Merge pull request #1651 from TheBlueMatt/2022-08-export-chan-list
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::script::Builder;
20 use bitcoin::blockdata::transaction::TxOut;
21 use bitcoin::blockdata::opcodes;
22 use bitcoin::hash_types::BlockHash;
23
24 use chain;
25 use chain::Access;
26 use ln::features::{ChannelFeatures, NodeFeatures};
27 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use ln::msgs;
31 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use util::logger::{Logger, Level};
33 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
34 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35
36 use io;
37 use io_extras::{copy, sink};
38 use prelude::*;
39 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
40 use core::{cmp, fmt};
41 use sync::{RwLock, RwLockReadGuard};
42 use core::sync::atomic::{AtomicUsize, Ordering};
43 use sync::Mutex;
44 use core::ops::Deref;
45 use bitcoin::hashes::hex::ToHex;
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83
84 impl core::hash::Hash for NodeId {
85         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
86                 self.0.hash(hasher);
87         }
88 }
89
90 impl Eq for NodeId {}
91
92 impl PartialEq for NodeId {
93         fn eq(&self, other: &Self) -> bool {
94                 self.0[..] == other.0[..]
95         }
96 }
97
98 impl cmp::PartialOrd for NodeId {
99         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
100                 Some(self.cmp(other))
101         }
102 }
103
104 impl Ord for NodeId {
105         fn cmp(&self, other: &Self) -> cmp::Ordering {
106                 self.0[..].cmp(&other.0[..])
107         }
108 }
109
110 impl Writeable for NodeId {
111         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
112                 writer.write_all(&self.0)?;
113                 Ok(())
114         }
115 }
116
117 impl Readable for NodeId {
118         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
119                 let mut buf = [0; PUBLIC_KEY_SIZE];
120                 reader.read_exact(&mut buf)?;
121                 Ok(Self(buf))
122         }
123 }
124
125 /// Represents the network as nodes and channels between them
126 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
127         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
128         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
129         genesis_hash: BlockHash,
130         logger: L,
131         // Lock order: channels -> nodes
132         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
133         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
134 }
135
136 /// A read-only view of [`NetworkGraph`].
137 pub struct ReadOnlyNetworkGraph<'a> {
138         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
139         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
140 }
141
142 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
143 /// return packet by a node along the route. See [BOLT #4] for details.
144 ///
145 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
146 #[derive(Clone, Debug, PartialEq)]
147 pub enum NetworkUpdate {
148         /// An error indicating a `channel_update` messages should be applied via
149         /// [`NetworkGraph::update_channel`].
150         ChannelUpdateMessage {
151                 /// The update to apply via [`NetworkGraph::update_channel`].
152                 msg: ChannelUpdate,
153         },
154         /// An error indicating that a channel failed to route a payment, which should be applied via
155         /// [`NetworkGraph::channel_failed`].
156         ChannelFailure {
157                 /// The short channel id of the closed channel.
158                 short_channel_id: u64,
159                 /// Whether the channel should be permanently removed or temporarily disabled until a new
160                 /// `channel_update` message is received.
161                 is_permanent: bool,
162         },
163         /// An error indicating that a node failed to route a payment, which should be applied via
164         /// [`NetworkGraph::node_failed`].
165         NodeFailure {
166                 /// The node id of the failed node.
167                 node_id: PublicKey,
168                 /// Whether the node should be permanently removed from consideration or can be restored
169                 /// when a new `channel_update` message is received.
170                 is_permanent: bool,
171         }
172 }
173
174 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
175         (0, ChannelUpdateMessage) => {
176                 (0, msg, required),
177         },
178         (2, ChannelFailure) => {
179                 (0, short_channel_id, required),
180                 (2, is_permanent, required),
181         },
182         (4, NodeFailure) => {
183                 (0, node_id, required),
184                 (2, is_permanent, required),
185         },
186 );
187
188 /// Receives and validates network updates from peers,
189 /// stores authentic and relevant data as a network graph.
190 /// This network graph is then used for routing payments.
191 /// Provides interface to help with initial routing sync by
192 /// serving historical announcements.
193 ///
194 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
195 /// [`NetworkGraph`].
196 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
197 where C::Target: chain::Access, L::Target: Logger
198 {
199         network_graph: G,
200         chain_access: Option<C>,
201         full_syncs_requested: AtomicUsize,
202         pending_events: Mutex<Vec<MessageSendEvent>>,
203         logger: L,
204 }
205
206 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
207 where C::Target: chain::Access, L::Target: Logger
208 {
209         /// Creates a new tracker of the actual state of the network of channels and nodes,
210         /// assuming an existing Network Graph.
211         /// Chain monitor is used to make sure announced channels exist on-chain,
212         /// channel data is correct, and that the announcement is signed with
213         /// channel owners' keys.
214         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
215                 P2PGossipSync {
216                         network_graph,
217                         full_syncs_requested: AtomicUsize::new(0),
218                         chain_access,
219                         pending_events: Mutex::new(vec![]),
220                         logger,
221                 }
222         }
223
224         /// Adds a provider used to check new announcements. Does not affect
225         /// existing announcements unless they are updated.
226         /// Add, update or remove the provider would replace the current one.
227         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
228                 self.chain_access = chain_access;
229         }
230
231         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
232         /// [`P2PGossipSync::new`].
233         ///
234         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
235         pub fn network_graph(&self) -> &G {
236                 &self.network_graph
237         }
238
239         /// Returns true when a full routing table sync should be performed with a peer.
240         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
241                 //TODO: Determine whether to request a full sync based on the network map.
242                 const FULL_SYNCS_TO_REQUEST: usize = 5;
243                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
244                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
245                         true
246                 } else {
247                         false
248                 }
249         }
250 }
251
252 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
253         fn handle_event(&self, event: &Event) {
254                 if let Event::PaymentPathFailed { network_update, .. } = event {
255                         if let Some(network_update) = network_update {
256                                 match *network_update {
257                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
258                                                 let short_channel_id = msg.contents.short_channel_id;
259                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
260                                                 let status = if is_enabled { "enabled" } else { "disabled" };
261                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
262                                                 let _ = self.update_channel(msg);
263                                         },
264                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
265                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
266                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
267                                                 self.channel_failed(short_channel_id, is_permanent);
268                                         },
269                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
270                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
271                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
272                                                 self.node_failed(node_id, is_permanent);
273                                         },
274                                 }
275                         }
276                 }
277         }
278 }
279
280 macro_rules! secp_verify_sig {
281         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
282                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
283                         Ok(_) => {},
284                         Err(_) => {
285                                 return Err(LightningError {
286                                         err: format!("Invalid signature on {} message", $msg_type),
287                                         action: ErrorAction::SendWarningMessage {
288                                                 msg: msgs::WarningMessage {
289                                                         channel_id: [0; 32],
290                                                         data: format!("Invalid signature on {} message", $msg_type),
291                                                 },
292                                                 log_level: Level::Trace,
293                                         },
294                                 });
295                         },
296                 }
297         };
298 }
299
300 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
301 where C::Target: chain::Access, L::Target: Logger
302 {
303         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
304                 self.network_graph.update_node_from_announcement(msg)?;
305                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
306                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
307                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
308         }
309
310         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
311                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
312                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
313                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
314         }
315
316         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
317                 self.network_graph.update_channel(msg)?;
318                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
319         }
320
321         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
322                 let mut result = Vec::with_capacity(batch_amount as usize);
323                 let channels = self.network_graph.channels.read().unwrap();
324                 let mut iter = channels.range(starting_point..);
325                 while result.len() < batch_amount as usize {
326                         if let Some((_, ref chan)) = iter.next() {
327                                 if chan.announcement_message.is_some() {
328                                         let chan_announcement = chan.announcement_message.clone().unwrap();
329                                         let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
330                                         let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
331                                         if let Some(one_to_two) = chan.one_to_two.as_ref() {
332                                                 one_to_two_announcement = one_to_two.last_update_message.clone();
333                                         }
334                                         if let Some(two_to_one) = chan.two_to_one.as_ref() {
335                                                 two_to_one_announcement = two_to_one.last_update_message.clone();
336                                         }
337                                         result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
338                                 } else {
339                                         // TODO: We may end up sending un-announced channel_updates if we are sending
340                                         // initial sync data while receiving announce/updates for this channel.
341                                 }
342                         } else {
343                                 return result;
344                         }
345                 }
346                 result
347         }
348
349         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
350                 let mut result = Vec::with_capacity(batch_amount as usize);
351                 let nodes = self.network_graph.nodes.read().unwrap();
352                 let mut iter = if let Some(pubkey) = starting_point {
353                                 let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..);
354                                 iter.next();
355                                 iter
356                         } else {
357                                 nodes.range::<NodeId, _>(..)
358                         };
359                 while result.len() < batch_amount as usize {
360                         if let Some((_, ref node)) = iter.next() {
361                                 if let Some(node_info) = node.announcement_info.as_ref() {
362                                         if node_info.announcement_message.is_some() {
363                                                 result.push(node_info.announcement_message.clone().unwrap());
364                                         }
365                                 }
366                         } else {
367                                 return result;
368                         }
369                 }
370                 result
371         }
372
373         /// Initiates a stateless sync of routing gossip information with a peer
374         /// using gossip_queries. The default strategy used by this implementation
375         /// is to sync the full block range with several peers.
376         ///
377         /// We should expect one or more reply_channel_range messages in response
378         /// to our query_channel_range. Each reply will enqueue a query_scid message
379         /// to request gossip messages for each channel. The sync is considered complete
380         /// when the final reply_scids_end message is received, though we are not
381         /// tracking this directly.
382         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
383                 // We will only perform a sync with peers that support gossip_queries.
384                 if !init_msg.features.supports_gossip_queries() {
385                         return ();
386                 }
387
388                 // The lightning network's gossip sync system is completely broken in numerous ways.
389                 //
390                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
391                 // to do a full sync from the first few peers we connect to, and then receive gossip
392                 // updates from all our peers normally.
393                 //
394                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
395                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
396                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
397                 // seen.
398                 //
399                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
400                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
401                 // channel data which you are missing. Except there was no way at all to identify which
402                 // `channel_update`s you were missing, so you still had to request everything, just in a
403                 // very complicated way with some queries instead of just getting the dump.
404                 //
405                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
406                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
407                 // relying on it useless.
408                 //
409                 // After gossip queries were introduced, support for receiving a full gossip table dump on
410                 // connection was removed from several nodes, making it impossible to get a full sync
411                 // without using the "gossip queries" messages.
412                 //
413                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
414                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
415                 // message, as the name implies, tells the peer to not forward any gossip messages with a
416                 // timestamp older than a given value (not the time the peer received the filter, but the
417                 // timestamp in the update message, which is often hours behind when the peer received the
418                 // message).
419                 //
420                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
421                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
422                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
423                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
424                 // will simply not forward any new updates they see to you which were generated some time
425                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
426                 // ago), you will always get the full routing graph from all your peers.
427                 //
428                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
429                 // propagated some time after it was generated, and, worse, often disable gossiping with
430                 // several peers after their first connection. The second behavior can cause gossip to not
431                 // propagate fully if there are cuts in the gossiping subgraph.
