Bump workspace to rust edition 2018
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use crate::chain;
23 use crate::chain::Access;
24 use crate::ln::chan_utils::make_funding_redeemscript;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use crate::io;
36 use crate::io_extras::{copy, sink};
37 use crate::prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use crate::sync::{RwLock, RwLockReadGuard};
41 #[cfg(feature = "std")]
42 use core::sync::atomic::{AtomicUsize, Ordering};
43 use crate::sync::Mutex;
44 use core::ops::{Bound, Deref};
45 use bitcoin::hashes::hex::ToHex;
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
56
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
60
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
64
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
68
69 impl NodeId {
70         /// Create a new NodeId from a public key
71         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72                 NodeId(pubkey.serialize())
73         }
74
75         /// Get the public key slice from this NodeId
76         pub fn as_slice(&self) -> &[u8] {
77                 &self.0
78         }
79 }
80
81 impl fmt::Debug for NodeId {
82         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83                 write!(f, "NodeId({})", log_bytes!(self.0))
84         }
85 }
86
87 impl core::hash::Hash for NodeId {
88         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
89                 self.0.hash(hasher);
90         }
91 }
92
93 impl Eq for NodeId {}
94
95 impl PartialEq for NodeId {
96         fn eq(&self, other: &Self) -> bool {
97                 self.0[..] == other.0[..]
98         }
99 }
100
101 impl cmp::PartialOrd for NodeId {
102         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
103                 Some(self.cmp(other))
104         }
105 }
106
107 impl Ord for NodeId {
108         fn cmp(&self, other: &Self) -> cmp::Ordering {
109                 self.0[..].cmp(&other.0[..])
110         }
111 }
112
113 impl Writeable for NodeId {
114         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
115                 writer.write_all(&self.0)?;
116                 Ok(())
117         }
118 }
119
120 impl Readable for NodeId {
121         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
122                 let mut buf = [0; PUBLIC_KEY_SIZE];
123                 reader.read_exact(&mut buf)?;
124                 Ok(Self(buf))
125         }
126 }
127
128 /// Represents the network as nodes and channels between them
129 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
130         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
131         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
132         genesis_hash: BlockHash,
133         logger: L,
134         // Lock order: channels -> nodes
135         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
136         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
137         // Lock order: removed_channels -> removed_nodes
138         //
139         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
140         // of `std::time::Instant`s for a few reasons:
141         //   * We want it to be possible to do tracking in no-std environments where we can compare
142         //     a provided current UNIX timestamp with the time at which we started tracking.
143         //   * In the future, if we decide to persist these maps, they will already be serializable.
144         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
145         //     environment should be practical over the time period we are considering (on the order of a
146         //     week).
147         //
148         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
149         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
150         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
151         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
152         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
153         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
154         /// that once some time passes, we can potentially resync it from gossip again.
155         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
156 }
157
158 /// A read-only view of [`NetworkGraph`].
159 pub struct ReadOnlyNetworkGraph<'a> {
160         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
161         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
162 }
163
164 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
165 /// return packet by a node along the route. See [BOLT #4] for details.
166 ///
167 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
168 #[derive(Clone, Debug, PartialEq, Eq)]
169 pub enum NetworkUpdate {
170         /// An error indicating a `channel_update` messages should be applied via
171         /// [`NetworkGraph::update_channel`].
172         ChannelUpdateMessage {
173                 /// The update to apply via [`NetworkGraph::update_channel`].
174                 msg: ChannelUpdate,
175         },
176         /// An error indicating that a channel failed to route a payment, which should be applied via
177         /// [`NetworkGraph::channel_failed`].
178         ChannelFailure {
179                 /// The short channel id of the closed channel.
180                 short_channel_id: u64,
181                 /// Whether the channel should be permanently removed or temporarily disabled until a new
182                 /// `channel_update` message is received.
183                 is_permanent: bool,
184         },
185         /// An error indicating that a node failed to route a payment, which should be applied via
186         /// [`NetworkGraph::node_failed_permanent`] if permanent.
187         NodeFailure {
188                 /// The node id of the failed node.
189                 node_id: PublicKey,
190                 /// Whether the node should be permanently removed from consideration or can be restored
191                 /// when a new `channel_update` message is received.
192                 is_permanent: bool,
193         }
194 }
195
196 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
197         (0, ChannelUpdateMessage) => {
198                 (0, msg, required),
199         },
200         (2, ChannelFailure) => {
201                 (0, short_channel_id, required),
202                 (2, is_permanent, required),
203         },
204         (4, NodeFailure) => {
205                 (0, node_id, required),
206                 (2, is_permanent, required),
207         },
208 );
209
210 /// Receives and validates network updates from peers,
211 /// stores authentic and relevant data as a network graph.
212 /// This network graph is then used for routing payments.
213 /// Provides interface to help with initial routing sync by
214 /// serving historical announcements.
215 ///
216 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
217 /// [`NetworkGraph`].
218 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
219 where C::Target: chain::Access, L::Target: Logger
220 {
221         network_graph: G,
222         chain_access: Option<C>,
223         #[cfg(feature = "std")]
224         full_syncs_requested: AtomicUsize,
225         pending_events: Mutex<Vec<MessageSendEvent>>,
226         logger: L,
227 }
228
229 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
230 where C::Target: chain::Access, L::Target: Logger
231 {
232         /// Creates a new tracker of the actual state of the network of channels and nodes,
233         /// assuming an existing Network Graph.
234         /// Chain monitor is used to make sure announced channels exist on-chain,
235         /// channel data is correct, and that the announcement is signed with
236         /// channel owners' keys.
237         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
238                 P2PGossipSync {
239                         network_graph,
240                         #[cfg(feature = "std")]
241                         full_syncs_requested: AtomicUsize::new(0),
242                         chain_access,
243                         pending_events: Mutex::new(vec![]),
244                         logger,
245                 }
246         }
247
248         /// Adds a provider used to check new announcements. Does not affect
249         /// existing announcements unless they are updated.
250         /// Add, update or remove the provider would replace the current one.
251         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
252                 self.chain_access = chain_access;
253         }
254
255         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256         /// [`P2PGossipSync::new`].
257         ///
258         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259         pub fn network_graph(&self) -> &G {
260                 &self.network_graph
261         }
262
263         #[cfg(feature = "std")]
264         /// Returns true when a full routing table sync should be performed with a peer.
265         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266                 //TODO: Determine whether to request a full sync based on the network map.
267                 const FULL_SYNCS_TO_REQUEST: usize = 5;
268                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
270                         true
271                 } else {
272                         false
273                 }
274         }
275 }
276
277 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
278         fn handle_event(&self, event: &Event) {
279                 if let Event::PaymentPathFailed { network_update, .. } = event {
280                         if let Some(network_update) = network_update {
281                                 match *network_update {
282                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
283                                                 let short_channel_id = msg.contents.short_channel_id;
284                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
285                                                 let status = if is_enabled { "enabled" } else { "disabled" };
286                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
287                                                 let _ = self.update_channel(msg);
288                                         },
289                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
290                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
291                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
292                                                 self.channel_failed(short_channel_id, is_permanent);
293                                         },
294                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
295                                                 if is_permanent {
296                                                         log_debug!(self.logger,
297                                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
298                                                         self.node_failed_permanent(node_id);
299                                                 };
300                                         },
301                                 }
302                         }
303                 }
304         }
305 }
306
307 macro_rules! secp_verify_sig {
308         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
309                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
310                         Ok(_) => {},
311                         Err(_) => {
312                                 return Err(LightningError {
313                                         err: format!("Invalid signature on {} message", $msg_type),
314                                         action: ErrorAction::SendWarningMessage {
315                                                 msg: msgs::WarningMessage {
316                                                         channel_id: [0; 32],
317                                                         data: format!("Invalid signature on {} message", $msg_type),
318                                                 },
319                                                 log_level: Level::Trace,
320                                         },
321                                 });
322                         },
323                 }
324         };
325 }
326
327 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
328 where C::Target: chain::Access, L::Target: Logger
329 {
330         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
331                 self.network_graph.update_node_from_announcement(msg)?;
332                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
333                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
334                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
335         }
336
337         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
338                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
339                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
340                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
341         }
342
343         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
344                 self.network_graph.update_channel(msg)?;
345                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
346         }
347
348         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
349                 let channels = self.network_graph.channels.read().unwrap();
350                 for (_, ref chan) in channels.range(starting_point..) {
351                         if chan.announcement_message.is_some() {
352                                 let chan_announcement = chan.announcement_message.clone().unwrap();
353                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
354                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
355                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
356                                         one_to_two_announcement = one_to_two.last_update_message.clone();
357                                 }
358                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
359                                         two_to_one_announcement = two_to_one.last_update_message.clone();
360                                 }
361                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
362                         } else {
363                                 // TODO: We may end up sending un-announced channel_updates if we are sending
364                                 // initial sync data while receiving announce/updates for this channel.
365                         }
366                 }
367                 None
368         }
369
370         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
371                 let nodes = self.network_graph.nodes.read().unwrap();
372                 let iter = if let Some(pubkey) = starting_point {
373                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
374                         } else {
375                                 nodes.range(..)
376                         };
377                 for (_, ref node) in iter {
378                         if let Some(node_info) = node.announcement_info.as_ref() {
379                                 if let Some(msg) = node_info.announcement_message.clone() {
380                                         return Some(msg);
381                                 }
382                         }
383                 }
384                 None
385         }
386
387         /// Initiates a stateless sync of routing gossip information with a peer
388         /// using gossip_queries. The default strategy used by this implementation
389         /// is to sync the full block range with several peers.
390         ///
391         /// We should expect one or more reply_channel_range messages in response
392         /// to our query_channel_range. Each reply will enqueue a query_scid message
393         /// to request gossip messages for each channel. The sync is considered complete
394         /// when the final reply_scids_end message is received, though we are not
395         /// tracking this directly.
396         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
397                 // We will only perform a sync with peers that support gossip_queries.
398                 if !init_msg.features.supports_gossip_queries() {
399                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
400                         // channels with peers even without being able to exchange gossip.
401                         return Ok(());
402                 }
403
404                 // The lightning network's gossip sync system is completely broken in numerous ways.
405                 //
406                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
407                 // to do a full sync from the first few peers we connect to, and then receive gossip
408                 // updates from all our peers normally.
409                 //
410                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
411                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
412                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
413                 // seen.
414                 //
415                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
416                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
417                 // channel data which you are missing. Except there was no way at all to identify which
418                 // `channel_update`s you were missing, so you still had to request everything, just in a
419                 // very complicated way with some queries instead of just getting the dump.
420                 //
421                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
422                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
423                 // relying on it useless.
424                 //
425                 // After gossip queries were introduced, support for receiving a full gossip table dump on
426                 // connection was removed from several nodes, making it impossible to get a full sync
427                 // without using the "gossip queries" messages.
428                 //
429                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
430                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
431                 // message, as the name implies, tells the peer to not forward any gossip messages with a
432                 // timestamp older than a given value (not the time the peer received the filter, but the
433                 // timestamp in the update message, which is often hours behind when the peer received the
434                 // message).
435                 //
436                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
437                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
438                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
439                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
440                 // will simply not forward any new updates they see to you which were generated some time
441                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
442                 // ago), you will always get the full routing graph from all your peers.
443                 //
444                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
445                 // propagated some time after it was generated, and, worse, often disable gossiping with
446                 // several peers after their first connection. The second behavior can cause gossip to not
447                 // propagate fully if there are cuts in the gossiping subgraph.
448                 //
449                 // In an attempt to cut a middle ground between always fetching the full graph from all of
450                 // our peers and never receiving gossip from peers at all, we send all of our peers a
451                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
452                 //
453                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
454                 #[allow(unused_mut, unused_assignments)]
455                 let mut gossip_start_time = 0;
456                 #[cfg(feature = "std")]
457                 {
458                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
459                         if self.should_request_full_sync(&their_node_id) {
460                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
461                         } else {
462                                 gossip_start_time -= 60 * 60; // an hour ago
463                         }
464                 }
465
466                 let mut pending_events = self.pending_events.lock().unwrap();
467                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
468                         node_id: their_node_id.clone(),
469                         msg: GossipTimestampFilter {
470                                 chain_hash: self.network_graph.genesis_hash,
471                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
472                                 timestamp_range: u32::max_value(),
473                         },
474                 });
475                 Ok(())
476         }
477
478         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
479                 // We don't make queries, so should never receive replies. If, in the future, the set
480                 // reconciliation extensions to gossip queries become broadly supported, we should revert
481                 // this code to its state pre-0.0.106.
