Remove and track perm failed nodes & channels
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
54 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
55
56 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
57 /// refuse to relay the message.
58 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
59
60 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
61 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
62 const MAX_SCIDS_PER_REPLY: usize = 8000;
63
64 /// Represents the compressed public key of a node
65 #[derive(Clone, Copy)]
66 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
67
68 impl NodeId {
69         /// Create a new NodeId from a public key
70         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
71                 NodeId(pubkey.serialize())
72         }
73
74         /// Get the public key slice from this NodeId
75         pub fn as_slice(&self) -> &[u8] {
76                 &self.0
77         }
78 }
79
80 impl fmt::Debug for NodeId {
81         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
82                 write!(f, "NodeId({})", log_bytes!(self.0))
83         }
84 }
85
86 impl core::hash::Hash for NodeId {
87         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
88                 self.0.hash(hasher);
89         }
90 }
91
92 impl Eq for NodeId {}
93
94 impl PartialEq for NodeId {
95         fn eq(&self, other: &Self) -> bool {
96                 self.0[..] == other.0[..]
97         }
98 }
99
100 impl cmp::PartialOrd for NodeId {
101         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
102                 Some(self.cmp(other))
103         }
104 }
105
106 impl Ord for NodeId {
107         fn cmp(&self, other: &Self) -> cmp::Ordering {
108                 self.0[..].cmp(&other.0[..])
109         }
110 }
111
112 impl Writeable for NodeId {
113         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
114                 writer.write_all(&self.0)?;
115                 Ok(())
116         }
117 }
118
119 impl Readable for NodeId {
120         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
121                 let mut buf = [0; PUBLIC_KEY_SIZE];
122                 reader.read_exact(&mut buf)?;
123                 Ok(Self(buf))
124         }
125 }
126
127 /// Represents the network as nodes and channels between them
128 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
129         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
130         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
131         genesis_hash: BlockHash,
132         logger: L,
133         // Lock order: channels -> nodes
134         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
135         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
136         // Lock order: removed_channels -> removed_nodes
137         //
138         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
139         // of `std::time::Instant`s for a few reasons:
140         //   * We want it to be possible to do tracking in no-std environments where we can compare
141         //     a provided current UNIX timestamp with the time at which we started tracking.
142         //   * In the future, if we decide to persist these maps, they will already be serializable.
143         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
144         //     environment should be practical over the time period we are considering (on the order of a
145         //     week).
146         //
147         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
148         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
149         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
150         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
151         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
152         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
153         /// that once some time passes, we can potentially resync it from gossip again.
154         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
155 }
156
157 /// A read-only view of [`NetworkGraph`].
158 pub struct ReadOnlyNetworkGraph<'a> {
159         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
160         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
161 }
162
163 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
164 /// return packet by a node along the route. See [BOLT #4] for details.
165 ///
166 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
167 #[derive(Clone, Debug, PartialEq)]
168 pub enum NetworkUpdate {
169         /// An error indicating a `channel_update` messages should be applied via
170         /// [`NetworkGraph::update_channel`].
171         ChannelUpdateMessage {
172                 /// The update to apply via [`NetworkGraph::update_channel`].
173                 msg: ChannelUpdate,
174         },
175         /// An error indicating that a channel failed to route a payment, which should be applied via
176         /// [`NetworkGraph::channel_failed`].
177         ChannelFailure {
178                 /// The short channel id of the closed channel.
179                 short_channel_id: u64,
180                 /// Whether the channel should be permanently removed or temporarily disabled until a new
181                 /// `channel_update` message is received.
182                 is_permanent: bool,
183         },
184         /// An error indicating that a node failed to route a payment, which should be applied via
185         /// [`NetworkGraph::node_failed_permanent`] if permanent.
186         NodeFailure {
187                 /// The node id of the failed node.
188                 node_id: PublicKey,
189                 /// Whether the node should be permanently removed from consideration or can be restored
190                 /// when a new `channel_update` message is received.
191                 is_permanent: bool,
192         }
193 }
194
195 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
196         (0, ChannelUpdateMessage) => {
197                 (0, msg, required),
198         },
199         (2, ChannelFailure) => {
200                 (0, short_channel_id, required),
201                 (2, is_permanent, required),
202         },
203         (4, NodeFailure) => {
204                 (0, node_id, required),
205                 (2, is_permanent, required),
206         },
207 );
208
209 /// Receives and validates network updates from peers,
210 /// stores authentic and relevant data as a network graph.
211 /// This network graph is then used for routing payments.
212 /// Provides interface to help with initial routing sync by
213 /// serving historical announcements.
214 ///
215 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
216 /// [`NetworkGraph`].
217 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
218 where C::Target: chain::Access, L::Target: Logger
219 {
220         network_graph: G,
221         chain_access: Option<C>,
222         #[cfg(feature = "std")]
223         full_syncs_requested: AtomicUsize,
224         pending_events: Mutex<Vec<MessageSendEvent>>,
225         logger: L,
226 }
227
228 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
229 where C::Target: chain::Access, L::Target: Logger
230 {
231         /// Creates a new tracker of the actual state of the network of channels and nodes,
232         /// assuming an existing Network Graph.
233         /// Chain monitor is used to make sure announced channels exist on-chain,
234         /// channel data is correct, and that the announcement is signed with
235         /// channel owners' keys.
236         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
237                 P2PGossipSync {
238                         network_graph,
239                         #[cfg(feature = "std")]
240                         full_syncs_requested: AtomicUsize::new(0),
241                         chain_access,
242                         pending_events: Mutex::new(vec![]),
243                         logger,
244                 }
245         }
246
247         /// Adds a provider used to check new announcements. Does not affect
248         /// existing announcements unless they are updated.
249         /// Add, update or remove the provider would replace the current one.
250         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
251                 self.chain_access = chain_access;
252         }
253
254         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
255         /// [`P2PGossipSync::new`].
256         ///
257         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
258         pub fn network_graph(&self) -> &G {
259                 &self.network_graph
260         }
261
262         #[cfg(feature = "std")]
263         /// Returns true when a full routing table sync should be performed with a peer.
264         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
265                 //TODO: Determine whether to request a full sync based on the network map.
266                 const FULL_SYNCS_TO_REQUEST: usize = 5;
267                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
268                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
269                         true
270                 } else {
271                         false
272                 }
273         }
274 }
275
276 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
277         fn handle_event(&self, event: &Event) {
278                 if let Event::PaymentPathFailed { network_update, .. } = event {
279                         if let Some(network_update) = network_update {
280                                 match *network_update {
281                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
282                                                 let short_channel_id = msg.contents.short_channel_id;
283                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
284                                                 let status = if is_enabled { "enabled" } else { "disabled" };
285                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
286                                                 let _ = self.update_channel(msg);
287                                         },
288                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
289                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
290                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
291                                                 self.channel_failed(short_channel_id, is_permanent);
292                                         },
293                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
294                                                 if is_permanent {
295                                                         log_debug!(self.logger,
296                                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
297                                                         self.node_failed_permanent(node_id);
298                                                 };
299                                         },
300                                 }
301                         }
302                 }
303         }
304 }
305
306 macro_rules! secp_verify_sig {
307         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
308                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
309                         Ok(_) => {},
310                         Err(_) => {
311                                 return Err(LightningError {
312                                         err: format!("Invalid signature on {} message", $msg_type),
313                                         action: ErrorAction::SendWarningMessage {
314                                                 msg: msgs::WarningMessage {
315                                                         channel_id: [0; 32],
316                                                         data: format!("Invalid signature on {} message", $msg_type),
317                                                 },
318                                                 log_level: Level::Trace,
319                                         },
320                                 });
321                         },
322                 }
323         };
324 }
325
326 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
327 where C::Target: chain::Access, L::Target: Logger
328 {
329         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
330                 self.network_graph.update_node_from_announcement(msg)?;
331                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
332                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
333                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
334         }
335
336         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
337                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
338                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
339                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
340         }
341
342         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
343                 self.network_graph.update_channel(msg)?;
344                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
345         }
346
347         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
348                 let channels = self.network_graph.channels.read().unwrap();
349                 for (_, ref chan) in channels.range(starting_point..) {
350                         if chan.announcement_message.is_some() {
351                                 let chan_announcement = chan.announcement_message.clone().unwrap();
352                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
353                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
354                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
355                                         one_to_two_announcement = one_to_two.last_update_message.clone();
356                                 }
357                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
358                                         two_to_one_announcement = two_to_one.last_update_message.clone();
359                                 }
360                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
361                         } else {
362                                 // TODO: We may end up sending un-announced channel_updates if we are sending
363                                 // initial sync data while receiving announce/updates for this channel.
364                         }
365                 }
366                 None
367         }
368
369         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
370                 let nodes = self.network_graph.nodes.read().unwrap();
371                 let iter = if let Some(pubkey) = starting_point {
372                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
373                         } else {
374                                 nodes.range(..)
375                         };
376                 for (_, ref node) in iter {
377                         if let Some(node_info) = node.announcement_info.as_ref() {
378                                 if let Some(msg) = node_info.announcement_message.clone() {
379                                         return Some(msg);
380                                 }
381                         }
382                 }
383                 None
384         }
385
386         /// Initiates a stateless sync of routing gossip information with a peer
387         /// using gossip_queries. The default strategy used by this implementation
388         /// is to sync the full block range with several peers.
389         ///
390         /// We should expect one or more reply_channel_range messages in response
391         /// to our query_channel_range. Each reply will enqueue a query_scid message
392         /// to request gossip messages for each channel. The sync is considered complete
393         /// when the final reply_scids_end message is received, though we are not
394         /// tracking this directly.
395         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
396                 // We will only perform a sync with peers that support gossip_queries.
397                 if !init_msg.features.supports_gossip_queries() {
398                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
399                         // channels with peers even without being able to exchange gossip.
400                         return Ok(());
401                 }
402
403                 // The lightning network's gossip sync system is completely broken in numerous ways.
404                 //
405                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
406                 // to do a full sync from the first few peers we connect to, and then receive gossip
407                 // updates from all our peers normally.
408                 //
409                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
410                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
411                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
412                 // seen.
413                 //
414                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
415                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
416                 // channel data which you are missing. Except there was no way at all to identify which
417                 // `channel_update`s you were missing, so you still had to request everything, just in a
418                 // very complicated way with some queries instead of just getting the dump.
419                 //
420                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
421                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
422                 // relying on it useless.
423                 //
424                 // After gossip queries were introduced, support for receiving a full gossip table dump on
425                 // connection was removed from several nodes, making it impossible to get a full sync
426                 // without using the "gossip queries" messages.
427                 //
428                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
429                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
430                 // message, as the name implies, tells the peer to not forward any gossip messages with a
431                 // timestamp older than a given value (not the time the peer received the filter, but the
432                 // timestamp in the update message, which is often hours behind when the peer received the
433                 // message).
434                 //
435                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
436                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
437                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
438                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
439                 // will simply not forward any new updates they see to you which were generated some time
440                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
441                 // ago), you will always get the full routing graph from all your peers.
442                 //
443                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
444                 // propagated some time after it was generated, and, worse, often disable gossiping with
445                 // several peers after their first connection. The second behavior can cause gossip to not
446                 // propagate fully if there are cuts in the gossiping subgraph.
447                 //
448                 // In an attempt to cut a middle ground between always fetching the full graph from all of
449                 // our peers and never receiving gossip from peers at all, we send all of our peers a
450                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
451                 //
452                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
453                 #[allow(unused_mut, unused_assignments)]
454                 let mut gossip_start_time = 0;
455                 #[cfg(feature = "std")]
456                 {
457                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
458                         if self.should_request_full_sync(&their_node_id) {
459                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
460                         } else {
461                                 gossip_start_time -= 60 * 60; // an hour ago
462                         }
463                 }
464
465                 let mut pending_events = self.pending_events.lock().unwrap();
466                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
467                         node_id: their_node_id.clone(),
468                         msg: GossipTimestampFilter {
469                                 chain_hash: self.network_graph.genesis_hash,
470                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
471                                 timestamp_range: u32::max_value(),
472                         },
473                 });
474                 Ok(())
475         }
476
477         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
478                 // We don't make queries, so should never receive replies. If, in the future, the set
479                 // reconciliation extensions to gossip queries become broadly supported, we should revert
480                 // this code to its state pre-0.0.106.