432                 //
433                 // In an attempt to cut a middle ground between always fetching the full graph from all of
434                 // our peers and never receiving gossip from peers at all, we send all of our peers a
435                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
436                 //
437                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
438                 let should_request_full_sync = self.should_request_full_sync(&their_node_id);
439                 #[allow(unused_mut, unused_assignments)]
440                 let mut gossip_start_time = 0;
441                 #[cfg(feature = "std")]
442                 {
443                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
444                         if should_request_full_sync {
445                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
446                         } else {
447                                 gossip_start_time -= 60 * 60; // an hour ago
448                         }
449                 }
450
451                 let mut pending_events = self.pending_events.lock().unwrap();
452                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
453                         node_id: their_node_id.clone(),
454                         msg: GossipTimestampFilter {
455                                 chain_hash: self.network_graph.genesis_hash,
456                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
457                                 timestamp_range: u32::max_value(),
458                         },
459                 });
460         }
461
462         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
463                 // We don't make queries, so should never receive replies. If, in the future, the set
464                 // reconciliation extensions to gossip queries become broadly supported, we should revert
465                 // this code to its state pre-0.0.106.
466                 Ok(())
467         }
468
469         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
470                 // We don't make queries, so should never receive replies. If, in the future, the set
471                 // reconciliation extensions to gossip queries become broadly supported, we should revert
472                 // this code to its state pre-0.0.106.
473                 Ok(())
474         }
475
476         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
477         /// are in the specified block range. Due to message size limits, large range
478         /// queries may result in several reply messages. This implementation enqueues
479         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
480         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
481         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
482         /// memory constrained systems.
483         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
484                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
485
486                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
487
488                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
489                 // If so, we manually cap the ending block to avoid this overflow.
490                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
491
492                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
493                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
494                         let mut pending_events = self.pending_events.lock().unwrap();
495                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
496                                 node_id: their_node_id.clone(),
497                                 msg: ReplyChannelRange {
498                                         chain_hash: msg.chain_hash.clone(),
499                                         first_blocknum: msg.first_blocknum,
500                                         number_of_blocks: msg.number_of_blocks,
501                                         sync_complete: true,
502                                         short_channel_ids: vec![],
503                                 }
504                         });
505                         return Err(LightningError {
506                                 err: String::from("query_channel_range could not be processed"),
507                                 action: ErrorAction::IgnoreError,
508                         });
509                 }
510
511                 // Creates channel batches. We are not checking if the channel is routable
512                 // (has at least one update). A peer may still want to know the channel
513                 // exists even if its not yet routable.
514                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
515                 let channels = self.network_graph.channels.read().unwrap();
516                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
517                         if let Some(chan_announcement) = &chan.announcement_message {
518                                 // Construct a new batch if last one is full
519                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
520                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
521                                 }
522
523                                 let batch = batches.last_mut().unwrap();
524                                 batch.push(chan_announcement.contents.short_channel_id);
525                         }
526                 }
527                 drop(channels);
528
529                 let mut pending_events = self.pending_events.lock().unwrap();
530                 let batch_count = batches.len();
531                 let mut prev_batch_endblock = msg.first_blocknum;
532                 for (batch_index, batch) in batches.into_iter().enumerate() {
533                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
534                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
535                         //
536                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
537                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
538                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
539                         // significant diversion from the requirements set by the spec, and, in case of blocks
540                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
541                         // and *not* derive the first_blocknum from the actual first block of the reply.
542                         let first_blocknum = prev_batch_endblock;
543
544                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
545                         // fit in. Though there is no requirement that we use exactly the number of blocks its
546                         // contents are from, except for the bogus requirements c-lightning enforces, above.
547                         //
548                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
549                         // >= the query's end block. Thus, for the last reply, we calculate the difference
550                         // between the query's end block and the start of the reply.
551                         //
552                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
553                         // first_blocknum will be either msg.first_blocknum or a higher block height.
554                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
555                                 (true, msg.end_blocknum() - first_blocknum)
556                         }
557                         // Prior replies should use the number of blocks that fit into the reply. Overflow
558                         // safe since first_blocknum is always <= last SCID's block.
559                         else {
560                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
561                         };
562
563                         prev_batch_endblock = first_blocknum + number_of_blocks;
564
565                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
566                                 node_id: their_node_id.clone(),
567                                 msg: ReplyChannelRange {
568                                         chain_hash: msg.chain_hash.clone(),
569                                         first_blocknum,
570                                         number_of_blocks,
571                                         sync_complete,
572                                         short_channel_ids: batch,
573                                 }
574                         });
575                 }
576
577                 Ok(())
578         }
579
580         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
581                 // TODO
582                 Err(LightningError {
583                         err: String::from("Not implemented"),
584                         action: ErrorAction::IgnoreError,
585                 })
586         }
587 }
588
589 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
590 where
591         C::Target: chain::Access,
592         L::Target: Logger,
593 {
594         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
595                 let mut ret = Vec::new();
596                 let mut pending_events = self.pending_events.lock().unwrap();
597                 core::mem::swap(&mut ret, &mut pending_events);
598                 ret
599         }
600 }
601
602 #[derive(Clone, Debug, PartialEq)]
603 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
604 pub struct ChannelUpdateInfo {
605         /// When the last update to the channel direction was issued.
606         /// Value is opaque, as set in the announcement.
607         pub last_update: u32,
608         /// Whether the channel can be currently used for payments (in this one direction).
609         pub enabled: bool,
610         /// The difference in CLTV values that you must have when routing through this channel.
611         pub cltv_expiry_delta: u16,
612         /// The minimum value, which must be relayed to the next hop via the channel
613         pub htlc_minimum_msat: u64,
614         /// The maximum value which may be relayed to the next hop via the channel.
615         pub htlc_maximum_msat: u64,
616         /// Fees charged when the channel is used for routing
617         pub fees: RoutingFees,
618         /// Most recent update for the channel received from the network
619         /// Mostly redundant with the data we store in fields explicitly.
620         /// Everything else is useful only for sending out for initial routing sync.
621         /// Not stored if contains excess data to prevent DoS.
622         pub last_update_message: Option<ChannelUpdate>,
623 }
624
625 impl fmt::Display for ChannelUpdateInfo {
626         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
627                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
628                 Ok(())
629         }
630 }
631
632 impl Writeable for ChannelUpdateInfo {
633         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
634                 write_tlv_fields!(writer, {
635                         (0, self.last_update, required),
636                         (2, self.enabled, required),
637                         (4, self.cltv_expiry_delta, required),
638                         (6, self.htlc_minimum_msat, required),
639                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
640                         // compatibility with LDK versions prior to v0.0.110.
641                         (8, Some(self.htlc_maximum_msat), required),
642                         (10, self.fees, required),
643                         (12, self.last_update_message, required),
644                 });
645                 Ok(())
646         }
647 }
648
649 impl Readable for ChannelUpdateInfo {
650         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
651                 init_tlv_field_var!(last_update, required);
652                 init_tlv_field_var!(enabled, required);
653                 init_tlv_field_var!(cltv_expiry_delta, required);
654                 init_tlv_field_var!(htlc_minimum_msat, required);
655                 init_tlv_field_var!(htlc_maximum_msat, option);
656                 init_tlv_field_var!(fees, required);
657                 init_tlv_field_var!(last_update_message, required);
658
659                 read_tlv_fields!(reader, {
660                         (0, last_update, required),
661                         (2, enabled, required),
662                         (4, cltv_expiry_delta, required),
663                         (6, htlc_minimum_msat, required),
664                         (8, htlc_maximum_msat, required),
665                         (10, fees, required),
666                         (12, last_update_message, required)
667                 });
668
669                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
670                         Ok(ChannelUpdateInfo {
671                                 last_update: init_tlv_based_struct_field!(last_update, required),
672                                 enabled: init_tlv_based_struct_field!(enabled, required),
673                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
674                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
675                                 htlc_maximum_msat,
676                                 fees: init_tlv_based_struct_field!(fees, required),
677                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
678                         })
679                 } else {
680                         Err(DecodeError::InvalidValue)
681                 }
682         }
683 }
684
685 #[derive(Clone, Debug, PartialEq)]
686 /// Details about a channel (both directions).
687 /// Received within a channel announcement.
688 pub struct ChannelInfo {
689         /// Protocol features of a channel communicated during its announcement
690         pub features: ChannelFeatures,
691         /// Source node of the first direction of a channel
692         pub node_one: NodeId,
693         /// Details about the first direction of a channel
694         pub one_to_two: Option<ChannelUpdateInfo>,
695         /// Source node of the second direction of a channel
696         pub node_two: NodeId,
697         /// Details about the second direction of a channel
698         pub two_to_one: Option<ChannelUpdateInfo>,
699         /// The channel capacity as seen on-chain, if chain lookup is available.
700         pub capacity_sats: Option<u64>,
701         /// An initial announcement of the channel
702         /// Mostly redundant with the data we store in fields explicitly.
703         /// Everything else is useful only for sending out for initial routing sync.
704         /// Not stored if contains excess data to prevent DoS.
705         pub announcement_message: Option<ChannelAnnouncement>,
706         /// The timestamp when we received the announcement, if we are running with feature = "std"
707         /// (which we can probably assume we are - no-std environments probably won't have a full
708         /// network graph in memory!).
709         announcement_received_time: u64,
710 }
711
712 impl ChannelInfo {
713         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
714         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
715         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
716                 let (direction, source) = {
717                         if target == &self.node_one {
718                                 (self.two_to_one.as_ref(), &self.node_two)
719                         } else if target == &self.node_two {
720                                 (self.one_to_two.as_ref(), &self.node_one)
721                         } else {
722                                 return None;
723                         }
724                 };
725                 Some((DirectedChannelInfo::new(self, direction), source))
726         }
727
728         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
729         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
730         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
731                 let (direction, target) = {
732                         if source == &self.node_one {
733                                 (self.one_to_two.as_ref(), &self.node_two)
734                         } else if source == &self.node_two {
735                                 (self.two_to_one.as_ref(), &self.node_one)
736                         } else {
737                                 return None;
738                         }
739                 };
740                 Some((DirectedChannelInfo::new(self, direction), target))
741         }
742
743         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
744         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
745                 let direction = channel_flags & 1u8;
746                 if direction == 0 {
747                         self.one_to_two.as_ref()
748                 } else {
749                         self.two_to_one.as_ref()
750                 }
751         }
752 }
753
754 impl fmt::Display for ChannelInfo {
755         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
756                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
757                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
758                 Ok(())
759         }
760 }
761
762 impl Writeable for ChannelInfo {
763         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
764                 write_tlv_fields!(writer, {
765                         (0, self.features, required),
766                         (1, self.announcement_received_time, (default_value, 0)),
767                         (2, self.node_one, required),
768                         (4, self.one_to_two, required),
769                         (6, self.node_two, required),
770                         (8, self.two_to_one, required),
771                         (10, self.capacity_sats, required),
772                         (12, self.announcement_message, required),
773                 });
774                 Ok(())
775         }
776 }
777
778 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
779 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
780 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
781 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
782 // channel updates via the gossip network.