482                 Ok(())
483         }
484
485         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
486                 // We don't make queries, so should never receive replies. If, in the future, the set
487                 // reconciliation extensions to gossip queries become broadly supported, we should revert
488                 // this code to its state pre-0.0.106.
489                 Ok(())
490         }
491
492         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
493         /// are in the specified block range. Due to message size limits, large range
494         /// queries may result in several reply messages. This implementation enqueues
495         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
496         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
497         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
498         /// memory constrained systems.
499         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
500                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
501
502                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
503
504                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
505                 // If so, we manually cap the ending block to avoid this overflow.
506                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
507
508                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
509                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
510                         let mut pending_events = self.pending_events.lock().unwrap();
511                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
512                                 node_id: their_node_id.clone(),
513                                 msg: ReplyChannelRange {
514                                         chain_hash: msg.chain_hash.clone(),
515                                         first_blocknum: msg.first_blocknum,
516                                         number_of_blocks: msg.number_of_blocks,
517                                         sync_complete: true,
518                                         short_channel_ids: vec![],
519                                 }
520                         });
521                         return Err(LightningError {
522                                 err: String::from("query_channel_range could not be processed"),
523                                 action: ErrorAction::IgnoreError,
524                         });
525                 }
526
527                 // Creates channel batches. We are not checking if the channel is routable
528                 // (has at least one update). A peer may still want to know the channel
529                 // exists even if its not yet routable.
530                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
531                 let channels = self.network_graph.channels.read().unwrap();
532                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
533                         if let Some(chan_announcement) = &chan.announcement_message {
534                                 // Construct a new batch if last one is full
535                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
536                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
537                                 }
538
539                                 let batch = batches.last_mut().unwrap();
540                                 batch.push(chan_announcement.contents.short_channel_id);
541                         }
542                 }
543                 drop(channels);
544
545                 let mut pending_events = self.pending_events.lock().unwrap();
546                 let batch_count = batches.len();
547                 let mut prev_batch_endblock = msg.first_blocknum;
548                 for (batch_index, batch) in batches.into_iter().enumerate() {
549                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
550                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
551                         //
552                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
553                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
554                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
555                         // significant diversion from the requirements set by the spec, and, in case of blocks
556                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
557                         // and *not* derive the first_blocknum from the actual first block of the reply.
558                         let first_blocknum = prev_batch_endblock;
559
560                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
561                         // fit in. Though there is no requirement that we use exactly the number of blocks its
562                         // contents are from, except for the bogus requirements c-lightning enforces, above.
563                         //
564                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
565                         // >= the query's end block. Thus, for the last reply, we calculate the difference
566                         // between the query's end block and the start of the reply.
567                         //
568                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
569                         // first_blocknum will be either msg.first_blocknum or a higher block height.
570                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
571                                 (true, msg.end_blocknum() - first_blocknum)
572                         }
573                         // Prior replies should use the number of blocks that fit into the reply. Overflow
574                         // safe since first_blocknum is always <= last SCID's block.
575                         else {
576                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
577                         };
578
579                         prev_batch_endblock = first_blocknum + number_of_blocks;
580
581                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
582                                 node_id: their_node_id.clone(),
583                                 msg: ReplyChannelRange {
584                                         chain_hash: msg.chain_hash.clone(),
585                                         first_blocknum,
586                                         number_of_blocks,
587                                         sync_complete,
588                                         short_channel_ids: batch,
589                                 }
590                         });
591                 }
592
593                 Ok(())
594         }
595
596         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
597                 // TODO
598                 Err(LightningError {
599                         err: String::from("Not implemented"),
600                         action: ErrorAction::IgnoreError,
601                 })
602         }
603
604         fn provided_node_features(&self) -> NodeFeatures {
605                 let mut features = NodeFeatures::empty();
606                 features.set_gossip_queries_optional();
607                 features
608         }
609
610         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
611                 let mut features = InitFeatures::empty();
612                 features.set_gossip_queries_optional();
613                 features
614         }
615 }
616
617 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
618 where
619         C::Target: chain::Access,
620         L::Target: Logger,
621 {
622         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
623                 let mut ret = Vec::new();
624                 let mut pending_events = self.pending_events.lock().unwrap();
625                 core::mem::swap(&mut ret, &mut pending_events);
626                 ret
627         }
628 }
629
630 #[derive(Clone, Debug, PartialEq, Eq)]
631 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
632 pub struct ChannelUpdateInfo {
633         /// When the last update to the channel direction was issued.
634         /// Value is opaque, as set in the announcement.
635         pub last_update: u32,
636         /// Whether the channel can be currently used for payments (in this one direction).
637         pub enabled: bool,
638         /// The difference in CLTV values that you must have when routing through this channel.
639         pub cltv_expiry_delta: u16,
640         /// The minimum value, which must be relayed to the next hop via the channel
641         pub htlc_minimum_msat: u64,
642         /// The maximum value which may be relayed to the next hop via the channel.
643         pub htlc_maximum_msat: u64,
644         /// Fees charged when the channel is used for routing
645         pub fees: RoutingFees,
646         /// Most recent update for the channel received from the network
647         /// Mostly redundant with the data we store in fields explicitly.
648         /// Everything else is useful only for sending out for initial routing sync.
649         /// Not stored if contains excess data to prevent DoS.
650         pub last_update_message: Option<ChannelUpdate>,
651 }
652
653 impl fmt::Display for ChannelUpdateInfo {
654         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
655                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
656                 Ok(())
657         }
658 }
659
660 impl Writeable for ChannelUpdateInfo {
661         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
662                 write_tlv_fields!(writer, {
663                         (0, self.last_update, required),
664                         (2, self.enabled, required),
665                         (4, self.cltv_expiry_delta, required),
666                         (6, self.htlc_minimum_msat, required),
667                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
668                         // compatibility with LDK versions prior to v0.0.110.
669                         (8, Some(self.htlc_maximum_msat), required),
670                         (10, self.fees, required),
671                         (12, self.last_update_message, required),
672                 });
673                 Ok(())
674         }
675 }
676
677 impl Readable for ChannelUpdateInfo {
678         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
679                 init_tlv_field_var!(last_update, required);
680                 init_tlv_field_var!(enabled, required);
681                 init_tlv_field_var!(cltv_expiry_delta, required);
682                 init_tlv_field_var!(htlc_minimum_msat, required);
683                 init_tlv_field_var!(htlc_maximum_msat, option);
684                 init_tlv_field_var!(fees, required);
685                 init_tlv_field_var!(last_update_message, required);
686
687                 read_tlv_fields!(reader, {
688                         (0, last_update, required),
689                         (2, enabled, required),
690                         (4, cltv_expiry_delta, required),
691                         (6, htlc_minimum_msat, required),
692                         (8, htlc_maximum_msat, required),
693                         (10, fees, required),
694                         (12, last_update_message, required)
695                 });
696
697                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
698                         Ok(ChannelUpdateInfo {
699                                 last_update: init_tlv_based_struct_field!(last_update, required),
700                                 enabled: init_tlv_based_struct_field!(enabled, required),
701                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
702                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
703                                 htlc_maximum_msat,
704                                 fees: init_tlv_based_struct_field!(fees, required),
705                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
706                         })
707                 } else {
708                         Err(DecodeError::InvalidValue)
709                 }
710         }
711 }
712
713 #[derive(Clone, Debug, PartialEq, Eq)]
714 /// Details about a channel (both directions).
715 /// Received within a channel announcement.
716 pub struct ChannelInfo {
717         /// Protocol features of a channel communicated during its announcement
718         pub features: ChannelFeatures,
719         /// Source node of the first direction of a channel
720         pub node_one: NodeId,
721         /// Details about the first direction of a channel
722         pub one_to_two: Option<ChannelUpdateInfo>,
723         /// Source node of the second direction of a channel
724         pub node_two: NodeId,
725         /// Details about the second direction of a channel
726         pub two_to_one: Option<ChannelUpdateInfo>,
727         /// The channel capacity as seen on-chain, if chain lookup is available.
728         pub capacity_sats: Option<u64>,
729         /// An initial announcement of the channel
730         /// Mostly redundant with the data we store in fields explicitly.
731         /// Everything else is useful only for sending out for initial routing sync.
732         /// Not stored if contains excess data to prevent DoS.
733         pub announcement_message: Option<ChannelAnnouncement>,
734         /// The timestamp when we received the announcement, if we are running with feature = "std"
735         /// (which we can probably assume we are - no-std environments probably won't have a full
736         /// network graph in memory!).
737         announcement_received_time: u64,
738 }
739
740 impl ChannelInfo {
741         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
742         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
743         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
744                 let (direction, source) = {
745                         if target == &self.node_one {
746                                 (self.two_to_one.as_ref(), &self.node_two)
747                         } else if target == &self.node_two {
748                                 (self.one_to_two.as_ref(), &self.node_one)
749                         } else {
750                                 return None;
751                         }
752                 };
753                 Some((DirectedChannelInfo::new(self, direction), source))
754         }
755
756         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
757         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
758         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
759                 let (direction, target) = {
760                         if source == &self.node_one {
761                                 (self.one_to_two.as_ref(), &self.node_two)
762                         } else if source == &self.node_two {
763                                 (self.two_to_one.as_ref(), &self.node_one)
764                         } else {
765                                 return None;
766                         }
767                 };
768                 Some((DirectedChannelInfo::new(self, direction), target))
769         }
770
771         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
772         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
773                 let direction = channel_flags & 1u8;
774                 if direction == 0 {
775                         self.one_to_two.as_ref()
776                 } else {
777                         self.two_to_one.as_ref()
778                 }
779         }
780 }
781
782 impl fmt::Display for ChannelInfo {
783         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
784                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
785                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
786                 Ok(())
787         }
788 }
789
790 impl Writeable for ChannelInfo {
791         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
792                 write_tlv_fields!(writer, {
793                         (0, self.features, required),
794                         (1, self.announcement_received_time, (default_value, 0)),
795                         (2, self.node_one, required),
796                         (4, self.one_to_two, required),
797                         (6, self.node_two, required),
798                         (8, self.two_to_one, required),
799                         (10, self.capacity_sats, required),
800                         (12, self.announcement_message, required),
801                 });
802                 Ok(())
803         }
804 }
805
806 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
807 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
808 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
809 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
810 // channel updates via the gossip network.
811 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
812
813 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
814         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
815                 match crate::util::ser::Readable::read(reader) {
816                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
817                         Err(DecodeError::ShortRead) => Ok(None),
818                         Err(DecodeError::InvalidValue) => Ok(None),
819                         Err(err) => Err(err),
820                 }
821         }
822 }
823
824 impl Readable for ChannelInfo {
825         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
826                 init_tlv_field_var!(features, required);
827                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
828                 init_tlv_field_var!(node_one, required);
829                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
830                 init_tlv_field_var!(node_two, required);
831                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
832                 init_tlv_field_var!(capacity_sats, required);
833                 init_tlv_field_var!(announcement_message, required);
834                 read_tlv_fields!(reader, {
835                         (0, features, required),
836                         (1, announcement_received_time, (default_value, 0)),
837                         (2, node_one, required),
838                         (4, one_to_two_wrap, ignorable),
839                         (6, node_two, required),
840                         (8, two_to_one_wrap, ignorable),
841                         (10, capacity_sats, required),
842                         (12, announcement_message, required),
843                 });
844
845                 Ok(ChannelInfo {
846                         features: init_tlv_based_struct_field!(features, required),
847                         node_one: init_tlv_based_struct_field!(node_one, required),
848                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
849                         node_two: init_tlv_based_struct_field!(node_two, required),
850                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
851                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
852                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
853                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
854                 })
855         }
856 }
857
858 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
859 /// source node to a target node.
