_info = None;
1503                 }
1504         }
1505
1506         /// For an already known node (from channel announcements), update its stored properties from a
1507         /// given node announcement.
1508         ///
1509         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1510         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1511         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1512         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1513                 verify_node_announcement(msg, &self.secp_ctx)?;
1514                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1515         }
1516
1517         /// For an already known node (from channel announcements), update its stored properties from a
1518         /// given node announcement without verifying the associated signatures. Because we aren't
1519         /// given the associated signatures here we cannot relay the node announcement to any of our
1520         /// peers.
1521         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1522                 self.update_node_from_announcement_intern(msg, None)
1523         }
1524
1525         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1526                 let mut nodes = self.nodes.write().unwrap();
1527                 match nodes.get_mut(&msg.node_id) {
1528                         None => {
1529                                 core::mem::drop(nodes);
1530                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1531                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1532                         },
1533                         Some(node) => {
1534                                 if let Some(node_info) = node.announcement_info.as_ref() {
1535                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1536                                         // updates to ensure you always have the latest one, only vaguely suggesting
1537                                         // that it be at least the current time.
1538                                         if node_info.last_update  > msg.timestamp {
1539                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1540                                         } else if node_info.last_update  == msg.timestamp {
1541                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1542                                         }
1543                                 }
1544
1545                                 let should_relay =
1546                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1547                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1548                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1549                                 node.announcement_info = Some(NodeAnnouncementInfo {
1550                                         features: msg.features.clone(),
1551                                         last_update: msg.timestamp,
1552                                         rgb: msg.rgb,
1553                                         alias: msg.alias,
1554                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1555                                 });
1556
1557                                 Ok(())
1558                         }
1559                 }
1560         }
1561
1562         /// Store or update channel info from a channel announcement.
1563         ///
1564         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1565         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1566         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1567         ///
1568         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1569         /// the corresponding UTXO exists on chain and is correctly-formatted.
1570         pub fn update_channel_from_announcement<U: Deref>(
1571                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1572         ) -> Result<(), LightningError>
1573         where
1574                 U::Target: UtxoLookup,
1575         {
1576                 verify_channel_announcement(msg, &self.secp_ctx)?;
1577                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1578         }
1579
1580         /// Store or update channel info from a channel announcement.
1581         ///
1582         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1583         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1584         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1585         ///
1586         /// This will skip verification of if the channel is actually on-chain.
1587         pub fn update_channel_from_announcement_no_lookup(
1588                 &self, msg: &ChannelAnnouncement
1589         ) -> Result<(), LightningError> {
1590                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1591         }
1592
1593         /// Store or update channel info from a channel announcement without verifying the associated
1594         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1595         /// channel announcement to any of our peers.
1596         ///
1597         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1598         /// the corresponding UTXO exists on chain and is correctly-formatted.
1599         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1600                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1601         ) -> Result<(), LightningError>
1602         where
1603                 U::Target: UtxoLookup,
1604         {
1605                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1606         }
1607
1608         /// Update channel from partial announcement data received via rapid gossip sync
1609         ///
1610         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1611         /// rapid gossip sync server)
1612         ///
1613         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1614         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1615                 if node_id_1 == node_id_2 {
1616                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1617                 };
1618
1619                 let node_1 = NodeId::from_pubkey(&node_id_1);
1620                 let node_2 = NodeId::from_pubkey(&node_id_2);
1621                 let channel_info = ChannelInfo {
1622                         features,
1623                         node_one: node_1.clone(),
1624                         one_to_two: None,
1625                         node_two: node_2.clone(),
1626                         two_to_one: None,
1627                         capacity_sats: None,
1628                         announcement_message: None,
1629                         announcement_received_time: timestamp,
1630                         node_one_counter: u32::max_value(),
1631                         node_two_counter: u32::max_value(),
1632                 };
1633
1634                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1635         }
1636
1637         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1638                 let mut channels = self.channels.write().unwrap();
1639                 let mut nodes = self.nodes.write().unwrap();
1640
1641                 let node_id_a = channel_info.node_one.clone();
1642                 let node_id_b = channel_info.node_two.clone();
1643
1644                 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1645
1646                 let channel_entry = channels.entry(short_channel_id);
1647                 let channel_info = match channel_entry {
1648                         IndexedMapEntry::Occupied(mut entry) => {
1649                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1650                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1651                                 //exactly how...
1652                                 if utxo_value.is_some() {
1653                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1654                                         // only sometimes returns results. In any case remove the previous entry. Note
1655                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1656                                         // do that because
1657                                         // a) we don't *require* a UTXO provider that always returns results.
1658                                         // b) we don't track UTXOs of channels we know about and remove them if they
1659                                         //    get reorg'd out.
1660                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1661                                         self.remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1662                                         *entry.get_mut() = channel_info;
1663                                         entry.into_mut()
1664                                 } else {
1665                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1666                                 }
1667                         },
1668                         IndexedMapEntry::Vacant(entry) => {
1669                                 entry.insert(channel_info)
1670                         }
1671                 };
1672
1673                 let mut node_counter_id = [
1674                         (&mut channel_info.node_one_counter, node_id_a),
1675                         (&mut channel_info.node_two_counter, node_id_b)
1676                 ];
1677                 for (node_counter, current_node_id) in node_counter_id.iter_mut() {
1678                         match nodes.entry(current_node_id.clone()) {
1679                                 IndexedMapEntry::Occupied(node_entry) => {
1680                                         let node = node_entry.into_mut();
1681                                         node.channels.push(short_channel_id);
1682                                         **node_counter = node.node_counter;
1683                                 },
1684                                 IndexedMapEntry::Vacant(node_entry) => {
1685                                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1686                                         **node_counter = removed_node_counters.pop()
1687                                                 .unwrap_or(self.next_node_counter.fetch_add(1, Ordering::Relaxed) as u32);
1688                                         node_entry.insert(NodeInfo {
1689                                                 channels: vec!(short_channel_id),
1690                                                 announcement_info: None,
1691                                                 node_counter: **node_counter,
1692                                         });
1693                                 }
1694                         };
1695                 };
1696
1697                 Ok(())
1698         }
1699
1700         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1701                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1702         ) -> Result<(), LightningError>
1703         where
1704                 U::Target: UtxoLookup,
1705         {
1706                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1707                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1708                 }
1709
1710                 if msg.chain_hash != self.chain_hash {
1711                         return Err(LightningError {
1712                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1713                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1714                         });
1715                 }
1716
1717                 {
1718                         let channels = self.channels.read().unwrap();
1719
1720                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1721                                 if chan.capacity_sats.is_some() {
1722                                         // If we'd previously looked up the channel on-chain and checked the script
1723                                         // against what appears on-chain, ignore the duplicate announcement.
1724                                         //
1725                                         // Because a reorg could replace one channel with another at the same SCID, if
1726                                         // the channel appears to be different, we re-validate. This doesn't expose us
1727                                         // to any more DoS risk than not, as a peer can always flood us with
1728                                         // randomly-generated SCID values anyway.
1729                                         //
1730                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1731                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1732                                         // if the peers on the channel changed anyway.
1733                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1734                                                 return Err(LightningError {
1735                                                         err: "Already have chain-validated channel".to_owned(),
1736                                                         action: ErrorAction::IgnoreDuplicateGossip
1737                                                 });
1738                                         }
1739                                 } else if utxo_lookup.is_none() {
1740                                         // Similarly, if we can't check the chain right now anyway, ignore the
1741                                         // duplicate announcement without bothering to take the channels write lock.