783 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
784
785 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
786         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
787                 match ::util::ser::Readable::read(reader) {
788                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
789                         Err(DecodeError::ShortRead) => Ok(None),
790                         Err(DecodeError::InvalidValue) => Ok(None),
791                         Err(err) => Err(err),
792                 }
793         }
794 }
795
796 impl Readable for ChannelInfo {
797         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
798                 init_tlv_field_var!(features, required);
799                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
800                 init_tlv_field_var!(node_one, required);
801                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
802                 init_tlv_field_var!(node_two, required);
803                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
804                 init_tlv_field_var!(capacity_sats, required);
805                 init_tlv_field_var!(announcement_message, required);
806                 read_tlv_fields!(reader, {
807                         (0, features, required),
808                         (1, announcement_received_time, (default_value, 0)),
809                         (2, node_one, required),
810                         (4, one_to_two_wrap, ignorable),
811                         (6, node_two, required),
812                         (8, two_to_one_wrap, ignorable),
813                         (10, capacity_sats, required),
814                         (12, announcement_message, required),
815                 });
816
817                 Ok(ChannelInfo {
818                         features: init_tlv_based_struct_field!(features, required),
819                         node_one: init_tlv_based_struct_field!(node_one, required),
820                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
821                         node_two: init_tlv_based_struct_field!(node_two, required),
822                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
823                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
824                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
825                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
826                 })
827         }
828 }
829
830 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
831 /// source node to a target node.
832 #[derive(Clone)]
833 pub struct DirectedChannelInfo<'a> {
834         channel: &'a ChannelInfo,
835         direction: Option<&'a ChannelUpdateInfo>,
836         htlc_maximum_msat: u64,
837         effective_capacity: EffectiveCapacity,
838 }
839
840 impl<'a> DirectedChannelInfo<'a> {
841         #[inline]
842         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
843                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
844                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
845
846                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
847                         (Some(amount_msat), Some(capacity_msat)) => {
848                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
849                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
850                         },
851                         (Some(amount_msat), None) => {
852                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
853                         },
854                         (None, Some(capacity_msat)) => {
855                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
856                         },
857                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
858                 };
859
860                 Self {
861                         channel, direction, htlc_maximum_msat, effective_capacity
862                 }
863         }
864
865         /// Returns information for the channel.
866         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
867
868         /// Returns information for the direction.
869         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
870
871         /// Returns the maximum HTLC amount allowed over the channel in the direction.
872         pub fn htlc_maximum_msat(&self) -> u64 {
873                 self.htlc_maximum_msat
874         }
875
876         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
877         ///
878         /// This is either the total capacity from the funding transaction, if known, or the
879         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
880         /// otherwise.
881         pub fn effective_capacity(&self) -> EffectiveCapacity {
882                 self.effective_capacity
883         }
884
885         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
886         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
887                 match self.direction {
888                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
889                         None => None,
890                 }
891         }
892 }
893
894 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
895         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
896                 f.debug_struct("DirectedChannelInfo")
897                         .field("channel", &self.channel)
898                         .finish()
899         }
900 }
901
902 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
903 #[derive(Clone)]
904 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
905         inner: DirectedChannelInfo<'a>,
906 }
907
908 impl<'a> DirectedChannelInfoWithUpdate<'a> {
909         /// Returns information for the channel.
910         #[inline]
911         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
912
913         /// Returns information for the direction.
914         #[inline]
915         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
916
917         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
918         #[inline]
919         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
920 }
921
922 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
923         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
924                 self.inner.fmt(f)
925         }
926 }
927
928 /// The effective capacity of a channel for routing purposes.
929 ///
930 /// While this may be smaller than the actual channel capacity, amounts greater than
931 /// [`Self::as_msat`] should not be routed through the channel.
932 #[derive(Clone, Copy)]
933 pub enum EffectiveCapacity {
934         /// The available liquidity in the channel known from being a channel counterparty, and thus a
935         /// direct hop.
936         ExactLiquidity {
937                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
938                 /// millisatoshi.
939                 liquidity_msat: u64,
940         },
941         /// The maximum HTLC amount in one direction as advertised on the gossip network.
942         MaximumHTLC {
943                 /// The maximum HTLC amount denominated in millisatoshi.
944                 amount_msat: u64,
945         },
946         /// The total capacity of the channel as determined by the funding transaction.
947         Total {
948                 /// The funding amount denominated in millisatoshi.
949                 capacity_msat: u64,
950                 /// The maximum HTLC amount denominated in millisatoshi.
951                 htlc_maximum_msat: Option<u64>
952         },
953         /// A capacity sufficient to route any payment, typically used for private channels provided by
954         /// an invoice.
955         Infinite,
956         /// A capacity that is unknown possibly because either the chain state is unavailable to know
957         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
958         Unknown,
959 }
960
961 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
962 /// use when making routing decisions.
963 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
964
965 impl EffectiveCapacity {
966         /// Returns the effective capacity denominated in millisatoshi.
967         pub fn as_msat(&self) -> u64 {
968                 match self {
969                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
970                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
971                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
972                         EffectiveCapacity::Infinite => u64::max_value(),
973                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
974                 }
975         }
976 }
977
978 /// Fees for routing via a given channel or a node
979 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
980 pub struct RoutingFees {
981         /// Flat routing fee in satoshis
982         pub base_msat: u32,
983         /// Liquidity-based routing fee in millionths of a routed amount.
984         /// In other words, 10000 is 1%.
985         pub proportional_millionths: u32,
986 }
987
988 impl_writeable_tlv_based!(RoutingFees, {
989         (0, base_msat, required),
990         (2, proportional_millionths, required)
991 });
992
993 #[derive(Clone, Debug, PartialEq)]
994 /// Information received in the latest node_announcement from this node.
995 pub struct NodeAnnouncementInfo {
996         /// Protocol features the node announced support for
997         pub features: NodeFeatures,
998         /// When the last known update to the node state was issued.
999         /// Value is opaque, as set in the announcement.
1000         pub last_update: u32,
1001         /// Color assigned to the node
1002         pub rgb: [u8; 3],
1003         /// Moniker assigned to the node.
1004         /// May be invalid or malicious (eg control chars),
1005         /// should not be exposed to the user.
1006         pub alias: NodeAlias,
1007         /// Internet-level addresses via which one can connect to the node
1008         pub addresses: Vec<NetAddress>,
1009         /// An initial announcement of the node
1010         /// Mostly redundant with the data we store in fields explicitly.
1011         /// Everything else is useful only for sending out for initial routing sync.
1012         /// Not stored if contains excess data to prevent DoS.
1013         pub announcement_message: Option<NodeAnnouncement>
1014 }
1015
1016 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1017         (0, features, required),
1018         (2, last_update, required),
1019         (4, rgb, required),
1020         (6, alias, required),
1021         (8, announcement_message, option),
1022         (10, addresses, vec_type),
1023 });
1024
1025 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1026 ///
1027 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1028 /// attacks. Care must be taken when processing.
1029 #[derive(Clone, Debug, PartialEq)]
1030 pub struct NodeAlias(pub [u8; 32]);
1031
1032 impl fmt::Display for NodeAlias {
1033         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1034                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1035                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1036                 let bytes = self.0.split_at(first_null).0;
1037                 match core::str::from_utf8(bytes) {
1038                         Ok(alias) => {
1039                                 for c in alias.chars() {
1040                                         let mut bytes = [0u8; 4];
1041                                         let c = if !c.is_control() { c } else { control_symbol };
1042                                         f.write_str(c.encode_utf8(&mut bytes))?;
1043                                 }
1044                         },
1045                         Err(_) => {
1046                                 for c in bytes.iter().map(|b| *b as char) {
1047                                         // Display printable ASCII characters
1048                                         let mut bytes = [0u8; 4];
1049                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1050                                         f.write_str(c.encode_utf8(&mut bytes))?;
1051                                 }
1052                         },
1053                 };
1054                 Ok(())
1055         }
1056 }
1057
1058 impl Writeable for NodeAlias {
1059         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1060                 self.0.write(w)
1061         }
1062 }
1063
1064 impl Readable for NodeAlias {
1065         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1066                 Ok(NodeAlias(Readable::read(r)?))
1067         }
1068 }
1069
1070 #[derive(Clone, Debug, PartialEq)]
1071 /// Details about a node in the network, known from the network announcement.
1072 pub struct NodeInfo {
1073         /// All valid channels a node has announced
1074         pub channels: Vec<u64>,
1075         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1076         /// The two fields (flat and proportional fee) are independent,
1077         /// meaning they don't have to refer to the same channel.
1078         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1079         /// More information about a node from node_announcement.
1080         /// Optional because we store a Node entry after learning about it from
1081         /// a channel announcement, but before receiving a node announcement.
1082         pub announcement_info: Option<NodeAnnouncementInfo>
1083 }
1084
1085 impl fmt::Display for NodeInfo {
1086         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1087                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1088                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1089                 Ok(())
1090         }
1091 }
1092
1093 impl Writeable for NodeInfo {
1094         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1095                 write_tlv_fields!(writer, {
1096                         (0, self.lowest_inbound_channel_fees, option),
1097                         (2, self.announcement_info, option),
1098                         (4, self.channels, vec_type),
1099                 });
1100                 Ok(())
1101         }
1102 }
1103
1104 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1105 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1106 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1107 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1108 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1109
1110 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1111         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1112                 match ::util::ser::Readable::read(reader) {
1113                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1114                         Err(_) => {
1115                                 copy(reader, &mut sink()).unwrap();
1116                                 return Ok(None)
1117                         },
1118                 };
1119         }
1120 }
1121
1122 impl Readable for NodeInfo {
1123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1124                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1125                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1126                 init_tlv_field_var!(channels, vec_type);
1127
1128                 read_tlv_fields!(reader, {
1129                         (0, lowest_inbound_channel_fees, option),
1130                         (2, announcement_info_wrap, ignorable),
1131                         (4, channels, vec_type),
1132                 });
1133
1134                 Ok(NodeInfo {
1135                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1136                         announcement_info: announcement_info_wrap.map(|w| w.0),
1137                         channels: init_tlv_based_struct_field!(channels, vec_type),
1138                 })
1139         }
1140 }
1141
1142 const SERIALIZATION_VERSION: u8 = 1;
1143 const MIN_SERIALIZATION_VERSION: u8 = 1;
1144
1145 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1146         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1147                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1148
1149                 self.genesis_hash.write(writer)?;
1150                 let channels = self.channels.read().unwrap();
1151                 (channels.len() as u64).write(writer)?;
1152                 for (ref chan_id, ref chan_info) in channels.iter() {
1153                         (*chan_id).write(writer)?;
1154                         chan_info.write(writer)?;
1155                 }
1156                 let nodes = self.nodes.read().unwrap();
1157                 (nodes.len() as u64).write(writer)?;
1158                 for (ref node_id, ref node_info) in nodes.iter() {
1159                         node_id.write(writer)?;
1160                         node_info.write(writer)?;
1161                 }
1162
1163                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1164                 write_tlv_fields!(writer, {
1165                         (1, last_rapid_gossip_sync_timestamp, option),
1166                 });
1167                 Ok(())
1168         }
1169 }
1170
1171 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1172         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1173                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1174
1175                 let genesis_hash: BlockHash = Readable::read(reader)?;
1176                 let channels_count: u64 = Readable::read(reader)?;
1177                 let mut channels = BTreeMap::new();
1178                 for _ in 0..channels_count {
1179                         let chan_id: u64 = Readable::read(reader)?;
1180                         let chan_info = Readable::read(reader)?;
1181                         channels.insert(chan_id, chan_info);
1182                 }
1183                 let nodes_count: u64 = Readable::read(reader)?;
1184                 let mut nodes = BTreeMap::new();
1185                 for _ in 0..nodes_count {
1186                         let node_id = Readable::read(reader)?;
1187                         let node_info = Readable::read(reader)?;
1188                         nodes.insert(node_id, node_info);
1189                 }
1190
1191                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1192                 read_tlv_fields!(reader, {
1193                         (1, last_rapid_gossip_sync_timestamp, option),
1194                 });
1195
1196                 Ok(NetworkGraph {
1197                         secp_ctx: Secp256k1::verification_only(),
1198                         genesis_hash,
1199                         logger,
1200                         channels: RwLock::new(channels),
1201                         nodes: RwLock::new(nodes),
1202                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1203                 })
1204         }
1205 }
1206
1207 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1208         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1209                 writeln!(f, "Network map\n[Channels]")?;
1210                 for (key, val) in self.channels.read().unwrap().iter() {
1211                         writeln!(f, " {}: {}", key, val)?;
1212                 }
1213                 writeln!(f, "[Nodes]")?;
1214                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1215                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1216                 }
1217                 Ok(())
1218         }
1219 }
1220
1221 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1222         fn eq(&self, other: &Self) -> bool {
1223                 self.genesis_hash == other.genesis_hash &&
1224                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1225                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1226         }
1227 }
1228
1229 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1230         /// Creates a new, empty, network graph.