860 #[derive(Clone)]
861 pub struct DirectedChannelInfo<'a> {
862         channel: &'a ChannelInfo,
863         direction: Option<&'a ChannelUpdateInfo>,
864         htlc_maximum_msat: u64,
865         effective_capacity: EffectiveCapacity,
866 }
867
868 impl<'a> DirectedChannelInfo<'a> {
869         #[inline]
870         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
871                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
872                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
873
874                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
875                         (Some(amount_msat), Some(capacity_msat)) => {
876                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
877                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
878                         },
879                         (Some(amount_msat), None) => {
880                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
881                         },
882                         (None, Some(capacity_msat)) => {
883                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
884                         },
885                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
886                 };
887
888                 Self {
889                         channel, direction, htlc_maximum_msat, effective_capacity
890                 }
891         }
892
893         /// Returns information for the channel.
894         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
895
896         /// Returns information for the direction.
897         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
898
899         /// Returns the maximum HTLC amount allowed over the channel in the direction.
900         pub fn htlc_maximum_msat(&self) -> u64 {
901                 self.htlc_maximum_msat
902         }
903
904         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
905         ///
906         /// This is either the total capacity from the funding transaction, if known, or the
907         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
908         /// otherwise.
909         pub fn effective_capacity(&self) -> EffectiveCapacity {
910                 self.effective_capacity
911         }
912
913         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
914         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
915                 match self.direction {
916                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
917                         None => None,
918                 }
919         }
920 }
921
922 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
923         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
924                 f.debug_struct("DirectedChannelInfo")
925                         .field("channel", &self.channel)
926                         .finish()
927         }
928 }
929
930 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
931 #[derive(Clone)]
932 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
933         inner: DirectedChannelInfo<'a>,
934 }
935
936 impl<'a> DirectedChannelInfoWithUpdate<'a> {
937         /// Returns information for the channel.
938         #[inline]
939         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
940
941         /// Returns information for the direction.
942         #[inline]
943         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
944
945         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
946         #[inline]
947         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
948 }
949
950 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
951         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
952                 self.inner.fmt(f)
953         }
954 }
955
956 /// The effective capacity of a channel for routing purposes.
957 ///
958 /// While this may be smaller than the actual channel capacity, amounts greater than
959 /// [`Self::as_msat`] should not be routed through the channel.
960 #[derive(Clone, Copy, Debug)]
961 pub enum EffectiveCapacity {
962         /// The available liquidity in the channel known from being a channel counterparty, and thus a
963         /// direct hop.
964         ExactLiquidity {
965                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
966                 /// millisatoshi.
967                 liquidity_msat: u64,
968         },
969         /// The maximum HTLC amount in one direction as advertised on the gossip network.
970         MaximumHTLC {
971                 /// The maximum HTLC amount denominated in millisatoshi.
972                 amount_msat: u64,
973         },
974         /// The total capacity of the channel as determined by the funding transaction.
975         Total {
976                 /// The funding amount denominated in millisatoshi.
977                 capacity_msat: u64,
978                 /// The maximum HTLC amount denominated in millisatoshi.
979                 htlc_maximum_msat: Option<u64>
980         },
981         /// A capacity sufficient to route any payment, typically used for private channels provided by
982         /// an invoice.
983         Infinite,
984         /// A capacity that is unknown possibly because either the chain state is unavailable to know
985         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
986         Unknown,
987 }
988
989 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
990 /// use when making routing decisions.
991 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
992
993 impl EffectiveCapacity {
994         /// Returns the effective capacity denominated in millisatoshi.
995         pub fn as_msat(&self) -> u64 {
996                 match self {
997                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
998                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
999                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1000                         EffectiveCapacity::Infinite => u64::max_value(),
1001                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1002                 }
1003         }
1004 }
1005
1006 /// Fees for routing via a given channel or a node
1007 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1008 pub struct RoutingFees {
1009         /// Flat routing fee in satoshis
1010         pub base_msat: u32,
1011         /// Liquidity-based routing fee in millionths of a routed amount.
1012         /// In other words, 10000 is 1%.
1013         pub proportional_millionths: u32,
1014 }
1015
1016 impl_writeable_tlv_based!(RoutingFees, {
1017         (0, base_msat, required),
1018         (2, proportional_millionths, required)
1019 });
1020
1021 #[derive(Clone, Debug, PartialEq, Eq)]
1022 /// Information received in the latest node_announcement from this node.
1023 pub struct NodeAnnouncementInfo {
1024         /// Protocol features the node announced support for
1025         pub features: NodeFeatures,
1026         /// When the last known update to the node state was issued.
1027         /// Value is opaque, as set in the announcement.
1028         pub last_update: u32,
1029         /// Color assigned to the node
1030         pub rgb: [u8; 3],
1031         /// Moniker assigned to the node.
1032         /// May be invalid or malicious (eg control chars),
1033         /// should not be exposed to the user.
1034         pub alias: NodeAlias,
1035         /// Internet-level addresses via which one can connect to the node
1036         pub addresses: Vec<NetAddress>,
1037         /// An initial announcement of the node
1038         /// Mostly redundant with the data we store in fields explicitly.
1039         /// Everything else is useful only for sending out for initial routing sync.
1040         /// Not stored if contains excess data to prevent DoS.
1041         pub announcement_message: Option<NodeAnnouncement>
1042 }
1043
1044 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1045         (0, features, required),
1046         (2, last_update, required),
1047         (4, rgb, required),
1048         (6, alias, required),
1049         (8, announcement_message, option),
1050         (10, addresses, vec_type),
1051 });
1052
1053 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1054 ///
1055 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1056 /// attacks. Care must be taken when processing.
1057 #[derive(Clone, Debug, PartialEq, Eq)]
1058 pub struct NodeAlias(pub [u8; 32]);
1059
1060 impl fmt::Display for NodeAlias {
1061         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1062                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1063                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1064                 let bytes = self.0.split_at(first_null).0;
1065                 match core::str::from_utf8(bytes) {
1066                         Ok(alias) => {
1067                                 for c in alias.chars() {
1068                                         let mut bytes = [0u8; 4];
1069                                         let c = if !c.is_control() { c } else { control_symbol };
1070                                         f.write_str(c.encode_utf8(&mut bytes))?;
1071                                 }
1072                         },
1073                         Err(_) => {
1074                                 for c in bytes.iter().map(|b| *b as char) {
1075                                         // Display printable ASCII characters
1076                                         let mut bytes = [0u8; 4];
1077                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1078                                         f.write_str(c.encode_utf8(&mut bytes))?;
1079                                 }
1080                         },
1081                 };
1082                 Ok(())
1083         }
1084 }
1085
1086 impl Writeable for NodeAlias {
1087         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1088                 self.0.write(w)
1089         }
1090 }
1091
1092 impl Readable for NodeAlias {
1093         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1094                 Ok(NodeAlias(Readable::read(r)?))
1095         }
1096 }
1097
1098 #[derive(Clone, Debug, PartialEq, Eq)]
1099 /// Details about a node in the network, known from the network announcement.
1100 pub struct NodeInfo {
1101         /// All valid channels a node has announced
1102         pub channels: Vec<u64>,
1103         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1104         /// The two fields (flat and proportional fee) are independent,
1105         /// meaning they don't have to refer to the same channel.
1106         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1107         /// More information about a node from node_announcement.
1108         /// Optional because we store a Node entry after learning about it from
1109         /// a channel announcement, but before receiving a node announcement.
1110         pub announcement_info: Option<NodeAnnouncementInfo>
1111 }
1112
1113 impl fmt::Display for NodeInfo {
1114         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1115                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1116                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1117                 Ok(())
1118         }
1119 }
1120
1121 impl Writeable for NodeInfo {
1122         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1123                 write_tlv_fields!(writer, {
1124                         (0, self.lowest_inbound_channel_fees, option),
1125                         (2, self.announcement_info, option),
1126                         (4, self.channels, vec_type),
1127                 });
1128                 Ok(())
1129         }
1130 }
1131
1132 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1133 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1134 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1135 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1136 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1137
1138 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1139         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1140                 match crate::util::ser::Readable::read(reader) {
1141                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1142                         Err(_) => {
1143                                 copy(reader, &mut sink()).unwrap();
1144                                 return Ok(None)
1145                         },
1146                 };
1147         }
1148 }
1149
1150 impl Readable for NodeInfo {
1151         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1152                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1153                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1154                 init_tlv_field_var!(channels, vec_type);
1155
1156                 read_tlv_fields!(reader, {
1157                         (0, lowest_inbound_channel_fees, option),
1158                         (2, announcement_info_wrap, ignorable),
1159                         (4, channels, vec_type),
1160                 });
1161
1162                 Ok(NodeInfo {
1163                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1164                         announcement_info: announcement_info_wrap.map(|w| w.0),
1165                         channels: init_tlv_based_struct_field!(channels, vec_type),
1166                 })
1167         }
1168 }
1169
1170 const SERIALIZATION_VERSION: u8 = 1;
1171 const MIN_SERIALIZATION_VERSION: u8 = 1;
1172
1173 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1174         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1175                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1176
1177                 self.genesis_hash.write(writer)?;
1178                 let channels = self.channels.read().unwrap();
1179                 (channels.len() as u64).write(writer)?;
1180                 for (ref chan_id, ref chan_info) in channels.iter() {
1181                         (*chan_id).write(writer)?;
1182                         chan_info.write(writer)?;
1183                 }
1184                 let nodes = self.nodes.read().unwrap();
1185                 (nodes.len() as u64).write(writer)?;
1186                 for (ref node_id, ref node_info) in nodes.iter() {
1187                         node_id.write(writer)?;
1188                         node_info.write(writer)?;
1189                 }
1190
1191                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1192                 write_tlv_fields!(writer, {
1193                         (1, last_rapid_gossip_sync_timestamp, option),
1194                 });
1195                 Ok(())
1196         }
1197 }
1198
1199 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1200         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1201                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1202
1203                 let genesis_hash: BlockHash = Readable::read(reader)?;
1204                 let channels_count: u64 = Readable::read(reader)?;
1205                 let mut channels = BTreeMap::new();
1206                 for _ in 0..channels_count {
1207                         let chan_id: u64 = Readable::read(reader)?;
1208                         let chan_info = Readable::read(reader)?;
1209                         channels.insert(chan_id, chan_info);
1210                 }
1211                 let nodes_count: u64 = Readable::read(reader)?;
1212                 let mut nodes = BTreeMap::new();
1213                 for _ in 0..nodes_count {
1214                         let node_id = Readable::read(reader)?;
1215                         let node_info = Readable::read(reader)?;
1216                         nodes.insert(node_id, node_info);
1217                 }
1218
1219                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1220                 read_tlv_fields!(reader, {
1221                         (1, last_rapid_gossip_sync_timestamp, option),
1222                 });
1223
1224                 Ok(NetworkGraph {
1225                         secp_ctx: Secp256k1::verification_only(),
1226                         genesis_hash,
1227                         logger,
1228                         channels: RwLock::new(channels),
1229                         nodes: RwLock::new(nodes),
1230                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1231                         removed_nodes: Mutex::new(HashMap::new()),
1232                         removed_channels: Mutex::new(HashMap::new()),
1233                 })
1234         }
1235 }
1236
1237 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1238         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1239                 writeln!(f, "Network map\n[Channels]")?;
1240                 for (key, val) in self.channels.read().unwrap().iter() {
1241                         writeln!(f, " {}: {}", key, val)?;
1242                 }
1243                 writeln!(f, "[Nodes]")?;
1244                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1245                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1246                 }
1247                 Ok(())
1248         }
1249 }
1250
1251 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1252 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1253         fn eq(&self, other: &Self) -> bool {
1254                 self.genesis_hash == other.genesis_hash &&
1255                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1256                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1257         }
1258 }
1259
1260 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1261         /// Creates a new, empty, network graph.
1262         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1263                 Self {
1264                         secp_ctx: Secp256k1::verification_only(),
1265                         genesis_hash,
1266                         logger,
1267                         channels: RwLock::new(BTreeMap::new()),
1268                         nodes: RwLock::new(BTreeMap::new()),
1269                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1270                         removed_channels: Mutex::new(HashMap::new()),
1271                         removed_nodes: Mutex::new(HashMap::new()),
1272                 }
1273         }
1274
1275         /// Returns a read-only view of the network graph.