481                 Ok(())
482         }
483
484         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
485                 // We don't make queries, so should never receive replies. If, in the future, the set
486                 // reconciliation extensions to gossip queries become broadly supported, we should revert
487                 // this code to its state pre-0.0.106.
488                 Ok(())
489         }
490
491         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
492         /// are in the specified block range. Due to message size limits, large range
493         /// queries may result in several reply messages. This implementation enqueues
494         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
495         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
496         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
497         /// memory constrained systems.
498         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
499                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
500
501                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
502
503                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
504                 // If so, we manually cap the ending block to avoid this overflow.
505                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
506
507                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
508                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
509                         let mut pending_events = self.pending_events.lock().unwrap();
510                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
511                                 node_id: their_node_id.clone(),
512                                 msg: ReplyChannelRange {
513                                         chain_hash: msg.chain_hash.clone(),
514                                         first_blocknum: msg.first_blocknum,
515                                         number_of_blocks: msg.number_of_blocks,
516                                         sync_complete: true,
517                                         short_channel_ids: vec![],
518                                 }
519                         });
520                         return Err(LightningError {
521                                 err: String::from("query_channel_range could not be processed"),
522                                 action: ErrorAction::IgnoreError,
523                         });
524                 }
525
526                 // Creates channel batches. We are not checking if the channel is routable
527                 // (has at least one update). A peer may still want to know the channel
528                 // exists even if its not yet routable.
529                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
530                 let channels = self.network_graph.channels.read().unwrap();
531                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
532                         if let Some(chan_announcement) = &chan.announcement_message {
533                                 // Construct a new batch if last one is full
534                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
535                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
536                                 }
537
538                                 let batch = batches.last_mut().unwrap();
539                                 batch.push(chan_announcement.contents.short_channel_id);
540                         }
541                 }
542                 drop(channels);
543
544                 let mut pending_events = self.pending_events.lock().unwrap();
545                 let batch_count = batches.len();
546                 let mut prev_batch_endblock = msg.first_blocknum;
547                 for (batch_index, batch) in batches.into_iter().enumerate() {
548                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
549                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
550                         //
551                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
552                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
553                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
554                         // significant diversion from the requirements set by the spec, and, in case of blocks
555                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
556                         // and *not* derive the first_blocknum from the actual first block of the reply.
557                         let first_blocknum = prev_batch_endblock;
558
559                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
560                         // fit in. Though there is no requirement that we use exactly the number of blocks its
561                         // contents are from, except for the bogus requirements c-lightning enforces, above.
562                         //
563                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
564                         // >= the query's end block. Thus, for the last reply, we calculate the difference
565                         // between the query's end block and the start of the reply.
566                         //
567                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
568                         // first_blocknum will be either msg.first_blocknum or a higher block height.
569                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
570                                 (true, msg.end_blocknum() - first_blocknum)
571                         }
572                         // Prior replies should use the number of blocks that fit into the reply. Overflow
573                         // safe since first_blocknum is always <= last SCID's block.
574                         else {
575                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
576                         };
577
578                         prev_batch_endblock = first_blocknum + number_of_blocks;
579
580                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
581                                 node_id: their_node_id.clone(),
582                                 msg: ReplyChannelRange {
583                                         chain_hash: msg.chain_hash.clone(),
584                                         first_blocknum,
585                                         number_of_blocks,
586                                         sync_complete,
587                                         short_channel_ids: batch,
588                                 }
589                         });
590                 }
591
592                 Ok(())
593         }
594
595         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
596                 // TODO
597                 Err(LightningError {
598                         err: String::from("Not implemented"),
599                         action: ErrorAction::IgnoreError,
600                 })
601         }
602
603         fn provided_node_features(&self) -> NodeFeatures {
604                 let mut features = NodeFeatures::empty();
605                 features.set_gossip_queries_optional();
606                 features
607         }
608
609         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
610                 let mut features = InitFeatures::empty();
611                 features.set_gossip_queries_optional();
612                 features
613         }
614 }
615
616 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
617 where
618         C::Target: chain::Access,
619         L::Target: Logger,
620 {
621         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
622                 let mut ret = Vec::new();
623                 let mut pending_events = self.pending_events.lock().unwrap();
624                 core::mem::swap(&mut ret, &mut pending_events);
625                 ret
626         }
627 }
628
629 #[derive(Clone, Debug, PartialEq)]
630 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
631 pub struct ChannelUpdateInfo {
632         /// When the last update to the channel direction was issued.
633         /// Value is opaque, as set in the announcement.
634         pub last_update: u32,
635         /// Whether the channel can be currently used for payments (in this one direction).
636         pub enabled: bool,
637         /// The difference in CLTV values that you must have when routing through this channel.
638         pub cltv_expiry_delta: u16,
639         /// The minimum value, which must be relayed to the next hop via the channel
640         pub htlc_minimum_msat: u64,
641         /// The maximum value which may be relayed to the next hop via the channel.
642         pub htlc_maximum_msat: u64,
643         /// Fees charged when the channel is used for routing
644         pub fees: RoutingFees,
645         /// Most recent update for the channel received from the network
646         /// Mostly redundant with the data we store in fields explicitly.
647         /// Everything else is useful only for sending out for initial routing sync.
648         /// Not stored if contains excess data to prevent DoS.
649         pub last_update_message: Option<ChannelUpdate>,
650 }
651
652 impl fmt::Display for ChannelUpdateInfo {
653         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
654                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
655                 Ok(())
656         }
657 }
658
659 impl Writeable for ChannelUpdateInfo {
660         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
661                 write_tlv_fields!(writer, {
662                         (0, self.last_update, required),
663                         (2, self.enabled, required),
664                         (4, self.cltv_expiry_delta, required),
665                         (6, self.htlc_minimum_msat, required),
666                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
667                         // compatibility with LDK versions prior to v0.0.110.
668                         (8, Some(self.htlc_maximum_msat), required),
669                         (10, self.fees, required),
670                         (12, self.last_update_message, required),
671                 });
672                 Ok(())
673         }
674 }
675
676 impl Readable for ChannelUpdateInfo {
677         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
678                 init_tlv_field_var!(last_update, required);
679                 init_tlv_field_var!(enabled, required);
680                 init_tlv_field_var!(cltv_expiry_delta, required);
681                 init_tlv_field_var!(htlc_minimum_msat, required);
682                 init_tlv_field_var!(htlc_maximum_msat, option);
683                 init_tlv_field_var!(fees, required);
684                 init_tlv_field_var!(last_update_message, required);
685
686                 read_tlv_fields!(reader, {
687                         (0, last_update, required),
688                         (2, enabled, required),
689                         (4, cltv_expiry_delta, required),
690                         (6, htlc_minimum_msat, required),
691                         (8, htlc_maximum_msat, required),
692                         (10, fees, required),
693                         (12, last_update_message, required)
694                 });
695
696                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
697                         Ok(ChannelUpdateInfo {
698                                 last_update: init_tlv_based_struct_field!(last_update, required),
699                                 enabled: init_tlv_based_struct_field!(enabled, required),
700                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
701                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
702                                 htlc_maximum_msat,
703                                 fees: init_tlv_based_struct_field!(fees, required),
704                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
705                         })
706                 } else {
707                         Err(DecodeError::InvalidValue)
708                 }
709         }
710 }
711
712 #[derive(Clone, Debug, PartialEq)]
713 /// Details about a channel (both directions).
714 /// Received within a channel announcement.
715 pub struct ChannelInfo {
716         /// Protocol features of a channel communicated during its announcement
717         pub features: ChannelFeatures,
718         /// Source node of the first direction of a channel
719         pub node_one: NodeId,
720         /// Details about the first direction of a channel
721         pub one_to_two: Option<ChannelUpdateInfo>,
722         /// Source node of the second direction of a channel
723         pub node_two: NodeId,
724         /// Details about the second direction of a channel
725         pub two_to_one: Option<ChannelUpdateInfo>,
726         /// The channel capacity as seen on-chain, if chain lookup is available.
727         pub capacity_sats: Option<u64>,
728         /// An initial announcement of the channel
729         /// Mostly redundant with the data we store in fields explicitly.
730         /// Everything else is useful only for sending out for initial routing sync.
731         /// Not stored if contains excess data to prevent DoS.
732         pub announcement_message: Option<ChannelAnnouncement>,
733         /// The timestamp when we received the announcement, if we are running with feature = "std"
734         /// (which we can probably assume we are - no-std environments probably won't have a full
735         /// network graph in memory!).
736         announcement_received_time: u64,
737 }
738
739 impl ChannelInfo {
740         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
741         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
742         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
743                 let (direction, source) = {
744                         if target == &self.node_one {
745                                 (self.two_to_one.as_ref(), &self.node_two)
746                         } else if target == &self.node_two {
747                                 (self.one_to_two.as_ref(), &self.node_one)
748                         } else {
749                                 return None;
750                         }
751                 };
752                 Some((DirectedChannelInfo::new(self, direction), source))
753         }
754
755         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
756         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
757         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
758                 let (direction, target) = {
759                         if source == &self.node_one {
760                                 (self.one_to_two.as_ref(), &self.node_two)
761                         } else if source == &self.node_two {
762                                 (self.two_to_one.as_ref(), &self.node_one)
763                         } else {
764                                 return None;
765                         }
766                 };
767                 Some((DirectedChannelInfo::new(self, direction), target))
768         }
769
770         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
771         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
772                 let direction = channel_flags & 1u8;
773                 if direction == 0 {
774                         self.one_to_two.as_ref()
775                 } else {
776                         self.two_to_one.as_ref()
777                 }
778         }
779 }
780
781 impl fmt::Display for ChannelInfo {
782         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
783                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
784                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
785                 Ok(())
786         }
787 }
788
789 impl Writeable for ChannelInfo {
790         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
791                 write_tlv_fields!(writer, {
792                         (0, self.features, required),
793                         (1, self.announcement_received_time, (default_value, 0)),
794                         (2, self.node_one, required),
795                         (4, self.one_to_two, required),
796                         (6, self.node_two, required),
797                         (8, self.two_to_one, required),
798                         (10, self.capacity_sats, required),
799                         (12, self.announcement_message, required),
800                 });
801                 Ok(())
802         }
803 }
804
805 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
806 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
807 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
808 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
809 // channel updates via the gossip network.
810 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
811
812 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
813         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
814                 match ::util::ser::Readable::read(reader) {
815                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
816                         Err(DecodeError::ShortRead) => Ok(None),
817                         Err(DecodeError::InvalidValue) => Ok(None),
818                         Err(err) => Err(err),
819                 }
820         }
821 }
822
823 impl Readable for ChannelInfo {
824         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
825                 init_tlv_field_var!(features, required);
826                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
827                 init_tlv_field_var!(node_one, required);
828                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
829                 init_tlv_field_var!(node_two, required);
830                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
831                 init_tlv_field_var!(capacity_sats, required);
832                 init_tlv_field_var!(announcement_message, required);
833                 read_tlv_fields!(reader, {
834                         (0, features, required),
835                         (1, announcement_received_time, (default_value, 0)),
836                         (2, node_one, required),
837                         (4, one_to_two_wrap, ignorable),
838                         (6, node_two, required),
839                         (8, two_to_one_wrap, ignorable),
840                         (10, capacity_sats, required),
841                         (12, announcement_message, required),
842                 });
843
844                 Ok(ChannelInfo {
845                         features: init_tlv_based_struct_field!(features, required),
846                         node_one: init_tlv_based_struct_field!(node_one, required),
847                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
848                         node_two: init_tlv_based_struct_field!(node_two, required),
849                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
850                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
851                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
852                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
853                 })
854         }
855 }
856
857 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
858 /// source node to a target node.