1231         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1232                 Self {
1233                         secp_ctx: Secp256k1::verification_only(),
1234                         genesis_hash,
1235                         logger,
1236                         channels: RwLock::new(BTreeMap::new()),
1237                         nodes: RwLock::new(BTreeMap::new()),
1238                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1239                 }
1240         }
1241
1242         /// Returns a read-only view of the network graph.
1243         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1244                 let channels = self.channels.read().unwrap();
1245                 let nodes = self.nodes.read().unwrap();
1246                 ReadOnlyNetworkGraph {
1247                         channels,
1248                         nodes,
1249                 }
1250         }
1251
1252         /// The unix timestamp provided by the most recent rapid gossip sync.
1253         /// It will be set by the rapid sync process after every sync completion.
1254         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1255                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1256         }
1257
1258         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1259         /// This should be done automatically by the rapid sync process after every sync completion.
1260         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1261                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1262         }
1263
1264         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1265         /// purposes.
1266         #[cfg(test)]
1267         pub fn clear_nodes_announcement_info(&self) {
1268                 for node in self.nodes.write().unwrap().iter_mut() {
1269                         node.1.announcement_info = None;
1270                 }
1271         }
1272
1273         /// For an already known node (from channel announcements), update its stored properties from a
1274         /// given node announcement.
1275         ///
1276         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1277         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1278         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1279         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1280                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1281                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1282                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1283         }
1284
1285         /// For an already known node (from channel announcements), update its stored properties from a
1286         /// given node announcement without verifying the associated signatures. Because we aren't
1287         /// given the associated signatures here we cannot relay the node announcement to any of our
1288         /// peers.
1289         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1290                 self.update_node_from_announcement_intern(msg, None)
1291         }
1292
1293         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1294                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1295                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1296                         Some(node) => {
1297                                 if let Some(node_info) = node.announcement_info.as_ref() {
1298                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1299                                         // updates to ensure you always have the latest one, only vaguely suggesting
1300                                         // that it be at least the current time.
1301                                         if node_info.last_update  > msg.timestamp {
1302                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1303                                         } else if node_info.last_update  == msg.timestamp {
1304                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1305                                         }
1306                                 }
1307
1308                                 let should_relay =
1309                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1310                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1311                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1312                                 node.announcement_info = Some(NodeAnnouncementInfo {
1313                                         features: msg.features.clone(),
1314                                         last_update: msg.timestamp,
1315                                         rgb: msg.rgb,
1316                                         alias: NodeAlias(msg.alias),
1317                                         addresses: msg.addresses.clone(),
1318                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1319                                 });
1320
1321                                 Ok(())
1322                         }
1323                 }
1324         }
1325
1326         /// Store or update channel info from a channel announcement.
1327         ///
1328         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1329         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1330         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1331         ///
1332         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1333         /// the corresponding UTXO exists on chain and is correctly-formatted.
1334         pub fn update_channel_from_announcement<C: Deref>(
1335                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1336         ) -> Result<(), LightningError>
1337         where
1338                 C::Target: chain::Access,
1339         {
1340                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1341                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1342                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1343                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1344                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1345                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1346         }
1347
1348         /// Store or update channel info from a channel announcement without verifying the associated
1349         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1350         /// channel announcement to any of our peers.
1351         ///
1352         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1353         /// the corresponding UTXO exists on chain and is correctly-formatted.
1354         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1355                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1356         ) -> Result<(), LightningError>
1357         where
1358                 C::Target: chain::Access,
1359         {
1360                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1361         }
1362
1363         /// Update channel from partial announcement data received via rapid gossip sync
1364         ///
1365         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1366         /// rapid gossip sync server)
1367         ///
1368         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1369         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1370                 if node_id_1 == node_id_2 {
1371                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1372                 };
1373
1374                 let node_1 = NodeId::from_pubkey(&node_id_1);
1375                 let node_2 = NodeId::from_pubkey(&node_id_2);
1376                 let channel_info = ChannelInfo {
1377                         features,
1378                         node_one: node_1.clone(),
1379                         one_to_two: None,
1380                         node_two: node_2.clone(),
1381                         two_to_one: None,
1382                         capacity_sats: None,
1383                         announcement_message: None,
1384                         announcement_received_time: timestamp,
1385                 };
1386
1387                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1388         }
1389
1390         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1391                 let mut channels = self.channels.write().unwrap();
1392                 let mut nodes = self.nodes.write().unwrap();
1393
1394                 let node_id_a = channel_info.node_one.clone();
1395                 let node_id_b = channel_info.node_two.clone();
1396
1397                 match channels.entry(short_channel_id) {
1398                         BtreeEntry::Occupied(mut entry) => {
1399                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1400                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1401                                 //exactly how...
1402                                 if utxo_value.is_some() {
1403                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1404                                         // only sometimes returns results. In any case remove the previous entry. Note
1405                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1406                                         // do that because
1407                                         // a) we don't *require* a UTXO provider that always returns results.
1408                                         // b) we don't track UTXOs of channels we know about and remove them if they
1409                                         //    get reorg'd out.
1410                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1411                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1412                                         *entry.get_mut() = channel_info;
1413                                 } else {
1414                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1415                                 }
1416                         },
1417                         BtreeEntry::Vacant(entry) => {
1418                                 entry.insert(channel_info);
1419                         }
1420                 };
1421
1422                 for current_node_id in [node_id_a, node_id_b].iter() {
1423                         match nodes.entry(current_node_id.clone()) {
1424                                 BtreeEntry::Occupied(node_entry) => {
1425                                         node_entry.into_mut().channels.push(short_channel_id);
1426                                 },
1427                                 BtreeEntry::Vacant(node_entry) => {
1428                                         node_entry.insert(NodeInfo {
1429                                                 channels: vec!(short_channel_id),
1430                                                 lowest_inbound_channel_fees: None,
1431                                                 announcement_info: None,
1432                                         });
1433                                 }
1434                         };
1435                 };
1436
1437                 Ok(())
1438         }
1439
1440         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1441                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1442         ) -> Result<(), LightningError>
1443         where
1444                 C::Target: chain::Access,
1445         {
1446                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1447                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1448                 }
1449
1450                 let utxo_value = match &chain_access {
1451                         &None => {
1452                                 // Tentatively accept, potentially exposing us to DoS attacks
1453                                 None
1454                         },
1455                         &Some(ref chain_access) => {
1456                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1457                                         Ok(TxOut { value, script_pubkey }) => {
1458                                                 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1459                                                                                     .push_slice(&msg.bitcoin_key_1.serialize())
1460                                                                                     .push_slice(&msg.bitcoin_key_2.serialize())
1461                                                                                     .push_opcode(opcodes::all::OP_PUSHNUM_2)
1462                                                                                     .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1463                                                 if script_pubkey != expected_script {
1464                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
1465                                                 }
1466                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1467                                                 //to the new HTLC max field in channel_update
1468                                                 Some(value)
1469                                         },
1470                                         Err(chain::AccessError::UnknownChain) => {
1471                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1472                                         },
1473                                         Err(chain::AccessError::UnknownTx) => {
1474                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1475                                         },
1476                                 }
1477                         },
1478                 };
1479
1480                 #[allow(unused_mut, unused_assignments)]
1481                 let mut announcement_received_time = 0;
1482                 #[cfg(feature = "std")]
1483                 {
1484                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1485                 }
1486
1487                 let chan_info = ChannelInfo {
1488                         features: msg.features.clone(),
1489                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1490                         one_to_two: None,
1491                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1492                         two_to_one: None,
1493                         capacity_sats: utxo_value,
1494                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1495                                 { full_msg.cloned() } else { None },
1496                         announcement_received_time,
1497                 };
1498
1499                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1500         }
1501
1502         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1503         /// If permanent, removes a channel from the local storage.
1504         /// May cause the removal of nodes too, if this was their last channel.
1505         /// If not permanent, makes channels unavailable for routing.
1506         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1507                 let mut channels = self.channels.write().unwrap();
1508                 if is_permanent {
1509                         if let Some(chan) = channels.remove(&short_channel_id) {
1510                                 let mut nodes = self.nodes.write().unwrap();
1511                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1512                         }
1513                 } else {
1514                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1515                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1516                                         one_to_two.enabled = false;
1517                                 }
1518                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1519                                         two_to_one.enabled = false;
1520                                 }
1521                         }
1522                 }
1523         }
1524
1525         /// Marks a node in the graph as failed.
1526         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1527                 if is_permanent {
1528                         // TODO: Wholly remove the node
1529                 } else {
1530                         // TODO: downgrade the node
1531                 }
1532         }
1533
1534         #[cfg(feature = "std")]
1535         /// Removes information about channels that we haven't heard any updates about in some time.
1536         /// This can be used regularly to prune the network graph of channels that likely no longer
1537         /// exist.
1538         ///
1539         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1540         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1541         /// pruning occur for updates which are at least two weeks old, which we implement here.
1542         ///
1543         /// Note that for users of the `lightning-background-processor` crate this method may be
1544         /// automatically called regularly for you.
1545         ///
1546         /// This method is only available with the `std` feature. See
1547         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1548         pub fn remove_stale_channels(&self) {
1549                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1550                 self.remove_stale_channels_with_time(time);
1551         }
1552
1553         /// Removes information about channels that we haven't heard any updates about in some time.
1554         /// This can be used regularly to prune the network graph of channels that likely no longer
1555         /// exist.
1556         ///
1557         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1558         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1559         /// pruning occur for updates which are at least two weeks old, which we implement here.