1742                                         return Err(LightningError {
1743                                                 err: "Already have non-chain-validated channel".to_owned(),
1744                                                 action: ErrorAction::IgnoreDuplicateGossip
1745                                         });
1746                                 }
1747                         }
1748                 }
1749
1750                 {
1751                         let removed_channels = self.removed_channels.lock().unwrap();
1752                         let removed_nodes = self.removed_nodes.lock().unwrap();
1753                         if removed_channels.contains_key(&msg.short_channel_id) ||
1754                                 removed_nodes.contains_key(&msg.node_id_1) ||
1755                                 removed_nodes.contains_key(&msg.node_id_2) {
1756                                 return Err(LightningError{
1757                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1758                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1759                         }
1760                 }
1761
1762                 let utxo_value = self.pending_checks.check_channel_announcement(
1763                         utxo_lookup, msg, full_msg)?;
1764
1765                 #[allow(unused_mut, unused_assignments)]
1766                 let mut announcement_received_time = 0;
1767                 #[cfg(feature = "std")]
1768                 {
1769                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1770                 }
1771
1772                 let chan_info = ChannelInfo {
1773                         features: msg.features.clone(),
1774                         node_one: msg.node_id_1,
1775                         one_to_two: None,
1776                         node_two: msg.node_id_2,
1777                         two_to_one: None,
1778                         capacity_sats: utxo_value,
1779                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1780                                 { full_msg.cloned() } else { None },
1781                         announcement_received_time,
1782                         node_one_counter: u32::max_value(),
1783                         node_two_counter: u32::max_value(),
1784                 };
1785
1786                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1787
1788                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1789                 Ok(())
1790         }
1791
1792         /// Marks a channel in the graph as failed permanently.
1793         ///
1794         /// The channel and any node for which this was their last channel are removed from the graph.
1795         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1796                 #[cfg(feature = "std")]
1797                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1798                 #[cfg(not(feature = "std"))]
1799                 let current_time_unix = None;
1800
1801                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1802         }
1803
1804         /// Marks a channel in the graph as failed permanently.
1805         ///
1806         /// The channel and any node for which this was their last channel are removed from the graph.
1807         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1808                 let mut channels = self.channels.write().unwrap();
1809                 if let Some(chan) = channels.remove(&short_channel_id) {
1810                         let mut nodes = self.nodes.write().unwrap();
1811                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1812                         self.remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1813                 }
1814         }
1815
1816         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1817         /// from local storage.
1818         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1819                 #[cfg(feature = "std")]
1820                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1821                 #[cfg(not(feature = "std"))]
1822                 let current_time_unix = None;
1823
1824                 let node_id = NodeId::from_pubkey(node_id);
1825                 let mut channels = self.channels.write().unwrap();
1826                 let mut nodes = self.nodes.write().unwrap();
1827                 let mut removed_channels = self.removed_channels.lock().unwrap();
1828                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1829
1830                 if let Some(node) = nodes.remove(&node_id) {
1831                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1832                         for scid in node.channels.iter() {
1833                                 if let Some(chan_info) = channels.remove(scid) {
1834                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1835                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1836                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1837                                                         *scid != *chan_id
1838                                                 });
1839                                                 if other_node_entry.get().channels.is_empty() {
1840                                                         removed_node_counters.push(other_node_entry.get().node_counter);
1841                                                         other_node_entry.remove_entry();
1842                                                 }
1843                                         }
1844                                         removed_channels.insert(*scid, current_time_unix);
1845                                 }
1846                         }
1847                         removed_node_counters.push(node.node_counter);
1848                         removed_nodes.insert(node_id, current_time_unix);
1849                 }
1850         }
1851
1852         #[cfg(feature = "std")]
1853         /// Removes information about channels that we haven't heard any updates about in some time.
1854         /// This can be used regularly to prune the network graph of channels that likely no longer
1855         /// exist.
1856         ///
1857         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1858         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1859         /// pruning occur for updates which are at least two weeks old, which we implement here.
1860         ///
1861         /// Note that for users of the `lightning-background-processor` crate this method may be
1862         /// automatically called regularly for you.
1863         ///
1864         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1865         /// in the map for a while so that these can be resynced from gossip in the future.
1866         ///
1867         /// This method is only available with the `std` feature. See
1868         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1869         pub fn remove_stale_channels_and_tracking(&self) {
1870                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1871                 self.remove_stale_channels_and_tracking_with_time(time);
1872         }
1873
1874         /// Removes information about channels that we haven't heard any updates about in some time.
1875         /// This can be used regularly to prune the network graph of channels that likely no longer
1876         /// exist.
1877         ///
1878         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1879         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1880         /// pruning occur for updates which are at least two weeks old, which we implement here.
1881         ///
1882         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1883         /// in the map for a while so that these can be resynced from gossip in the future.
1884         ///
1885         /// This function takes the current unix time as an argument. For users with the `std` feature
1886         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1887         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1888                 let mut channels = self.channels.write().unwrap();
1889                 // Time out if we haven't received an update in at least 14 days.
1890                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1891                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1892                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1893                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1894                 // time.
1895                 let mut scids_to_remove = Vec::new();
1896                 for (scid, info) in channels.unordered_iter_mut() {
1897                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1898                                 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1899                                         scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1900                                 info.one_to_two = None;
1901                         }
1902                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1903                                 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1904                                         scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1905                                 info.two_to_one = None;
1906                         }
1907                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1908                                 // We check the announcement_received_time here to ensure we don't drop
1909                                 // announcements that we just received and are just waiting for our peer to send a
1910                                 // channel_update for.
1911                                 let announcement_received_timestamp = info.announcement_received_time;
1912                                 if announcement_received_timestamp < min_time_unix as u64 {
1913                                         log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1914                                                 scid, announcement_received_timestamp, min_time_unix);
1915                                         scids_to_remove.push(*scid);
1916                                 }
1917                         }
1918                 }
1919                 if !scids_to_remove.is_empty() {
1920                         let mut nodes = self.nodes.write().unwrap();
1921                         for scid in scids_to_remove {
1922                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1923                                 self.remove_channel_in_nodes(&mut nodes, &info, scid);
1924                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1925                         }
1926                 }
1927
1928                 let should_keep_tracking = |time: &mut Option<u64>| {
1929                         if let Some(time) = time {
1930                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1931                         } else {
1932                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1933                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1934                                 // of this function.
1935                                 #[cfg(feature = "no-std")]
1936                                 {
1937                                         let mut tracked_time = Some(current_time_unix);
1938                                         core::mem::swap(time, &mut tracked_time);
1939                                         return true;
1940                                 }
1941                                 #[allow(unreachable_code)]
1942                                 false
1943                         }};
1944
1945                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1946                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1947         }
1948
1949         /// For an already known (from announcement) channel, update info about one of the directions
1950         /// of the channel.
1951         ///
1952         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1953         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1954         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1955         ///
1956         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1957         /// materially in the future will be rejected.
1958         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1959                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), false)
1960         }
1961
1962         /// For an already known (from announcement) channel, update info about one of the directions
1963         /// of the channel without verifying the associated signatures. Because we aren't given the
1964         /// associated signatures here we cannot relay the channel update to any of our peers.
1965         ///
1966         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1967         /// materially in the future will be rejected.
1968         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1969                 self.update_channel_internal(msg, None, None, false)
1970         }
1971
1972         /// For an already known (from announcement) channel, verify the given [`ChannelUpdate`].
1973         ///
1974         /// This checks whether the update currently is applicable by [`Self::update_channel`].
1975         ///
1976         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1977         /// materially in the future will be rejected.