1276         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1277                 let channels = self.channels.read().unwrap();
1278                 let nodes = self.nodes.read().unwrap();
1279                 ReadOnlyNetworkGraph {
1280                         channels,
1281                         nodes,
1282                 }
1283         }
1284
1285         /// The unix timestamp provided by the most recent rapid gossip sync.
1286         /// It will be set by the rapid sync process after every sync completion.
1287         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1288                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1289         }
1290
1291         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1292         /// This should be done automatically by the rapid sync process after every sync completion.
1293         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1294                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1295         }
1296
1297         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1298         /// purposes.
1299         #[cfg(test)]
1300         pub fn clear_nodes_announcement_info(&self) {
1301                 for node in self.nodes.write().unwrap().iter_mut() {
1302                         node.1.announcement_info = None;
1303                 }
1304         }
1305
1306         /// For an already known node (from channel announcements), update its stored properties from a
1307         /// given node announcement.
1308         ///
1309         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1310         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1311         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1312         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1313                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1314                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1315                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1316         }
1317
1318         /// For an already known node (from channel announcements), update its stored properties from a
1319         /// given node announcement without verifying the associated signatures. Because we aren't
1320         /// given the associated signatures here we cannot relay the node announcement to any of our
1321         /// peers.
1322         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1323                 self.update_node_from_announcement_intern(msg, None)
1324         }
1325
1326         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1327                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1328                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1329                         Some(node) => {
1330                                 if let Some(node_info) = node.announcement_info.as_ref() {
1331                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1332                                         // updates to ensure you always have the latest one, only vaguely suggesting
1333                                         // that it be at least the current time.
1334                                         if node_info.last_update  > msg.timestamp {
1335                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1336                                         } else if node_info.last_update  == msg.timestamp {
1337                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1338                                         }
1339                                 }
1340
1341                                 let should_relay =
1342                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1343                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1344                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1345                                 node.announcement_info = Some(NodeAnnouncementInfo {
1346                                         features: msg.features.clone(),
1347                                         last_update: msg.timestamp,
1348                                         rgb: msg.rgb,
1349                                         alias: NodeAlias(msg.alias),
1350                                         addresses: msg.addresses.clone(),
1351                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1352                                 });
1353
1354                                 Ok(())
1355                         }
1356                 }
1357         }
1358
1359         /// Store or update channel info from a channel announcement.
1360         ///
1361         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1362         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1363         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1364         ///
1365         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1366         /// the corresponding UTXO exists on chain and is correctly-formatted.
1367         pub fn update_channel_from_announcement<C: Deref>(
1368                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1369         ) -> Result<(), LightningError>
1370         where
1371                 C::Target: chain::Access,
1372         {
1373                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1374                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1375                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1376                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1377                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1378                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1379         }
1380
1381         /// Store or update channel info from a channel announcement without verifying the associated
1382         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1383         /// channel announcement to any of our peers.
1384         ///
1385         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1386         /// the corresponding UTXO exists on chain and is correctly-formatted.
1387         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1388                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1389         ) -> Result<(), LightningError>
1390         where
1391                 C::Target: chain::Access,
1392         {
1393                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1394         }
1395
1396         /// Update channel from partial announcement data received via rapid gossip sync
1397         ///
1398         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1399         /// rapid gossip sync server)
1400         ///
1401         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1402         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1403                 if node_id_1 == node_id_2 {
1404                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1405                 };
1406
1407                 let node_1 = NodeId::from_pubkey(&node_id_1);
1408                 let node_2 = NodeId::from_pubkey(&node_id_2);
1409                 let channel_info = ChannelInfo {
1410                         features,
1411                         node_one: node_1.clone(),
1412                         one_to_two: None,
1413                         node_two: node_2.clone(),
1414                         two_to_one: None,
1415                         capacity_sats: None,
1416                         announcement_message: None,
1417                         announcement_received_time: timestamp,
1418                 };
1419
1420                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1421         }
1422
1423         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1424                 let mut channels = self.channels.write().unwrap();
1425                 let mut nodes = self.nodes.write().unwrap();
1426
1427                 let node_id_a = channel_info.node_one.clone();
1428                 let node_id_b = channel_info.node_two.clone();
1429
1430                 match channels.entry(short_channel_id) {
1431                         BtreeEntry::Occupied(mut entry) => {
1432                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1433                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1434                                 //exactly how...
1435                                 if utxo_value.is_some() {
1436                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1437                                         // only sometimes returns results. In any case remove the previous entry. Note
1438                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1439                                         // do that because
1440                                         // a) we don't *require* a UTXO provider that always returns results.
1441                                         // b) we don't track UTXOs of channels we know about and remove them if they
1442                                         //    get reorg'd out.
1443                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1444                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1445                                         *entry.get_mut() = channel_info;
1446                                 } else {
1447                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1448                                 }
1449                         },
1450                         BtreeEntry::Vacant(entry) => {
1451                                 entry.insert(channel_info);
1452                         }
1453                 };
1454
1455                 for current_node_id in [node_id_a, node_id_b].iter() {
1456                         match nodes.entry(current_node_id.clone()) {
1457                                 BtreeEntry::Occupied(node_entry) => {
1458                                         node_entry.into_mut().channels.push(short_channel_id);
1459                                 },
1460                                 BtreeEntry::Vacant(node_entry) => {
1461                                         node_entry.insert(NodeInfo {
1462                                                 channels: vec!(short_channel_id),
1463                                                 lowest_inbound_channel_fees: None,
1464                                                 announcement_info: None,
1465                                         });
1466                                 }
1467                         };
1468                 };
1469
1470                 Ok(())
1471         }
1472
1473         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1474                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1475         ) -> Result<(), LightningError>
1476         where
1477                 C::Target: chain::Access,
1478         {
1479                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1480                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1481                 }
1482
1483                 let node_one = NodeId::from_pubkey(&msg.node_id_1);
1484                 let node_two = NodeId::from_pubkey(&msg.node_id_2);
1485
1486                 {
1487                         let channels = self.channels.read().unwrap();
1488
1489                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1490                                 if chan.capacity_sats.is_some() {
1491                                         // If we'd previously looked up the channel on-chain and checked the script
1492                                         // against what appears on-chain, ignore the duplicate announcement.
1493                                         //
1494                                         // Because a reorg could replace one channel with another at the same SCID, if
1495                                         // the channel appears to be different, we re-validate. This doesn't expose us
1496                                         // to any more DoS risk than not, as a peer can always flood us with
1497                                         // randomly-generated SCID values anyway.
1498                                         //
1499                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1500                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1501                                         // if the peers on the channel changed anyway.
1502                                         if node_one == chan.node_one && node_two == chan.node_two {
1503                                                 return Err(LightningError {
1504                                                         err: "Already have chain-validated channel".to_owned(),
1505                                                         action: ErrorAction::IgnoreDuplicateGossip
1506                                                 });
1507                                         }
1508                                 } else if chain_access.is_none() {
1509                                         // Similarly, if we can't check the chain right now anyway, ignore the
1510                                         // duplicate announcement without bothering to take the channels write lock.
1511                                         return Err(LightningError {
1512                                                 err: "Already have non-chain-validated channel".to_owned(),
1513                                                 action: ErrorAction::IgnoreDuplicateGossip
1514                                         });
1515                                 }
1516                         }
1517                 }
1518
1519                 {
1520                         let removed_channels = self.removed_channels.lock().unwrap();
1521                         let removed_nodes = self.removed_nodes.lock().unwrap();
1522                         if removed_channels.contains_key(&msg.short_channel_id) ||
1523                                 removed_nodes.contains_key(&node_one) ||
1524                                 removed_nodes.contains_key(&node_two) {
1525                                 return Err(LightningError{
1526                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1527                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1528                         }
1529                 }
1530
1531                 let utxo_value = match &chain_access {
1532                         &None => {
1533                                 // Tentatively accept, potentially exposing us to DoS attacks
1534                                 None
1535                         },
1536                         &Some(ref chain_access) => {
1537                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1538                                         Ok(TxOut { value, script_pubkey }) => {
1539                                                 let expected_script =
1540                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1541                                                 if script_pubkey != expected_script {
1542                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1543                                                 }
1544                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1545                                                 //to the new HTLC max field in channel_update
1546                                                 Some(value)
1547                                         },
1548                                         Err(chain::AccessError::UnknownChain) => {
1549                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1550                                         },
1551                                         Err(chain::AccessError::UnknownTx) => {
1552                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1553                                         },
1554                                 }
1555                         },
1556                 };
1557
1558                 #[allow(unused_mut, unused_assignments)]
1559                 let mut announcement_received_time = 0;
1560                 #[cfg(feature = "std")]
1561                 {
1562                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1563                 }
1564
1565                 let chan_info = ChannelInfo {
1566                         features: msg.features.clone(),
1567                         node_one,
1568                         one_to_two: None,
1569                         node_two,
1570                         two_to_one: None,
1571                         capacity_sats: utxo_value,
1572                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1573                                 { full_msg.cloned() } else { None },
1574                         announcement_received_time,
1575                 };
1576
1577                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1578         }
1579
1580         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1581         /// If permanent, removes a channel from the local storage.
1582         /// May cause the removal of nodes too, if this was their last channel.
1583         /// If not permanent, makes channels unavailable for routing.
1584         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1585                 #[cfg(feature = "std")]
1586                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1587                 #[cfg(not(feature = "std"))]
1588                 let current_time_unix = None;
1589
1590                 let mut channels = self.channels.write().unwrap();
1591                 if is_permanent {
1592                         if let Some(chan) = channels.remove(&short_channel_id) {
1593                                 let mut nodes = self.nodes.write().unwrap();
1594                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1595                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1596                         }
1597                 } else {
1598                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1599                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1600                                         one_to_two.enabled = false;
1601                                 }
1602                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1603                                         two_to_one.enabled = false;
1604                                 }
1605                         }
1606                 }
1607         }
1608
1609         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1610         /// from local storage.
1611         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1612                 #[cfg(feature = "std")]
1613                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1614                 #[cfg(not(feature = "std"))]
1615                 let current_time_unix = None;
1616
1617                 let node_id = NodeId::from_pubkey(node_id);
1618                 let mut channels = self.channels.write().unwrap();
1619                 let mut nodes = self.nodes.write().unwrap();
1620                 let mut removed_channels = self.removed_channels.lock().unwrap();
1621                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1622
1623                 if let Some(node) = nodes.remove(&node_id) {
1624                         for scid in node.channels.iter() {
1625                                 if let Some(chan_info) = channels.remove(scid) {
1626                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1627                                         if let BtreeEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1628                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1629                                                         *scid != *chan_id
1630                                                 });
1631                                                 if other_node_entry.get().channels.is_empty() {
1632                                                         other_node_entry.remove_entry();
1633                                                 }
1634                                         }
1635                                         removed_channels.insert(*scid, current_time_unix);
1636                                 }
1637                         }
1638                         removed_nodes.insert(node_id, current_time_unix);
1639                 }
1640         }
1641
1642         #[cfg(feature = "std")]
1643         /// Removes information about channels that we haven't heard any updates about in some time.
1644         /// This can be used regularly to prune the network graph of channels that likely no longer
1645         /// exist.
1646         ///
1647         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1648         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1649         /// pruning occur for updates which are at least two weeks old, which we implement here.
1650         ///
1651         /// Note that for users of the `lightning-background-processor` crate this method may be
1652         /// automatically called regularly for you.
1653         ///
1654         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1655         /// in the map for a while so that these can be resynced from gossip in the future.
1656         ///
1657         /// This method is only available with the `std` feature. See
1658         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1659         pub fn remove_stale_channels_and_tracking(&self) {
1660                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1661                 self.remove_stale_channels_and_tracking_with_time(time);
1662         }
1663
1664         /// Removes information about channels that we haven't heard any updates about in some time.
1665         /// This can be used regularly to prune the network graph of channels that likely no longer
1666         /// exist.