859 #[derive(Clone)]
860 pub struct DirectedChannelInfo<'a> {
861         channel: &'a ChannelInfo,
862         direction: Option<&'a ChannelUpdateInfo>,
863         htlc_maximum_msat: u64,
864         effective_capacity: EffectiveCapacity,
865 }
866
867 impl<'a> DirectedChannelInfo<'a> {
868         #[inline]
869         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
870                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
871                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
872
873                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
874                         (Some(amount_msat), Some(capacity_msat)) => {
875                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
876                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
877                         },
878                         (Some(amount_msat), None) => {
879                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
880                         },
881                         (None, Some(capacity_msat)) => {
882                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
883                         },
884                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
885                 };
886
887                 Self {
888                         channel, direction, htlc_maximum_msat, effective_capacity
889                 }
890         }
891
892         /// Returns information for the channel.
893         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
894
895         /// Returns information for the direction.
896         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
897
898         /// Returns the maximum HTLC amount allowed over the channel in the direction.
899         pub fn htlc_maximum_msat(&self) -> u64 {
900                 self.htlc_maximum_msat
901         }
902
903         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
904         ///
905         /// This is either the total capacity from the funding transaction, if known, or the
906         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
907         /// otherwise.
908         pub fn effective_capacity(&self) -> EffectiveCapacity {
909                 self.effective_capacity
910         }
911
912         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
913         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
914                 match self.direction {
915                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
916                         None => None,
917                 }
918         }
919 }
920
921 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
922         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
923                 f.debug_struct("DirectedChannelInfo")
924                         .field("channel", &self.channel)
925                         .finish()
926         }
927 }
928
929 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
930 #[derive(Clone)]
931 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
932         inner: DirectedChannelInfo<'a>,
933 }
934
935 impl<'a> DirectedChannelInfoWithUpdate<'a> {
936         /// Returns information for the channel.
937         #[inline]
938         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
939
940         /// Returns information for the direction.
941         #[inline]
942         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
943
944         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
945         #[inline]
946         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
947 }
948
949 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
950         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
951                 self.inner.fmt(f)
952         }
953 }
954
955 /// The effective capacity of a channel for routing purposes.
956 ///
957 /// While this may be smaller than the actual channel capacity, amounts greater than
958 /// [`Self::as_msat`] should not be routed through the channel.
959 #[derive(Clone, Copy, Debug)]
960 pub enum EffectiveCapacity {
961         /// The available liquidity in the channel known from being a channel counterparty, and thus a
962         /// direct hop.
963         ExactLiquidity {
964                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
965                 /// millisatoshi.
966                 liquidity_msat: u64,
967         },
968         /// The maximum HTLC amount in one direction as advertised on the gossip network.
969         MaximumHTLC {
970                 /// The maximum HTLC amount denominated in millisatoshi.
971                 amount_msat: u64,
972         },
973         /// The total capacity of the channel as determined by the funding transaction.
974         Total {
975                 /// The funding amount denominated in millisatoshi.
976                 capacity_msat: u64,
977                 /// The maximum HTLC amount denominated in millisatoshi.
978                 htlc_maximum_msat: Option<u64>
979         },
980         /// A capacity sufficient to route any payment, typically used for private channels provided by
981         /// an invoice.
982         Infinite,
983         /// A capacity that is unknown possibly because either the chain state is unavailable to know
984         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
985         Unknown,
986 }
987
988 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
989 /// use when making routing decisions.
990 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
991
992 impl EffectiveCapacity {
993         /// Returns the effective capacity denominated in millisatoshi.
994         pub fn as_msat(&self) -> u64 {
995                 match self {
996                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
997                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
998                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
999                         EffectiveCapacity::Infinite => u64::max_value(),
1000                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1001                 }
1002         }
1003 }
1004
1005 /// Fees for routing via a given channel or a node
1006 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1007 pub struct RoutingFees {
1008         /// Flat routing fee in satoshis
1009         pub base_msat: u32,
1010         /// Liquidity-based routing fee in millionths of a routed amount.
1011         /// In other words, 10000 is 1%.
1012         pub proportional_millionths: u32,
1013 }
1014
1015 impl_writeable_tlv_based!(RoutingFees, {
1016         (0, base_msat, required),
1017         (2, proportional_millionths, required)
1018 });
1019
1020 #[derive(Clone, Debug, PartialEq)]
1021 /// Information received in the latest node_announcement from this node.
1022 pub struct NodeAnnouncementInfo {
1023         /// Protocol features the node announced support for
1024         pub features: NodeFeatures,
1025         /// When the last known update to the node state was issued.
1026         /// Value is opaque, as set in the announcement.
1027         pub last_update: u32,
1028         /// Color assigned to the node
1029         pub rgb: [u8; 3],
1030         /// Moniker assigned to the node.
1031         /// May be invalid or malicious (eg control chars),
1032         /// should not be exposed to the user.
1033         pub alias: NodeAlias,
1034         /// Internet-level addresses via which one can connect to the node
1035         pub addresses: Vec<NetAddress>,
1036         /// An initial announcement of the node
1037         /// Mostly redundant with the data we store in fields explicitly.
1038         /// Everything else is useful only for sending out for initial routing sync.
1039         /// Not stored if contains excess data to prevent DoS.
1040         pub announcement_message: Option<NodeAnnouncement>
1041 }
1042
1043 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1044         (0, features, required),
1045         (2, last_update, required),
1046         (4, rgb, required),
1047         (6, alias, required),
1048         (8, announcement_message, option),
1049         (10, addresses, vec_type),
1050 });
1051
1052 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1053 ///
1054 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1055 /// attacks. Care must be taken when processing.
1056 #[derive(Clone, Debug, PartialEq)]
1057 pub struct NodeAlias(pub [u8; 32]);
1058
1059 impl fmt::Display for NodeAlias {
1060         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1061                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1062                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1063                 let bytes = self.0.split_at(first_null).0;
1064                 match core::str::from_utf8(bytes) {
1065                         Ok(alias) => {
1066                                 for c in alias.chars() {
1067                                         let mut bytes = [0u8; 4];
1068                                         let c = if !c.is_control() { c } else { control_symbol };
1069                                         f.write_str(c.encode_utf8(&mut bytes))?;
1070                                 }
1071                         },
1072                         Err(_) => {
1073                                 for c in bytes.iter().map(|b| *b as char) {
1074                                         // Display printable ASCII characters
1075                                         let mut bytes = [0u8; 4];
1076                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1077                                         f.write_str(c.encode_utf8(&mut bytes))?;
1078                                 }
1079                         },
1080                 };
1081                 Ok(())
1082         }
1083 }
1084
1085 impl Writeable for NodeAlias {
1086         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1087                 self.0.write(w)
1088         }
1089 }
1090
1091 impl Readable for NodeAlias {
1092         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1093                 Ok(NodeAlias(Readable::read(r)?))
1094         }
1095 }
1096
1097 #[derive(Clone, Debug, PartialEq)]
1098 /// Details about a node in the network, known from the network announcement.
1099 pub struct NodeInfo {
1100         /// All valid channels a node has announced
1101         pub channels: Vec<u64>,
1102         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1103         /// The two fields (flat and proportional fee) are independent,
1104         /// meaning they don't have to refer to the same channel.
1105         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1106         /// More information about a node from node_announcement.
1107         /// Optional because we store a Node entry after learning about it from
1108         /// a channel announcement, but before receiving a node announcement.
1109         pub announcement_info: Option<NodeAnnouncementInfo>
1110 }
1111
1112 impl fmt::Display for NodeInfo {
1113         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1114                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1115                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1116                 Ok(())
1117         }
1118 }
1119
1120 impl Writeable for NodeInfo {
1121         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1122                 write_tlv_fields!(writer, {
1123                         (0, self.lowest_inbound_channel_fees, option),
1124                         (2, self.announcement_info, option),
1125                         (4, self.channels, vec_type),
1126                 });
1127                 Ok(())
1128         }
1129 }
1130
1131 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1132 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1133 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1134 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1135 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1136
1137 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1138         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1139                 match ::util::ser::Readable::read(reader) {
1140                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1141                         Err(_) => {
1142                                 copy(reader, &mut sink()).unwrap();
1143                                 return Ok(None)
1144                         },
1145                 };
1146         }
1147 }
1148
1149 impl Readable for NodeInfo {
1150         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1151                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1152                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1153                 init_tlv_field_var!(channels, vec_type);
1154
1155                 read_tlv_fields!(reader, {
1156                         (0, lowest_inbound_channel_fees, option),
1157                         (2, announcement_info_wrap, ignorable),
1158                         (4, channels, vec_type),
1159                 });
1160
1161                 Ok(NodeInfo {
1162                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1163                         announcement_info: announcement_info_wrap.map(|w| w.0),
1164                         channels: init_tlv_based_struct_field!(channels, vec_type),
1165                 })
1166         }
1167 }
1168
1169 const SERIALIZATION_VERSION: u8 = 1;
1170 const MIN_SERIALIZATION_VERSION: u8 = 1;
1171
1172 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1173         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1174                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1175
1176                 self.genesis_hash.write(writer)?;
1177                 let channels = self.channels.read().unwrap();
1178                 (channels.len() as u64).write(writer)?;
1179                 for (ref chan_id, ref chan_info) in channels.iter() {
1180                         (*chan_id).write(writer)?;
1181                         chan_info.write(writer)?;
1182                 }
1183                 let nodes = self.nodes.read().unwrap();
1184                 (nodes.len() as u64).write(writer)?;
1185                 for (ref node_id, ref node_info) in nodes.iter() {
1186                         node_id.write(writer)?;
1187                         node_info.write(writer)?;
1188                 }
1189
1190                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1191                 write_tlv_fields!(writer, {
1192                         (1, last_rapid_gossip_sync_timestamp, option),
1193                 });
1194                 Ok(())
1195         }
1196 }
1197
1198 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1199         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1200                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1201
1202                 let genesis_hash: BlockHash = Readable::read(reader)?;
1203                 let channels_count: u64 = Readable::read(reader)?;
1204                 let mut channels = BTreeMap::new();
1205                 for _ in 0..channels_count {
1206                         let chan_id: u64 = Readable::read(reader)?;
1207                         let chan_info = Readable::read(reader)?;
1208                         channels.insert(chan_id, chan_info);
1209                 }
1210                 let nodes_count: u64 = Readable::read(reader)?;
1211                 let mut nodes = BTreeMap::new();
1212                 for _ in 0..nodes_count {
1213                         let node_id = Readable::read(reader)?;
1214                         let node_info = Readable::read(reader)?;
1215                         nodes.insert(node_id, node_info);
1216                 }
1217
1218                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1219                 read_tlv_fields!(reader, {
1220                         (1, last_rapid_gossip_sync_timestamp, option),
1221                 });
1222
1223                 Ok(NetworkGraph {
1224                         secp_ctx: Secp256k1::verification_only(),
1225                         genesis_hash,
1226                         logger,
1227                         channels: RwLock::new(channels),
1228                         nodes: RwLock::new(nodes),
1229                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1230                         removed_nodes: Mutex::new(HashMap::new()),
1231                         removed_channels: Mutex::new(HashMap::new()),
1232                 })
1233         }
1234 }
1235
1236 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1237         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1238                 writeln!(f, "Network map\n[Channels]")?;
1239                 for (key, val) in self.channels.read().unwrap().iter() {
1240                         writeln!(f, " {}: {}", key, val)?;
1241                 }
1242                 writeln!(f, "[Nodes]")?;
1243                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1244                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1245                 }
1246                 Ok(())
1247         }
1248 }
1249
1250 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1251         fn eq(&self, other: &Self) -> bool {
1252                 self.genesis_hash == other.genesis_hash &&
1253                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1254                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1255         }
1256 }
1257
1258 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1259         /// Creates a new, empty, network graph.
1260         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1261                 Self {
1262                         secp_ctx: Secp256k1::verification_only(),
1263                         genesis_hash,
1264                         logger,
1265                         channels: RwLock::new(BTreeMap::new()),
1266                         nodes: RwLock::new(BTreeMap::new()),
1267                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1268                         removed_channels: Mutex::new(HashMap::new()),
1269                         removed_nodes: Mutex::new(HashMap::new()),
1270                 }
1271         }
1272
1273         /// Returns a read-only view of the network graph.