1978         pub fn verify_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1979                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), true)
1980         }
1981
1982         fn update_channel_internal(&self, msg: &msgs::UnsignedChannelUpdate,
1983                 full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>,
1984                 only_verify: bool) -> Result<(), LightningError>
1985         {
1986                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1987
1988                 if msg.chain_hash != self.chain_hash {
1989                         return Err(LightningError {
1990                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
1991                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1992                         });
1993                 }
1994
1995                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1996                 {
1997                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1998                         // disable this check during tests!
1999                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2000                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
2001                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2002                         }
2003                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
2004                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2005                         }
2006                 }
2007
2008                 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
2009
2010                 let mut channels = self.channels.write().unwrap();
2011                 match channels.get_mut(&msg.short_channel_id) {
2012                         None => {
2013                                 core::mem::drop(channels);
2014                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
2015                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
2016                         },
2017                         Some(channel) => {
2018                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
2019                                         return Err(LightningError{err:
2020                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
2021                                                 action: ErrorAction::IgnoreError});
2022                                 }
2023
2024                                 if let Some(capacity_sats) = channel.capacity_sats {
2025                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
2026                                         // Don't query UTXO set here to reduce DoS risks.
2027                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
2028                                                 return Err(LightningError{err:
2029                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
2030                                                         action: ErrorAction::IgnoreError});
2031                                         }
2032                                 }
2033                                 macro_rules! check_update_latest {
2034                                         ($target: expr) => {
2035                                                 if let Some(existing_chan_info) = $target.as_ref() {
2036                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
2037                                                         // order updates to ensure you always have the latest one, only
2038                                                         // suggesting  that it be at least the current time. For
2039                                                         // channel_updates specifically, the BOLTs discuss the possibility of
2040                                                         // pruning based on the timestamp field being more than two weeks old,
2041                                                         // but only in the non-normative section.
2042                                                         if existing_chan_info.last_update > msg.timestamp {
2043                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2044                                                         } else if existing_chan_info.last_update == msg.timestamp {
2045                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2046                                                         }
2047                                                 }
2048                                         }
2049                                 }
2050
2051                                 macro_rules! get_new_channel_info {
2052                                         () => { {
2053                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
2054                                                         { full_msg.cloned() } else { None };
2055
2056                                                 let updated_channel_update_info = ChannelUpdateInfo {
2057                                                         enabled: chan_enabled,
2058                                                         last_update: msg.timestamp,
2059                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
2060                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
2061                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
2062                                                         fees: RoutingFees {
2063                                                                 base_msat: msg.fee_base_msat,
2064                                                                 proportional_millionths: msg.fee_proportional_millionths,
2065                                                         },
2066                                                         last_update_message
2067                                                 };
2068                                                 Some(updated_channel_update_info)
2069                                         } }
2070                                 }
2071
2072                                 let msg_hash = hash_to_message!(&message_sha256d_hash(&msg)[..]);
2073                                 if msg.flags & 1 == 1 {
2074                                         check_update_latest!(channel.two_to_one);
2075                                         if let Some(sig) = sig {
2076                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
2077                                                         err: "Couldn't parse source node pubkey".to_owned(),
2078                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2079                                                 })?, "channel_update");
2080                                         }
2081                                         if !only_verify {
2082                                                 channel.two_to_one = get_new_channel_info!();
2083                                         }
2084                                 } else {
2085                                         check_update_latest!(channel.one_to_two);
2086                                         if let Some(sig) = sig {
2087                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
2088                                                         err: "Couldn't parse destination node pubkey".to_owned(),
2089                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2090                                                 })?, "channel_update");
2091                                         }
2092                                         if !only_verify {
2093                                                 channel.one_to_two = get_new_channel_info!();
2094                                         }
2095                                 }
2096                         }
2097                 }
2098
2099                 Ok(())
2100         }
2101
2102         fn remove_channel_in_nodes(&self, nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
2103                 macro_rules! remove_from_node {
2104                         ($node_id: expr) => {
2105                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
2106                                         entry.get_mut().channels.retain(|chan_id| {
2107                                                 short_channel_id != *chan_id
2108                                         });
2109                                         if entry.get().channels.is_empty() {
2110                                                 self.removed_node_counters.lock().unwrap().push(entry.get().node_counter);
2111                                                 entry.remove_entry();
2112                                         }
2113                                 } else {
2114                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
2115                                 }
2116                         }
2117                 }
2118
2119                 remove_from_node!(chan.node_one);
2120                 remove_from_node!(chan.node_two);
2121         }
2122 }
2123
2124 impl ReadOnlyNetworkGraph<'_> {
2125         /// Returns all known valid channels' short ids along with announced channel info.
2126         ///
2127         /// This is not exported to bindings users because we don't want to return lifetime'd references
2128         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2129                 &*self.channels
2130         }
2131
2132         /// Returns information on a channel with the given id.
2133         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2134                 self.channels.get(&short_channel_id)
2135         }
2136
2137         #[cfg(c_bindings)] // Non-bindings users should use `channels`
2138         /// Returns the list of channels in the graph
2139         pub fn list_channels(&self) -> Vec<u64> {
2140                 self.channels.unordered_keys().map(|c| *c).collect()
2141         }
2142
2143         /// Returns all known nodes' public keys along with announced node info.
2144         ///
2145         /// This is not exported to bindings users because we don't want to return lifetime'd references
2146         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2147                 &*self.nodes
2148         }
2149
2150         /// Returns information on a node with the given id.
2151         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2152                 self.nodes.get(node_id)
2153         }
2154
2155         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2156         /// Returns the list of nodes in the graph
2157         pub fn list_nodes(&self) -> Vec<NodeId> {
2158                 self.nodes.unordered_keys().map(|n| *n).collect()
2159         }
2160
2161         /// Get network addresses by node id.
2162         /// Returns None if the requested node is completely unknown,
2163         /// or if node announcement for the node was never received.