1560         ///
1561         /// This function takes the current unix time as an argument. For users with the `std` feature
1562         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1563         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1564                 let mut channels = self.channels.write().unwrap();
1565                 // Time out if we haven't received an update in at least 14 days.
1566                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1567                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1568                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1569                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1570                 // time.
1571                 let mut scids_to_remove = Vec::new();
1572                 for (scid, info) in channels.iter_mut() {
1573                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1574                                 info.one_to_two = None;
1575                         }
1576                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1577                                 info.two_to_one = None;
1578                         }
1579                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1580                                 // We check the announcement_received_time here to ensure we don't drop
1581                                 // announcements that we just received and are just waiting for our peer to send a
1582                                 // channel_update for.
1583                                 if info.announcement_received_time < min_time_unix as u64 {
1584                                         scids_to_remove.push(*scid);
1585                                 }
1586                         }
1587                 }
1588                 if !scids_to_remove.is_empty() {
1589                         let mut nodes = self.nodes.write().unwrap();
1590                         for scid in scids_to_remove {
1591                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1592                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1593                         }
1594                 }
1595         }
1596
1597         /// For an already known (from announcement) channel, update info about one of the directions
1598         /// of the channel.
1599         ///
1600         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1601         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1602         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1603         ///
1604         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1605         /// materially in the future will be rejected.
1606         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1607                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1608         }
1609
1610         /// For an already known (from announcement) channel, update info about one of the directions
1611         /// of the channel without verifying the associated signatures. Because we aren't given the
1612         /// associated signatures here we cannot relay the channel update to any of our peers.
1613         ///
1614         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1615         /// materially in the future will be rejected.
1616         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1617                 self.update_channel_intern(msg, None, None)
1618         }
1619
1620         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1621                 let dest_node_id;
1622                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1623                 let chan_was_enabled;
1624
1625                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1626                 {
1627                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1628                         // disable this check during tests!
1629                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1630                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1631                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1632                         }
1633                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1634                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1635                         }
1636                 }
1637
1638                 let mut channels = self.channels.write().unwrap();
1639                 match channels.get_mut(&msg.short_channel_id) {
1640                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1641                         Some(channel) => {
1642                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1643                                         return Err(LightningError{err:
1644                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1645                                                 action: ErrorAction::IgnoreError});
1646                                 }
1647
1648                                 if let Some(capacity_sats) = channel.capacity_sats {
1649                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1650                                         // Don't query UTXO set here to reduce DoS risks.
1651                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1652                                                 return Err(LightningError{err:
1653                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1654                                                         action: ErrorAction::IgnoreError});
1655                                         }
1656                                 }
1657                                 macro_rules! check_update_latest {
1658                                         ($target: expr) => {
1659                                                 if let Some(existing_chan_info) = $target.as_ref() {
1660                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1661                                                         // order updates to ensure you always have the latest one, only
1662                                                         // suggesting  that it be at least the current time. For
1663                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1664                                                         // pruning based on the timestamp field being more than two weeks old,
1665                                                         // but only in the non-normative section.
1666                                                         if existing_chan_info.last_update > msg.timestamp {
1667                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1668                                                         } else if existing_chan_info.last_update == msg.timestamp {
1669                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1670                                                         }
1671                                                         chan_was_enabled = existing_chan_info.enabled;
1672                                                 } else {
1673                                                         chan_was_enabled = false;
1674                                                 }
1675                                         }
1676                                 }
1677
1678                                 macro_rules! get_new_channel_info {
1679                                         () => { {
1680                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1681                                                         { full_msg.cloned() } else { None };
1682
1683                                                 let updated_channel_update_info = ChannelUpdateInfo {
1684                                                         enabled: chan_enabled,
1685                                                         last_update: msg.timestamp,
1686                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1687                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1688                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1689                                                         fees: RoutingFees {
1690                                                                 base_msat: msg.fee_base_msat,
1691                                                                 proportional_millionths: msg.fee_proportional_millionths,
1692                                                         },
1693                                                         last_update_message
1694                                                 };
1695                                                 Some(updated_channel_update_info)
1696                                         } }
1697                                 }
1698
1699                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1700                                 if msg.flags & 1 == 1 {
1701                                         dest_node_id = channel.node_one.clone();
1702                                         check_update_latest!(channel.two_to_one);
1703                                         if let Some(sig) = sig {
1704                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1705                                                         err: "Couldn't parse source node pubkey".to_owned(),
1706                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1707                                                 })?, "channel_update");
1708                                         }
1709                                         channel.two_to_one = get_new_channel_info!();
1710                                 } else {
1711                                         dest_node_id = channel.node_two.clone();
1712                                         check_update_latest!(channel.one_to_two);
1713                                         if let Some(sig) = sig {
1714                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1715                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1716                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1717                                                 })?, "channel_update");
1718                                         }
1719                                         channel.one_to_two = get_new_channel_info!();
1720                                 }
1721                         }
1722                 }
1723
1724                 let mut nodes = self.nodes.write().unwrap();
1725                 if chan_enabled {
1726                         let node = nodes.get_mut(&dest_node_id).unwrap();
1727                         let mut base_msat = msg.fee_base_msat;
1728                         let mut proportional_millionths = msg.fee_proportional_millionths;
1729                         if let Some(fees) = node.lowest_inbound_channel_fees {
1730                                 base_msat = cmp::min(base_msat, fees.base_msat);
1731                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1732                         }
1733                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1734                                 base_msat,
1735                                 proportional_millionths
1736                         });
1737                 } else if chan_was_enabled {
1738                         let node = nodes.get_mut(&dest_node_id).unwrap();
1739                         let mut lowest_inbound_channel_fees = None;
1740
1741                         for chan_id in node.channels.iter() {
1742                                 let chan = channels.get(chan_id).unwrap();
1743                                 let chan_info_opt;
1744                                 if chan.node_one == dest_node_id {
1745                                         chan_info_opt = chan.two_to_one.as_ref();
1746                                 } else {
1747                                         chan_info_opt = chan.one_to_two.as_ref();
1748                                 }
1749                                 if let Some(chan_info) = chan_info_opt {
1750                                         if chan_info.enabled {
1751                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1752                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1753                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1754                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1755                                         }
1756                                 }
1757                         }
1758
1759                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1760                 }
1761
1762                 Ok(())
1763         }
1764
1765         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1766                 macro_rules! remove_from_node {
1767                         ($node_id: expr) => {
1768                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1769                                         entry.get_mut().channels.retain(|chan_id| {
1770                                                 short_channel_id != *chan_id
1771                                         });
1772                                         if entry.get().channels.is_empty() {
1773                                                 entry.remove_entry();
1774                                         }
1775                                 } else {
1776                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1777                                 }
1778                         }
1779                 }
1780
1781                 remove_from_node!(chan.node_one);
1782                 remove_from_node!(chan.node_two);
1783         }
1784 }
1785
1786 impl ReadOnlyNetworkGraph<'_> {
1787         /// Returns all known valid channels' short ids along with announced channel info.
1788         ///
1789         /// (C-not exported) because we have no mapping for `BTreeMap`s
1790         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1791                 &*self.channels
1792         }
1793
1794         /// Returns information on a channel with the given id.
1795         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1796                 self.channels.get(&short_channel_id)
1797         }
1798
1799         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1800         /// Returns the list of channels in the graph
1801         pub fn list_channels(&self) -> Vec<u64> {
1802                 self.channels.keys().map(|c| *c).collect()
1803         }
1804
1805         /// Returns all known nodes' public keys along with announced node info.
1806         ///
1807         /// (C-not exported) because we have no mapping for `BTreeMap`s
1808         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1809                 &*self.nodes
1810         }
1811
1812         /// Returns information on a node with the given id.
1813         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1814                 self.nodes.get(node_id)
1815         }
1816
1817         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1818         /// Returns the list of nodes in the graph
1819         pub fn list_nodes(&self) -> Vec<NodeId> {
1820                 self.nodes.keys().map(|n| *n).collect()
1821         }
1822
1823         /// Get network addresses by node id.
1824         /// Returns None if the requested node is completely unknown,
1825         /// or if node announcement for the node was never received.
1826         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1827                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1828                         if let Some(node_info) = node.announcement_info.as_ref() {
1829                                 return Some(node_info.addresses.clone())
1830                         }
1831                 }
1832                 None
1833         }
1834 }
1835
1836 #[cfg(test)]
1837 mod tests {
1838         use chain;
1839         use ln::PaymentHash;
1840         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1841         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1842         use ln::msgs::{Init, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1843                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1844                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1845         use util::test_utils;
1846         use util::ser::{ReadableArgs, Writeable};
1847         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1848         use util::scid_utils::scid_from_parts;
1849
1850         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1851
1852         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1853         use bitcoin::hashes::Hash;
1854         use bitcoin::network::constants::Network;
1855         use bitcoin::blockdata::constants::genesis_block;
1856         use bitcoin::blockdata::script::{Builder, Script};
1857         use bitcoin::blockdata::transaction::TxOut;
1858         use bitcoin::blockdata::opcodes;
1859
1860         use hex;
1861
1862         use bitcoin::secp256k1::{PublicKey, SecretKey};
1863         use bitcoin::secp256k1::{All, Secp256k1};
1864
1865         use io;
1866         use bitcoin::secp256k1;
1867         use prelude::*;
1868         use sync::Arc;
1869
1870         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1871                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1872                 let logger = Arc::new(test_utils::TestLogger::new());
1873                 NetworkGraph::new(genesis_hash, logger)
1874         }
1875
1876         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1877                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1878                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1879         ) {
1880                 let secp_ctx = Secp256k1::new();
1881                 let logger = Arc::new(test_utils::TestLogger::new());
1882                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1883                 (secp_ctx, gossip_sync)
1884         }
1885
1886         #[test]
1887         fn request_full_sync_finite_times() {
1888                 let network_graph = create_network_graph();
1889                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1890                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1891
1892                 assert!(gossip_sync.should_request_full_sync(&node_id));
1893                 assert!(gossip_sync.should_request_full_sync(&node_id));
1894                 assert!(gossip_sync.should_request_full_sync(&node_id));
1895                 assert!(gossip_sync.should_request_full_sync(&node_id));
1896                 assert!(gossip_sync.should_request_full_sync(&node_id));
1897                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1898         }
1899
1900         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1901                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1902                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1903                         features: NodeFeatures::known(),
1904                         timestamp: 100,
1905                         node_id: node_id,
1906                         rgb: [0; 3],
1907                         alias: [0; 32],
1908                         addresses: Vec::new(),
1909                         excess_address_data: Vec::new(),
1910                         excess_data: Vec::new(),
1911                 };
1912                 f(&mut unsigned_announcement);
1913                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1914                 NodeAnnouncement {
1915                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1916                         contents: unsigned_announcement
1917                 }
1918         }
1919
1920         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1921                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1922                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1923                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1924                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1925
1926                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1927                         features: ChannelFeatures::known(),
1928                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1929                         short_channel_id: 0,
1930                         node_id_1,
1931                         node_id_2,
1932                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1933                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1934                         excess_data: Vec::new(),
1935                 };
1936                 f(&mut unsigned_announcement);
1937                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1938                 ChannelAnnouncement {
1939                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1940                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1941                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1942                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1943                         contents: unsigned_announcement,
1944                 }
1945         }
1946
1947         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1948                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1949                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1950                 Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1951                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1952                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1953                               .push_opcode(opcodes::all::OP_PUSHNUM_2)
1954                               .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
1955                               .to_v0_p2wsh()
1956         }
1957
1958         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1959                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1960                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1961                         short_channel_id: 0,
1962                         timestamp: 100,
1963                         flags: 0,
1964                         cltv_expiry_delta: 144,
1965                         htlc_minimum_msat: 1_000_000,
1966                         htlc_maximum_msat: 1_000_000,
1967                         fee_base_msat: 10_000,
1968                         fee_proportional_millionths: 20,
1969                         excess_data: Vec::new()
1970                 };
1971                 f(&mut unsigned_channel_update);
1972                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1973                 ChannelUpdate {
1974                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1975                         contents: unsigned_channel_update
1976                 }
1977         }
1978
1979         #[test]
1980         fn handling_node_announcements() {
1981                 let network_graph = create_network_graph();
1982                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1983
1984                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1985                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1986                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1987
1988                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1989                 match gossip_sync.handle_node_announcement(&valid_announcement) {
1990                         Ok(_) => panic!(),
1991                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1992                 };
1993
1994                 {
1995                         // Announce a channel to add a corresponding node.