1667         ///
1668         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1669         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1670         /// pruning occur for updates which are at least two weeks old, which we implement here.
1671         ///
1672         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1673         /// in the map for a while so that these can be resynced from gossip in the future.
1674         ///
1675         /// This function takes the current unix time as an argument. For users with the `std` feature
1676         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1677         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1678                 let mut channels = self.channels.write().unwrap();
1679                 // Time out if we haven't received an update in at least 14 days.
1680                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1681                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1682                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1683                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1684                 // time.
1685                 let mut scids_to_remove = Vec::new();
1686                 for (scid, info) in channels.iter_mut() {
1687                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1688                                 info.one_to_two = None;
1689                         }
1690                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1691                                 info.two_to_one = None;
1692                         }
1693                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1694                                 // We check the announcement_received_time here to ensure we don't drop
1695                                 // announcements that we just received and are just waiting for our peer to send a
1696                                 // channel_update for.
1697                                 if info.announcement_received_time < min_time_unix as u64 {
1698                                         scids_to_remove.push(*scid);
1699                                 }
1700                         }
1701                 }
1702                 if !scids_to_remove.is_empty() {
1703                         let mut nodes = self.nodes.write().unwrap();
1704                         for scid in scids_to_remove {
1705                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1706                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1707                         }
1708                 }
1709
1710                 let should_keep_tracking = |time: &mut Option<u64>| {
1711                         if let Some(time) = time {
1712                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1713                         } else {
1714                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1715                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1716                                 // of this function.
1717                                 #[cfg(feature = "no-std")]
1718                                 {
1719                                         let mut tracked_time = Some(current_time_unix);
1720                                         core::mem::swap(time, &mut tracked_time);
1721                                         return true;
1722                                 }
1723                                 #[allow(unreachable_code)]
1724                                 false
1725                         }};
1726
1727                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1728                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1729         }
1730
1731         /// For an already known (from announcement) channel, update info about one of the directions
1732         /// of the channel.
1733         ///
1734         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1735         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1736         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1737         ///
1738         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1739         /// materially in the future will be rejected.
1740         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1741                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1742         }
1743
1744         /// For an already known (from announcement) channel, update info about one of the directions
1745         /// of the channel without verifying the associated signatures. Because we aren't given the
1746         /// associated signatures here we cannot relay the channel update to any of our peers.
1747         ///
1748         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1749         /// materially in the future will be rejected.
1750         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1751                 self.update_channel_intern(msg, None, None)
1752         }
1753
1754         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1755                 let dest_node_id;
1756                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1757                 let chan_was_enabled;
1758
1759                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1760                 {
1761                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1762                         // disable this check during tests!
1763                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1764                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1765                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1766                         }
1767                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1768                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1769                         }
1770                 }
1771
1772                 let mut channels = self.channels.write().unwrap();
1773                 match channels.get_mut(&msg.short_channel_id) {
1774                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1775                         Some(channel) => {
1776                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1777                                         return Err(LightningError{err:
1778                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1779                                                 action: ErrorAction::IgnoreError});
1780                                 }
1781
1782                                 if let Some(capacity_sats) = channel.capacity_sats {
1783                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1784                                         // Don't query UTXO set here to reduce DoS risks.
1785                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1786                                                 return Err(LightningError{err:
1787                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1788                                                         action: ErrorAction::IgnoreError});
1789                                         }
1790                                 }
1791                                 macro_rules! check_update_latest {
1792                                         ($target: expr) => {
1793                                                 if let Some(existing_chan_info) = $target.as_ref() {
1794                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1795                                                         // order updates to ensure you always have the latest one, only
1796                                                         // suggesting  that it be at least the current time. For
1797                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1798                                                         // pruning based on the timestamp field being more than two weeks old,
1799                                                         // but only in the non-normative section.
1800                                                         if existing_chan_info.last_update > msg.timestamp {
1801                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1802                                                         } else if existing_chan_info.last_update == msg.timestamp {
1803                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1804                                                         }
1805                                                         chan_was_enabled = existing_chan_info.enabled;
1806                                                 } else {
1807                                                         chan_was_enabled = false;
1808                                                 }
1809                                         }
1810                                 }
1811
1812                                 macro_rules! get_new_channel_info {
1813                                         () => { {
1814                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1815                                                         { full_msg.cloned() } else { None };
1816
1817                                                 let updated_channel_update_info = ChannelUpdateInfo {
1818                                                         enabled: chan_enabled,
1819                                                         last_update: msg.timestamp,
1820                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1821                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1822                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1823                                                         fees: RoutingFees {
1824                                                                 base_msat: msg.fee_base_msat,
1825                                                                 proportional_millionths: msg.fee_proportional_millionths,
1826                                                         },
1827                                                         last_update_message
1828                                                 };
1829                                                 Some(updated_channel_update_info)
1830                                         } }
1831                                 }
1832
1833                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1834                                 if msg.flags & 1 == 1 {
1835                                         dest_node_id = channel.node_one.clone();
1836                                         check_update_latest!(channel.two_to_one);
1837                                         if let Some(sig) = sig {
1838                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1839                                                         err: "Couldn't parse source node pubkey".to_owned(),
1840                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1841                                                 })?, "channel_update");
1842                                         }
1843                                         channel.two_to_one = get_new_channel_info!();
1844                                 } else {
1845                                         dest_node_id = channel.node_two.clone();
1846                                         check_update_latest!(channel.one_to_two);
1847                                         if let Some(sig) = sig {
1848                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1849                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1850                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1851                                                 })?, "channel_update");
1852                                         }
1853                                         channel.one_to_two = get_new_channel_info!();
1854                                 }
1855                         }
1856                 }
1857
1858                 let mut nodes = self.nodes.write().unwrap();
1859                 if chan_enabled {
1860                         let node = nodes.get_mut(&dest_node_id).unwrap();
1861                         let mut base_msat = msg.fee_base_msat;
1862                         let mut proportional_millionths = msg.fee_proportional_millionths;
1863                         if let Some(fees) = node.lowest_inbound_channel_fees {
1864                                 base_msat = cmp::min(base_msat, fees.base_msat);
1865                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1866                         }
1867                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1868                                 base_msat,
1869                                 proportional_millionths
1870                         });
1871                 } else if chan_was_enabled {
1872                         let node = nodes.get_mut(&dest_node_id).unwrap();
1873                         let mut lowest_inbound_channel_fees = None;
1874
1875                         for chan_id in node.channels.iter() {
1876                                 let chan = channels.get(chan_id).unwrap();
1877                                 let chan_info_opt;
1878                                 if chan.node_one == dest_node_id {
1879                                         chan_info_opt = chan.two_to_one.as_ref();
1880                                 } else {
1881                                         chan_info_opt = chan.one_to_two.as_ref();
1882                                 }
1883                                 if let Some(chan_info) = chan_info_opt {
1884                                         if chan_info.enabled {
1885                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1886                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1887                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1888                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1889                                         }
1890                                 }
1891                         }
1892
1893                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1894                 }
1895
1896                 Ok(())
1897         }
1898
1899         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1900                 macro_rules! remove_from_node {
1901                         ($node_id: expr) => {
1902                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1903                                         entry.get_mut().channels.retain(|chan_id| {
1904                                                 short_channel_id != *chan_id
1905                                         });
1906                                         if entry.get().channels.is_empty() {
1907                                                 entry.remove_entry();
1908                                         }
1909                                 } else {
1910                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1911                                 }
1912                         }
1913                 }
1914
1915                 remove_from_node!(chan.node_one);
1916                 remove_from_node!(chan.node_two);
1917         }
1918 }
1919
1920 impl ReadOnlyNetworkGraph<'_> {
1921         /// Returns all known valid channels' short ids along with announced channel info.
1922         ///
1923         /// (C-not exported) because we have no mapping for `BTreeMap`s
1924         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1925                 &*self.channels
1926         }
1927
1928         /// Returns information on a channel with the given id.
1929         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1930                 self.channels.get(&short_channel_id)
1931         }
1932
1933         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1934         /// Returns the list of channels in the graph
1935         pub fn list_channels(&self) -> Vec<u64> {
1936                 self.channels.keys().map(|c| *c).collect()
1937         }
1938
1939         /// Returns all known nodes' public keys along with announced node info.
1940         ///
1941         /// (C-not exported) because we have no mapping for `BTreeMap`s
1942         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1943                 &*self.nodes
1944         }
1945
1946         /// Returns information on a node with the given id.
1947         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1948                 self.nodes.get(node_id)
1949         }
1950
1951         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1952         /// Returns the list of nodes in the graph
1953         pub fn list_nodes(&self) -> Vec<NodeId> {
1954                 self.nodes.keys().map(|n| *n).collect()
1955         }
1956
1957         /// Get network addresses by node id.
1958         /// Returns None if the requested node is completely unknown,
1959         /// or if node announcement for the node was never received.
1960         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1961                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1962                         if let Some(node_info) = node.announcement_info.as_ref() {
1963                                 return Some(node_info.addresses.clone())
1964                         }
1965                 }
1966                 None
1967         }
1968 }
1969
1970 #[cfg(test)]
1971 mod tests {
1972         use crate::chain;
1973         use crate::ln::channelmanager;
1974         use crate::ln::chan_utils::make_funding_redeemscript;
1975         use crate::ln::PaymentHash;
1976         use crate::ln::features::InitFeatures;
1977         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1978         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1979                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1980                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1981         use crate::util::test_utils;
1982         use crate::util::ser::{ReadableArgs, Writeable};
1983         use crate::util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1984         use crate::util::scid_utils::scid_from_parts;
1985
1986         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1987         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1988
1989         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1990         use bitcoin::hashes::Hash;
1991         use bitcoin::network::constants::Network;
1992         use bitcoin::blockdata::constants::genesis_block;
1993         use bitcoin::blockdata::script::Script;
1994         use bitcoin::blockdata::transaction::TxOut;
1995
1996         use hex;
1997
1998         use bitcoin::secp256k1::{PublicKey, SecretKey};
1999         use bitcoin::secp256k1::{All, Secp256k1};
2000
2001         use crate::io;
2002         use bitcoin::secp256k1;
2003         use crate::prelude::*;
2004         use crate::sync::Arc;
2005
2006         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2007                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2008                 let logger = Arc::new(test_utils::TestLogger::new());
2009                 NetworkGraph::new(genesis_hash, logger)
2010         }
2011
2012         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2013                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2014                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2015         ) {
2016                 let secp_ctx = Secp256k1::new();
2017                 let logger = Arc::new(test_utils::TestLogger::new());
2018                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2019                 (secp_ctx, gossip_sync)
2020         }
2021
2022         #[test]
2023         #[cfg(feature = "std")]
2024         fn request_full_sync_finite_times() {
2025                 let network_graph = create_network_graph();
2026                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2027                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2028
2029                 assert!(gossip_sync.should_request_full_sync(&node_id));
2030                 assert!(gossip_sync.should_request_full_sync(&node_id));
2031                 assert!(gossip_sync.should_request_full_sync(&node_id));
2032                 assert!(gossip_sync.should_request_full_sync(&node_id));
2033                 assert!(gossip_sync.should_request_full_sync(&node_id));
2034                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2035         }
2036
2037         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2038                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
2039                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2040                         features: channelmanager::provided_node_features(),
2041                         timestamp: 100,
2042                         node_id: node_id,
2043                         rgb: [0; 3],
2044                         alias: [0; 32],
2045                         addresses: Vec::new(),
2046                         excess_address_data: Vec::new(),
2047                         excess_data: Vec::new(),
2048                 };
2049                 f(&mut unsigned_announcement);
2050                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2051                 NodeAnnouncement {
2052                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2053                         contents: unsigned_announcement
2054                 }
2055         }
2056
2057         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2058                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2059                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2060                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2061                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2062
2063                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2064                         features: channelmanager::provided_channel_features(),
2065                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2066                         short_channel_id: 0,
2067                         node_id_1,
2068                         node_id_2,
2069                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2070                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2071                         excess_data: Vec::new(),
2072                 };
2073                 f(&mut unsigned_announcement);
2074                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2075                 ChannelAnnouncement {
2076                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2077                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2078                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2079                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2080                         contents: unsigned_announcement,
2081                 }
2082         }
2083
2084         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2085                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2086                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2087                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2088                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2089         }
2090
2091         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2092                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2093                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2094                         short_channel_id: 0,
2095                         timestamp: 100,
2096                         flags: 0,
2097                         cltv_expiry_delta: 144,
2098                         htlc_minimum_msat: 1_000_000,
2099                         htlc_maximum_msat: 1_000_000,
2100                         fee_base_msat: 10_000,
2101                         fee_proportional_millionths: 20,
2102                         excess_data: Vec::new()
2103                 };
2104                 f(&mut unsigned_channel_update);
2105                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2106                 ChannelUpdate {
2107                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2108                         contents: unsigned_channel_update
2109                 }
2110         }
2111
2112         #[test]
2113         fn handling_node_announcements() {
2114                 let network_graph = create_network_graph();
2115                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2116
2117                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2118                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2119                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2120
2121                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2122                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2123                         Ok(_) => panic!(),
2124                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2125                 };
2126
2127                 {
2128                         // Announce a channel to add a corresponding node.