1274         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1275                 let channels = self.channels.read().unwrap();
1276                 let nodes = self.nodes.read().unwrap();
1277                 ReadOnlyNetworkGraph {
1278                         channels,
1279                         nodes,
1280                 }
1281         }
1282
1283         /// The unix timestamp provided by the most recent rapid gossip sync.
1284         /// It will be set by the rapid sync process after every sync completion.
1285         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1286                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1287         }
1288
1289         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1290         /// This should be done automatically by the rapid sync process after every sync completion.
1291         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1292                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1293         }
1294
1295         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1296         /// purposes.
1297         #[cfg(test)]
1298         pub fn clear_nodes_announcement_info(&self) {
1299                 for node in self.nodes.write().unwrap().iter_mut() {
1300                         node.1.announcement_info = None;
1301                 }
1302         }
1303
1304         /// For an already known node (from channel announcements), update its stored properties from a
1305         /// given node announcement.
1306         ///
1307         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1308         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1309         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1310         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1311                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1312                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1313                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1314         }
1315
1316         /// For an already known node (from channel announcements), update its stored properties from a
1317         /// given node announcement without verifying the associated signatures. Because we aren't
1318         /// given the associated signatures here we cannot relay the node announcement to any of our
1319         /// peers.
1320         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1321                 self.update_node_from_announcement_intern(msg, None)
1322         }
1323
1324         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1325                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1326                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1327                         Some(node) => {
1328                                 if let Some(node_info) = node.announcement_info.as_ref() {
1329                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1330                                         // updates to ensure you always have the latest one, only vaguely suggesting
1331                                         // that it be at least the current time.
1332                                         if node_info.last_update  > msg.timestamp {
1333                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1334                                         } else if node_info.last_update  == msg.timestamp {
1335                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1336                                         }
1337                                 }
1338
1339                                 let should_relay =
1340                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1341                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1342                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1343                                 node.announcement_info = Some(NodeAnnouncementInfo {
1344                                         features: msg.features.clone(),
1345                                         last_update: msg.timestamp,
1346                                         rgb: msg.rgb,
1347                                         alias: NodeAlias(msg.alias),
1348                                         addresses: msg.addresses.clone(),
1349                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1350                                 });
1351
1352                                 Ok(())
1353                         }
1354                 }
1355         }
1356
1357         /// Store or update channel info from a channel announcement.
1358         ///
1359         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1360         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1361         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1362         ///
1363         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1364         /// the corresponding UTXO exists on chain and is correctly-formatted.
1365         pub fn update_channel_from_announcement<C: Deref>(
1366                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1367         ) -> Result<(), LightningError>
1368         where
1369                 C::Target: chain::Access,
1370         {
1371                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1372                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1373                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1374                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1375                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1376                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1377         }
1378
1379         /// Store or update channel info from a channel announcement without verifying the associated
1380         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1381         /// channel announcement to any of our peers.
1382         ///
1383         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1384         /// the corresponding UTXO exists on chain and is correctly-formatted.
1385         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1386                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1387         ) -> Result<(), LightningError>
1388         where
1389                 C::Target: chain::Access,
1390         {
1391                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1392         }
1393
1394         /// Update channel from partial announcement data received via rapid gossip sync
1395         ///
1396         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1397         /// rapid gossip sync server)
1398         ///
1399         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1400         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1401                 if node_id_1 == node_id_2 {
1402                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1403                 };
1404
1405                 let node_1 = NodeId::from_pubkey(&node_id_1);
1406                 let node_2 = NodeId::from_pubkey(&node_id_2);
1407                 let channel_info = ChannelInfo {
1408                         features,
1409                         node_one: node_1.clone(),
1410                         one_to_two: None,
1411                         node_two: node_2.clone(),
1412                         two_to_one: None,
1413                         capacity_sats: None,
1414                         announcement_message: None,
1415                         announcement_received_time: timestamp,
1416                 };
1417
1418                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1419         }
1420
1421         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1422                 let mut channels = self.channels.write().unwrap();
1423                 let mut nodes = self.nodes.write().unwrap();
1424
1425                 let node_id_a = channel_info.node_one.clone();
1426                 let node_id_b = channel_info.node_two.clone();
1427
1428                 match channels.entry(short_channel_id) {
1429                         BtreeEntry::Occupied(mut entry) => {
1430                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1431                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1432                                 //exactly how...
1433                                 if utxo_value.is_some() {
1434                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1435                                         // only sometimes returns results. In any case remove the previous entry. Note
1436                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1437                                         // do that because
1438                                         // a) we don't *require* a UTXO provider that always returns results.
1439                                         // b) we don't track UTXOs of channels we know about and remove them if they
1440                                         //    get reorg'd out.
1441                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1442                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1443                                         *entry.get_mut() = channel_info;
1444                                 } else {
1445                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1446                                 }
1447                         },
1448                         BtreeEntry::Vacant(entry) => {
1449                                 entry.insert(channel_info);
1450                         }
1451                 };
1452
1453                 for current_node_id in [node_id_a, node_id_b].iter() {
1454                         match nodes.entry(current_node_id.clone()) {
1455                                 BtreeEntry::Occupied(node_entry) => {
1456                                         node_entry.into_mut().channels.push(short_channel_id);
1457                                 },
1458                                 BtreeEntry::Vacant(node_entry) => {
1459                                         node_entry.insert(NodeInfo {
1460                                                 channels: vec!(short_channel_id),
1461                                                 lowest_inbound_channel_fees: None,
1462                                                 announcement_info: None,
1463                                         });
1464                                 }
1465                         };
1466                 };
1467
1468                 Ok(())
1469         }
1470
1471         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1472                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1473         ) -> Result<(), LightningError>
1474         where
1475                 C::Target: chain::Access,
1476         {
1477                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1478                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1479                 }
1480
1481                 let node_one = NodeId::from_pubkey(&msg.node_id_1);
1482                 let node_two = NodeId::from_pubkey(&msg.node_id_2);
1483
1484                 {
1485                         let channels = self.channels.read().unwrap();
1486
1487                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1488                                 if chan.capacity_sats.is_some() {
1489                                         // If we'd previously looked up the channel on-chain and checked the script
1490                                         // against what appears on-chain, ignore the duplicate announcement.
1491                                         //
1492                                         // Because a reorg could replace one channel with another at the same SCID, if
1493                                         // the channel appears to be different, we re-validate. This doesn't expose us
1494                                         // to any more DoS risk than not, as a peer can always flood us with
1495                                         // randomly-generated SCID values anyway.
1496                                         //
1497                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1498                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1499                                         // if the peers on the channel changed anyway.
1500                                         if node_one == chan.node_one && node_two == chan.node_two {
1501                                                 return Err(LightningError {
1502                                                         err: "Already have chain-validated channel".to_owned(),
1503                                                         action: ErrorAction::IgnoreDuplicateGossip
1504                                                 });
1505                                         }
1506                                 } else if chain_access.is_none() {
1507                                         // Similarly, if we can't check the chain right now anyway, ignore the
1508                                         // duplicate announcement without bothering to take the channels write lock.
1509                                         return Err(LightningError {
1510                                                 err: "Already have non-chain-validated channel".to_owned(),
1511                                                 action: ErrorAction::IgnoreDuplicateGossip
1512                                         });
1513                                 }
1514                         }
1515                 }
1516
1517                 {
1518                         let removed_channels = self.removed_channels.lock().unwrap();
1519                         let removed_nodes = self.removed_nodes.lock().unwrap();
1520                         if removed_channels.contains_key(&msg.short_channel_id) ||
1521                                 removed_nodes.contains_key(&node_one) ||
1522                                 removed_nodes.contains_key(&node_two) {
1523                                 return Err(LightningError{
1524                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1525                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1526                         }
1527                 }
1528
1529                 let utxo_value = match &chain_access {
1530                         &None => {
1531                                 // Tentatively accept, potentially exposing us to DoS attacks
1532                                 None
1533                         },
1534                         &Some(ref chain_access) => {
1535                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1536                                         Ok(TxOut { value, script_pubkey }) => {
1537                                                 let expected_script =
1538                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1539                                                 if script_pubkey != expected_script {
1540                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1541                                                 }
1542                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1543                                                 //to the new HTLC max field in channel_update
1544                                                 Some(value)
1545                                         },
1546                                         Err(chain::AccessError::UnknownChain) => {
1547                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1548                                         },
1549                                         Err(chain::AccessError::UnknownTx) => {
1550                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1551                                         },
1552                                 }
1553                         },
1554                 };
1555
1556                 #[allow(unused_mut, unused_assignments)]
1557                 let mut announcement_received_time = 0;
1558                 #[cfg(feature = "std")]
1559                 {
1560                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1561                 }
1562
1563                 let chan_info = ChannelInfo {
1564                         features: msg.features.clone(),
1565                         node_one,
1566                         one_to_two: None,
1567                         node_two,
1568                         two_to_one: None,
1569                         capacity_sats: utxo_value,
1570                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1571                                 { full_msg.cloned() } else { None },
1572                         announcement_received_time,
1573                 };
1574
1575                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1576         }
1577
1578         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1579         /// If permanent, removes a channel from the local storage.
1580         /// May cause the removal of nodes too, if this was their last channel.
1581         /// If not permanent, makes channels unavailable for routing.
1582         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1583                 #[cfg(feature = "std")]
1584                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1585                 #[cfg(not(feature = "std"))]
1586                 let current_time_unix = None;
1587
1588                 let mut channels = self.channels.write().unwrap();
1589                 if is_permanent {
1590                         if let Some(chan) = channels.remove(&short_channel_id) {
1591                                 let mut nodes = self.nodes.write().unwrap();
1592                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1593                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1594                         }
1595                 } else {
1596                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1597                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1598                                         one_to_two.enabled = false;
1599                                 }
1600                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1601                                         two_to_one.enabled = false;
1602                                 }
1603                         }
1604                 }
1605         }
1606
1607         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1608         /// from local storage.
1609         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1610                 #[cfg(feature = "std")]
1611                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1612                 #[cfg(not(feature = "std"))]
1613                 let current_time_unix = None;
1614
1615                 let node_id = NodeId::from_pubkey(node_id);
1616                 let mut channels = self.channels.write().unwrap();
1617                 let mut nodes = self.nodes.write().unwrap();
1618                 let mut removed_channels = self.removed_channels.lock().unwrap();
1619                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1620
1621                 if let Some(node) = nodes.remove(&node_id) {
1622                         for scid in node.channels.iter() {
1623                                 if let Some(chan_info) = channels.remove(scid) {
1624                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1625                                         if let BtreeEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1626                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1627                                                         *scid != *chan_id
1628                                                 });
1629                                                 if other_node_entry.get().channels.is_empty() {
1630                                                         other_node_entry.remove_entry();
1631                                                 }
1632                                         }
1633                                         removed_channels.insert(*scid, current_time_unix);
1634                                 }
1635                         }
1636                         removed_nodes.insert(node_id, current_time_unix);
1637                 }
1638         }
1639
1640         #[cfg(feature = "std")]
1641         /// Removes information about channels that we haven't heard any updates about in some time.
1642         /// This can be used regularly to prune the network graph of channels that likely no longer
1643         /// exist.
1644         ///
1645         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1646         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1647         /// pruning occur for updates which are at least two weeks old, which we implement here.
1648         ///
1649         /// Note that for users of the `lightning-background-processor` crate this method may be
1650         /// automatically called regularly for you.
1651         ///
1652         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1653         /// in the map for a while so that these can be resynced from gossip in the future.
1654         ///
1655         /// This method is only available with the `std` feature. See
1656         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1657         pub fn remove_stale_channels_and_tracking(&self) {
1658                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1659                 self.remove_stale_channels_and_tracking_with_time(time);
1660         }
1661
1662         /// Removes information about channels that we haven't heard any updates about in some time.
1663         /// This can be used regularly to prune the network graph of channels that likely no longer
1664         /// exist.
1665         ///
1666         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1667         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1668         /// pruning occur for updates which are at least two weeks old, which we implement here.
1669         ///
1670         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1671         /// in the map for a while so that these can be resynced from gossip in the future.