2164         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<SocketAddress>> {
2165                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2166                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2167         }
2168 }
2169
2170 #[cfg(test)]
2171 pub(crate) mod tests {
2172         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2173         use crate::ln::channelmanager;
2174         use crate::ln::chan_utils::make_funding_redeemscript;
2175         #[cfg(feature = "std")]
2176         use crate::ln::features::InitFeatures;
2177         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2178         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2179         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2180                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2181                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2182         use crate::util::config::UserConfig;
2183         use crate::util::test_utils;
2184         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2185         use crate::util::scid_utils::scid_from_parts;
2186
2187         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2188         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2189
2190         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2191         use bitcoin::hashes::Hash;
2192         use bitcoin::hashes::hex::FromHex;
2193         use bitcoin::network::constants::Network;
2194         use bitcoin::blockdata::constants::ChainHash;
2195         use bitcoin::blockdata::script::ScriptBuf;
2196         use bitcoin::blockdata::transaction::TxOut;
2197         use bitcoin::secp256k1::{PublicKey, SecretKey};
2198         use bitcoin::secp256k1::{All, Secp256k1};
2199
2200         use crate::io;
2201         use bitcoin::secp256k1;
2202         use crate::prelude::*;
2203         use crate::sync::Arc;
2204
2205         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2206                 let logger = Arc::new(test_utils::TestLogger::new());
2207                 NetworkGraph::new(Network::Testnet, logger)
2208         }
2209
2210         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2211                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2212                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2213         ) {
2214                 let secp_ctx = Secp256k1::new();
2215                 let logger = Arc::new(test_utils::TestLogger::new());
2216                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2217                 (secp_ctx, gossip_sync)
2218         }
2219
2220         #[test]
2221         #[cfg(feature = "std")]
2222         fn request_full_sync_finite_times() {
2223                 let network_graph = create_network_graph();
2224                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2225                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&<Vec<u8>>::from_hex("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2226
2227                 assert!(gossip_sync.should_request_full_sync(&node_id));
2228                 assert!(gossip_sync.should_request_full_sync(&node_id));
2229                 assert!(gossip_sync.should_request_full_sync(&node_id));
2230                 assert!(gossip_sync.should_request_full_sync(&node_id));
2231                 assert!(gossip_sync.should_request_full_sync(&node_id));
2232                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2233         }
2234
2235         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2236                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2237                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2238                         features: channelmanager::provided_node_features(&UserConfig::default()),
2239                         timestamp: 100,
2240                         node_id,
2241                         rgb: [0; 3],
2242                         alias: NodeAlias([0; 32]),
2243                         addresses: Vec::new(),
2244                         excess_address_data: Vec::new(),
2245                         excess_data: Vec::new(),
2246                 };
2247                 f(&mut unsigned_announcement);
2248                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2249                 NodeAnnouncement {
2250                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2251                         contents: unsigned_announcement
2252                 }
2253         }
2254
2255         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2256                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2257                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2258                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2259                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2260
2261                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2262                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2263                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2264                         short_channel_id: 0,
2265                         node_id_1: NodeId::from_pubkey(&node_id_1),
2266                         node_id_2: NodeId::from_pubkey(&node_id_2),
2267                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2268                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2269                         excess_data: Vec::new(),
2270                 };
2271                 f(&mut unsigned_announcement);
2272                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2273                 ChannelAnnouncement {
2274                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2275                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2276                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2277                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2278                         contents: unsigned_announcement,
2279                 }
2280         }
2281
2282         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> ScriptBuf {
2283                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2284                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2285                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2286                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2287         }
2288
2289         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2290                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2291                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2292                         short_channel_id: 0,
2293                         timestamp: 100,
2294                         flags: 0,
2295                         cltv_expiry_delta: 144,
2296                         htlc_minimum_msat: 1_000_000,
2297                         htlc_maximum_msat: 1_000_000,
2298                         fee_base_msat: 10_000,
2299                         fee_proportional_millionths: 20,
2300                         excess_data: Vec::new()
2301                 };
2302                 f(&mut unsigned_channel_update);
2303                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2304                 ChannelUpdate {
2305                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2306                         contents: unsigned_channel_update
2307                 }
2308         }
2309
2310         #[test]
2311         fn handling_node_announcements() {
2312                 let network_graph = create_network_graph();
2313                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2314
2315                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2316                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2317                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2318
2319                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2320                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2321                         Ok(_) => panic!(),
2322                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2323                 };
2324
2325                 {
2326                         // Announce a channel to add a corresponding node.
2327                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2328                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2329                                 Ok(res) => assert!(res),
2330                                 _ => panic!()
2331                         };
2332                 }
2333
2334                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2335                         Ok(res) => assert!(res),
2336                         Err(_) => panic!()
2337                 };
2338
2339                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2340                 match gossip_sync.handle_node_announcement(
2341                         &NodeAnnouncement {
2342                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2343                                 contents: valid_announcement.contents.clone()
2344                 }) {
2345                         Ok(_) => panic!(),
2346                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2347                 };
2348
2349                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2350                         unsigned_announcement.timestamp += 1000;
2351                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2352                 }, node_1_privkey, &secp_ctx);
2353                 // Return false because contains excess data.
2354                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2355                         Ok(res) => assert!(!res),
2356                         Err(_) => panic!()
2357                 };
2358
2359                 // Even though previous announcement was not relayed further, we still accepted it,
2360                 // so we now won't accept announcements before the previous one.
2361                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2362                         unsigned_announcement.timestamp += 1000 - 10;
2363                 }, node_1_privkey, &secp_ctx);
2364                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2365                         Ok(_) => panic!(),
2366                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2367                 };
2368         }
2369
2370         #[test]
2371         fn handling_channel_announcements() {
2372                 let secp_ctx = Secp256k1::new();
2373                 let logger = test_utils::TestLogger::new();
2374
2375                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2376                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2377
2378                 let good_script = get_channel_script(&secp_ctx);
2379                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2380
2381                 // Test if the UTXO lookups were not supported
2382                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2383                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2384                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2385                         Ok(res) => assert!(res),
2386                         _ => panic!()
2387                 };
2388
2389                 {
2390                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2391                                 None => panic!(),
2392                                 Some(_) => ()
2393                         };
2394                 }
2395
2396                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2397                 // drop new one on the floor, since we can't see any changes.
2398                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2399                         Ok(_) => panic!(),
2400                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2401                 };
2402
2403                 // Test if an associated transaction were not on-chain (or not confirmed).
2404                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2405                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2406                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2407                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2408
2409                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2410                         unsigned_announcement.short_channel_id += 1;
2411                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2412                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2413                         Ok(_) => panic!(),
2414                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2415                 };
2416
2417                 // Now test if the transaction is found in the UTXO set and the script is correct.
2418                 *chain_source.utxo_ret.lock().unwrap() =
2419                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2420                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2421                         unsigned_announcement.short_channel_id += 2;
2422                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2423                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2424                         Ok(res) => assert!(res),
2425                         _ => panic!()
2426                 };
2427
2428                 {
2429                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2430                                 None => panic!(),
2431                                 Some(_) => ()
2432                         };
2433                 }
2434
2435                 // If we receive announcement for the same channel, once we've validated it against the
2436                 // chain, we simply ignore all new (duplicate) announcements.
2437                 *chain_source.utxo_ret.lock().unwrap() =
2438                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2439                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2440                         Ok(_) => panic!(),
2441                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2442                 };
2443
2444                 #[cfg(feature = "std")]
2445                 {
2446                         use std::time::{SystemTime, UNIX_EPOCH};
2447
2448                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2449                         // Mark a node as permanently failed so it's tracked as removed.
2450                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2451
2452                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2453                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2454                                 unsigned_announcement.short_channel_id += 3;
2455                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2456                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2457                                 Ok(_) => panic!(),
2458                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2459                         }
2460
2461                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2462
2463                         // The above channel announcement should be handled as per normal now.
2464                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2465                                 Ok(res) => assert!(res),
2466                                 _ => panic!()
2467                         }
2468                 }
2469
2470                 // Don't relay valid channels with excess data
2471                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2472                         unsigned_announcement.short_channel_id += 4;
2473                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2474                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2475                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2476                         Ok(res) => assert!(!res),
2477                         _ => panic!()
2478                 };
2479
2480                 let mut invalid_sig_announcement = valid_announcement.clone();
2481                 invalid_sig_announcement.contents.excess_data = Vec::new();
2482                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2483                         Ok(_) => panic!(),
2484                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2485                 };
2486
2487                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2488                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2489                         Ok(_) => panic!(),
2490                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2491                 };
2492
2493                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2494                 // announcement is mainnet).