2129                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2130                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2131                                 Ok(res) => assert!(res),
2132                                 _ => panic!()
2133                         };
2134                 }
2135
2136                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2137                         Ok(res) => assert!(res),
2138                         Err(_) => panic!()
2139                 };
2140
2141                 let fake_msghash = hash_to_message!(&zero_hash);
2142                 match gossip_sync.handle_node_announcement(
2143                         &NodeAnnouncement {
2144                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2145                                 contents: valid_announcement.contents.clone()
2146                 }) {
2147                         Ok(_) => panic!(),
2148                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2149                 };
2150
2151                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2152                         unsigned_announcement.timestamp += 1000;
2153                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2154                 }, node_1_privkey, &secp_ctx);
2155                 // Return false because contains excess data.
2156                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2157                         Ok(res) => assert!(!res),
2158                         Err(_) => panic!()
2159                 };
2160
2161                 // Even though previous announcement was not relayed further, we still accepted it,
2162                 // so we now won't accept announcements before the previous one.
2163                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2164                         unsigned_announcement.timestamp += 1000 - 10;
2165                 }, node_1_privkey, &secp_ctx);
2166                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2167                         Ok(_) => panic!(),
2168                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2169                 };
2170         }
2171
2172         #[test]
2173         fn handling_channel_announcements() {
2174                 let secp_ctx = Secp256k1::new();
2175                 let logger = test_utils::TestLogger::new();
2176
2177                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2178                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2179
2180                 let good_script = get_channel_script(&secp_ctx);
2181                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2182
2183                 // Test if the UTXO lookups were not supported
2184                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2185                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2186                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2187                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2188                         Ok(res) => assert!(res),
2189                         _ => panic!()
2190                 };
2191
2192                 {
2193                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2194                                 None => panic!(),
2195                                 Some(_) => ()
2196                         };
2197                 }
2198
2199                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2200                 // drop new one on the floor, since we can't see any changes.
2201                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2202                         Ok(_) => panic!(),
2203                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2204                 };
2205
2206                 // Test if an associated transaction were not on-chain (or not confirmed).
2207                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2208                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2209                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2210                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2211
2212                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2213                         unsigned_announcement.short_channel_id += 1;
2214                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2215                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2216                         Ok(_) => panic!(),
2217                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2218                 };
2219
2220                 // Now test if the transaction is found in the UTXO set and the script is correct.
2221                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2222                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2223                         unsigned_announcement.short_channel_id += 2;
2224                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2225                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2226                         Ok(res) => assert!(res),
2227                         _ => panic!()
2228                 };
2229
2230                 {
2231                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2232                                 None => panic!(),
2233                                 Some(_) => ()
2234                         };
2235                 }
2236
2237                 // If we receive announcement for the same channel, once we've validated it against the
2238                 // chain, we simply ignore all new (duplicate) announcements.
2239                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2240                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2241                         Ok(_) => panic!(),
2242                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2243                 };
2244
2245                 #[cfg(feature = "std")]
2246                 {
2247                         use std::time::{SystemTime, UNIX_EPOCH};
2248
2249                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2250                         // Mark a node as permanently failed so it's tracked as removed.
2251                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2252
2253                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2254                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2255                                 unsigned_announcement.short_channel_id += 3;
2256                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2257                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2258                                 Ok(_) => panic!(),
2259                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2260                         }
2261
2262                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2263
2264                         // The above channel announcement should be handled as per normal now.
2265                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2266                                 Ok(res) => assert!(res),
2267                                 _ => panic!()
2268                         }
2269                 }
2270
2271                 // Don't relay valid channels with excess data
2272                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2273                         unsigned_announcement.short_channel_id += 4;
2274                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2275                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2276                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2277                         Ok(res) => assert!(!res),
2278                         _ => panic!()
2279                 };
2280
2281                 let mut invalid_sig_announcement = valid_announcement.clone();
2282                 invalid_sig_announcement.contents.excess_data = Vec::new();
2283                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2284                         Ok(_) => panic!(),
2285                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2286                 };
2287
2288                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2289                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2290                         Ok(_) => panic!(),
2291                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2292                 };
2293         }
2294
2295         #[test]
2296         fn handling_channel_update() {
2297                 let secp_ctx = Secp256k1::new();
2298                 let logger = test_utils::TestLogger::new();
2299                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2300                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2301                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2302                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2303
2304                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2305                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2306
2307                 let amount_sats = 1000_000;
2308                 let short_channel_id;
2309
2310                 {
2311                         // Announce a channel we will update
2312                         let good_script = get_channel_script(&secp_ctx);
2313                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2314
2315                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2316                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2317                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2318                                 Ok(_) => (),
2319                                 Err(_) => panic!()
2320                         };
2321
2322                 }
2323
2324                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2325                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2326                         Ok(res) => assert!(res),
2327                         _ => panic!(),
2328                 };
2329
2330                 {
2331                         match network_graph.read_only().channels().get(&short_channel_id) {
2332                                 None => panic!(),
2333                                 Some(channel_info) => {
2334                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2335                                         assert!(channel_info.two_to_one.is_none());
2336                                 }
2337                         };
2338                 }
2339
2340                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2341                         unsigned_channel_update.timestamp += 100;
2342                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2343                 }, node_1_privkey, &secp_ctx);
2344                 // Return false because contains excess data
2345                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2346                         Ok(res) => assert!(!res),
2347                         _ => panic!()
2348                 };
2349
2350                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2351                         unsigned_channel_update.timestamp += 110;
2352                         unsigned_channel_update.short_channel_id += 1;
2353                 }, node_1_privkey, &secp_ctx);
2354                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2355                         Ok(_) => panic!(),
2356                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2357                 };
2358
2359                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2360                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2361                         unsigned_channel_update.timestamp += 110;
2362                 }, node_1_privkey, &secp_ctx);
2363                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2364                         Ok(_) => panic!(),
2365                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2366                 };
2367
2368                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2369                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2370                         unsigned_channel_update.timestamp += 110;
2371                 }, node_1_privkey, &secp_ctx);
2372                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2373                         Ok(_) => panic!(),
2374                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2375                 };
2376
2377                 // Even though previous update was not relayed further, we still accepted it,
2378                 // so we now won't accept update before the previous one.
2379                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2380                         unsigned_channel_update.timestamp += 100;
2381                 }, node_1_privkey, &secp_ctx);
2382                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2383                         Ok(_) => panic!(),
2384                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2385                 };
2386
2387                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2388                         unsigned_channel_update.timestamp += 500;
2389                 }, node_1_privkey, &secp_ctx);
2390                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2391                 let fake_msghash = hash_to_message!(&zero_hash);
2392                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2393                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2394                         Ok(_) => panic!(),
2395                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2396                 };
2397         }
2398
2399         #[test]
2400         fn handling_network_update() {
2401                 let logger = test_utils::TestLogger::new();
2402                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2403                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2404                 let secp_ctx = Secp256k1::new();
2405
2406                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2407                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2408                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2409
2410                 {
2411                         // There is no nodes in the table at the beginning.
2412                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2413                 }
2414
2415                 let short_channel_id;
2416                 {
2417                         // Announce a channel we will update
2418                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2419                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2420                         let chain_source: Option<&test_utils::TestChainSource> = None;
2421                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2422                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2423
2424                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2425                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2426
2427                         network_graph.handle_event(&Event::PaymentPathFailed {
2428                                 payment_id: None,
2429                                 payment_hash: PaymentHash([0; 32]),
2430                                 payment_failed_permanently: false,
2431                                 all_paths_failed: true,
2432                                 path: vec![],
2433                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2434                                         msg: valid_channel_update,
2435                                 }),
2436                                 short_channel_id: None,
2437                                 retry: None,
2438                                 error_code: None,
2439                                 error_data: None,
2440                         });
2441
2442                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2443                 }
2444
2445                 // Non-permanent closing just disables a channel
2446                 {
2447                         match network_graph.read_only().channels().get(&short_channel_id) {
2448                                 None => panic!(),
2449                                 Some(channel_info) => {
2450                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2451                                 }
2452                         };
2453
2454                         network_graph.handle_event(&Event::PaymentPathFailed {
2455                                 payment_id: None,
2456                                 payment_hash: PaymentHash([0; 32]),
2457                                 payment_failed_permanently: false,
2458                                 all_paths_failed: true,
2459                                 path: vec![],
2460                                 network_update: Some(NetworkUpdate::ChannelFailure {
2461                                         short_channel_id,
2462                                         is_permanent: false,
2463                                 }),
2464                                 short_channel_id: None,
2465                                 retry: None,
2466                                 error_code: None,
2467                                 error_data: None,
2468                         });
2469
2470                         match network_graph.read_only().channels().get(&short_channel_id) {
2471                                 None => panic!(),
2472                                 Some(channel_info) => {
2473                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2474                                 }
2475                         };
2476                 }
2477
2478                 // Permanent closing deletes a channel
2479                 network_graph.handle_event(&Event::PaymentPathFailed {
2480                         payment_id: None,
2481                         payment_hash: PaymentHash([0; 32]),
2482                         payment_failed_permanently: false,
2483                         all_paths_failed: true,
2484                         path: vec![],
2485                         network_update: Some(NetworkUpdate::ChannelFailure {
2486                                 short_channel_id,
2487                                 is_permanent: true,
2488                         }),
2489                         short_channel_id: None,
2490                         retry: None,
2491                         error_code: None,
2492                         error_data: None,
2493                 });
2494
2495                 assert_eq!(network_graph.read_only().channels().len(), 0);
2496                 // Nodes are also deleted because there are no associated channels anymore
2497                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2498
2499                 {
2500                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2501                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2502
2503                         // Announce a channel to test permanent node failure
2504                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2505                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2506                         let chain_source: Option<&test_utils::TestChainSource> = None;
2507                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2508                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2509
2510                         // Non-permanent node failure does not delete any nodes or channels
2511                         network_graph.handle_event(&Event::PaymentPathFailed {
2512                                 payment_id: None,
2513                                 payment_hash: PaymentHash([0; 32]),
2514                                 payment_failed_permanently: false,
2515                                 all_paths_failed: true,
2516                                 path: vec![],
2517                                 network_update: Some(NetworkUpdate::NodeFailure {
2518                                         node_id: node_2_id,
2519                                         is_permanent: false,
2520                                 }),
2521                                 short_channel_id: None,
2522                                 retry: None,
2523                                 error_code: None,
2524                                 error_data: None,
2525                         });
2526
2527                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2528                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2529
2530                         // Permanent node failure deletes node and its channels
2531                         network_graph.handle_event(&Event::PaymentPathFailed {
2532                                 payment_id: None,
2533                                 payment_hash: PaymentHash([0; 32]),
2534                                 payment_failed_permanently: false,
2535                                 all_paths_failed: true,
2536                                 path: vec![],
2537                                 network_update: Some(NetworkUpdate::NodeFailure {
2538                                         node_id: node_2_id,
2539                                         is_permanent: true,
2540                                 }),
2541                                 short_channel_id: None,
2542                                 retry: None,
2543                                 error_code: None,
2544                                 error_data: None,
2545                         });
2546
2547                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2548                         // Channels are also deleted because the associated node has been deleted
2549                         assert_eq!(network_graph.read_only().channels().len(), 0);
2550                 }
2551         }
2552
2553         #[test]
2554         fn test_channel_timeouts() {
2555                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2556                 let logger = test_utils::TestLogger::new();
2557                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2558                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2559                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2560                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2561                 let secp_ctx = Secp256k1::new();
2562
2563                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2564                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2565
2566                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2567                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2568                 let chain_source: Option<&test_utils::TestChainSource> = None;
2569                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2570                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2571
2572                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2573                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2574                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2575
2576                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2577                 assert_eq!(network_graph.read_only().channels().len(), 1);
2578                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2579
2580                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2581                 #[cfg(feature = "std")]
2582                 {
2583                         // In std mode, a further check is performed before fully removing the channel -
2584                         // the channel_announcement must have been received at least two weeks ago. We
2585                         // fudge that here by indicating the time has jumped two weeks. Note that the
2586                         // directional channel information will have been removed already..