1672         ///
1673         /// This function takes the current unix time as an argument. For users with the `std` feature
1674         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1675         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1676                 let mut channels = self.channels.write().unwrap();
1677                 // Time out if we haven't received an update in at least 14 days.
1678                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1679                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1680                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1681                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1682                 // time.
1683                 let mut scids_to_remove = Vec::new();
1684                 for (scid, info) in channels.iter_mut() {
1685                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1686                                 info.one_to_two = None;
1687                         }
1688                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1689                                 info.two_to_one = None;
1690                         }
1691                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1692                                 // We check the announcement_received_time here to ensure we don't drop
1693                                 // announcements that we just received and are just waiting for our peer to send a
1694                                 // channel_update for.
1695                                 if info.announcement_received_time < min_time_unix as u64 {
1696                                         scids_to_remove.push(*scid);
1697                                 }
1698                         }
1699                 }
1700                 if !scids_to_remove.is_empty() {
1701                         let mut nodes = self.nodes.write().unwrap();
1702                         for scid in scids_to_remove {
1703                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1704                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1705                         }
1706                 }
1707
1708                 let should_keep_tracking = |time: &mut Option<u64>| {
1709                         if let Some(time) = time {
1710                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1711                         } else {
1712                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1713                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1714                                 // of this function.
1715                                 #[cfg(feature = "no-std")]
1716                                 {
1717                                         let mut tracked_time = Some(current_time_unix);
1718                                         core::mem::swap(time, &mut tracked_time);
1719                                         return true;
1720                                 }
1721                                 #[allow(unreachable_code)]
1722                                 false
1723                         }};
1724
1725                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1726                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1727         }
1728
1729         /// For an already known (from announcement) channel, update info about one of the directions
1730         /// of the channel.
1731         ///
1732         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1733         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1734         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1735         ///
1736         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1737         /// materially in the future will be rejected.
1738         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1739                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1740         }
1741
1742         /// For an already known (from announcement) channel, update info about one of the directions
1743         /// of the channel without verifying the associated signatures. Because we aren't given the
1744         /// associated signatures here we cannot relay the channel update to any of our peers.
1745         ///
1746         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1747         /// materially in the future will be rejected.
1748         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1749                 self.update_channel_intern(msg, None, None)
1750         }
1751
1752         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1753                 let dest_node_id;
1754                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1755                 let chan_was_enabled;
1756
1757                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1758                 {
1759                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1760                         // disable this check during tests!
1761                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1762                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1763                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1764                         }
1765                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1766                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1767                         }
1768                 }
1769
1770                 let mut channels = self.channels.write().unwrap();
1771                 match channels.get_mut(&msg.short_channel_id) {
1772                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1773                         Some(channel) => {
1774                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1775                                         return Err(LightningError{err:
1776                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1777                                                 action: ErrorAction::IgnoreError});
1778                                 }
1779
1780                                 if let Some(capacity_sats) = channel.capacity_sats {
1781                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1782                                         // Don't query UTXO set here to reduce DoS risks.
1783                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1784                                                 return Err(LightningError{err:
1785                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1786                                                         action: ErrorAction::IgnoreError});
1787                                         }
1788                                 }
1789                                 macro_rules! check_update_latest {
1790                                         ($target: expr) => {
1791                                                 if let Some(existing_chan_info) = $target.as_ref() {
1792                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1793                                                         // order updates to ensure you always have the latest one, only
1794                                                         // suggesting  that it be at least the current time. For
1795                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1796                                                         // pruning based on the timestamp field being more than two weeks old,
1797                                                         // but only in the non-normative section.
1798                                                         if existing_chan_info.last_update > msg.timestamp {
1799                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1800                                                         } else if existing_chan_info.last_update == msg.timestamp {
1801                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1802                                                         }
1803                                                         chan_was_enabled = existing_chan_info.enabled;
1804                                                 } else {
1805                                                         chan_was_enabled = false;
1806                                                 }
1807                                         }
1808                                 }
1809
1810                                 macro_rules! get_new_channel_info {
1811                                         () => { {
1812                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1813                                                         { full_msg.cloned() } else { None };
1814
1815                                                 let updated_channel_update_info = ChannelUpdateInfo {
1816                                                         enabled: chan_enabled,
1817                                                         last_update: msg.timestamp,
1818                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1819                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1820                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1821                                                         fees: RoutingFees {
1822                                                                 base_msat: msg.fee_base_msat,
1823                                                                 proportional_millionths: msg.fee_proportional_millionths,
1824                                                         },
1825                                                         last_update_message
1826                                                 };
1827                                                 Some(updated_channel_update_info)
1828                                         } }
1829                                 }
1830
1831                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1832                                 if msg.flags & 1 == 1 {
1833                                         dest_node_id = channel.node_one.clone();
1834                                         check_update_latest!(channel.two_to_one);
1835                                         if let Some(sig) = sig {
1836                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1837                                                         err: "Couldn't parse source node pubkey".to_owned(),
1838                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1839                                                 })?, "channel_update");
1840                                         }
1841                                         channel.two_to_one = get_new_channel_info!();
1842                                 } else {
1843                                         dest_node_id = channel.node_two.clone();
1844                                         check_update_latest!(channel.one_to_two);
1845                                         if let Some(sig) = sig {
1846                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1847                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1848                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1849                                                 })?, "channel_update");
1850                                         }
1851                                         channel.one_to_two = get_new_channel_info!();
1852                                 }
1853                         }
1854                 }
1855
1856                 let mut nodes = self.nodes.write().unwrap();
1857                 if chan_enabled {
1858                         let node = nodes.get_mut(&dest_node_id).unwrap();
1859                         let mut base_msat = msg.fee_base_msat;
1860                         let mut proportional_millionths = msg.fee_proportional_millionths;
1861                         if let Some(fees) = node.lowest_inbound_channel_fees {
1862                                 base_msat = cmp::min(base_msat, fees.base_msat);
1863                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1864                         }
1865                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1866                                 base_msat,
1867                                 proportional_millionths
1868                         });
1869                 } else if chan_was_enabled {
1870                         let node = nodes.get_mut(&dest_node_id).unwrap();
1871                         let mut lowest_inbound_channel_fees = None;
1872
1873                         for chan_id in node.channels.iter() {
1874                                 let chan = channels.get(chan_id).unwrap();
1875                                 let chan_info_opt;
1876                                 if chan.node_one == dest_node_id {
1877                                         chan_info_opt = chan.two_to_one.as_ref();
1878                                 } else {
1879                                         chan_info_opt = chan.one_to_two.as_ref();
1880                                 }
1881                                 if let Some(chan_info) = chan_info_opt {
1882                                         if chan_info.enabled {
1883                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1884                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1885                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1886                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1887                                         }
1888                                 }
1889                         }
1890
1891                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1892                 }
1893
1894                 Ok(())
1895         }
1896
1897         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1898                 macro_rules! remove_from_node {
1899                         ($node_id: expr) => {
1900                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1901                                         entry.get_mut().channels.retain(|chan_id| {
1902                                                 short_channel_id != *chan_id
1903                                         });
1904                                         if entry.get().channels.is_empty() {
1905                                                 entry.remove_entry();
1906                                         }
1907                                 } else {
1908                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1909                                 }
1910                         }
1911                 }
1912
1913                 remove_from_node!(chan.node_one);
1914                 remove_from_node!(chan.node_two);
1915         }
1916 }
1917
1918 impl ReadOnlyNetworkGraph<'_> {
1919         /// Returns all known valid channels' short ids along with announced channel info.
1920         ///
1921         /// (C-not exported) because we have no mapping for `BTreeMap`s
1922         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1923                 &*self.channels
1924         }
1925
1926         /// Returns information on a channel with the given id.
1927         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1928                 self.channels.get(&short_channel_id)
1929         }
1930
1931         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1932         /// Returns the list of channels in the graph
1933         pub fn list_channels(&self) -> Vec<u64> {
1934                 self.channels.keys().map(|c| *c).collect()
1935         }
1936
1937         /// Returns all known nodes' public keys along with announced node info.
1938         ///
1939         /// (C-not exported) because we have no mapping for `BTreeMap`s
1940         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1941                 &*self.nodes
1942         }
1943
1944         /// Returns information on a node with the given id.
1945         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1946                 self.nodes.get(node_id)
1947         }
1948
1949         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1950         /// Returns the list of nodes in the graph
1951         pub fn list_nodes(&self) -> Vec<NodeId> {
1952                 self.nodes.keys().map(|n| *n).collect()
1953         }
1954
1955         /// Get network addresses by node id.
1956         /// Returns None if the requested node is completely unknown,
1957         /// or if node announcement for the node was never received.
1958         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1959                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1960                         if let Some(node_info) = node.announcement_info.as_ref() {
1961                                 return Some(node_info.addresses.clone())
1962                         }
1963                 }
1964                 None
1965         }
1966 }
1967
1968 #[cfg(test)]
1969 mod tests {
1970         use chain;
1971         use ln::channelmanager;
1972         use ln::chan_utils::make_funding_redeemscript;
1973         use ln::PaymentHash;
1974         use ln::features::InitFeatures;
1975         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1976         use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1977                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1978                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1979         use util::test_utils;
1980         use util::ser::{ReadableArgs, Writeable};
1981         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1982         use util::scid_utils::scid_from_parts;
1983
1984         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1985         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1986
1987         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1988         use bitcoin::hashes::Hash;
1989         use bitcoin::network::constants::Network;
1990         use bitcoin::blockdata::constants::genesis_block;
1991         use bitcoin::blockdata::script::Script;
1992         use bitcoin::blockdata::transaction::TxOut;
1993
1994         use hex;
1995
1996         use bitcoin::secp256k1::{PublicKey, SecretKey};
1997         use bitcoin::secp256k1::{All, Secp256k1};
1998
1999         use io;
2000         use bitcoin::secp256k1;
2001         use prelude::*;
2002         use sync::Arc;
2003
2004         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2005                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2006                 let logger = Arc::new(test_utils::TestLogger::new());
2007                 NetworkGraph::new(genesis_hash, logger)
2008         }
2009
2010         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2011                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2012                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2013         ) {
2014                 let secp_ctx = Secp256k1::new();
2015                 let logger = Arc::new(test_utils::TestLogger::new());
2016                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2017                 (secp_ctx, gossip_sync)
2018         }
2019
2020         #[test]
2021         #[cfg(feature = "std")]
2022         fn request_full_sync_finite_times() {
2023                 let network_graph = create_network_graph();
2024                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2025                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2026
2027                 assert!(gossip_sync.should_request_full_sync(&node_id));
2028                 assert!(gossip_sync.should_request_full_sync(&node_id));
2029                 assert!(gossip_sync.should_request_full_sync(&node_id));
2030                 assert!(gossip_sync.should_request_full_sync(&node_id));
2031                 assert!(gossip_sync.should_request_full_sync(&node_id));
2032                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2033         }
2034
2035         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2036                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
2037                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2038                         features: channelmanager::provided_node_features(),
2039                         timestamp: 100,
2040                         node_id: node_id,
2041                         rgb: [0; 3],
2042                         alias: [0; 32],
2043                         addresses: Vec::new(),
2044                         excess_address_data: Vec::new(),
2045                         excess_data: Vec::new(),
2046                 };
2047                 f(&mut unsigned_announcement);
2048                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2049                 NodeAnnouncement {
2050                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2051                         contents: unsigned_announcement
2052                 }
2053         }
2054
2055         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2056                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2057                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2058                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2059                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2060
2061                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2062                         features: channelmanager::provided_channel_features(),
2063                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2064                         short_channel_id: 0,
2065                         node_id_1,
2066                         node_id_2,
2067                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2068                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2069                         excess_data: Vec::new(),
2070                 };
2071                 f(&mut unsigned_announcement);
2072                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2073                 ChannelAnnouncement {
2074                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2075                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2076                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2077                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2078                         contents: unsigned_announcement,
2079                 }
2080         }
2081
2082         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2083                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2084                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2085                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2086                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2087         }
2088
2089         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2090                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2091                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2092                         short_channel_id: 0,
2093                         timestamp: 100,
2094                         flags: 0,
2095                         cltv_expiry_delta: 144,
2096                         htlc_minimum_msat: 1_000_000,
2097                         htlc_maximum_msat: 1_000_000,
2098                         fee_base_msat: 10_000,
2099                         fee_proportional_millionths: 20,
2100                         excess_data: Vec::new()
2101                 };
2102                 f(&mut unsigned_channel_update);
2103                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2104                 ChannelUpdate {
2105                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2106                         contents: unsigned_channel_update
2107                 }
2108         }
2109
2110         #[test]
2111         fn handling_node_announcements() {
2112                 let network_graph = create_network_graph();
2113                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2114
2115                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2116                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2117                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2118
2119                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2120                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2121                         Ok(_) => panic!(),
2122                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2123                 };
2124
2125                 {
2126                         // Announce a channel to add a corresponding node.