2495                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2496                         unsigned_announcement.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2497                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2498                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2499                         Ok(_) => panic!(),
2500                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2501                 };
2502         }
2503
2504         #[test]
2505         fn handling_channel_update() {
2506                 let secp_ctx = Secp256k1::new();
2507                 let logger = test_utils::TestLogger::new();
2508                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2509                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2510                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2511
2512                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2513                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2514
2515                 let amount_sats = 1000_000;
2516                 let short_channel_id;
2517
2518                 {
2519                         // Announce a channel we will update
2520                         let good_script = get_channel_script(&secp_ctx);
2521                         *chain_source.utxo_ret.lock().unwrap() =
2522                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2523
2524                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2525                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2526                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2527                                 Ok(_) => (),
2528                                 Err(_) => panic!()
2529                         };
2530
2531                 }
2532
2533                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2534                 network_graph.verify_channel_update(&valid_channel_update).unwrap();
2535                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2536                         Ok(res) => assert!(res),
2537                         _ => panic!(),
2538                 };
2539
2540                 {
2541                         match network_graph.read_only().channels().get(&short_channel_id) {
2542                                 None => panic!(),
2543                                 Some(channel_info) => {
2544                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2545                                         assert!(channel_info.two_to_one.is_none());
2546                                 }
2547                         };
2548                 }
2549
2550                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2551                         unsigned_channel_update.timestamp += 100;
2552                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2553                 }, node_1_privkey, &secp_ctx);
2554                 // Return false because contains excess data
2555                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2556                         Ok(res) => assert!(!res),
2557                         _ => panic!()
2558                 };
2559
2560                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2561                         unsigned_channel_update.timestamp += 110;
2562                         unsigned_channel_update.short_channel_id += 1;
2563                 }, node_1_privkey, &secp_ctx);
2564                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2565                         Ok(_) => panic!(),
2566                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2567                 };
2568
2569                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2570                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2571                         unsigned_channel_update.timestamp += 110;
2572                 }, node_1_privkey, &secp_ctx);
2573                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2574                         Ok(_) => panic!(),
2575                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2576                 };
2577
2578                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2579                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2580                         unsigned_channel_update.timestamp += 110;
2581                 }, node_1_privkey, &secp_ctx);
2582                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2583                         Ok(_) => panic!(),
2584                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2585                 };
2586
2587                 // Even though previous update was not relayed further, we still accepted it,
2588                 // so we now won't accept update before the previous one.
2589                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2590                         unsigned_channel_update.timestamp += 100;
2591                 }, node_1_privkey, &secp_ctx);
2592                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2593                         Ok(_) => panic!(),
2594                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2595                 };
2596
2597                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2598                         unsigned_channel_update.timestamp += 500;
2599                 }, node_1_privkey, &secp_ctx);
2600                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2601                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2602                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2603                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2604                         Ok(_) => panic!(),
2605                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2606                 };
2607
2608                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2609                 // update is mainet).
2610                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2611                         unsigned_channel_update.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2612                 }, node_1_privkey, &secp_ctx);
2613
2614                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2615                         Ok(_) => panic!(),
2616                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2617                 };
2618         }
2619
2620         #[test]
2621         fn handling_network_update() {
2622                 let logger = test_utils::TestLogger::new();
2623                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2624                 let secp_ctx = Secp256k1::new();
2625
2626                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2627                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2628                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2629
2630                 {
2631                         // There is no nodes in the table at the beginning.
2632                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2633                 }
2634
2635                 let short_channel_id;
2636                 {
2637                         // Check we won't apply an update via `handle_network_update` for privacy reasons, but
2638                         // can continue fine if we manually apply it.
2639                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2640                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2641                         let chain_source: Option<&test_utils::TestChainSource> = None;
2642                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2643                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2644
2645                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2646                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2647
2648                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2649                                 msg: valid_channel_update.clone(),
2650                         });
2651
2652                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2653                         network_graph.update_channel(&valid_channel_update).unwrap();
2654                 }
2655
2656                 // Non-permanent failure doesn't touch the channel at all
2657                 {
2658                         match network_graph.read_only().channels().get(&short_channel_id) {
2659                                 None => panic!(),
2660                                 Some(channel_info) => {
2661                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2662                                 }
2663                         };
2664
2665                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2666                                 short_channel_id,
2667                                 is_permanent: false,
2668                         });
2669
2670                         match network_graph.read_only().channels().get(&short_channel_id) {
2671                                 None => panic!(),
2672                                 Some(channel_info) => {
2673                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2674                                 }
2675                         };
2676                 }
2677
2678                 // Permanent closing deletes a channel
2679                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2680                         short_channel_id,
2681                         is_permanent: true,
2682                 });
2683
2684                 assert_eq!(network_graph.read_only().channels().len(), 0);
2685                 // Nodes are also deleted because there are no associated channels anymore
2686                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2687
2688                 {
2689                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2690                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2691
2692                         // Announce a channel to test permanent node failure
2693                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2694                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2695                         let chain_source: Option<&test_utils::TestChainSource> = None;
2696                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2697                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2698
2699                         // Non-permanent node failure does not delete any nodes or channels
2700                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2701                                 node_id: node_2_id,
2702                                 is_permanent: false,
2703                         });
2704
2705                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2706                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2707
2708                         // Permanent node failure deletes node and its channels
2709                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2710                                 node_id: node_2_id,
2711                                 is_permanent: true,
2712                         });
2713
2714                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2715                         // Channels are also deleted because the associated node has been deleted
2716                         assert_eq!(network_graph.read_only().channels().len(), 0);
2717                 }
2718         }
2719
2720         #[test]
2721         fn test_channel_timeouts() {
2722                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2723                 let logger = test_utils::TestLogger::new();
2724                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2725                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2726                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2727                 let secp_ctx = Secp256k1::new();
2728
2729                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2730                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2731
2732                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2733                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2734                 let chain_source: Option<&test_utils::TestChainSource> = None;
2735                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2736                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2737
2738                 // Submit two channel updates for each channel direction (update.flags bit).
2739                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2740                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2741                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2742
2743                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2744                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2745                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2746
2747                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2748                 assert_eq!(network_graph.read_only().channels().len(), 1);
2749                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2750
2751                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2752                 #[cfg(not(feature = "std"))] {
2753                         // Make sure removed channels are tracked.
2754                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2755                 }
2756                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2757                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2758
2759                 #[cfg(feature = "std")]
2760                 {
2761                         // In std mode, a further check is performed before fully removing the channel -
2762                         // the channel_announcement must have been received at least two weeks ago. We
2763                         // fudge that here by indicating the time has jumped two weeks.
2764                         assert_eq!(network_graph.read_only().channels().len(), 1);
2765                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2766
2767                         // Note that the directional channel information will have been removed already..
2768                         // We want to check that this will work even if *one* of the channel updates is recent,
2769                         // so we should add it with a recent timestamp.
2770                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2771                         use std::time::{SystemTime, UNIX_EPOCH};
2772                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2773                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2774                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2775                         }, node_1_privkey, &secp_ctx);
2776                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2777                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2778                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2779                         // Make sure removed channels are tracked.
2780                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2781                         // Provide a later time so that sufficient time has passed
2782                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2783                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2784                 }
2785
2786                 assert_eq!(network_graph.read_only().channels().len(), 0);
2787                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2788                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2789
2790                 #[cfg(feature = "std")]
2791                 {
2792                         use std::time::{SystemTime, UNIX_EPOCH};
2793
2794                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2795
2796                         // Clear tracked nodes and channels for clean slate
2797                         network_graph.removed_channels.lock().unwrap().clear();
2798                         network_graph.removed_nodes.lock().unwrap().clear();
2799
2800                         // Add a channel and nodes from channel announcement. So our network graph will
2801                         // now only consist of two nodes and one channel between them.
2802                         assert!(network_graph.update_channel_from_announcement(
2803                                 &valid_channel_announcement, &chain_source).is_ok());
2804
2805                         // Mark the channel as permanently failed. This will also remove the two nodes
2806                         // and all of the entries will be tracked as removed.
2807                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2808
2809                         // Should not remove from tracking if insufficient time has passed
2810                         network_graph.remove_stale_channels_and_tracking_with_time(
2811                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2812                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2813
2814                         // Provide a later time so that sufficient time has passed
2815                         network_graph.remove_stale_channels_and_tracking_with_time(
2816                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2817                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2818                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2819                 }
2820
2821                 #[cfg(not(feature = "std"))]
2822                 {
2823                         // When we don't have access to the system clock, the time we started tracking removal will only
2824                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2825                         // only if sufficient time has passed after that first call, will the next call remove it from
2826                         // tracking.