2587                         assert_eq!(network_graph.read_only().channels().len(), 1);
2588                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2589                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2590
2591                         use std::time::{SystemTime, UNIX_EPOCH};
2592                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2593                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2594                 }
2595
2596                 assert_eq!(network_graph.read_only().channels().len(), 0);
2597                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2598
2599                 #[cfg(feature = "std")]
2600                 {
2601                         use std::time::{SystemTime, UNIX_EPOCH};
2602
2603                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2604
2605                         // Clear tracked nodes and channels for clean slate
2606                         network_graph.removed_channels.lock().unwrap().clear();
2607                         network_graph.removed_nodes.lock().unwrap().clear();
2608
2609                         // Add a channel and nodes from channel announcement. So our network graph will
2610                         // now only consist of two nodes and one channel between them.
2611                         assert!(network_graph.update_channel_from_announcement(
2612                                 &valid_channel_announcement, &chain_source).is_ok());
2613
2614                         // Mark the channel as permanently failed. This will also remove the two nodes
2615                         // and all of the entries will be tracked as removed.
2616                         network_graph.channel_failed(short_channel_id, true);
2617
2618                         // Should not remove from tracking if insufficient time has passed
2619                         network_graph.remove_stale_channels_and_tracking_with_time(
2620                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2621                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2622
2623                         // Provide a later time so that sufficient time has passed
2624                         network_graph.remove_stale_channels_and_tracking_with_time(
2625                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2626                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2627                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2628                 }
2629
2630                 #[cfg(not(feature = "std"))]
2631                 {
2632                         // When we don't have access to the system clock, the time we started tracking removal will only
2633                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2634                         // only if sufficient time has passed after that first call, will the next call remove it from
2635                         // tracking.
2636                         let removal_time = 1664619654;
2637
2638                         // Clear removed nodes and channels for clean slate
2639                         network_graph.removed_channels.lock().unwrap().clear();
2640                         network_graph.removed_nodes.lock().unwrap().clear();
2641
2642                         // Add a channel and nodes from channel announcement. So our network graph will
2643                         // now only consist of two nodes and one channel between them.
2644                         assert!(network_graph.update_channel_from_announcement(
2645                                 &valid_channel_announcement, &chain_source).is_ok());
2646
2647                         // Mark the channel as permanently failed. This will also remove the two nodes
2648                         // and all of the entries will be tracked as removed.
2649                         network_graph.channel_failed(short_channel_id, true);
2650
2651                         // The first time we call the following, the channel will have a removal time assigned.
2652                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2653                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2654
2655                         // Provide a later time so that sufficient time has passed
2656                         network_graph.remove_stale_channels_and_tracking_with_time(
2657                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2658                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2659                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2660                 }
2661         }
2662
2663         #[test]
2664         fn getting_next_channel_announcements() {
2665                 let network_graph = create_network_graph();
2666                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2667                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2668                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2669
2670                 // Channels were not announced yet.
2671                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2672                 assert!(channels_with_announcements.is_none());
2673
2674                 let short_channel_id;
2675                 {
2676                         // Announce a channel we will update
2677                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2678                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2679                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2680                                 Ok(_) => (),
2681                                 Err(_) => panic!()
2682                         };
2683                 }
2684
2685                 // Contains initial channel announcement now.
2686                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2687                 if let Some(channel_announcements) = channels_with_announcements {
2688                         let (_, ref update_1, ref update_2) = channel_announcements;
2689                         assert_eq!(update_1, &None);
2690                         assert_eq!(update_2, &None);
2691                 } else {
2692                         panic!();
2693                 }
2694
2695                 {
2696                         // Valid channel update
2697                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2698                                 unsigned_channel_update.timestamp = 101;
2699                         }, node_1_privkey, &secp_ctx);
2700                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2701                                 Ok(_) => (),
2702                                 Err(_) => panic!()
2703                         };
2704                 }
2705
2706                 // Now contains an initial announcement and an update.
2707                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2708                 if let Some(channel_announcements) = channels_with_announcements {
2709                         let (_, ref update_1, ref update_2) = channel_announcements;
2710                         assert_ne!(update_1, &None);
2711                         assert_eq!(update_2, &None);
2712                 } else {
2713                         panic!();
2714                 }
2715
2716                 {
2717                         // Channel update with excess data.
2718                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2719                                 unsigned_channel_update.timestamp = 102;
2720                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2721                         }, node_1_privkey, &secp_ctx);
2722                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2723                                 Ok(_) => (),
2724                                 Err(_) => panic!()
2725                         };
2726                 }
2727
2728                 // Test that announcements with excess data won't be returned
2729                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2730                 if let Some(channel_announcements) = channels_with_announcements {
2731                         let (_, ref update_1, ref update_2) = channel_announcements;
2732                         assert_eq!(update_1, &None);
2733                         assert_eq!(update_2, &None);
2734                 } else {
2735                         panic!();
2736                 }
2737
2738                 // Further starting point have no channels after it
2739                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2740                 assert!(channels_with_announcements.is_none());
2741         }
2742
2743         #[test]
2744         fn getting_next_node_announcements() {
2745                 let network_graph = create_network_graph();
2746                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2747                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2748                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2749                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2750
2751                 // No nodes yet.
2752                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2753                 assert!(next_announcements.is_none());
2754
2755                 {
2756                         // Announce a channel to add 2 nodes
2757                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2758                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2759                                 Ok(_) => (),
2760                                 Err(_) => panic!()
2761                         };
2762                 }
2763
2764                 // Nodes were never announced
2765                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2766                 assert!(next_announcements.is_none());
2767
2768                 {
2769                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2770                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2771                                 Ok(_) => (),
2772                                 Err(_) => panic!()
2773                         };
2774
2775                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2776                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2777                                 Ok(_) => (),
2778                                 Err(_) => panic!()
2779                         };
2780                 }
2781
2782                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2783                 assert!(next_announcements.is_some());
2784
2785                 // Skip the first node.
2786                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2787                 assert!(next_announcements.is_some());
2788
2789                 {
2790                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2791                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2792                                 unsigned_announcement.timestamp += 10;
2793                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2794                         }, node_2_privkey, &secp_ctx);
2795                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2796                                 Ok(res) => assert!(!res),
2797                                 Err(_) => panic!()
2798                         };
2799                 }
2800
2801                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2802                 assert!(next_announcements.is_none());
2803         }
2804
2805         #[test]
2806         fn network_graph_serialization() {
2807                 let network_graph = create_network_graph();
2808                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2809
2810                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2811                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2812
2813                 // Announce a channel to add a corresponding node.
2814                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2815                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2816                         Ok(res) => assert!(res),
2817                         _ => panic!()
2818                 };
2819
2820                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2821                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2822                         Ok(_) => (),
2823                         Err(_) => panic!()
2824                 };
2825
2826                 let mut w = test_utils::TestVecWriter(Vec::new());
2827                 assert!(!network_graph.read_only().nodes().is_empty());
2828                 assert!(!network_graph.read_only().channels().is_empty());
2829                 network_graph.write(&mut w).unwrap();
2830
2831                 let logger = Arc::new(test_utils::TestLogger::new());
2832                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2833         }
2834
2835         #[test]
2836         fn network_graph_tlv_serialization() {
2837                 let network_graph = create_network_graph();
2838                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2839
2840                 let mut w = test_utils::TestVecWriter(Vec::new());
2841                 network_graph.write(&mut w).unwrap();
2842
2843                 let logger = Arc::new(test_utils::TestLogger::new());
2844                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2845                 assert!(reassembled_network_graph == network_graph);
2846                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2847         }
2848
2849         #[test]
2850         #[cfg(feature = "std")]
2851         fn calling_sync_routing_table() {
2852                 use std::time::{SystemTime, UNIX_EPOCH};
2853                 use crate::ln::msgs::Init;
2854
2855                 let network_graph = create_network_graph();
2856                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2857                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2858                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2859
2860                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2861
2862                 // It should ignore if gossip_queries feature is not enabled
2863                 {
2864                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2865                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2866                         let events = gossip_sync.get_and_clear_pending_msg_events();
2867                         assert_eq!(events.len(), 0);
2868                 }
2869
2870                 // It should send a gossip_timestamp_filter with the correct information
2871                 {
2872                         let mut features = InitFeatures::empty();
2873                         features.set_gossip_queries_optional();
2874                         let init_msg = Init { features, remote_network_address: None };
2875                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2876                         let events = gossip_sync.get_and_clear_pending_msg_events();
2877                         assert_eq!(events.len(), 1);
2878                         match &events[0] {
2879                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2880                                         assert_eq!(node_id, &node_id_1);
2881                                         assert_eq!(msg.chain_hash, chain_hash);
2882                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2883                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2884                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2885                                         assert_eq!(msg.timestamp_range, u32::max_value());
2886                                 },
2887                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2888                         };
2889                 }
2890         }
2891
2892         #[test]
2893         fn handling_query_channel_range() {
2894                 let network_graph = create_network_graph();
2895                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2896
2897                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2898                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2899                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2900                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2901
2902                 let mut scids: Vec<u64> = vec![
2903                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2904                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2905                 ];
2906
2907                 // used for testing multipart reply across blocks
2908                 for block in 100000..=108001 {
2909                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2910                 }
2911
2912                 // used for testing resumption on same block
2913                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2914
2915                 for scid in scids {
2916                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2917                                 unsigned_announcement.short_channel_id = scid;
2918                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2919                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2920                                 Ok(_) => (),
2921                                 _ => panic!()
2922                         };
2923                 }
2924
2925                 // Error when number_of_blocks=0
2926                 do_handling_query_channel_range(
2927                         &gossip_sync,
2928                         &node_id_2,
2929                         QueryChannelRange {
2930                                 chain_hash: chain_hash.clone(),
2931                                 first_blocknum: 0,
2932                                 number_of_blocks: 0,
2933                         },
2934                         false,
2935                         vec![ReplyChannelRange {
2936                                 chain_hash: chain_hash.clone(),
2937                                 first_blocknum: 0,
2938                                 number_of_blocks: 0,
2939                                 sync_complete: true,
2940                                 short_channel_ids: vec![]
2941                         }]
2942                 );
2943
2944                 // Error when wrong chain
2945                 do_handling_query_channel_range(
2946                         &gossip_sync,
2947                         &node_id_2,
2948                         QueryChannelRange {
2949                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2950                                 first_blocknum: 0,
2951                                 number_of_blocks: 0xffff_ffff,
2952                         },
2953                         false,
2954                         vec![ReplyChannelRange {
2955                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2956                                 first_blocknum: 0,
2957                                 number_of_blocks: 0xffff_ffff,
2958                                 sync_complete: true,
2959                                 short_channel_ids: vec![],
2960                         }]
2961                 );
2962
2963                 // Error when first_blocknum > 0xffffff
2964                 do_handling_query_channel_range(
2965                         &gossip_sync,
2966                         &node_id_2,
2967                         QueryChannelRange {
2968                                 chain_hash: chain_hash.clone(),
2969                                 first_blocknum: 0x01000000,
2970                                 number_of_blocks: 0xffff_ffff,
2971                         },
2972                         false,
2973                         vec![ReplyChannelRange {
2974                                 chain_hash: chain_hash.clone(),
2975                                 first_blocknum: 0x01000000,
2976                                 number_of_blocks: 0xffff_ffff,
2977                                 sync_complete: true,
2978                                 short_channel_ids: vec![]
2979                         }]
2980                 );
2981
2982                 // Empty reply when max valid SCID block num
2983                 do_handling_query_channel_range(
2984                         &gossip_sync,