2127                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2128                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2129                                 Ok(res) => assert!(res),
2130                                 _ => panic!()
2131                         };
2132                 }
2133
2134                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2135                         Ok(res) => assert!(res),
2136                         Err(_) => panic!()
2137                 };
2138
2139                 let fake_msghash = hash_to_message!(&zero_hash);
2140                 match gossip_sync.handle_node_announcement(
2141                         &NodeAnnouncement {
2142                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2143                                 contents: valid_announcement.contents.clone()
2144                 }) {
2145                         Ok(_) => panic!(),
2146                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2147                 };
2148
2149                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2150                         unsigned_announcement.timestamp += 1000;
2151                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2152                 }, node_1_privkey, &secp_ctx);
2153                 // Return false because contains excess data.
2154                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2155                         Ok(res) => assert!(!res),
2156                         Err(_) => panic!()
2157                 };
2158
2159                 // Even though previous announcement was not relayed further, we still accepted it,
2160                 // so we now won't accept announcements before the previous one.
2161                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2162                         unsigned_announcement.timestamp += 1000 - 10;
2163                 }, node_1_privkey, &secp_ctx);
2164                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2165                         Ok(_) => panic!(),
2166                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2167                 };
2168         }
2169
2170         #[test]
2171         fn handling_channel_announcements() {
2172                 let secp_ctx = Secp256k1::new();
2173                 let logger = test_utils::TestLogger::new();
2174
2175                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2176                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2177
2178                 let good_script = get_channel_script(&secp_ctx);
2179                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2180
2181                 // Test if the UTXO lookups were not supported
2182                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2183                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2184                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2185                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2186                         Ok(res) => assert!(res),
2187                         _ => panic!()
2188                 };
2189
2190                 {
2191                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2192                                 None => panic!(),
2193                                 Some(_) => ()
2194                         };
2195                 }
2196
2197                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2198                 // drop new one on the floor, since we can't see any changes.
2199                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2200                         Ok(_) => panic!(),
2201                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2202                 };
2203
2204                 // Test if an associated transaction were not on-chain (or not confirmed).
2205                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2206                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2207                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2208                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2209
2210                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2211                         unsigned_announcement.short_channel_id += 1;
2212                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2213                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2214                         Ok(_) => panic!(),
2215                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2216                 };
2217
2218                 // Now test if the transaction is found in the UTXO set and the script is correct.
2219                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2220                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2221                         unsigned_announcement.short_channel_id += 2;
2222                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2223                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2224                         Ok(res) => assert!(res),
2225                         _ => panic!()
2226                 };
2227
2228                 {
2229                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2230                                 None => panic!(),
2231                                 Some(_) => ()
2232                         };
2233                 }
2234
2235                 // If we receive announcement for the same channel, once we've validated it against the
2236                 // chain, we simply ignore all new (duplicate) announcements.
2237                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2238                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2239                         Ok(_) => panic!(),
2240                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2241                 };
2242
2243                 #[cfg(feature = "std")]
2244                 {
2245                         use std::time::{SystemTime, UNIX_EPOCH};
2246
2247                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2248                         // Mark a node as permanently failed so it's tracked as removed.
2249                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2250
2251                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2252                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2253                                 unsigned_announcement.short_channel_id += 3;
2254                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2255                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2256                                 Ok(_) => panic!(),
2257                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2258                         }
2259
2260                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2261
2262                         // The above channel announcement should be handled as per normal now.
2263                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2264                                 Ok(res) => assert!(res),
2265                                 _ => panic!()
2266                         }
2267                 }
2268
2269                 // Don't relay valid channels with excess data
2270                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2271                         unsigned_announcement.short_channel_id += 4;
2272                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2273                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2274                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2275                         Ok(res) => assert!(!res),
2276                         _ => panic!()
2277                 };
2278
2279                 let mut invalid_sig_announcement = valid_announcement.clone();
2280                 invalid_sig_announcement.contents.excess_data = Vec::new();
2281                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2282                         Ok(_) => panic!(),
2283                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2284                 };
2285
2286                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2287                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2288                         Ok(_) => panic!(),
2289                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2290                 };
2291         }
2292
2293         #[test]
2294         fn handling_channel_update() {
2295                 let secp_ctx = Secp256k1::new();
2296                 let logger = test_utils::TestLogger::new();
2297                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2298                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2299                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2300                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2301
2302                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2303                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2304
2305                 let amount_sats = 1000_000;
2306                 let short_channel_id;
2307
2308                 {
2309                         // Announce a channel we will update
2310                         let good_script = get_channel_script(&secp_ctx);
2311                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2312
2313                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2314                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2315                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2316                                 Ok(_) => (),
2317                                 Err(_) => panic!()
2318                         };
2319
2320                 }
2321
2322                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2323                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2324                         Ok(res) => assert!(res),
2325                         _ => panic!(),
2326                 };
2327
2328                 {
2329                         match network_graph.read_only().channels().get(&short_channel_id) {
2330                                 None => panic!(),
2331                                 Some(channel_info) => {
2332                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2333                                         assert!(channel_info.two_to_one.is_none());
2334                                 }
2335                         };
2336                 }
2337
2338                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2339                         unsigned_channel_update.timestamp += 100;
2340                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2341                 }, node_1_privkey, &secp_ctx);
2342                 // Return false because contains excess data
2343                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2344                         Ok(res) => assert!(!res),
2345                         _ => panic!()
2346                 };
2347
2348                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2349                         unsigned_channel_update.timestamp += 110;
2350                         unsigned_channel_update.short_channel_id += 1;
2351                 }, node_1_privkey, &secp_ctx);
2352                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2353                         Ok(_) => panic!(),
2354                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2355                 };
2356
2357                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2358                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2359                         unsigned_channel_update.timestamp += 110;
2360                 }, node_1_privkey, &secp_ctx);
2361                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2362                         Ok(_) => panic!(),
2363                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2364                 };
2365
2366                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2367                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2368                         unsigned_channel_update.timestamp += 110;
2369                 }, node_1_privkey, &secp_ctx);
2370                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2371                         Ok(_) => panic!(),
2372                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2373                 };
2374
2375                 // Even though previous update was not relayed further, we still accepted it,
2376                 // so we now won't accept update before the previous one.
2377                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2378                         unsigned_channel_update.timestamp += 100;
2379                 }, node_1_privkey, &secp_ctx);
2380                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2381                         Ok(_) => panic!(),
2382                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2383                 };
2384
2385                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2386                         unsigned_channel_update.timestamp += 500;
2387                 }, node_1_privkey, &secp_ctx);
2388                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2389                 let fake_msghash = hash_to_message!(&zero_hash);
2390                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2391                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2392                         Ok(_) => panic!(),
2393                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2394                 };
2395         }
2396
2397         #[test]
2398         fn handling_network_update() {
2399                 let logger = test_utils::TestLogger::new();
2400                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2401                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2402                 let secp_ctx = Secp256k1::new();
2403
2404                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2405                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2406                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2407
2408                 {
2409                         // There is no nodes in the table at the beginning.
2410                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2411                 }
2412
2413                 let short_channel_id;
2414                 {
2415                         // Announce a channel we will update
2416                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2417                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2418                         let chain_source: Option<&test_utils::TestChainSource> = None;
2419                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2420                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2421
2422                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2423                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2424
2425                         network_graph.handle_event(&Event::PaymentPathFailed {
2426                                 payment_id: None,
2427                                 payment_hash: PaymentHash([0; 32]),
2428                                 payment_failed_permanently: false,
2429                                 all_paths_failed: true,
2430                                 path: vec![],
2431                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2432                                         msg: valid_channel_update,
2433                                 }),
2434                                 short_channel_id: None,
2435                                 retry: None,
2436                                 error_code: None,
2437                                 error_data: None,
2438                         });
2439
2440                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2441                 }
2442
2443                 // Non-permanent closing just disables a channel
2444                 {
2445                         match network_graph.read_only().channels().get(&short_channel_id) {
2446                                 None => panic!(),
2447                                 Some(channel_info) => {
2448                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2449                                 }
2450                         };
2451
2452                         network_graph.handle_event(&Event::PaymentPathFailed {
2453                                 payment_id: None,
2454                                 payment_hash: PaymentHash([0; 32]),
2455                                 payment_failed_permanently: false,
2456                                 all_paths_failed: true,
2457                                 path: vec![],
2458                                 network_update: Some(NetworkUpdate::ChannelFailure {
2459                                         short_channel_id,
2460                                         is_permanent: false,
2461                                 }),
2462                                 short_channel_id: None,
2463                                 retry: None,
2464                                 error_code: None,
2465                                 error_data: None,
2466                         });
2467
2468                         match network_graph.read_only().channels().get(&short_channel_id) {
2469                                 None => panic!(),
2470                                 Some(channel_info) => {
2471                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2472                                 }
2473                         };
2474                 }
2475
2476                 // Permanent closing deletes a channel
2477                 network_graph.handle_event(&Event::PaymentPathFailed {
2478                         payment_id: None,
2479                         payment_hash: PaymentHash([0; 32]),
2480                         payment_failed_permanently: false,
2481                         all_paths_failed: true,
2482                         path: vec![],
2483                         network_update: Some(NetworkUpdate::ChannelFailure {
2484                                 short_channel_id,
2485                                 is_permanent: true,
2486                         }),
2487                         short_channel_id: None,
2488                         retry: None,
2489                         error_code: None,
2490                         error_data: None,
2491                 });
2492
2493                 assert_eq!(network_graph.read_only().channels().len(), 0);
2494                 // Nodes are also deleted because there are no associated channels anymore
2495                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2496
2497                 {
2498                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2499                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2500
2501                         // Announce a channel to test permanent node failure
2502                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2503                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2504                         let chain_source: Option<&test_utils::TestChainSource> = None;
2505                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2506                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2507
2508                         // Non-permanent node failure does not delete any nodes or channels
2509                         network_graph.handle_event(&Event::PaymentPathFailed {
2510                                 payment_id: None,
2511                                 payment_hash: PaymentHash([0; 32]),
2512                                 payment_failed_permanently: false,
2513                                 all_paths_failed: true,
2514                                 path: vec![],
2515                                 network_update: Some(NetworkUpdate::NodeFailure {
2516                                         node_id: node_2_id,
2517                                         is_permanent: false,
2518                                 }),
2519                                 short_channel_id: None,
2520                                 retry: None,
2521                                 error_code: None,
2522                                 error_data: None,
2523                         });
2524
2525                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2526                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2527
2528                         // Permanent node failure deletes node and its channels
2529                         network_graph.handle_event(&Event::PaymentPathFailed {
2530                                 payment_id: None,
2531                                 payment_hash: PaymentHash([0; 32]),
2532                                 payment_failed_permanently: false,
2533                                 all_paths_failed: true,
2534                                 path: vec![],
2535                                 network_update: Some(NetworkUpdate::NodeFailure {
2536                                         node_id: node_2_id,
2537                                         is_permanent: true,
2538                                 }),
2539                                 short_channel_id: None,
2540                                 retry: None,
2541                                 error_code: None,
2542                                 error_data: None,
2543                         });
2544
2545                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2546                         // Channels are also deleted because the associated node has been deleted
2547                         assert_eq!(network_graph.read_only().channels().len(), 0);
2548                 }
2549         }
2550
2551         #[test]
2552         fn test_channel_timeouts() {
2553                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2554                 let logger = test_utils::TestLogger::new();
2555                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2556                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2557                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2558                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2559                 let secp_ctx = Secp256k1::new();
2560
2561                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2562                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2563
2564                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2565                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2566                 let chain_source: Option<&test_utils::TestChainSource> = None;
2567                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2568                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2569
2570                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2571                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2572                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2573
2574                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2575                 assert_eq!(network_graph.read_only().channels().len(), 1);
2576                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2577
2578                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2579                 #[cfg(feature = "std")]
2580                 {
2581                         // In std mode, a further check is performed before fully removing the channel -
2582                         // the channel_announcement must have been received at least two weeks ago. We
2583                         // fudge that here by indicating the time has jumped two weeks. Note that the
2584                         // directional channel information will have been removed already..