2827                         let removal_time = 1664619654;
2828
2829                         // Clear removed nodes and channels for clean slate
2830                         network_graph.removed_channels.lock().unwrap().clear();
2831                         network_graph.removed_nodes.lock().unwrap().clear();
2832
2833                         // Add a channel and nodes from channel announcement. So our network graph will
2834                         // now only consist of two nodes and one channel between them.
2835                         assert!(network_graph.update_channel_from_announcement(
2836                                 &valid_channel_announcement, &chain_source).is_ok());
2837
2838                         // Mark the channel as permanently failed. This will also remove the two nodes
2839                         // and all of the entries will be tracked as removed.
2840                         network_graph.channel_failed_permanent(short_channel_id);
2841
2842                         // The first time we call the following, the channel will have a removal time assigned.
2843                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2844                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2845
2846                         // Provide a later time so that sufficient time has passed
2847                         network_graph.remove_stale_channels_and_tracking_with_time(
2848                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2849                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2850                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2851                 }
2852         }
2853
2854         #[test]
2855         fn getting_next_channel_announcements() {
2856                 let network_graph = create_network_graph();
2857                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2858                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2859                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2860
2861                 // Channels were not announced yet.
2862                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2863                 assert!(channels_with_announcements.is_none());
2864
2865                 let short_channel_id;
2866                 {
2867                         // Announce a channel we will update
2868                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2869                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2870                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2871                                 Ok(_) => (),
2872                                 Err(_) => panic!()
2873                         };
2874                 }
2875
2876                 // Contains initial channel announcement now.
2877                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2878                 if let Some(channel_announcements) = channels_with_announcements {
2879                         let (_, ref update_1, ref update_2) = channel_announcements;
2880                         assert_eq!(update_1, &None);
2881                         assert_eq!(update_2, &None);
2882                 } else {
2883                         panic!();
2884                 }
2885
2886                 {
2887                         // Valid channel update
2888                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2889                                 unsigned_channel_update.timestamp = 101;
2890                         }, node_1_privkey, &secp_ctx);
2891                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2892                                 Ok(_) => (),
2893                                 Err(_) => panic!()
2894                         };
2895                 }
2896
2897                 // Now contains an initial announcement and an update.
2898                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2899                 if let Some(channel_announcements) = channels_with_announcements {
2900                         let (_, ref update_1, ref update_2) = channel_announcements;
2901                         assert_ne!(update_1, &None);
2902                         assert_eq!(update_2, &None);
2903                 } else {
2904                         panic!();
2905                 }
2906
2907                 {
2908                         // Channel update with excess data.
2909                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2910                                 unsigned_channel_update.timestamp = 102;
2911                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2912                         }, node_1_privkey, &secp_ctx);
2913                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2914                                 Ok(_) => (),
2915                                 Err(_) => panic!()
2916                         };
2917                 }
2918
2919                 // Test that announcements with excess data won't be returned
2920                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2921                 if let Some(channel_announcements) = channels_with_announcements {
2922                         let (_, ref update_1, ref update_2) = channel_announcements;
2923                         assert_eq!(update_1, &None);
2924                         assert_eq!(update_2, &None);
2925                 } else {
2926                         panic!();
2927                 }
2928
2929                 // Further starting point have no channels after it
2930                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2931                 assert!(channels_with_announcements.is_none());
2932         }
2933
2934         #[test]
2935         fn getting_next_node_announcements() {
2936                 let network_graph = create_network_graph();
2937                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2938                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2939                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2940                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2941
2942                 // No nodes yet.
2943                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2944                 assert!(next_announcements.is_none());
2945
2946                 {
2947                         // Announce a channel to add 2 nodes
2948                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2949                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2950                                 Ok(_) => (),
2951                                 Err(_) => panic!()
2952                         };
2953                 }
2954
2955                 // Nodes were never announced
2956                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2957                 assert!(next_announcements.is_none());
2958
2959                 {
2960                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2961                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2962                                 Ok(_) => (),
2963                                 Err(_) => panic!()
2964                         };
2965
2966                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2967                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2968                                 Ok(_) => (),
2969                                 Err(_) => panic!()
2970                         };
2971                 }
2972
2973                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2974                 assert!(next_announcements.is_some());
2975
2976                 // Skip the first node.
2977                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2978                 assert!(next_announcements.is_some());
2979
2980                 {
2981                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2982                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2983                                 unsigned_announcement.timestamp += 10;
2984                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2985                         }, node_2_privkey, &secp_ctx);
2986                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2987                                 Ok(res) => assert!(!res),
2988                                 Err(_) => panic!()
2989                         };
2990                 }
2991
2992                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2993                 assert!(next_announcements.is_none());
2994         }
2995
2996         #[test]
2997         fn network_graph_serialization() {
2998                 let network_graph = create_network_graph();
2999                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3000
3001                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3002                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3003
3004                 // Announce a channel to add a corresponding node.
3005                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
3006                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
3007                         Ok(res) => assert!(res),
3008                         _ => panic!()
3009                 };
3010
3011                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
3012                 match gossip_sync.handle_node_announcement(&valid_announcement) {
3013                         Ok(_) => (),
3014                         Err(_) => panic!()
3015                 };
3016
3017                 let mut w = test_utils::TestVecWriter(Vec::new());
3018                 assert!(!network_graph.read_only().nodes().is_empty());
3019                 assert!(!network_graph.read_only().channels().is_empty());
3020                 network_graph.write(&mut w).unwrap();
3021
3022                 let logger = Arc::new(test_utils::TestLogger::new());
3023                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
3024         }
3025
3026         #[test]
3027         fn network_graph_tlv_serialization() {
3028                 let network_graph = create_network_graph();
3029                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
3030
3031                 let mut w = test_utils::TestVecWriter(Vec::new());
3032                 network_graph.write(&mut w).unwrap();
3033
3034                 let logger = Arc::new(test_utils::TestLogger::new());
3035                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
3036                 assert!(reassembled_network_graph == network_graph);
3037                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
3038         }
3039
3040         #[test]
3041         #[cfg(feature = "std")]
3042         fn calling_sync_routing_table() {
3043                 use std::time::{SystemTime, UNIX_EPOCH};
3044                 use crate::ln::msgs::Init;
3045
3046                 let network_graph = create_network_graph();
3047                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3048                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
3049                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
3050
3051                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3052
3053                 // It should ignore if gossip_queries feature is not enabled
3054                 {
3055                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
3056                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3057                         let events = gossip_sync.get_and_clear_pending_msg_events();
3058                         assert_eq!(events.len(), 0);
3059                 }
3060
3061                 // It should send a gossip_timestamp_filter with the correct information
3062                 {
3063                         let mut features = InitFeatures::empty();
3064                         features.set_gossip_queries_optional();
3065                         let init_msg = Init { features, networks: None, remote_network_address: None };
3066                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3067                         let events = gossip_sync.get_and_clear_pending_msg_events();
3068                         assert_eq!(events.len(), 1);
3069                         match &events[0] {
3070                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
3071                                         assert_eq!(node_id, &node_id_1);
3072                                         assert_eq!(msg.chain_hash, chain_hash);
3073                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
3074                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
3075                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
3076                                         assert_eq!(msg.timestamp_range, u32::max_value());
3077                                 },
3078                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
3079                         };
3080                 }
3081         }
3082
3083         #[test]
3084         fn handling_query_channel_range() {
3085                 let network_graph = create_network_graph();