2985                         &node_id_2,
2986                         QueryChannelRange {
2987                                 chain_hash: chain_hash.clone(),
2988                                 first_blocknum: 0xffffff,
2989                                 number_of_blocks: 1,
2990                         },
2991                         true,
2992                         vec![
2993                                 ReplyChannelRange {
2994                                         chain_hash: chain_hash.clone(),
2995                                         first_blocknum: 0xffffff,
2996                                         number_of_blocks: 1,
2997                                         sync_complete: true,
2998                                         short_channel_ids: vec![]
2999                                 },
3000                         ]
3001                 );
3002
3003                 // No results in valid query range
3004                 do_handling_query_channel_range(
3005                         &gossip_sync,
3006                         &node_id_2,
3007                         QueryChannelRange {
3008                                 chain_hash: chain_hash.clone(),
3009                                 first_blocknum: 1000,
3010                                 number_of_blocks: 1000,
3011                         },
3012                         true,
3013                         vec![
3014                                 ReplyChannelRange {
3015                                         chain_hash: chain_hash.clone(),
3016                                         first_blocknum: 1000,
3017                                         number_of_blocks: 1000,
3018                                         sync_complete: true,
3019                                         short_channel_ids: vec![],
3020                                 }
3021                         ]
3022                 );
3023
3024                 // Overflow first_blocknum + number_of_blocks
3025                 do_handling_query_channel_range(
3026                         &gossip_sync,
3027                         &node_id_2,
3028                         QueryChannelRange {
3029                                 chain_hash: chain_hash.clone(),
3030                                 first_blocknum: 0xfe0000,
3031                                 number_of_blocks: 0xffffffff,
3032                         },
3033                         true,
3034                         vec![
3035                                 ReplyChannelRange {
3036                                         chain_hash: chain_hash.clone(),
3037                                         first_blocknum: 0xfe0000,
3038                                         number_of_blocks: 0xffffffff - 0xfe0000,
3039                                         sync_complete: true,
3040                                         short_channel_ids: vec![
3041                                                 0xfffffe_ffffff_ffff, // max
3042                                         ]
3043                                 }
3044                         ]
3045                 );
3046
3047                 // Single block exactly full
3048                 do_handling_query_channel_range(
3049                         &gossip_sync,
3050                         &node_id_2,
3051                         QueryChannelRange {
3052                                 chain_hash: chain_hash.clone(),
3053                                 first_blocknum: 100000,
3054                                 number_of_blocks: 8000,
3055                         },
3056                         true,
3057                         vec![
3058                                 ReplyChannelRange {
3059                                         chain_hash: chain_hash.clone(),
3060                                         first_blocknum: 100000,
3061                                         number_of_blocks: 8000,
3062                                         sync_complete: true,
3063                                         short_channel_ids: (100000..=107999)
3064                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3065                                                 .collect(),
3066                                 },
3067                         ]
3068                 );
3069
3070                 // Multiple split on new block
3071                 do_handling_query_channel_range(
3072                         &gossip_sync,
3073                         &node_id_2,
3074                         QueryChannelRange {
3075                                 chain_hash: chain_hash.clone(),
3076                                 first_blocknum: 100000,
3077                                 number_of_blocks: 8001,
3078                         },
3079                         true,
3080                         vec![
3081                                 ReplyChannelRange {
3082                                         chain_hash: chain_hash.clone(),
3083                                         first_blocknum: 100000,
3084                                         number_of_blocks: 7999,
3085                                         sync_complete: false,
3086                                         short_channel_ids: (100000..=107999)
3087                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3088                                                 .collect(),
3089                                 },
3090                                 ReplyChannelRange {
3091                                         chain_hash: chain_hash.clone(),
3092                                         first_blocknum: 107999,
3093                                         number_of_blocks: 2,
3094                                         sync_complete: true,
3095                                         short_channel_ids: vec![
3096                                                 scid_from_parts(108000, 0, 0).unwrap(),
3097                                         ],
3098                                 }
3099                         ]
3100                 );
3101
3102                 // Multiple split on same block
3103                 do_handling_query_channel_range(
3104                         &gossip_sync,
3105                         &node_id_2,
3106                         QueryChannelRange {
3107                                 chain_hash: chain_hash.clone(),
3108                                 first_blocknum: 100002,
3109                                 number_of_blocks: 8000,
3110                         },
3111                         true,
3112                         vec![
3113                                 ReplyChannelRange {
3114                                         chain_hash: chain_hash.clone(),
3115                                         first_blocknum: 100002,
3116                                         number_of_blocks: 7999,
3117                                         sync_complete: false,
3118                                         short_channel_ids: (100002..=108001)
3119                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3120                                                 .collect(),
3121                                 },
3122                                 ReplyChannelRange {
3123                                         chain_hash: chain_hash.clone(),
3124                                         first_blocknum: 108001,
3125                                         number_of_blocks: 1,
3126                                         sync_complete: true,
3127                                         short_channel_ids: vec![
3128                                                 scid_from_parts(108001, 1, 0).unwrap(),
3129                                         ],
3130                                 }
3131                         ]
3132                 );
3133         }
3134
3135         fn do_handling_query_channel_range(
3136                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3137                 test_node_id: &PublicKey,
3138                 msg: QueryChannelRange,
3139                 expected_ok: bool,
3140                 expected_replies: Vec<ReplyChannelRange>
3141         ) {
3142                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3143                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3144                 let query_end_blocknum = msg.end_blocknum();
3145                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3146
3147                 if expected_ok {
3148                         assert!(result.is_ok());
3149                 } else {
3150                         assert!(result.is_err());
3151                 }
3152
3153                 let events = gossip_sync.get_and_clear_pending_msg_events();
3154                 assert_eq!(events.len(), expected_replies.len());
3155
3156                 for i in 0..events.len() {
3157                         let expected_reply = &expected_replies[i];
3158                         match &events[i] {
3159                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3160                                         assert_eq!(node_id, test_node_id);
3161                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3162                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3163                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3164                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3165                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3166
3167                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3168                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3169                                         assert!(msg.first_blocknum >= max_firstblocknum);
3170                                         max_firstblocknum = msg.first_blocknum;
3171                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3172
3173                                         // Check that the last block count is >= the query's end_blocknum
3174                                         if i == events.len() - 1 {
3175                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3176                                         }
3177                                 },
3178                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3179                         }
3180                 }
3181         }
3182
3183         #[test]
3184         fn handling_query_short_channel_ids() {
3185                 let network_graph = create_network_graph();
3186                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3187                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3188                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3189
3190                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3191
3192                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3193                         chain_hash,
3194                         short_channel_ids: vec![0x0003e8_000000_0000],
3195                 });
3196                 assert!(result.is_err());
3197         }
3198
3199         #[test]
3200         fn displays_node_alias() {
3201                 let format_str_alias = |alias: &str| {
3202                         let mut bytes = [0u8; 32];
3203                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3204                         format!("{}", NodeAlias(bytes))
3205                 };
3206
3207                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3208                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3209                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3210
3211                 let format_bytes_alias = |alias: &[u8]| {
3212                         let mut bytes = [0u8; 32];
3213                         bytes[..alias.len()].copy_from_slice(alias);
3214                         format!("{}", NodeAlias(bytes))
3215                 };
3216
3217                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3218                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3219                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3220         }
3221
3222         #[test]
3223         fn channel_info_is_readable() {
3224                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3225                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3226                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3227                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3228
3229                 // 1. Test encoding/decoding of ChannelUpdateInfo
3230                 let chan_update_info = ChannelUpdateInfo {
3231                         last_update: 23,
3232                         enabled: true,
3233                         cltv_expiry_delta: 42,
3234                         htlc_minimum_msat: 1234,
3235                         htlc_maximum_msat: 5678,
3236                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3237                         last_update_message: None,
3238                 };
3239
3240                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3241                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3242
3243                 // First make sure we can read ChannelUpdateInfos we just wrote
3244                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3245                 assert_eq!(chan_update_info, read_chan_update_info);
3246
3247                 // Check the serialization hasn't changed.
3248                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3249                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3250
3251                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3252                 // or the ChannelUpdate enclosed with `last_update_message`.
3253                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3254                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3255                 assert!(read_chan_update_info_res.is_err());
3256
3257                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3258                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3259                 assert!(read_chan_update_info_res.is_err());
3260
3261                 // 2. Test encoding/decoding of ChannelInfo
3262                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3263                 let chan_info_none_updates = ChannelInfo {
3264                         features: channelmanager::provided_channel_features(),
3265                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3266                         one_to_two: None,
3267                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3268                         two_to_one: None,
3269                         capacity_sats: None,
3270                         announcement_message: None,
3271                         announcement_received_time: 87654,
3272                 };
3273
3274                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3275                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3276
3277                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3278                 assert_eq!(chan_info_none_updates, read_chan_info);
3279
3280                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3281                 let chan_info_some_updates = ChannelInfo {
3282                         features: channelmanager::provided_channel_features(),
3283                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3284                         one_to_two: Some(chan_update_info.clone()),
3285                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3286                         two_to_one: Some(chan_update_info.clone()),
3287                         capacity_sats: None,
3288                         announcement_message: None,
3289                         announcement_received_time: 87654,
3290                 };
3291
3292                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3293                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3294
3295                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3296                 assert_eq!(chan_info_some_updates, read_chan_info);
3297
3298                 // Check the serialization hasn't changed.
3299                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3300                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3301
3302                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3303                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3304                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3305                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3306                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3307                 assert_eq!(read_chan_info.one_to_two, None);
3308                 assert_eq!(read_chan_info.two_to_one, None);
3309
3310                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3311                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3312                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3313                 assert_eq!(read_chan_info.one_to_two, None);
3314                 assert_eq!(read_chan_info.two_to_one, None);
3315         }
3316
3317         #[test]
3318         fn node_info_is_readable() {
3319                 use std::convert::TryFrom;
3320
3321                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3322                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3323                 let valid_node_ann_info = NodeAnnouncementInfo {
3324                         features: channelmanager::provided_node_features(),
3325                         last_update: 0,
3326                         rgb: [0u8; 3],
3327                         alias: NodeAlias([0u8; 32]),
3328                         addresses: vec![valid_netaddr],
3329                         announcement_message: None,
3330                 };
3331
3332                 let mut encoded_valid_node_ann_info = Vec::new();
3333                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3334                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3335                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3336
3337                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3338                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3339                 assert!(read_invalid_node_ann_info_res.is_err());
3340
3341                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3342                 let valid_node_info = NodeInfo {
3343                         channels: Vec::new(),
3344                         lowest_inbound_channel_fees: None,
3345                         announcement_info: Some(valid_node_ann_info),
3346                 };
3347
3348                 let mut encoded_valid_node_info = Vec::new();
3349                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3350                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3351                 assert_eq!(read_valid_node_info, valid_node_info);
3352
3353                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3354                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3355                 assert_eq!(read_invalid_node_info.announcement_info, None);
3356         }
3357 }
3358
3359 #[cfg(all(test, feature = "_bench_unstable"))]
3360 mod benches {
3361         use super::*;
3362
3363         use test::Bencher;
3364         use std::io::Read;
3365
3366         #[bench]
3367         fn read_network_graph(bench: &mut Bencher) {
3368                 let logger = crate::util::test_utils::TestLogger::new();
3369                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3370                 let mut v = Vec::new();
3371                 d.read_to_end(&mut v).unwrap();
3372                 bench.iter(|| {
3373                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3374                 });
3375         }
3376
3377         #[bench]
3378         fn write_network_graph(bench: &mut Bencher) {
3379                 let logger = crate::util::test_utils::TestLogger::new();
3380                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3381                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3382                 bench.iter(|| {
3383                         let _ = net_graph.encode();
3384                 });
3385         }
3386 }