2585                         assert_eq!(network_graph.read_only().channels().len(), 1);
2586                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2587                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2588
2589                         use std::time::{SystemTime, UNIX_EPOCH};
2590                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2591                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2592                 }
2593
2594                 assert_eq!(network_graph.read_only().channels().len(), 0);
2595                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2596
2597                 #[cfg(feature = "std")]
2598                 {
2599                         use std::time::{SystemTime, UNIX_EPOCH};
2600
2601                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2602
2603                         // Clear tracked nodes and channels for clean slate
2604                         network_graph.removed_channels.lock().unwrap().clear();
2605                         network_graph.removed_nodes.lock().unwrap().clear();
2606
2607                         // Add a channel and nodes from channel announcement. So our network graph will
2608                         // now only consist of two nodes and one channel between them.
2609                         assert!(network_graph.update_channel_from_announcement(
2610                                 &valid_channel_announcement, &chain_source).is_ok());
2611
2612                         // Mark the channel as permanently failed. This will also remove the two nodes
2613                         // and all of the entries will be tracked as removed.
2614                         network_graph.channel_failed(short_channel_id, true);
2615
2616                         // Should not remove from tracking if insufficient time has passed
2617                         network_graph.remove_stale_channels_and_tracking_with_time(
2618                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2619                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2620
2621                         // Provide a later time so that sufficient time has passed
2622                         network_graph.remove_stale_channels_and_tracking_with_time(
2623                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2624                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2625                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2626                 }
2627
2628                 #[cfg(not(feature = "std"))]
2629                 {
2630                         // When we don't have access to the system clock, the time we started tracking removal will only
2631                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2632                         // only if sufficient time has passed after that first call, will the next call remove it from
2633                         // tracking.
2634                         let removal_time = 1664619654;
2635
2636                         // Clear removed nodes and channels for clean slate
2637                         network_graph.removed_channels.lock().unwrap().clear();
2638                         network_graph.removed_nodes.lock().unwrap().clear();
2639
2640                         // Add a channel and nodes from channel announcement. So our network graph will
2641                         // now only consist of two nodes and one channel between them.
2642                         assert!(network_graph.update_channel_from_announcement(
2643                                 &valid_channel_announcement, &chain_source).is_ok());
2644
2645                         // Mark the channel as permanently failed. This will also remove the two nodes
2646                         // and all of the entries will be tracked as removed.
2647                         network_graph.channel_failed(short_channel_id, true);
2648
2649                         // The first time we call the following, the channel will have a removal time assigned.
2650                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2651                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2652
2653                         // Provide a later time so that sufficient time has passed
2654                         network_graph.remove_stale_channels_and_tracking_with_time(
2655                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2656                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2657                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2658                 }
2659         }
2660
2661         #[test]
2662         fn getting_next_channel_announcements() {
2663                 let network_graph = create_network_graph();
2664                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2665                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2666                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2667
2668                 // Channels were not announced yet.
2669                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2670                 assert!(channels_with_announcements.is_none());
2671
2672                 let short_channel_id;
2673                 {
2674                         // Announce a channel we will update
2675                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2676                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2677                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2678                                 Ok(_) => (),
2679                                 Err(_) => panic!()
2680                         };
2681                 }
2682
2683                 // Contains initial channel announcement now.
2684                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2685                 if let Some(channel_announcements) = channels_with_announcements {
2686                         let (_, ref update_1, ref update_2) = channel_announcements;
2687                         assert_eq!(update_1, &None);
2688                         assert_eq!(update_2, &None);
2689                 } else {
2690                         panic!();
2691                 }
2692
2693                 {
2694                         // Valid channel update
2695                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2696                                 unsigned_channel_update.timestamp = 101;
2697                         }, node_1_privkey, &secp_ctx);
2698                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2699                                 Ok(_) => (),
2700                                 Err(_) => panic!()
2701                         };
2702                 }
2703
2704                 // Now contains an initial announcement and an update.
2705                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2706                 if let Some(channel_announcements) = channels_with_announcements {
2707                         let (_, ref update_1, ref update_2) = channel_announcements;
2708                         assert_ne!(update_1, &None);
2709                         assert_eq!(update_2, &None);
2710                 } else {
2711                         panic!();
2712                 }
2713
2714                 {
2715                         // Channel update with excess data.
2716                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2717                                 unsigned_channel_update.timestamp = 102;
2718                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2719                         }, node_1_privkey, &secp_ctx);
2720                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2721                                 Ok(_) => (),
2722                                 Err(_) => panic!()
2723                         };
2724                 }
2725
2726                 // Test that announcements with excess data won't be returned
2727                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2728                 if let Some(channel_announcements) = channels_with_announcements {
2729                         let (_, ref update_1, ref update_2) = channel_announcements;
2730                         assert_eq!(update_1, &None);
2731                         assert_eq!(update_2, &None);
2732                 } else {
2733                         panic!();
2734                 }
2735
2736                 // Further starting point have no channels after it
2737                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2738                 assert!(channels_with_announcements.is_none());
2739         }
2740
2741         #[test]
2742         fn getting_next_node_announcements() {
2743                 let network_graph = create_network_graph();
2744                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2745                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2746                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2747                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2748
2749                 // No nodes yet.
2750                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2751                 assert!(next_announcements.is_none());
2752
2753                 {
2754                         // Announce a channel to add 2 nodes
2755                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2756                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2757                                 Ok(_) => (),
2758                                 Err(_) => panic!()
2759                         };
2760                 }
2761
2762                 // Nodes were never announced
2763                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2764                 assert!(next_announcements.is_none());
2765
2766                 {
2767                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2768                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2769                                 Ok(_) => (),
2770                                 Err(_) => panic!()
2771                         };
2772
2773                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2774                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2775                                 Ok(_) => (),
2776                                 Err(_) => panic!()
2777                         };
2778                 }
2779
2780                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2781                 assert!(next_announcements.is_some());
2782
2783                 // Skip the first node.
2784                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2785                 assert!(next_announcements.is_some());
2786
2787                 {
2788                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2789                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2790                                 unsigned_announcement.timestamp += 10;
2791                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2792                         }, node_2_privkey, &secp_ctx);
2793                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2794                                 Ok(res) => assert!(!res),
2795                                 Err(_) => panic!()
2796                         };
2797                 }
2798
2799                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2800                 assert!(next_announcements.is_none());
2801         }
2802
2803         #[test]
2804         fn network_graph_serialization() {
2805                 let network_graph = create_network_graph();
2806                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2807
2808                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2809                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2810
2811                 // Announce a channel to add a corresponding node.
2812                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2813                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2814                         Ok(res) => assert!(res),
2815                         _ => panic!()
2816                 };
2817
2818                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2819                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2820                         Ok(_) => (),
2821                         Err(_) => panic!()
2822                 };
2823
2824                 let mut w = test_utils::TestVecWriter(Vec::new());
2825                 assert!(!network_graph.read_only().nodes().is_empty());
2826                 assert!(!network_graph.read_only().channels().is_empty());
2827                 network_graph.write(&mut w).unwrap();
2828
2829                 let logger = Arc::new(test_utils::TestLogger::new());
2830                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2831         }
2832
2833         #[test]
2834         fn network_graph_tlv_serialization() {
2835                 let network_graph = create_network_graph();
2836                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2837
2838                 let mut w = test_utils::TestVecWriter(Vec::new());
2839                 network_graph.write(&mut w).unwrap();
2840
2841                 let logger = Arc::new(test_utils::TestLogger::new());
2842                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2843                 assert!(reassembled_network_graph == network_graph);
2844                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2845         }
2846
2847         #[test]
2848         #[cfg(feature = "std")]
2849         fn calling_sync_routing_table() {
2850                 use std::time::{SystemTime, UNIX_EPOCH};
2851                 use ln::msgs::Init;
2852
2853                 let network_graph = create_network_graph();
2854                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2855                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2856                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2857
2858                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2859
2860                 // It should ignore if gossip_queries feature is not enabled
2861                 {
2862                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2863                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2864                         let events = gossip_sync.get_and_clear_pending_msg_events();
2865                         assert_eq!(events.len(), 0);
2866                 }
2867
2868                 // It should send a gossip_timestamp_filter with the correct information
2869                 {
2870                         let mut features = InitFeatures::empty();
2871                         features.set_gossip_queries_optional();
2872                         let init_msg = Init { features, remote_network_address: None };
2873                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2874                         let events = gossip_sync.get_and_clear_pending_msg_events();
2875                         assert_eq!(events.len(), 1);
2876                         match &events[0] {
2877                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2878                                         assert_eq!(node_id, &node_id_1);
2879                                         assert_eq!(msg.chain_hash, chain_hash);
2880                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2881                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2882                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2883                                         assert_eq!(msg.timestamp_range, u32::max_value());
2884                                 },
2885                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2886                         };
2887                 }
2888         }
2889
2890         #[test]
2891         fn handling_query_channel_range() {
2892                 let network_graph = create_network_graph();
2893                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2894
2895                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2896                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2897                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2898                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2899
2900                 let mut scids: Vec<u64> = vec![
2901                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2902                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2903                 ];
2904
2905                 // used for testing multipart reply across blocks
2906                 for block in 100000..=108001 {
2907                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2908                 }
2909
2910                 // used for testing resumption on same block
2911                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2912
2913                 for scid in scids {
2914                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2915                                 unsigned_announcement.short_channel_id = scid;
2916                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2917                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2918                                 Ok(_) => (),
2919                                 _ => panic!()
2920                         };
2921                 }
2922
2923                 // Error when number_of_blocks=0
2924                 do_handling_query_channel_range(
2925                         &gossip_sync,
2926                         &node_id_2,
2927                         QueryChannelRange {
2928                                 chain_hash: chain_hash.clone(),
2929                                 first_blocknum: 0,
2930                                 number_of_blocks: 0,
2931                         },
2932                         false,
2933                         vec![ReplyChannelRange {
2934                                 chain_hash: chain_hash.clone(),
2935                                 first_blocknum: 0,
2936                                 number_of_blocks: 0,
2937                                 sync_complete: true,
2938                                 short_channel_ids: vec![]
2939                         }]
2940                 );
2941
2942                 // Error when wrong chain
2943                 do_handling_query_channel_range(
2944                         &gossip_sync,
2945                         &node_id_2,
2946                         QueryChannelRange {
2947                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2948                                 first_blocknum: 0,
2949                                 number_of_blocks: 0xffff_ffff,
2950                         },
2951                         false,
2952                         vec![ReplyChannelRange {
2953                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2954                                 first_blocknum: 0,
2955                                 number_of_blocks: 0xffff_ffff,
2956                                 sync_complete: true,
2957                                 short_channel_ids: vec![],
2958                         }]
2959                 );
2960
2961                 // Error when first_blocknum > 0xffffff
2962                 do_handling_query_channel_range(
2963                         &gossip_sync,
2964                         &node_id_2,
2965                         QueryChannelRange {
2966                                 chain_hash: chain_hash.clone(),
2967                                 first_blocknum: 0x01000000,
2968                                 number_of_blocks: 0xffff_ffff,
2969                         },
2970                         false,
2971                         vec![ReplyChannelRange {
2972                                 chain_hash: chain_hash.clone(),
2973                                 first_blocknum: 0x01000000,
2974                                 number_of_blocks: 0xffff_ffff,
2975                                 sync_complete: true,
2976                                 short_channel_ids: vec![]
2977                         }]
2978                 );
2979
2980                 // Empty reply when max valid SCID block num
2981                 do_handling_query_channel_range(
2982                         &gossip_sync,