1996                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1997                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
1998                                 Ok(res) => assert!(res),
1999                                 _ => panic!()
2000                         };
2001                 }
2002
2003                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2004                         Ok(res) => assert!(res),
2005                         Err(_) => panic!()
2006                 };
2007
2008                 let fake_msghash = hash_to_message!(&zero_hash);
2009                 match gossip_sync.handle_node_announcement(
2010                         &NodeAnnouncement {
2011                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2012                                 contents: valid_announcement.contents.clone()
2013                 }) {
2014                         Ok(_) => panic!(),
2015                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2016                 };
2017
2018                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2019                         unsigned_announcement.timestamp += 1000;
2020                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2021                 }, node_1_privkey, &secp_ctx);
2022                 // Return false because contains excess data.
2023                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2024                         Ok(res) => assert!(!res),
2025                         Err(_) => panic!()
2026                 };
2027
2028                 // Even though previous announcement was not relayed further, we still accepted it,
2029                 // so we now won't accept announcements before the previous one.
2030                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2031                         unsigned_announcement.timestamp += 1000 - 10;
2032                 }, node_1_privkey, &secp_ctx);
2033                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2034                         Ok(_) => panic!(),
2035                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2036                 };
2037         }
2038
2039         #[test]
2040         fn handling_channel_announcements() {
2041                 let secp_ctx = Secp256k1::new();
2042                 let logger = test_utils::TestLogger::new();
2043
2044                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2045                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2046
2047                 let good_script = get_channel_script(&secp_ctx);
2048                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2049
2050                 // Test if the UTXO lookups were not supported
2051                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2052                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2053                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2054                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2055                         Ok(res) => assert!(res),
2056                         _ => panic!()
2057                 };
2058
2059                 {
2060                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2061                                 None => panic!(),
2062                                 Some(_) => ()
2063                         };
2064                 }
2065
2066                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2067                 // drop new one on the floor, since we can't see any changes.
2068                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2069                         Ok(_) => panic!(),
2070                         Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
2071                 };
2072
2073                 // Test if an associated transaction were not on-chain (or not confirmed).
2074                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2075                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2076                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2077                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2078
2079                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2080                         unsigned_announcement.short_channel_id += 1;
2081                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2082                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2083                         Ok(_) => panic!(),
2084                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2085                 };
2086
2087                 // Now test if the transaction is found in the UTXO set and the script is correct.
2088                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2089                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2090                         unsigned_announcement.short_channel_id += 2;
2091                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2092                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2093                         Ok(res) => assert!(res),
2094                         _ => panic!()
2095                 };
2096
2097                 {
2098                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2099                                 None => panic!(),
2100                                 Some(_) => ()
2101                         };
2102                 }
2103
2104                 // If we receive announcement for the same channel (but TX is not confirmed),
2105                 // drop new one on the floor, since we can't see any changes.
2106                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2107                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2108                         Ok(_) => panic!(),
2109                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2110                 };
2111
2112                 // But if it is confirmed, replace the channel
2113                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2114                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2115                         unsigned_announcement.features = ChannelFeatures::empty();
2116                         unsigned_announcement.short_channel_id += 2;
2117                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2118                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2119                         Ok(res) => assert!(res),
2120                         _ => panic!()
2121                 };
2122                 {
2123                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2124                                 Some(channel_entry) => {
2125                                         assert_eq!(channel_entry.features, ChannelFeatures::empty());
2126                                 },
2127                                 _ => panic!()
2128                         };
2129                 }
2130
2131                 // Don't relay valid channels with excess data
2132                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2133                         unsigned_announcement.short_channel_id += 3;
2134                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2135                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2136                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2137                         Ok(res) => assert!(!res),
2138                         _ => panic!()
2139                 };
2140
2141                 let mut invalid_sig_announcement = valid_announcement.clone();
2142                 invalid_sig_announcement.contents.excess_data = Vec::new();
2143                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2144                         Ok(_) => panic!(),
2145                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2146                 };
2147
2148                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2149                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2150                         Ok(_) => panic!(),
2151                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2152                 };
2153         }
2154
2155         #[test]
2156         fn handling_channel_update() {
2157                 let secp_ctx = Secp256k1::new();
2158                 let logger = test_utils::TestLogger::new();
2159                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2160                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2161                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2162                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2163
2164                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2165                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2166
2167                 let amount_sats = 1000_000;
2168                 let short_channel_id;
2169
2170                 {
2171                         // Announce a channel we will update
2172                         let good_script = get_channel_script(&secp_ctx);
2173                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2174
2175                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2176                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2177                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2178                                 Ok(_) => (),
2179                                 Err(_) => panic!()
2180                         };
2181
2182                 }
2183
2184                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2185                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2186                         Ok(res) => assert!(res),
2187                         _ => panic!(),
2188                 };
2189
2190                 {
2191                         match network_graph.read_only().channels().get(&short_channel_id) {
2192                                 None => panic!(),
2193                                 Some(channel_info) => {
2194                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2195                                         assert!(channel_info.two_to_one.is_none());
2196                                 }
2197                         };
2198                 }
2199
2200                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2201                         unsigned_channel_update.timestamp += 100;
2202                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2203                 }, node_1_privkey, &secp_ctx);
2204                 // Return false because contains excess data
2205                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2206                         Ok(res) => assert!(!res),
2207                         _ => panic!()
2208                 };
2209
2210                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2211                         unsigned_channel_update.timestamp += 110;
2212                         unsigned_channel_update.short_channel_id += 1;
2213                 }, node_1_privkey, &secp_ctx);
2214                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2215                         Ok(_) => panic!(),
2216                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2217                 };
2218
2219                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2220                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2221                         unsigned_channel_update.timestamp += 110;
2222                 }, node_1_privkey, &secp_ctx);
2223                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2224                         Ok(_) => panic!(),
2225                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2226                 };
2227
2228                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2229                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2230                         unsigned_channel_update.timestamp += 110;
2231                 }, node_1_privkey, &secp_ctx);
2232                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2233                         Ok(_) => panic!(),
2234                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2235                 };
2236
2237                 // Even though previous update was not relayed further, we still accepted it,
2238                 // so we now won't accept update before the previous one.
2239                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2240                         unsigned_channel_update.timestamp += 100;
2241                 }, node_1_privkey, &secp_ctx);
2242                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2243                         Ok(_) => panic!(),
2244                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2245                 };
2246
2247                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2248                         unsigned_channel_update.timestamp += 500;
2249                 }, node_1_privkey, &secp_ctx);
2250                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2251                 let fake_msghash = hash_to_message!(&zero_hash);
2252                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2253                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2254                         Ok(_) => panic!(),
2255                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2256                 };
2257         }
2258
2259         #[test]
2260         fn handling_network_update() {
2261                 let logger = test_utils::TestLogger::new();
2262                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2263                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2264                 let secp_ctx = Secp256k1::new();
2265
2266                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2267                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2268
2269                 {
2270                         // There is no nodes in the table at the beginning.
2271                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2272                 }
2273
2274                 let short_channel_id;
2275                 {
2276                         // Announce a channel we will update
2277                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2278                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2279                         let chain_source: Option<&test_utils::TestChainSource> = None;
2280                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2281                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2282
2283                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2284                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2285
2286                         network_graph.handle_event(&Event::PaymentPathFailed {
2287                                 payment_id: None,
2288                                 payment_hash: PaymentHash([0; 32]),
2289                                 rejected_by_dest: false,
2290                                 all_paths_failed: true,
2291                                 path: vec![],
2292                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2293                                         msg: valid_channel_update,
2294                                 }),
2295                                 short_channel_id: None,
2296                                 retry: None,
2297                                 error_code: None,
2298                                 error_data: None,
2299                         });
2300
2301                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2302                 }
2303
2304                 // Non-permanent closing just disables a channel
2305                 {
2306                         match network_graph.read_only().channels().get(&short_channel_id) {
2307                                 None => panic!(),
2308                                 Some(channel_info) => {
2309                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2310                                 }
2311                         };
2312
2313                         network_graph.handle_event(&Event::PaymentPathFailed {
2314                                 payment_id: None,
2315                                 payment_hash: PaymentHash([0; 32]),
2316                                 rejected_by_dest: false,
2317                                 all_paths_failed: true,
2318                                 path: vec![],
2319                                 network_update: Some(NetworkUpdate::ChannelFailure {
2320                                         short_channel_id,
2321                                         is_permanent: false,
2322                                 }),
2323                                 short_channel_id: None,
2324                                 retry: None,
2325                                 error_code: None,
2326                                 error_data: None,
2327                         });
2328
2329                         match network_graph.read_only().channels().get(&short_channel_id) {
2330                                 None => panic!(),
2331                                 Some(channel_info) => {
2332                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2333                                 }
2334                         };
2335                 }
2336
2337                 // Permanent closing deletes a channel
2338                 network_graph.handle_event(&Event::PaymentPathFailed {
2339                         payment_id: None,
2340                         payment_hash: PaymentHash([0; 32]),
2341                         rejected_by_dest: false,
2342                         all_paths_failed: true,
2343                         path: vec![],
2344                         network_update: Some(NetworkUpdate::ChannelFailure {
2345                                 short_channel_id,
2346                                 is_permanent: true,
2347                         }),
2348                         short_channel_id: None,
2349                         retry: None,
2350                         error_code: None,
2351                         error_data: None,
2352                 });
2353
2354                 assert_eq!(network_graph.read_only().channels().len(), 0);
2355                 // Nodes are also deleted because there are no associated channels anymore
2356                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2357                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2358         }
2359
2360         #[test]
2361         fn test_channel_timeouts() {
2362                 // Test the removal of channels with `remove_stale_channels`.