3086                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3087
3088                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3089                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3090                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3091                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
3092
3093                 let mut scids: Vec<u64> = vec![
3094                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
3095                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
3096                 ];
3097
3098                 // used for testing multipart reply across blocks
3099                 for block in 100000..=108001 {
3100                         scids.push(scid_from_parts(block, 0, 0).unwrap());
3101                 }
3102
3103                 // used for testing resumption on same block
3104                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
3105
3106                 for scid in scids {
3107                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
3108                                 unsigned_announcement.short_channel_id = scid;
3109                         }, node_1_privkey, node_2_privkey, &secp_ctx);
3110                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
3111                                 Ok(_) => (),
3112                                 _ => panic!()
3113                         };
3114                 }
3115
3116                 // Error when number_of_blocks=0
3117                 do_handling_query_channel_range(
3118                         &gossip_sync,
3119                         &node_id_2,
3120                         QueryChannelRange {
3121                                 chain_hash: chain_hash.clone(),
3122                                 first_blocknum: 0,
3123                                 number_of_blocks: 0,
3124                         },
3125                         false,
3126                         vec![ReplyChannelRange {
3127                                 chain_hash: chain_hash.clone(),
3128                                 first_blocknum: 0,
3129                                 number_of_blocks: 0,
3130                                 sync_complete: true,
3131                                 short_channel_ids: vec![]
3132                         }]
3133                 );
3134
3135                 // Error when wrong chain
3136                 do_handling_query_channel_range(
3137                         &gossip_sync,
3138                         &node_id_2,
3139                         QueryChannelRange {
3140                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3141                                 first_blocknum: 0,
3142                                 number_of_blocks: 0xffff_ffff,
3143                         },
3144                         false,
3145                         vec![ReplyChannelRange {
3146                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3147                                 first_blocknum: 0,
3148                                 number_of_blocks: 0xffff_ffff,
3149                                 sync_complete: true,
3150                                 short_channel_ids: vec![],
3151                         }]
3152                 );
3153
3154                 // Error when first_blocknum > 0xffffff
3155                 do_handling_query_channel_range(
3156                         &gossip_sync,
3157                         &node_id_2,
3158                         QueryChannelRange {
3159                                 chain_hash: chain_hash.clone(),
3160                                 first_blocknum: 0x01000000,
3161                                 number_of_blocks: 0xffff_ffff,
3162                         },
3163                         false,
3164                         vec![ReplyChannelRange {
3165                                 chain_hash: chain_hash.clone(),
3166                                 first_blocknum: 0x01000000,
3167                                 number_of_blocks: 0xffff_ffff,
3168                                 sync_complete: true,
3169                                 short_channel_ids: vec![]
3170                         }]
3171                 );
3172
3173                 // Empty reply when max valid SCID block num
3174                 do_handling_query_channel_range(
3175                         &gossip_sync,
3176                         &node_id_2,
3177                         QueryChannelRange {
3178                                 chain_hash: chain_hash.clone(),
3179                                 first_blocknum: 0xffffff,
3180                                 number_of_blocks: 1,
3181                         },
3182                         true,
3183                         vec![
3184                                 ReplyChannelRange {
3185                                         chain_hash: chain_hash.clone(),
3186                                         first_blocknum: 0xffffff,
3187                                         number_of_blocks: 1,
3188                                         sync_complete: true,
3189                                         short_channel_ids: vec![]
3190                                 },
3191                         ]
3192                 );
3193
3194                 // No results in valid query range
3195                 do_handling_query_channel_range(
3196                         &gossip_sync,
3197                         &node_id_2,
3198                         QueryChannelRange {
3199                                 chain_hash: chain_hash.clone(),
3200                                 first_blocknum: 1000,
3201                                 number_of_blocks: 1000,
3202                         },
3203                         true,
3204                         vec![
3205                                 ReplyChannelRange {
3206                                         chain_hash: chain_hash.clone(),
3207                                         first_blocknum: 1000,
3208                                         number_of_blocks: 1000,
3209                                         sync_complete: true,
3210                                         short_channel_ids: vec![],
3211                                 }
3212                         ]
3213                 );
3214
3215                 // Overflow first_blocknum + number_of_blocks
3216                 do_handling_query_channel_range(
3217                         &gossip_sync,
3218                         &node_id_2,
3219                         QueryChannelRange {
3220                                 chain_hash: chain_hash.clone(),
3221                                 first_blocknum: 0xfe0000,
3222                                 number_of_blocks: 0xffffffff,
3223                         },
3224                         true,
3225                         vec![
3226                                 ReplyChannelRange {
3227                                         chain_hash: chain_hash.clone(),
3228                                         first_blocknum: 0xfe0000,
3229                                         number_of_blocks: 0xffffffff - 0xfe0000,
3230                                         sync_complete: true,
3231                                         short_channel_ids: vec![
3232                                                 0xfffffe_ffffff_ffff, // max
3233                                         ]
3234                                 }
3235                         ]
3236                 );
3237
3238                 // Single block exactly full
3239                 do_handling_query_channel_range(
3240                         &gossip_sync,
3241                         &node_id_2,
3242                         QueryChannelRange {
3243                                 chain_hash: chain_hash.clone(),
3244                                 first_blocknum: 100000,
3245                                 number_of_blocks: 8000,
3246                         },
3247                         true,
3248                         vec![
3249                                 ReplyChannelRange {
3250                                         chain_hash: chain_hash.clone(),
3251                                         first_blocknum: 100000,
3252                                         number_of_blocks: 8000,
3253                                         sync_complete: true,
3254                                         short_channel_ids: (100000..=107999)
3255                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3256                                                 .collect(),
3257                                 },
3258                         ]
3259                 );
3260
3261                 // Multiple split on new block
3262                 do_handling_query_channel_range(
3263                         &gossip_sync,
3264                         &node_id_2,
3265                         QueryChannelRange {
3266                                 chain_hash: chain_hash.clone(),
3267                                 first_blocknum: 100000,
3268                                 number_of_blocks: 8001,
3269                         },
3270                         true,
3271                         vec![
3272                                 ReplyChannelRange {
3273                                         chain_hash: chain_hash.clone(),
3274                                         first_blocknum: 100000,
3275                                         number_of_blocks: 7999,
3276                                         sync_complete: false,
3277                                         short_channel_ids: (100000..=107999)
3278                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3279                                                 .collect(),
3280                                 },
3281                                 ReplyChannelRange {
3282                                         chain_hash: chain_hash.clone(),
3283                                         first_blocknum: 107999,
3284                                         number_of_blocks: 2,
3285                                         sync_complete: true,
3286                                         short_channel_ids: vec![
3287                                                 scid_from_parts(108000, 0, 0).unwrap(),
3288                                         ],
3289                                 }
3290                         ]
3291                 );
3292
3293                 // Multiple split on same block
3294                 do_handling_query_channel_range(
3295                         &gossip_sync,
3296                         &node_id_2,
3297                         QueryChannelRange {
3298                                 chain_hash: chain_hash.clone(),
3299                                 first_blocknum: 100002,
3300                                 number_of_blocks: 8000,
3301                         },
3302                         true,
3303                         vec![
3304                                 ReplyChannelRange {
3305                                         chain_hash: chain_hash.clone(),
3306                                         first_blocknum: 100002,
3307                                         number_of_blocks: 7999,
3308                                         sync_complete: false,
3309                                         short_channel_ids: (100002..=108001)
3310                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3311                                                 .collect(),
3312                                 },
3313                                 ReplyChannelRange {
3314                                         chain_hash: chain_hash.clone(),
3315                                         first_blocknum: 108001,
3316                                         number_of_blocks: 1,
3317                                         sync_complete: true,
3318                                         short_channel_ids: vec![
3319                                                 scid_from_parts(108001, 1, 0).unwrap(),
3320                                         ],
3321                                 }
3322                         ]
3323                 );
3324         }
3325
3326         fn do_handling_query_channel_range(
3327                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3328                 test_node_id: &PublicKey,
3329                 msg: QueryChannelRange,
3330                 expected_ok: bool,
3331                 expected_replies: Vec<ReplyChannelRange>
3332         ) {
3333                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3334                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3335                 let query_end_blocknum = msg.end_blocknum();
3336                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3337
3338                 if expected_ok {
3339                         assert!(result.is_ok());
3340                 } else {
3341                         assert!(result.is_err());
3342                 }
3343
3344                 let events = gossip_sync.get_and_clear_pending_msg_events();
3345                 assert_eq!(events.len(), expected_replies.len());
3346