2983                         &node_id_2,
2984                         QueryChannelRange {
2985                                 chain_hash: chain_hash.clone(),
2986                                 first_blocknum: 0xffffff,
2987                                 number_of_blocks: 1,
2988                         },
2989                         true,
2990                         vec![
2991                                 ReplyChannelRange {
2992                                         chain_hash: chain_hash.clone(),
2993                                         first_blocknum: 0xffffff,
2994                                         number_of_blocks: 1,
2995                                         sync_complete: true,
2996                                         short_channel_ids: vec![]
2997                                 },
2998                         ]
2999                 );
3000
3001                 // No results in valid query range
3002                 do_handling_query_channel_range(
3003                         &gossip_sync,
3004                         &node_id_2,
3005                         QueryChannelRange {
3006                                 chain_hash: chain_hash.clone(),
3007                                 first_blocknum: 1000,
3008                                 number_of_blocks: 1000,
3009                         },
3010                         true,
3011                         vec![
3012                                 ReplyChannelRange {
3013                                         chain_hash: chain_hash.clone(),
3014                                         first_blocknum: 1000,
3015                                         number_of_blocks: 1000,
3016                                         sync_complete: true,
3017                                         short_channel_ids: vec![],
3018                                 }
3019                         ]
3020                 );
3021
3022                 // Overflow first_blocknum + number_of_blocks
3023                 do_handling_query_channel_range(
3024                         &gossip_sync,
3025                         &node_id_2,
3026                         QueryChannelRange {
3027                                 chain_hash: chain_hash.clone(),
3028                                 first_blocknum: 0xfe0000,
3029                                 number_of_blocks: 0xffffffff,
3030                         },
3031                         true,
3032                         vec![
3033                                 ReplyChannelRange {
3034                                         chain_hash: chain_hash.clone(),
3035                                         first_blocknum: 0xfe0000,
3036                                         number_of_blocks: 0xffffffff - 0xfe0000,
3037                                         sync_complete: true,
3038                                         short_channel_ids: vec![
3039                                                 0xfffffe_ffffff_ffff, // max
3040                                         ]
3041                                 }
3042                         ]
3043                 );
3044
3045                 // Single block exactly full
3046                 do_handling_query_channel_range(
3047                         &gossip_sync,
3048                         &node_id_2,
3049                         QueryChannelRange {
3050                                 chain_hash: chain_hash.clone(),
3051                                 first_blocknum: 100000,
3052                                 number_of_blocks: 8000,
3053                         },
3054                         true,
3055                         vec![
3056                                 ReplyChannelRange {
3057                                         chain_hash: chain_hash.clone(),
3058                                         first_blocknum: 100000,
3059                                         number_of_blocks: 8000,
3060                                         sync_complete: true,
3061                                         short_channel_ids: (100000..=107999)
3062                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3063                                                 .collect(),
3064                                 },
3065                         ]
3066                 );
3067
3068                 // Multiple split on new block
3069                 do_handling_query_channel_range(
3070                         &gossip_sync,
3071                         &node_id_2,
3072                         QueryChannelRange {
3073                                 chain_hash: chain_hash.clone(),
3074                                 first_blocknum: 100000,
3075                                 number_of_blocks: 8001,
3076                         },
3077                         true,
3078                         vec![
3079                                 ReplyChannelRange {
3080                                         chain_hash: chain_hash.clone(),
3081                                         first_blocknum: 100000,
3082                                         number_of_blocks: 7999,
3083                                         sync_complete: false,
3084                                         short_channel_ids: (100000..=107999)
3085                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3086                                                 .collect(),
3087                                 },
3088                                 ReplyChannelRange {
3089                                         chain_hash: chain_hash.clone(),
3090                                         first_blocknum: 107999,
3091                                         number_of_blocks: 2,
3092                                         sync_complete: true,
3093                                         short_channel_ids: vec![
3094                                                 scid_from_parts(108000, 0, 0).unwrap(),
3095                                         ],
3096                                 }
3097                         ]
3098                 );
3099
3100                 // Multiple split on same block
3101                 do_handling_query_channel_range(
3102                         &gossip_sync,
3103                         &node_id_2,
3104                         QueryChannelRange {
3105                                 chain_hash: chain_hash.clone(),
3106                                 first_blocknum: 100002,
3107                                 number_of_blocks: 8000,
3108                         },
3109                         true,
3110                         vec![
3111                                 ReplyChannelRange {
3112                                         chain_hash: chain_hash.clone(),
3113                                         first_blocknum: 100002,
3114                                         number_of_blocks: 7999,
3115                                         sync_complete: false,
3116                                         short_channel_ids: (100002..=108001)
3117                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3118                                                 .collect(),
3119                                 },
3120                                 ReplyChannelRange {
3121                                         chain_hash: chain_hash.clone(),
3122                                         first_blocknum: 108001,
3123                                         number_of_blocks: 1,
3124                                         sync_complete: true,
3125                                         short_channel_ids: vec![
3126                                                 scid_from_parts(108001, 1, 0).unwrap(),
3127                                         ],
3128                                 }
3129                         ]
3130                 );
3131         }
3132
3133         fn do_handling_query_channel_range(
3134                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3135                 test_node_id: &PublicKey,
3136                 msg: QueryChannelRange,
3137                 expected_ok: bool,
3138                 expected_replies: Vec<ReplyChannelRange>
3139         ) {
3140                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3141                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3142                 let query_end_blocknum = msg.end_blocknum();
3143                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3144
3145                 if expected_ok {
3146                         assert!(result.is_ok());
3147                 } else {
3148                         assert!(result.is_err());
3149                 }
3150
3151                 let events = gossip_sync.get_and_clear_pending_msg_events();
3152                 assert_eq!(events.len(), expected_replies.len());
3153
3154                 for i in 0..events.len() {
3155                         let expected_reply = &expected_replies[i];
3156                         match &events[i] {
3157                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3158                                         assert_eq!(node_id, test_node_id);
3159                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3160                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3161                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3162                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3163                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3164
3165                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3166                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3167                                         assert!(msg.first_blocknum >= max_firstblocknum);
3168                                         max_firstblocknum = msg.first_blocknum;
3169                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3170
3171                                         // Check that the last block count is >= the query's end_blocknum
3172                                         if i == events.len() - 1 {
3173                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3174                                         }
3175                                 },
3176                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3177                         }
3178                 }
3179         }
3180
3181         #[test]
3182         fn handling_query_short_channel_ids() {
3183                 let network_graph = create_network_graph();
3184                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3185                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3186                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3187
3188                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3189
3190                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3191                         chain_hash,
3192                         short_channel_ids: vec![0x0003e8_000000_0000],
3193                 });
3194                 assert!(result.is_err());
3195         }
3196
3197         #[test]
3198         fn displays_node_alias() {
3199                 let format_str_alias = |alias: &str| {
3200                         let mut bytes = [0u8; 32];
3201                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3202                         format!("{}", NodeAlias(bytes))
3203                 };
3204
3205                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3206                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3207                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3208
3209                 let format_bytes_alias = |alias: &[u8]| {
3210                         let mut bytes = [0u8; 32];
3211                         bytes[..alias.len()].copy_from_slice(alias);
3212                         format!("{}", NodeAlias(bytes))
3213                 };
3214
3215                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3216                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3217                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3218         }
3219
3220         #[test]
3221         fn channel_info_is_readable() {
3222                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
3223                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3224                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3225                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3226
3227                 // 1. Test encoding/decoding of ChannelUpdateInfo
3228                 let chan_update_info = ChannelUpdateInfo {
3229                         last_update: 23,
3230                         enabled: true,
3231                         cltv_expiry_delta: 42,
3232                         htlc_minimum_msat: 1234,
3233                         htlc_maximum_msat: 5678,
3234                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3235                         last_update_message: None,
3236                 };
3237
3238                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3239                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3240
3241                 // First make sure we can read ChannelUpdateInfos we just wrote
3242                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3243                 assert_eq!(chan_update_info, read_chan_update_info);
3244
3245                 // Check the serialization hasn't changed.
3246                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3247                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3248
3249                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3250                 // or the ChannelUpdate enclosed with `last_update_message`.
3251                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3252                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3253                 assert!(read_chan_update_info_res.is_err());
3254
3255                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3256                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3257                 assert!(read_chan_update_info_res.is_err());
3258
3259                 // 2. Test encoding/decoding of ChannelInfo
3260                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3261                 let chan_info_none_updates = ChannelInfo {
3262                         features: channelmanager::provided_channel_features(),
3263                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3264                         one_to_two: None,
3265                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3266                         two_to_one: None,
3267                         capacity_sats: None,
3268                         announcement_message: None,
3269                         announcement_received_time: 87654,
3270                 };
3271
3272                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3273                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3274
3275                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3276                 assert_eq!(chan_info_none_updates, read_chan_info);
3277
3278                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3279                 let chan_info_some_updates = ChannelInfo {
3280                         features: channelmanager::provided_channel_features(),
3281                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3282                         one_to_two: Some(chan_update_info.clone()),
3283                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3284                         two_to_one: Some(chan_update_info.clone()),
3285                         capacity_sats: None,
3286                         announcement_message: None,
3287                         announcement_received_time: 87654,
3288                 };
3289
3290                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3291                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3292
3293                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3294                 assert_eq!(chan_info_some_updates, read_chan_info);
3295
3296                 // Check the serialization hasn't changed.
3297                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3298                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3299
3300                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3301                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3302                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3303                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3304                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3305                 assert_eq!(read_chan_info.one_to_two, None);
3306                 assert_eq!(read_chan_info.two_to_one, None);
3307
3308                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3309                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3310                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3311                 assert_eq!(read_chan_info.one_to_two, None);
3312                 assert_eq!(read_chan_info.two_to_one, None);
3313         }
3314
3315         #[test]
3316         fn node_info_is_readable() {
3317                 use std::convert::TryFrom;
3318
3319                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3320                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3321                 let valid_node_ann_info = NodeAnnouncementInfo {
3322                         features: channelmanager::provided_node_features(),
3323                         last_update: 0,
3324                         rgb: [0u8; 3],
3325                         alias: NodeAlias([0u8; 32]),
3326                         addresses: vec![valid_netaddr],
3327                         announcement_message: None,
3328                 };
3329
3330                 let mut encoded_valid_node_ann_info = Vec::new();
3331                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3332                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3333                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3334
3335                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3336                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3337                 assert!(read_invalid_node_ann_info_res.is_err());
3338
3339                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3340                 let valid_node_info = NodeInfo {
3341                         channels: Vec::new(),
3342                         lowest_inbound_channel_fees: None,
3343                         announcement_info: Some(valid_node_ann_info),
3344                 };
3345
3346                 let mut encoded_valid_node_info = Vec::new();
3347                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3348                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3349                 assert_eq!(read_valid_node_info, valid_node_info);
3350
3351                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3352                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3353                 assert_eq!(read_invalid_node_info.announcement_info, None);
3354         }
3355 }
3356
3357 #[cfg(all(test, feature = "_bench_unstable"))]
3358 mod benches {
3359         use super::*;
3360
3361         use test::Bencher;
3362         use std::io::Read;
3363
3364         #[bench]
3365         fn read_network_graph(bench: &mut Bencher) {
3366                 let logger = ::util::test_utils::TestLogger::new();
3367                 let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
3368                 let mut v = Vec::new();
3369                 d.read_to_end(&mut v).unwrap();
3370                 bench.iter(|| {
3371                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3372                 });
3373         }
3374
3375         #[bench]
3376         fn write_network_graph(bench: &mut Bencher) {
3377                 let logger = ::util::test_utils::TestLogger::new();
3378                 let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
3379                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3380                 bench.iter(|| {
3381                         let _ = net_graph.encode();
3382                 });
3383         }
3384 }