2363                 let logger = test_utils::TestLogger::new();
2364                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2365                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2366                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2367                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2368                 let secp_ctx = Secp256k1::new();
2369
2370                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2371                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2372
2373                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2374                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2375                 let chain_source: Option<&test_utils::TestChainSource> = None;
2376                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2377                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2378
2379                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2380                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2381                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2382
2383                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2384                 assert_eq!(network_graph.read_only().channels().len(), 1);
2385                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2386
2387                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2388                 #[cfg(feature = "std")]
2389                 {
2390                         // In std mode, a further check is performed before fully removing the channel -
2391                         // the channel_announcement must have been received at least two weeks ago. We
2392                         // fudge that here by indicating the time has jumped two weeks. Note that the
2393                         // directional channel information will have been removed already..
2394                         assert_eq!(network_graph.read_only().channels().len(), 1);
2395                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2396                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2397
2398                         use std::time::{SystemTime, UNIX_EPOCH};
2399                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2400                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2401                 }
2402
2403                 assert_eq!(network_graph.read_only().channels().len(), 0);
2404                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2405         }
2406
2407         #[test]
2408         fn getting_next_channel_announcements() {
2409                 let network_graph = create_network_graph();
2410                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2411                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2412                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2413
2414                 // Channels were not announced yet.
2415                 let channels_with_announcements = gossip_sync.get_next_channel_announcements(0, 1);
2416                 assert_eq!(channels_with_announcements.len(), 0);
2417
2418                 let short_channel_id;
2419                 {
2420                         // Announce a channel we will update
2421                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2422                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2423                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2424                                 Ok(_) => (),
2425                                 Err(_) => panic!()
2426                         };
2427                 }
2428
2429                 // Contains initial channel announcement now.
2430                 let channels_with_announcements = gossip_sync.get_next_channel_announcements(short_channel_id, 1);
2431                 assert_eq!(channels_with_announcements.len(), 1);
2432                 if let Some(channel_announcements) = channels_with_announcements.first() {
2433                         let &(_, ref update_1, ref update_2) = channel_announcements;
2434                         assert_eq!(update_1, &None);
2435                         assert_eq!(update_2, &None);
2436                 } else {
2437                         panic!();
2438                 }
2439
2440
2441                 {
2442                         // Valid channel update
2443                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2444                                 unsigned_channel_update.timestamp = 101;
2445                         }, node_1_privkey, &secp_ctx);
2446                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2447                                 Ok(_) => (),
2448                                 Err(_) => panic!()
2449                         };
2450                 }
2451
2452                 // Now contains an initial announcement and an update.
2453                 let channels_with_announcements = gossip_sync.get_next_channel_announcements(short_channel_id, 1);
2454                 assert_eq!(channels_with_announcements.len(), 1);
2455                 if let Some(channel_announcements) = channels_with_announcements.first() {
2456                         let &(_, ref update_1, ref update_2) = channel_announcements;
2457                         assert_ne!(update_1, &None);
2458                         assert_eq!(update_2, &None);
2459                 } else {
2460                         panic!();
2461                 }
2462
2463                 {
2464                         // Channel update with excess data.
2465                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2466                                 unsigned_channel_update.timestamp = 102;
2467                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2468                         }, node_1_privkey, &secp_ctx);
2469                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2470                                 Ok(_) => (),
2471                                 Err(_) => panic!()
2472                         };
2473                 }
2474
2475                 // Test that announcements with excess data won't be returned
2476                 let channels_with_announcements = gossip_sync.get_next_channel_announcements(short_channel_id, 1);
2477                 assert_eq!(channels_with_announcements.len(), 1);
2478                 if let Some(channel_announcements) = channels_with_announcements.first() {
2479                         let &(_, ref update_1, ref update_2) = channel_announcements;
2480                         assert_eq!(update_1, &None);
2481                         assert_eq!(update_2, &None);
2482                 } else {
2483                         panic!();
2484                 }
2485
2486                 // Further starting point have no channels after it
2487                 let channels_with_announcements = gossip_sync.get_next_channel_announcements(short_channel_id + 1000, 1);
2488                 assert_eq!(channels_with_announcements.len(), 0);
2489         }
2490
2491         #[test]
2492         fn getting_next_node_announcements() {
2493                 let network_graph = create_network_graph();
2494                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2495                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2496                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2497                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2498
2499                 // No nodes yet.
2500                 let next_announcements = gossip_sync.get_next_node_announcements(None, 10);
2501                 assert_eq!(next_announcements.len(), 0);
2502
2503                 {
2504                         // Announce a channel to add 2 nodes
2505                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2506                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2507                                 Ok(_) => (),
2508                                 Err(_) => panic!()
2509                         };
2510                 }
2511
2512
2513                 // Nodes were never announced
2514                 let next_announcements = gossip_sync.get_next_node_announcements(None, 3);
2515                 assert_eq!(next_announcements.len(), 0);
2516
2517                 {
2518                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2519                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2520                                 Ok(_) => (),
2521                                 Err(_) => panic!()
2522                         };
2523
2524                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2525                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2526                                 Ok(_) => (),
2527                                 Err(_) => panic!()
2528                         };
2529                 }
2530
2531                 let next_announcements = gossip_sync.get_next_node_announcements(None, 3);
2532                 assert_eq!(next_announcements.len(), 2);
2533
2534                 // Skip the first node.
2535                 let next_announcements = gossip_sync.get_next_node_announcements(Some(&node_id_1), 2);
2536                 assert_eq!(next_announcements.len(), 1);
2537
2538                 {
2539                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2540                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2541                                 unsigned_announcement.timestamp += 10;
2542                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2543                         }, node_2_privkey, &secp_ctx);
2544                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2545                                 Ok(res) => assert!(!res),
2546                                 Err(_) => panic!()
2547                         };
2548                 }
2549
2550                 let next_announcements = gossip_sync.get_next_node_announcements(Some(&node_id_1), 2);
2551                 assert_eq!(next_announcements.len(), 0);
2552         }
2553
2554         #[test]
2555         fn network_graph_serialization() {
2556                 let network_graph = create_network_graph();
2557                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2558
2559                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2560                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2561
2562                 // Announce a channel to add a corresponding node.
2563                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2564                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2565                         Ok(res) => assert!(res),
2566                         _ => panic!()
2567                 };
2568
2569                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2570                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2571                         Ok(_) => (),
2572                         Err(_) => panic!()
2573                 };
2574
2575                 let mut w = test_utils::TestVecWriter(Vec::new());
2576                 assert!(!network_graph.read_only().nodes().is_empty());
2577                 assert!(!network_graph.read_only().channels().is_empty());
2578                 network_graph.write(&mut w).unwrap();
2579
2580                 let logger = Arc::new(test_utils::TestLogger::new());
2581                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2582         }
2583
2584         #[test]
2585         fn network_graph_tlv_serialization() {
2586                 let network_graph = create_network_graph();
2587                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2588
2589                 let mut w = test_utils::TestVecWriter(Vec::new());
2590                 network_graph.write(&mut w).unwrap();
2591
2592                 let logger = Arc::new(test_utils::TestLogger::new());
2593                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2594                 assert!(reassembled_network_graph == network_graph);
2595                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2596         }
2597
2598         #[test]
2599         #[cfg(feature = "std")]
2600         fn calling_sync_routing_table() {
2601                 use std::time::{SystemTime, UNIX_EPOCH};
2602
2603                 let network_graph = create_network_graph();
2604                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2605                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2606                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2607
2608                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2609
2610                 // It should ignore if gossip_queries feature is not enabled
2611                 {
2612                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2613                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2614                         let events = gossip_sync.get_and_clear_pending_msg_events();
2615                         assert_eq!(events.len(), 0);
2616                 }
2617
2618                 // It should send a gossip_timestamp_filter with the correct information
2619                 {
2620                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2621                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2622                         let events = gossip_sync.get_and_clear_pending_msg_events();
2623                         assert_eq!(events.len(), 1);
2624                         match &events[0] {
2625                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2626                                         assert_eq!(node_id, &node_id_1);
2627                                         assert_eq!(msg.chain_hash, chain_hash);
2628                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2629                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2630                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2631                                         assert_eq!(msg.timestamp_range, u32::max_value());
2632                                 },
2633                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2634                         };
2635                 }
2636         }
2637
2638         #[test]
2639         fn handling_query_channel_range() {
2640                 let network_graph = create_network_graph();
2641                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2642
2643                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2644                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2645                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2646                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2647
2648                 let mut scids: Vec<u64> = vec![
2649                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2650                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2651                 ];
2652
2653                 // used for testing multipart reply across blocks
2654                 for block in 100000..=108001 {
2655                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2656                 }
2657
2658                 // used for testing resumption on same block
2659                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2660
2661                 for scid in scids {
2662                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2663                                 unsigned_announcement.short_channel_id = scid;
2664                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2665                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2666                                 Ok(_) => (),
2667                                 _ => panic!()
2668                         };
2669                 }
2670
2671                 // Error when number_of_blocks=0
2672                 do_handling_query_channel_range(
2673                         &gossip_sync,
2674                         &node_id_2,
2675                         QueryChannelRange {
2676                                 chain_hash: chain_hash.clone(),
2677                                 first_blocknum: 0,
2678                                 number_of_blocks: 0,
2679                         },
2680                         false,
2681                         vec![ReplyChannelRange {
2682                                 chain_hash: chain_hash.clone(),
2683                                 first_blocknum: 0,
2684                                 number_of_blocks: 0,
2685                                 sync_complete: true,
2686                                 short_channel_ids: vec![]
2687                         }]
2688                 );
2689
2690                 // Error when wrong chain
2691                 do_handling_query_channel_range(
2692                         &gossip_sync,
2693                         &node_id_2,
2694                         QueryChannelRange {
2695                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2696                                 first_blocknum: 0,
2697                                 number_of_blocks: 0xffff_ffff,
2698                         },
2699                         false,
2700                         vec![ReplyChannelRange {
2701                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2702                                 first_blocknum: 0,
2703                                 number_of_blocks: 0xffff_ffff,
2704                                 sync_complete: true,
2705                                 short_channel_ids: vec![],
2706                         }]
2707                 );
2708
2709                 // Error when first_blocknum > 0xffffff
2710                 do_handling_query_channel_range(
2711                         &gossip_sync,
2712                         &node_id_2,
2713                         QueryChannelRange {
2714                                 chain_hash: chain_hash.clone(),
2715                                 first_blocknum: 0x01000000,
2716                                 number_of_blocks: 0xffff_ffff,
2717                         },
2718                         false,
2719                         vec![ReplyChannelRange {
2720                                 chain_hash: chain_hash.clone(),
2721                                 first_blocknum: 0x01000000,
2722                                 number_of_blocks: 0xffff_ffff,
2723                                 sync_complete: true,
2724                                 short_channel_ids: vec![]
2725                         }]
2726                 );
2727
2728                 // Empty reply when max valid SCID block num
2729                 do_handling_query_channel_range(
2730                         &gossip_sync,
2731                         &node_id_2,
2732                         QueryChannelRange {
2733                                 chain_hash: chain_hash.clone(),
2734                                 first_blocknum: 0xffffff,
2735                                 number_of_blocks: 1,
2736                         },
2737                         true,
2738                         vec![
2739                                 ReplyChannelRange {
2740                                         chain_hash: chain_hash.clone(),
2741                                         first_blocknum: 0xffffff,
2742                                         number_of_blocks: 1,
2743                                         sync_complete: true,
2744                                         short_channel_ids: vec![]