3347                 for i in 0..events.len() {
3348                         let expected_reply = &expected_replies[i];
3349                         match &events[i] {
3350                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3351                                         assert_eq!(node_id, test_node_id);
3352                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3353                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3354                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3355                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3356                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3357
3358                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3359                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3360                                         assert!(msg.first_blocknum >= max_firstblocknum);
3361                                         max_firstblocknum = msg.first_blocknum;
3362                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3363
3364                                         // Check that the last block count is >= the query's end_blocknum
3365                                         if i == events.len() - 1 {
3366                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3367                                         }
3368                                 },
3369                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3370                         }
3371                 }
3372         }
3373
3374         #[test]
3375         fn handling_query_short_channel_ids() {
3376                 let network_graph = create_network_graph();
3377                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3378                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3379                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3380
3381                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3382
3383                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3384                         chain_hash,
3385                         short_channel_ids: vec![0x0003e8_000000_0000],
3386                 });
3387                 assert!(result.is_err());
3388         }
3389
3390         #[test]
3391         fn displays_node_alias() {
3392                 let format_str_alias = |alias: &str| {
3393                         let mut bytes = [0u8; 32];
3394                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3395                         format!("{}", NodeAlias(bytes))
3396                 };
3397
3398                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3399                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3400                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3401
3402                 let format_bytes_alias = |alias: &[u8]| {
3403                         let mut bytes = [0u8; 32];
3404                         bytes[..alias.len()].copy_from_slice(alias);
3405                         format!("{}", NodeAlias(bytes))
3406                 };
3407
3408                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3409                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3410                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3411         }
3412
3413         #[test]
3414         fn channel_info_is_readable() {
3415                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3416                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3417                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3418                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3419                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3420
3421                 // 1. Test encoding/decoding of ChannelUpdateInfo
3422                 let chan_update_info = ChannelUpdateInfo {
3423                         last_update: 23,
3424                         enabled: true,
3425                         cltv_expiry_delta: 42,
3426                         htlc_minimum_msat: 1234,
3427                         htlc_maximum_msat: 5678,
3428                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3429                         last_update_message: None,
3430                 };
3431
3432                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3433                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3434
3435                 // First make sure we can read ChannelUpdateInfos we just wrote
3436                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3437                 assert_eq!(chan_update_info, read_chan_update_info);
3438
3439                 // Check the serialization hasn't changed.
3440                 let legacy_chan_update_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3441                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3442
3443                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3444                 // or the ChannelUpdate enclosed with `last_update_message`.
3445                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = <Vec<u8>>::from_hex("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3446                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3447                 assert!(read_chan_update_info_res.is_err());
3448
3449                 let legacy_chan_update_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3450                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3451                 assert!(read_chan_update_info_res.is_err());
3452
3453                 // 2. Test encoding/decoding of ChannelInfo
3454                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3455                 let chan_info_none_updates = ChannelInfo {
3456                         features: channelmanager::provided_channel_features(&config),
3457                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3458                         one_to_two: None,
3459                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3460                         two_to_one: None,
3461                         capacity_sats: None,
3462                         announcement_message: None,
3463                         announcement_received_time: 87654,
3464                         node_one_counter: 0,
3465                         node_two_counter: 1,
3466                 };
3467
3468                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3469                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3470
3471                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3472                 assert_eq!(chan_info_none_updates, read_chan_info);
3473
3474                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3475                 let chan_info_some_updates = ChannelInfo {
3476                         features: channelmanager::provided_channel_features(&config),
3477                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3478                         one_to_two: Some(chan_update_info.clone()),
3479                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3480                         two_to_one: Some(chan_update_info.clone()),
3481                         capacity_sats: None,
3482                         announcement_message: None,
3483                         announcement_received_time: 87654,
3484                         node_one_counter: 0,
3485                         node_two_counter: 1,
3486                 };
3487
3488                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3489                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3490
3491                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3492                 assert_eq!(chan_info_some_updates, read_chan_info);
3493
3494                 // Check the serialization hasn't changed.
3495                 let legacy_chan_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3496                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3497
3498                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3499                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3500                 let legacy_chan_info_with_some_and_fail_update = <Vec<u8>>::from_hex("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3501                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3502                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3503                 assert_eq!(read_chan_info.one_to_two, None);
3504                 assert_eq!(read_chan_info.two_to_one, None);
3505
3506                 let legacy_chan_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3507                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3508                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3509                 assert_eq!(read_chan_info.one_to_two, None);
3510                 assert_eq!(read_chan_info.two_to_one, None);
3511         }
3512
3513         #[test]
3514         fn node_info_is_readable() {
3515                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3516                 let announcement_message = <Vec<u8>>::from_hex("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3517                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3518                 let valid_node_ann_info = NodeAnnouncementInfo {
3519                         features: channelmanager::provided_node_features(&UserConfig::default()),
3520                         last_update: 0,
3521                         rgb: [0u8; 3],
3522                         alias: NodeAlias([0u8; 32]),
3523                         announcement_message: Some(announcement_message)
3524                 };
3525
3526                 let mut encoded_valid_node_ann_info = Vec::new();
3527                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3528                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3529                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3530                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3531
3532                 let encoded_invalid_node_ann_info = <Vec<u8>>::from_hex("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3533                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3534                 assert!(read_invalid_node_ann_info_res.is_err());
3535
3536                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3537                 let valid_node_info = NodeInfo {
3538                         channels: Vec::new(),
3539                         announcement_info: Some(valid_node_ann_info),
3540                         node_counter: 0,
3541                 };
3542
3543                 let mut encoded_valid_node_info = Vec::new();
3544                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3545                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3546                 assert_eq!(read_valid_node_info, valid_node_info);
3547
3548                 let encoded_invalid_node_info_hex = <Vec<u8>>::from_hex("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3549                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3550                 assert_eq!(read_invalid_node_info.announcement_info, None);
3551         }
3552
3553         #[test]
3554         fn test_node_info_keeps_compatibility() {
3555                 let old_ann_info_with_addresses = <Vec<u8>>::from_hex("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3556                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3557                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3558                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3559                 assert!(ann_info_with_addresses.addresses().is_empty());
3560         }
3561
3562         #[test]
3563         fn test_node_id_display() {
3564                 let node_id = NodeId([42; 33]);
3565                 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3566         }
3567 }
3568
3569 #[cfg(ldk_bench)]
3570 pub mod benches {
3571         use super::*;
3572         use std::io::Read;
3573         use criterion::{black_box, Criterion};
3574
3575         pub fn read_network_graph(bench: &mut Criterion) {
3576                 let logger = crate::util::test_utils::TestLogger::new();
3577                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3578                 let mut v = Vec::new();
3579                 d.read_to_end(&mut v).unwrap();
3580                 bench.bench_function("read_network_graph", |b| b.iter(||
3581                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3582                 ));
3583         }
3584
3585         pub fn write_network_graph(bench: &mut Criterion) {
3586                 let logger = crate::util::test_utils::TestLogger::new();
3587                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3588                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3589                 bench.bench_function("write_network_graph", |b| b.iter(||
3590                         black_box(&net_graph).encode()
3591                 ));
3592         }
3593 }