2745                                 },
2746                         ]
2747                 );
2748
2749                 // No results in valid query range
2750                 do_handling_query_channel_range(
2751                         &gossip_sync,
2752                         &node_id_2,
2753                         QueryChannelRange {
2754                                 chain_hash: chain_hash.clone(),
2755                                 first_blocknum: 1000,
2756                                 number_of_blocks: 1000,
2757                         },
2758                         true,
2759                         vec![
2760                                 ReplyChannelRange {
2761                                         chain_hash: chain_hash.clone(),
2762                                         first_blocknum: 1000,
2763                                         number_of_blocks: 1000,
2764                                         sync_complete: true,
2765                                         short_channel_ids: vec![],
2766                                 }
2767                         ]
2768                 );
2769
2770                 // Overflow first_blocknum + number_of_blocks
2771                 do_handling_query_channel_range(
2772                         &gossip_sync,
2773                         &node_id_2,
2774                         QueryChannelRange {
2775                                 chain_hash: chain_hash.clone(),
2776                                 first_blocknum: 0xfe0000,
2777                                 number_of_blocks: 0xffffffff,
2778                         },
2779                         true,
2780                         vec![
2781                                 ReplyChannelRange {
2782                                         chain_hash: chain_hash.clone(),
2783                                         first_blocknum: 0xfe0000,
2784                                         number_of_blocks: 0xffffffff - 0xfe0000,
2785                                         sync_complete: true,
2786                                         short_channel_ids: vec![
2787                                                 0xfffffe_ffffff_ffff, // max
2788                                         ]
2789                                 }
2790                         ]
2791                 );
2792
2793                 // Single block exactly full
2794                 do_handling_query_channel_range(
2795                         &gossip_sync,
2796                         &node_id_2,
2797                         QueryChannelRange {
2798                                 chain_hash: chain_hash.clone(),
2799                                 first_blocknum: 100000,
2800                                 number_of_blocks: 8000,
2801                         },
2802                         true,
2803                         vec![
2804                                 ReplyChannelRange {
2805                                         chain_hash: chain_hash.clone(),
2806                                         first_blocknum: 100000,
2807                                         number_of_blocks: 8000,
2808                                         sync_complete: true,
2809                                         short_channel_ids: (100000..=107999)
2810                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2811                                                 .collect(),
2812                                 },
2813                         ]
2814                 );
2815
2816                 // Multiple split on new block
2817                 do_handling_query_channel_range(
2818                         &gossip_sync,
2819                         &node_id_2,
2820                         QueryChannelRange {
2821                                 chain_hash: chain_hash.clone(),
2822                                 first_blocknum: 100000,
2823                                 number_of_blocks: 8001,
2824                         },
2825                         true,
2826                         vec![
2827                                 ReplyChannelRange {
2828                                         chain_hash: chain_hash.clone(),
2829                                         first_blocknum: 100000,
2830                                         number_of_blocks: 7999,
2831                                         sync_complete: false,
2832                                         short_channel_ids: (100000..=107999)
2833                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2834                                                 .collect(),
2835                                 },
2836                                 ReplyChannelRange {
2837                                         chain_hash: chain_hash.clone(),
2838                                         first_blocknum: 107999,
2839                                         number_of_blocks: 2,
2840                                         sync_complete: true,
2841                                         short_channel_ids: vec![
2842                                                 scid_from_parts(108000, 0, 0).unwrap(),
2843                                         ],
2844                                 }
2845                         ]
2846                 );
2847
2848                 // Multiple split on same block
2849                 do_handling_query_channel_range(
2850                         &gossip_sync,
2851                         &node_id_2,
2852                         QueryChannelRange {
2853                                 chain_hash: chain_hash.clone(),
2854                                 first_blocknum: 100002,
2855                                 number_of_blocks: 8000,
2856                         },
2857                         true,
2858                         vec![
2859                                 ReplyChannelRange {
2860                                         chain_hash: chain_hash.clone(),
2861                                         first_blocknum: 100002,
2862                                         number_of_blocks: 7999,
2863                                         sync_complete: false,
2864                                         short_channel_ids: (100002..=108001)
2865                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2866                                                 .collect(),
2867                                 },
2868                                 ReplyChannelRange {
2869                                         chain_hash: chain_hash.clone(),
2870                                         first_blocknum: 108001,
2871                                         number_of_blocks: 1,
2872                                         sync_complete: true,
2873                                         short_channel_ids: vec![
2874                                                 scid_from_parts(108001, 1, 0).unwrap(),
2875                                         ],
2876                                 }
2877                         ]
2878                 );
2879         }
2880
2881         fn do_handling_query_channel_range(
2882                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2883                 test_node_id: &PublicKey,
2884                 msg: QueryChannelRange,
2885                 expected_ok: bool,
2886                 expected_replies: Vec<ReplyChannelRange>
2887         ) {
2888                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2889                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2890                 let query_end_blocknum = msg.end_blocknum();
2891                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2892
2893                 if expected_ok {
2894                         assert!(result.is_ok());
2895                 } else {
2896                         assert!(result.is_err());
2897                 }
2898
2899                 let events = gossip_sync.get_and_clear_pending_msg_events();
2900                 assert_eq!(events.len(), expected_replies.len());
2901
2902                 for i in 0..events.len() {
2903                         let expected_reply = &expected_replies[i];
2904                         match &events[i] {
2905                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2906                                         assert_eq!(node_id, test_node_id);
2907                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2908                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2909                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2910                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2911                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2912
2913                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2914                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2915                                         assert!(msg.first_blocknum >= max_firstblocknum);
2916                                         max_firstblocknum = msg.first_blocknum;
2917                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2918
2919                                         // Check that the last block count is >= the query's end_blocknum
2920                                         if i == events.len() - 1 {
2921                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2922                                         }
2923                                 },
2924                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2925                         }
2926                 }
2927         }
2928
2929         #[test]
2930         fn handling_query_short_channel_ids() {
2931                 let network_graph = create_network_graph();
2932                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2933                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2934                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2935
2936                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2937
2938                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2939                         chain_hash,
2940                         short_channel_ids: vec![0x0003e8_000000_0000],
2941                 });
2942                 assert!(result.is_err());
2943         }
2944
2945         #[test]
2946         fn displays_node_alias() {
2947                 let format_str_alias = |alias: &str| {
2948                         let mut bytes = [0u8; 32];
2949                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2950                         format!("{}", NodeAlias(bytes))
2951                 };
2952
2953                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2954                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2955                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2956
2957                 let format_bytes_alias = |alias: &[u8]| {
2958                         let mut bytes = [0u8; 32];
2959                         bytes[..alias.len()].copy_from_slice(alias);
2960                         format!("{}", NodeAlias(bytes))
2961                 };
2962
2963                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2964                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2965                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2966         }
2967
2968         #[test]
2969         fn channel_info_is_readable() {
2970                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2971                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2972                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2973                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2974
2975                 // 1. Test encoding/decoding of ChannelUpdateInfo
2976                 let chan_update_info = ChannelUpdateInfo {
2977                         last_update: 23,
2978                         enabled: true,
2979                         cltv_expiry_delta: 42,
2980                         htlc_minimum_msat: 1234,
2981                         htlc_maximum_msat: 5678,
2982                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2983                         last_update_message: None,
2984                 };
2985
2986                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2987                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2988
2989                 // First make sure we can read ChannelUpdateInfos we just wrote
2990                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2991                 assert_eq!(chan_update_info, read_chan_update_info);
2992
2993                 // Check the serialization hasn't changed.
2994                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2995                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
2996
2997                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
2998                 // or the ChannelUpdate enclosed with `last_update_message`.
2999                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3000                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3001                 assert!(read_chan_update_info_res.is_err());
3002
3003                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3004                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3005                 assert!(read_chan_update_info_res.is_err());
3006                         
3007                 // 2. Test encoding/decoding of ChannelInfo
3008                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3009                 let chan_info_none_updates = ChannelInfo {
3010                         features: ChannelFeatures::known(),
3011                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3012                         one_to_two: None,
3013                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3014                         two_to_one: None,
3015                         capacity_sats: None,
3016                         announcement_message: None,
3017                         announcement_received_time: 87654,
3018                 };
3019
3020                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3021                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3022
3023                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3024                 assert_eq!(chan_info_none_updates, read_chan_info);
3025
3026                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3027                 let chan_info_some_updates = ChannelInfo {
3028                         features: ChannelFeatures::known(),
3029                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3030                         one_to_two: Some(chan_update_info.clone()),
3031                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3032                         two_to_one: Some(chan_update_info.clone()),
3033                         capacity_sats: None,
3034                         announcement_message: None,
3035                         announcement_received_time: 87654,
3036                 };
3037
3038                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3039                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3040
3041                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3042                 assert_eq!(chan_info_some_updates, read_chan_info);
3043
3044                 // Check the serialization hasn't changed.
3045                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3046                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3047
3048                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3049                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3050                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3051                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3052                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3053                 assert_eq!(read_chan_info.one_to_two, None);
3054                 assert_eq!(read_chan_info.two_to_one, None);
3055
3056                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3057                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3058                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3059                 assert_eq!(read_chan_info.one_to_two, None);
3060                 assert_eq!(read_chan_info.two_to_one, None);
3061         }
3062
3063         #[test]
3064         fn node_info_is_readable() {
3065                 use std::convert::TryFrom;
3066
3067                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3068                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3069                 let valid_node_ann_info = NodeAnnouncementInfo {
3070                         features: NodeFeatures::known(),
3071                         last_update: 0,
3072                         rgb: [0u8; 3],
3073                         alias: NodeAlias([0u8; 32]),
3074                         addresses: vec![valid_netaddr],
3075                         announcement_message: None,
3076                 };
3077
3078                 let mut encoded_valid_node_ann_info = Vec::new();
3079                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3080                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3081                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3082
3083                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3084                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3085                 assert!(read_invalid_node_ann_info_res.is_err());
3086
3087                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3088                 let valid_node_info = NodeInfo {
3089                         channels: Vec::new(),
3090                         lowest_inbound_channel_fees: None,
3091                         announcement_info: Some(valid_node_ann_info),
3092                 };
3093
3094                 let mut encoded_valid_node_info = Vec::new();
3095                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3096                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3097                 assert_eq!(read_valid_node_info, valid_node_info);
3098
3099                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3100                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3101                 assert_eq!(read_invalid_node_info.announcement_info, None);
3102         }
3103 }
3104
3105 #[cfg(all(test, feature = "_bench_unstable"))]
3106 mod benches {
3107         use super::*;
3108
3109         use test::Bencher;
3110         use std::io::Read;
3111
3112         #[bench]
3113         fn read_network_graph(bench: &mut Bencher) {
3114                 let logger = ::util::test_utils::TestLogger::new();
3115                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3116                 let mut v = Vec::new();
3117                 d.read_to_end(&mut v).unwrap();
3118                 bench.iter(|| {
3119                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3120                 });
3121         }
3122
3123         #[bench]
3124         fn write_network_graph(bench: &mut Bencher) {
3125                 let logger = ::util::test_utils::TestLogger::new();
3126                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3127                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3128                 bench.iter(|| {
3129                         let _ = net_graph.encode();
3130                 });
3131         }
3132 }